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Abstract

Plant phenology regulates ecosystem services at local and global scales and is a sen-
sitive indicator of global change. Estimates of phenophase transition dates, such as the
start of spring or end of autumn, can be derived from sensor-based time series data
at the near-surface and remote scales, but must be interpreted in terms of biologically5

relevant events. We use the PhenoCam archive of digital repeat photography to imple-
ment a consistent protocol for visual assessment of canopy phenology at 13 temperate
deciduous forest sites throughout eastern North America, as well as to perform digital
image analysis for time series-based estimates of phenology dates. We then compare
these near-surface results to remote sensing metrics of phenology at the landscape10

scale, derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) and
Advanced Very High Resolution Radiometer (AVHRR) sensors. We present a new type
of curve fit, using a generalized sigmoid, to estimate phenology dates. We quantify
the statistical uncertainty of phenophase transition dates estimated using this method
and show that the generalized sigmoid results in less statistical uncertainty than other15

curve-fitting methods. Additionally, we find that dates derived from analysis of high-
frequency PhenoCam imagery have smaller uncertainties than remote sensing metrics
of phenology, and that dates derived from the remotely-sensed enhanced vegetation
index (EVI) have smaller uncertainty than those derived from the normalized difference
vegetation index (NDVI). Near-surface time series estimates for the start of spring are20

found to closely match visual assessment of leaf out, as well as remote sensing-derived
estimates of the start of spring. However late spring and autumn phenology exhibit
larger differences between near-surface and remote scales. Differences in late spring
phenology between near-surface and remote scales are found to correlate with a land-
scape metric of deciduous forest cover. These results quantify the effect of landscape25

heterogeneity when aggregating to the coarser spatial scales of remote sensing, and
demonstrate the importance of accurate curve fitting and vegetation index selection
when analyzing and interpreting phenology time series.
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1 Introduction

Plant phenology plays a central role in how climate change interacts with the biosphere
and affects ecosystem services, trophic interactions and species ranges (Richardson
et al., 2013a; Morisette et al., 2009). Phenological monitoring throughout past decades
and centuries therefore provides a valuable record of how plants have responded to5

a changing world (Aono and Kazui, 2008; Menzel, 2000; Sparks and Carey, 1995).
While direct visual assessment of the phenological status of plants has provided long
term records of specific phenophases such as budburst and leaf-out, sensors such as
radiometers and digital cameras are now being used to create automated, high fre-
quency, phenological time series (Richardson et al., 2013b). Sensor-based data range10

from the local scale of site based measurements, to the global extent of satellite mis-
sions (Garrity et al., 2011; Huemmrich et al., 1999; Jenkins et al., 2007; Soudani et al.,
2012). A key challenge in the interpretation of phenology derived from sensor time se-
ries is determining how they relate to plant biological events that an observer would
recognize. Digital repeat photography of terrestrial ecosystems serves two purposes in15

this regard, supplying both a visually interpretable record, and, through image process-
ing techniques, time series data similar to that available from radiometers (Richardson
et al., 2007; Sonnentag et al., 2012). Digital repeat photography can therefore serve as
a bridge between the traditional practice of direct visual observation of organisms, and
sensor-based estimates of phenology from near-surface and remote sensing data.20

Digital repeat photography also makes consistent visual assessment of phenology
possible over a broad geographic range, as a single set of observers can view many
sites with relative ease via digital image archives. In previous comparisons of local to
landscape scale phenology, investigators were limited by the ground area a group of
observers could feasibly cover on foot (Liang et al., 2011). At the continental scale,25

comparison of ground-based phenology indicators to remote sensing was limited by
the geographic extent of any given mode of ground observation (White et al., 2009).
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Consequently, there is a knowledge gap in how time series data relate to the biological
events of canopy phenology, over a wide geographic range of sites.

This study applied quantitative analysis and visual assessment to a collection of
digital repeat photography from a range of deciduous forests across eastern North
America. The study sites exhibit diverse landscape characteristics, from a nearly pure5

deciduous broadleaf forest in Arkansas, to an urban stand of trees in Washington, DC.
We compared an ensemble of previously presented and new methods for extracting
dates from phenological time series, and quantified the statistical uncertainty of esti-
mated dates. Building on an earlier comparison study by Hufkens et al. (2012), we also
analyzed time series data from the Moderate Resolution Imaging Spectroradiometer10

(MODIS), as well as the MODIS and Making Earth System Data Records for Use in
Research Environments (MEASURES) phenology products, for comparison to near-
surface estimates. This study aims to evaluate how visually assessed biological events
correspond to time series estimates of phenological dates. A complementary goal is to
explore how near-surface metrics of deciduous canopy phenology in the spring and fall15

are related to landscape scale metrics of remote sensing across diverse forest ecosys-
tems.

2 Methods

2.1 Study sites

To characterize leaf phenology of temperate deciduous forests over a broad geographic20

distribution, we chose 13 sites in the eastern US and Canada, based on availability of
near-surface camera observations (Fig. 1). According to the International Geosphere-
Biosphere Programme land cover classification scheme of the MODIS Land Cover
product (Friedl et al., 2002), at 500 m spatial resolution, six of the sites were dominated
by the deciduous broad leaf land cover type, six were dominated by mixed deciduous-25

coniferous forest, and one site was urban. Finer resolution land cover analysis was
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carried out using 30 m National Land Cover Database (NLCD) data for sites in the US,
to more accurately characterize heterogeneity in land cover type, as reported in Table 1
(Vogelmann et al., 2001). A total of 77 site-years of collocated near-surface and remote
sensing imagery were analyzed across all sites.

2.2 Near-surface imagery: visual assessment of phenological transitions5

Near-surface imagery was obtained from the PhenoCam archive of digital repeat pho-
tography for phenological observation (http://phenocam.sr.unh.edu) and used to visu-
ally identify deciduous canopy transition dates. Six observers looked through daily im-
ages and used a common protocol to identify these dates for all site-years of data:

1. when the majority of trees started leafing out;10

2. when the canopy reached full maturity;

3. when the canopy first started to change color in the fall;

4. when the canopy exhibited the brightest fall colors;

5. when the majority of trees had lost all leaves.

To reduce inter-observer variability in visually assessed dates, the minimum and maxi-15

mum estimates of each date were discarded, and the remaining dates were averaged
to provide a single date for each event. Using the median observation (not reported
here) gave similar results to the mean.

2.3 Near-surface imagery: time series estimates of phenological transitions

To automatically extract phenology transition dates from near-surface images, we de-20

fined regions of interest (ROIs) representing the deciduous canopy in the foreground
at each site as shown in Fig. 2, and analyzed them using software written in Mat-
lab (R2013a, The Mathworks, Nattick, MA), available at https://github.com/klostest/
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PhenoCamAnalysis. To quantify phenological status of the forest canopy over time,
we calculated green chromatic coordinate (GCC) for each image from average red (R),
green (G), and blue (B) pixel digital numbers (DNs) over the ROI according to Eq. (1)

GCC =
G

R +G +B
(1)

GCC time series were filtered by discarding images where low average values of R, G,5

or B DNs in the ROI indicated imagery was too dark to extract phenological data, using
site-dependent thresholds. Final processing consisted of selecting the 90th percentile
value from a three day moving window (Sonnentag et al., 2012). To quantify dynamics
in canopy redness in autumn, red chromatic coordinate (RCC) was calculated in the
same way:10

RCC =
R

R +G +B
(2)

2.4 Remote sensing data

We downloaded remote sensing data for the 13 study sites through the MODIS web
service (http://daac.ornl.gov/MODIS/MODIS-menu/modis_webservice.html) for com-
parison to near-surface observations. Nadir bidirectional reflectance distribution func-15

tion (BRDF) adjusted surface reflectances (NBAR) from the MCD43A4 product in the
R, near infrared (NIR), and B bands were used to characterize vegetation greenness
at 500 m spatial resolution (Schaaf et al., 2002, 2011). Each NBAR measurement is
based on surface reflectances taken from a 16 day moving window of MODIS data,
and is produced every 8 days. NBAR measurements were associated with the mid-20

dle day of the 16 day compositing period from which the measurements were drawn
(Zhousen Wang and Crystal Schaaf, personal communication, 2013). These data were
filtered to remove observations over urban areas, ice, or water according to the MODIS
MCD12Q1 Land Cover Type product. Remaining data were filtered to remove interfer-
ence from snow using the MODIS MCD43A2 BRDF albedo quality product. Filtered25
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NBAR reflectances were combined into the enhanced vegetation index (NBAR-EVI),
and the normalized difference vegetation index (NBAR-NDVI) metrics of canopy green-
ness (Huete et al., 2002; Rouse et al., 1973):

NBAR-EVI =
2.5(NIR−R)

(NIR+6R −7.5B+1)
(3)

NBAR-NDVI =
(NIR−R)

(NIR+R)
(4)5

Median values of NBAR indices were taken over 3×3 spatial windows of 500 m pixels
centered on PhenoCam locations, to account for inherent noise in MODIS data due to
cloud cover, atmospheric interference, and uncertainty in the ground area measured by
the MODIS sensor (Xin et al., 2013). Remote sensing data were then smoothed using10

the median of a 3 point moving window to remove spikes due to snowfall that were not
captured using the MCD43A2 product.

In addition to these remote sensing time series data, we utilized two existing remote
sensing phenology products. The MODIS Land Cover Dynamics Product (MCD12Q2)
provides annual phenophase transition dates and related growing season metrics at15

500 m spatial resolution. The MCD12Q2 algorithm fits logistic functions of the form
shown in Eq. (5) to smoothed and gap-filled time series of NBAR-EVI data, and reports
local maxima and minima in the rate of change of curvature as phenophase transi-
tion dates for the start and end of spring and fall (Ganguly et al., 2010; Zhang et al.,
2003). Recently, this algorithm was applied to a 30 yr archive of multi-sensor harmo-20

nized vegetation indices created as part of the National Aeronautics and Space Admin-
istration (NASA) MEASURES program (http://vip.arizona.edu). The MEASURES phe-
nology product reports similar metrics to the MCD12Q2 algorithm, but has the advan-
tage of nearly twenty additional years of historical data, with measurements from the
Advanced Very High Resolution Radiometer (AVHRR). MEASURES phenology data is25

produced at a spatial resolution of 0.05◦, or approximately 5 km for the region studied
here.
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2.5 Estimating dates from time series data

We used three sigmoid-based methods and a data smoothing and interpolation method
to examine a diversity of approaches for extracting dates from phenological time series
data. The simplest sigmoid-based method, here called the simple sigmoid, has been
widely used in the remote sensing community (Hufkens et al., 2012; Liang et al., 2011;5

Zhang et al., 2003):

f (t) =
c

1+exp(a+bt)
+d (5)

In Eq. (5), f (t) represents the value of a vegetation index, such as GCC, at time t. d
defines the dormant season baseline value of greenness, c is the amplitude of increase
in greenness, a controls the timing of increase, and b controls the rate of increase.10

The same model was used in an analogous manner for the decrease of greenness
in autumn. This model was separately fit to spring and fall data for each site year to
account for independent green-up and green-down dynamics, using the Matlab function
lsqnonlin.

Elmore et al. (2012) presented a modified double sigmoid model to account for15

the phenomenon of decreasing summer time greenness with parameter m7, provid-
ing more accurate model representation of seasonal vegetation time series data:

f (t) =m1 + (m2 −m7t)

[
1

1+exp((m3 − t)/m4)
− 1

1+exp((m5 − t)/m6)

]
(6)

For this study, the green-down sigmoid model in Eq. (6) was fit to whole years of vege-
tation index time series.20

These two previously presented sigmoid models were compared with a more flexi-
ble approach, using a generalized sigmoid formula which allows for different rates of
increase near the lower and upper asymptotes of the sigmoid, with parameters qi and
vi (Richards, 1959). Our implementation of the generalized sigmoid also accounts for
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non-linear decrease in summer time greenness, as observed in many site-years of
data, with parameters a2 and b2, as well as a changing dormant season value with
parameter a1:

f (t) =(a1t+b1)

+ (a2t
2 +b2t+c)

[
1

[1+q1 exp(−b1(t−m1))]v1
− 1

[1+q2 exp(−b2(t−m2))]v2

]
(7)5

Equation (7), here called the generalized sigmoid, was fit to entire years of data.
For the sigmoid models, phenological transition dates were estimated using local

extrema in the rate of change of curvature k (Kline, 1998):

k =
f ′′(t)

(1+ (f ′(t))2)
3
2

(8)10

Points where the curvature changes most rapidly, also referred to as inflection points,
occur at the beginning, middle, and end of seasonal transitions. In the simple and
greendown sigmoids, extrema in the curvature change rate were used to identify the
start, middle, and end of spring (SOS, MOS, and EOS), following the method proposed
by Zhang et al. (2003). These points approximately correspond to 10 %, 50 %, and15

90 % of amplitude in springtime greenness. A similar technique was used for the start,
middle, and end of fall (SOF, MOF, and EOF). For the generalized sigmoid, the third ex-
trema in the curvature change rate was used to identify the end of spring, however the
first two extrema were found to occur significantly later than 10 % and 50 % of amplitude
in springtime greenness. Consequently the start and middle of spring were identified20

as the times of 10 % and 50 % amplitude between the dormant season and the end of
spring values of greenness for the generalized sigmoid, with a similar approach used
in fall.

To quantify uncertainty of date estimates from the sigmoid-based methods, we used
the Jacobian matrix of parameter sensitivities, output from the Matlab routine lsqnonlin,25
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to calculate the parameter covariance matrix. The covariance matrix was then used in
a Monte Carlo procedure to generate 100 samples of parameter space, each of which
was used to produce a new set of phenology dates. Monte Carlo ensembles were used
to construct confidence intervals using the inner 95 % range for each phenology date,
referred to here as statistical uncertainty of estimated dates.5

In the smoothing and interpolation approach, time series data were first smoothed
using the loess algorithm in Matlab, which reduces noise by estimating a local regres-
sion to a second order polynomial at each point in the time series. The fraction of an-
nual data used for the local regression was set to 0.1 for near-surface data and 0.2 for
remote sensing data, to account for the different temporal resolutions of 3 and 8 days,10

respectively. After smoothing, cubic spline interpolation was applied to obtain a fine-
grained time series for estimating phenological transitions. Spring transition dates were
identified as the times when greenness crossed 10 %, 50 %, and 90 % thresholds of the
springtime amplitude in greenness. The smoothing and interpolation method was also
applied to RCC time series in autumn, where a single phenology date was identified as15

the fall maximum of the processed time series. To illustrate each of the date estimation
methods, an example year of data from Arbutus Lake in 2009 is shown in both near-
surface and remote sensing data (Fig. 3), with model fits and date estimates for each
approach.

To compare visual assessment, near-surface, and remotely sensed phenology dates,20

the root mean square deviation (RMSD), bias, and r2 statistic were computed for each
phenological transition across all site-years of data. These statistics indicate the magni-
tude of the difference between corresponding dates from various methods, the average
signed difference, and the degree of correlation, respectively.
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3 Results

3.1 Statistical uncertainty in date estimates

We used inter-observer variability from visual assessment and parameter uncertainty
of curve fitting methods to calculate measures of the statistical uncertainty of phenol-
ogy date estimates from near-surface digital photography. The average range of date5

estimates from visual assessment was larger than the average inner 95 % confidence
interval from curve fitting of GCC data for both spring phenology dates, particularly at
the end of spring (Table 2). However in autumn, inter-observer variability was smaller
than the statistical uncertainty of curve fitting for the middle and end of fall. These
results indicate that curve fitting analysis of greenness time series is generally more10

precise than visual assessment in the spring, but less so in the fall.
In the analysis of statistical uncertainty from different spatial scales of time series

data, near-surface GCC data supported more certainty in estimates of phenology dates
(average 6 day confidence interval, across methods and dates reported in Table 2) than
NBAR-EVI and NBAR-NDVI data of remote sensing (average 12 and 19 day confidence15

intervals, respectively). This may be due to the higher temporal resolution of near-
surface data, which more effectively constrains parameter estimates. Since NBAR-EVI
data was found to result in less uncertainty for remote sensing estimates of phenology
than NBAR-NDVI, these results are emphasized in the following analysis.

Of the sigmoid methods, the generalized sigmoid curve fit the time series data with20

the lowest RMSD and produced the least uncertain date estimates in most cases, par-
ticularly with the near-surface data (Table 2). From NBAR-EVI data, the simple sigmoid
function identified the middle of spring transition with the lowest uncertainty. However
the greendown sigmoid and the generalized sigmoid curves resulted in more certain
date estimates at the beginning and end of spring, respectively. The generalized sig-25

moid appears to be the most balanced functional representation of vegetation dynam-
ics for NBAR-EVI in terms of certainty from the beginning to end of spring, likely be-
cause of its flexibility. Therefore results presented here will consider the ensemble of
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time series approaches including all sigmoid types, as well as smoothing and interpo-
lation, with emphasis on the generalized sigmoid.

3.2 Comparison of visual assessment to estimates from near-surface time
series data

Visual assessment exhibited varying degrees of correspondence to dates identified us-5

ing time series data, depending on the date estimation method and seasonal transition
(Table 3). The start of spring was most closely associated with visual assessment of
the date when the majority of trees started to leaf out (Fig. 4a). For this date, all time
series methods matched visual assessment with an RMSD of less than 10 days, the
generalized sigmoid yielding the lowest bias of 0 days. The visually assessed date of10

canopy maturity had a less consistent relation to time series estimates than the date of
leaf out. While correlation was generally good, with r2 ranging from 0.45 to 0.73 across
methods, all time series estimates for this date were biased about 10 days earlier than
visual assessment. For the generalized sigmoid method, the end of spring was less
biased with respect to visual assessment for spring transitions that ended later in the15

year (Fig. 4b).
Greenness-derived estimates for the beginning and end of autumn generally showed

less agreement with visual assessment than for spring phenology; autumn estimates
derived from greenness time series had larger average RMSD (23 and 16 days, re-
spectively, from Table 3) across methods than either of the spring dates (8 days for the20

start of spring and 13 days for the end of spring). Autumn dates derived using the gen-
eralized sigmoid had equal or lower RMSD from visually assessed dates than dates
from other curve fitting approaches, and indicated that the estimate for end of autumn
was generally less biased with respect to visual assessment of abscission when this
transition occurred later in the calendar year (Fig. 4e). While the visually assessed25

start of color change in autumn and the end of abscission were closer to greenness
derived metrics, timing of the brightest fall colors had similar RMSD with respect to
date estimates from time series of both redness and greenness (Table 3).
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3.3 Comparison of near-surface and remote sensing phenology

The generalized sigmoid model, the time series method with the least uncertainty, and
the smoothing and interpolation approach, with the most flexibility, each produced an
average RMSD of about 9 days between remote sensing and near-surface imagery
across the beginning, middle, and end of spring dates (Table 4, Fig. 5a–c). The magni-5

tude (absolute value) of bias was low across all methods for the beginning and middle
of spring, less than one week in nearly all cases (Table 4). As spring progressed how-
ever, the signed bias between remote sensing and near-surface phenology became
more negative, indicating remote sensing was later in comparison to near-surface. The
trend of a more negative bias for later spring phenology dates was not isolated to one10

particular method; across all methods and indices, remote sensing was an average of
2 and 8 days later than near-surface metrics for the middle and end of spring, respec-
tively (Table 4).

To examine whether landscape characteristics of individual sites played a role in the
late spring bias, we calculated the fractional coverage of deciduous forest and mixed15

forest land cover types from NLCD data (Table 1). The bias between near-surface GCC
and remote sensing NBAR-EVI with the generalized sigmoid method (Fig. 6) showed
a significant trend (r2 = 0.87, p < 0.001) toward less bias for sites that had a greater
fraction of deciduous or mixed forest coverage.

Time series estimates of autumn phenology from near-surface and remote scales20

generally differed more than spring dates; the average RMSD for autumn dates was
higher than spring in all methods and indices used for date estimation (Table 4). This is
likely due to larger statistical uncertainty in estimated autumn dates; GCC, NBAR-EVI
and NBAR-NDVI derived dates were roughly twice as uncertain as those in spring (Ta-
ble 2). GCC derived near-surface autumn dates from the generalized sigmoid method25

were biased roughly a week earlier than remote sensing dates, emblematic of a neg-
ative bias for autumn dates observed across most greenness time series results, par-
ticularly for the middle and end of fall. In contrast, near-surface dates derived from
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redness, which best corresponded to the middle of fall date extracted from remote
sensing (Table 5), were consistently positively biased. Both greenness and redness
derived near-surface dates had the lowest magnitude of bias at the MOF date, with
several methods producing a bias of less than a week.

3.4 Comparison of near-surface phenology to MCD12Q2 and MEASURES5

phenology products

The MCD12Q2 and MEASURES phenology products gave remotely sensed phenology
estimates at different spatial scales than the analysis of NBAR data presented above.
The MCD12Q2 phenology product is produced at 500 m resolution, the NBAR analy-
sis conducted for this study used MODIS data at an effective resolution of 1.5 km due10

to spatial windowing, and MEASURES is produced at approximately 5 km resolution.
In comparison to NBAR data analyzed here, the phenology products exhibited similar
signs in bias, but different magnitudes, with respect to date estimates from near-surface
time series. The coarse resolution MEASURES spring dates exhibited a low average
bias of less than two days at the beginning of spring, while middle of spring and end15

of spring were progressively biased later by an average of −9 and −17 days, respec-
tively (Table 6), similar to the late spring bias presented above, but larger in magnitude.
RMSD’s between MEASURES and near-surface dates were also larger than NBAR
data, by over a week for most transition dates. The MCD12Q2 product, encompassing
the smallest land area of the three remote sensing analyses used here, showed qual-20

itatively similar characteristics to the coarse scale MEASURES results, but with larger
average RMSD (Table 7). In consideration of the analysis presented above, results
from MEASURES and MCD12Q2 indicate that remote sensing data from an intermedi-
ate spatial scale between these two products, processed with the methods presented
here, may result in better agreement with near-surface data.25
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4 Discussion

The amount of phenological data available from near-surface and remote sensing mea-
surements presents a large and growing resource for monitoring the interaction be-
tween global change and the biosphere, but also a challenge for analysis. For example,
lack of standard protocols complicates determination of which biological events corre-5

spond to data-driven estimates of phenophase transitions in diverse and geographi-
cally dispersed ecosystems (White et al., 2009). Furthermore, while several methods
exist for estimation of transition dates from time series data, few studies indicate how
to distinguish between these approaches (but see Cong et al., 2012), or quantify the
uncertainty associated with various methods. This study compared an ensemble of10

date estimation methods to assess how near-surface metrics of deciduous forest phe-
nology, here derived from high-frequency digital camera imagery, relate to both visual
assessment of canopy status, and to landscape scale estimates from remote sensing
platforms, across a range of temperate deciduous forests. Our results show that the
choice of analysis method affects the certainty with which dates can be estimated at15

both near-surface and remote scales. The choice of analysis method can also affect the
RMSD, magnitude of bias, and in some cases the direction of bias in the comparison
of near-surface phenology metrics to visual assessment and remote sensing.

4.1 Comparison of near-surface estimates to visual assessment and remote
sensing in spring20

Time series estimates of the start of spring at the near-surface scale are generally well-
correlated with visual assessment of the first appearance of leaves (Fig. 4a), although
a significant outlier resulted from the spring of 2007 at the Upper Buffalo Wilderness.
Observers consistently identified the start of leaf-out as DOY 90, earlier than other
years for this site. However after this early leaf-out, a spring frost delayed further leaf25

development (Gu et al., 2008), likely resulting in the later start of spring (DOY 120)
identified by curve fitting analysis.
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Start of spring was also highly correlated between remote sensing and near-surface,
in agreement with previous studies. Liang et al. (2011) noted that start of spring es-
timated from MODIS EVI time series matched the date of budburst directly observed
on trees to within two days in a mixed deciduous coniferous forest in Wisconsin, and
Soudani et al. (2008) found a similar result for deciduous forests located throughout5

France. A recent study by Hmimina et al. (2013) also found good agreement between
near-surface and remote sensing of the beginning of spring. However we found that
data-driven estimates of later spring phenology from near-surface imagery, intended
to represent the final stages of springtime leaf development, exhibited less correspon-
dence to both visual assessment and remote sensing.10

The visually assessed date of leaf maturity was later than the end of spring date
derived from near-surface GCC. Recent research suggests explanations for this: at
Harvard Forest, leaves were found to have higher GCC values during expansion than
at the later stages of maturity marked by greater leaf mass per area (LMA), and higher
leaf area index (LAI) (Keenan et al., 2014). Accordingly, the earlier springtime peak in15

GCC than in LMA and LAI may influence the bias between estimated and visually as-
sessed dates seen here, as well as the oblique viewing angle of PhenoCams explored
by Keenan et al. The bias is more pronounced for earlier ends of spring (Fig. 4), sug-
gesting that in later ends of spring, leaves may mature to higher LMA and canopies to
greater LAI more quickly after expanding.20

In the comparison between near-surface and remote sensing of late spring phe-
nology, results show that across all date estimation approaches, remote sensing was
biased later by an average of 8 days (Table 4). Hmimina et al. (2013) found a simi-
lar late spring bias using NDVI from remote sensing and near-surface NDVI sensors,
indicating the bias is not likely due to differences in vegetation indices used at the25

near-surface and remote scales, such as the GCC and NBAR-EVI used here. The site-
based analysis of late spring bias (Fig. 6) suggests a relationship between landscape
composition and the length of the late spring bias. In sites with a smaller fraction of
deciduous and mixed forests, and a greater proportion of woody wetlands, evergreens,
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and other land cover types, remotely sensed end of spring was progressively later than
near-surface estimates. Researchers have explored the effect of vegetation hetero-
geneity on the comparison of near-surface, point measurements and remotely sensed,
pixel measurements of albedo across multiple sites (Cescatti et al., 2012), finding that
more homogeneous sites produced better agreement between scales. However this5

study appears to be the first to document a linear correlation between forest coverage
and temporal bias in canopy phenology between the organism and pixel scales, indi-
cating how landscape characteristics may determine the fidelity of remote sensing to
near-surface measurements.

4.2 Comparison of near-surface estimates to visual assessment and remote10

sensing in fall

In fall, variability between observers was smaller for the dates of brightest fall colors
and leaf abscission than for the first signs of senescence (Table 2), indicating that the
brilliant fall colors associated with the middle of senescence, and the eventual loss
of leaves, give the clearest visual indicators of autumn phenology. Data-driven esti-15

mates using peak redness from near-surface images matched the visual assessment
of brightest fall colors with similar RMSD to greenness-based estimates of the middle
of fall (Table 3), with peak redness biased 3 days later and greenness biased 2–6 days
earlier.

We found that the statistical uncertainty in curve fit estimates of autumn dates was20

larger than that of spring dates (Table 2). This may be due to within-canopy hetero-
geneity, with some trees senescing before others, exemplified in Fig. 2 where certain
trees are in advanced stages of senescence while others still have many green leaves.
Integrating all of these trees into a single region of interest tends to cause a longer,
more drawn out transition in autumn than in spring (Fig. 3). This more gradual change25

leads to less well-defined extrema in the curvature change rate (Eq. 8) of GCC time
series, and consequently greater statistical uncertainty in estimated autumn dates than
spring dates. Based on this alone, we would expect larger RMSD between camera- and
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satellite-derived dates in autumn than spring. On a larger scale, variation in species
composition and land cover type also complicates the interpretation of NBAR-EVI and
NBAR-NDVI measurements in autumn (Cescatti et al., 2012; Dragoni and Rahman,
2012), similar to effects on near-surface GCC and RCC (Richardson et al., 2009).

To more accurately study spatial variation in autumn phenology, and to further study5

the late spring bias in heterogeneous forested landscapes reported above, photog-
raphy of larger fields of view, and more plants and plant functional types, should be
obtained (Hufkens et al., 2012). Use of multiple cameras at a single site, and multi-
ple regions of interest on a given image (Richardson et al., 2009) would enable more
complete characterization of these heterogeneous phenological phenomena.10

4.3 Remote sensing phenology products

While the simple sigmoid approach used here with NBAR data is identical to that used
for the MCD12Q2 and MEASURES products, these products encompass different land
areas, leading to divergent results. MCD12Q2 does not use the spatial windowing ap-
proach employed here, but represents the remote sensing measurements associated15

with a single 500 m pixel. Therefore the MCD12Q2 data are more susceptible to grid-
ding artifacts of remote sensing measurements, which arise from the fact that only
roughly 30 % of MODIS observations measure the reported pixel location on the land
surface (see Fig. 1 in Xin et al., 2013). A spatial windowing approach, accounting for the
values of neighboring pixels, appears to improve the remote sensing representation of20

deciduous canopy phenology in comparison to near-surface measurements: the simple
sigmoid method comparison conducted here deviated from that of the MCD12Q2 prod-
uct, exhibiting generally lower RMSD and bias with respect to ground measurements
(Tables 4 and 7). The larger land area of measurements used to derive the MEASURES
phenology product also resulted in greater similarity to near-surface phenology dates25

than MCD12Q2 (Table 6).
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5 Conclusions

This study used near-surface digital repeat photography to derive both visual assess-
ment and time series estimates of leaf phenology, over a broad geographic range of
temperate deciduous forests. To then evaluate landscape scale phenology metrics from
remote sensing with near-surface metrics, a common framework of curve fitting meth-5

ods was applied to estimate phenophase transition dates at both scales. Results in-
dicate that visual assessment of the start of leaf-out in spring was very similar to es-
timates of the start of spring from digital image processing, and across the jump in
scale from near-surface to remote. However in later spring, study sites with more het-
erogeneous land cover exhibited greater differences between near-surface and remote10

sensing phenology. In particular, remote sensing of late spring phenology was biased
later than near-surface, with progressively larger bias for ecosystems with a lower frac-
tion of forest cover.

These results have broad implications for the quantification of ecosystem services
that depend on accurate monitoring of phenological events. For example, remote sens-15

ing data is used to infer the phenology of deciduous trees in ecosystem and earth sys-
tem models (Lawrence et al., 2011; Medvigy et al., 2009). If an artificially late end of
spring is detected in regions with smaller fractions of forest cover, this may lead to later
attainment of full photosynthetic capacity in the modeled canopy, resulting in lower es-
timates of annual sums of net productivity in forest ecosystems (Goulden et al., 1996;20

Richardson et al., 2012). Near-surface imagery could be used in such ecosystems to
separate phenological signals of diverse land cover types, for more accurate quantifi-
cation of ecosystem services.

In addition to dependence on site heterogeneity, this study found that both the anal-
ysis methods and data sources for phenological time series affect the certainty of de-25

rived dates and the nature of the comparison of near-surface to remote sensing data.
Dates derived from the NBAR-EVI index of remote sensing had less statistical un-
certainty than dates calculated using NBAR-NDVI. Analysis methods with more flex-
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ibility for describing seasonal variation in vegetation greenness, particularly a novel
generalized sigmoid method, resulted in higher certainty of estimated dates and bet-
ter agreement with visual assessment of canopy phenology, demonstrating the impor-
tance of accurate functional representation of phenological time series for identification
of phenophase transition dates.5

Acknowledgements. Isaac Lavine, Lakeitha Mitchell, and Rachel Norman were supported by
the Harvard Forest Summer Research Program in Forest Ecology through grants from the Na-
tional Science Foundation’s Research Experiences for Undergraduates program (award DBI-
1003938) and NASA’s Global Climate Change Education program. The Richardson Lab ac-
knowledges support from the Northeastern States Research Cooperative, NSF’s Macrosys-10

tems Biology program (award EF-1065029), the US National Park Service Inventory and Moni-
toring Program and the USA National Phenology Network (grant number G10AP00129 from the
United States Geological Survey). We thank the USDA Forest Service Air Resource Manage-
ment program and the National Park Service Air Resources program for contributing camera
imagery to this analysis. Research at Harvard Forest is partially supported by the National15

Science Foundation’s LTER program (awards DEB-0 080 592, DEB-1237491). The Friedl Lab
at Boston University acknowledges support from NASA grant number NNX11AE75G and the
NASA MEASURES program via subcontract number Y502545 from the University of Arizona.
The contents of this paper are solely the responsibility of the authors and do not necessarily
represent the official views of NSF, USGS, or NASA.20

References

Aono, Y. and Kazui, K.: Phenological data series of cherry tree flowering in Kyoto, Japan, and
its application to reconstruction of springtime temperatures since the 9th century, Int. J. Cli-
matol., 28, 905–914, doi:10.1002/joc.1594, 2008.

Cescatti, A., Marcolla, B., Santhana Vannan, S. K., Pan, J. Y., Román, M. O., Yang, X., Ciais, P.,25

Cook, R. B., Law, B. E., Matteucci, G., Migliavacca, M., Moors, E., Richardson, A. D.,
Seufert, G., and Schaaf, C. B.: Intercomparison of MODIS albedo retrievals and in situ mea-
surements across the global FLUXNET network, Remote Sens. Environ., 121, 323–334,
doi:10.1016/j.rse.2012.02.019, 2012.

2324

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/2305/2014/bgd-11-2305-2014-print.pdf
http://www.biogeosciences-discuss.net/11/2305/2014/bgd-11-2305-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1002/joc.1594
http://dx.doi.org/10.1016/j.rse.2012.02.019


BGD
11, 2305–2342, 2014

Evaluating remote
sensing with
PhenoCam

S. T. Klosterman et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Cong, N., Piao, S., Chen, A., Wang, X., Lin, X., Chen, S., Han, S., Zhou, G., and Zhang, X.:
Spring vegetation green-up date in China inferred from SPOT NDVI data: a multiple model
analysis, Agr. Forest Meteorol., 165, 104–113, doi:10.1016/j.agrformet.2012.06.009, 2012.

Dragoni, D. and Rahman, A. F.: Trends in fall phenology across the deciduous forests of
the Eastern USA, Agr. Forest Meteorol., 157, 96–105, doi:10.1016/j.agrformet.2012.01.019,5

2012.
Elmore, A. J., Guinn, S. M., Minsley, B. J., and Richardson, A. D.: Landscape controls on the

timing of spring, autumn, and growing season length in mid-Atlantic forests, Glob. Change
Biol., 18, 656–674, doi:10.1111/j.1365-2486.2011.02521.x, 2012.

Friedl, M., McIver, D., Hodges, J. C., Zhang, X., Muchoney, D., Strahler, A., Woodcock, C.,10

Gopal, S., Schneider, A., Cooper, A., Baccini, A., Gao, F., and Schaaf, C.: Global land cover
mapping from MODIS: algorithms and early results, Remote Sens. Environ., 83, 287–302,
doi:10.1016/S0034-4257(02)00078-0, 2002.

Ganguly, S., Friedl, M. A., Tan, B., Zhang, X., and Verma, M.: Land surface phenology from
MODIS: characterization of the Collection 5 global land cover dynamics product, Remote15

Sens. Environ., 114, 1805–1816, doi:10.1016/j.rse.2010.04.005, 2010.
Garrity, S. R., Bohrer, G., Maurer, K. D., Mueller, K. L., Vogel, C. S., and Curtis, P. S.:

A comparison of multiple phenology data sources for estimating seasonal transi-
tions in deciduous forest carbon exchange, Agr. Forest Meteorol., 151, 1741–1752,
doi:10.1016/j.agrformet.2011.07.008, 2011.20

Goulden, M. L., Munger, J. W., Fan, S. M., Daube, B. C., and Wofsy, S. C.: Exchange of carbon
dioxide by a deciduous forest?: response to interannual climate variability, Science, 271,
1576, doi:10.1126/science.271.5255.1576, 1996.

Gu, L., Hanson, P. J., Post, W. M., Kaiser, D. P., Yang, B., Nemani, R., Pallardy, S. G., and
Meyers, T.: The 2007 Eastern US spring freeze: increased cold damage in a warming world,25

Bioscience, 58, 253, doi:10.1641/B580311, 2008.
Hmimina, G., Dufrêne, E., Pontailler, J.-Y., Delpierre, N., Aubinet, M., Caquet, B., de Grand-

court, A., Burban, B., Flechard, C., Granier, A., Gross, P., Heinesch, B., Longdoz, B.,
Moureaux, C., Ourcival, J.-M., Rambal, S., Saint André, L., and Soudani, K.: Evaluation of
the potential of MODIS satellite data to predict vegetation phenology in different biomes: an30

investigation using ground-based NDVI measurements, Remote Sens. Environ., 132, 145–
158, doi:10.1016/j.rse.2013.01.010, 2013.

2325

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/2305/2014/bgd-11-2305-2014-print.pdf
http://www.biogeosciences-discuss.net/11/2305/2014/bgd-11-2305-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.agrformet.2012.06.009
http://dx.doi.org/10.1016/j.agrformet.2012.01.019
http://dx.doi.org/10.1111/j.1365-2486.2011.02521.x
http://dx.doi.org/10.1016/S0034-4257(02)00078-0
http://dx.doi.org/10.1016/j.rse.2010.04.005
http://dx.doi.org/10.1016/j.agrformet.2011.07.008
http://dx.doi.org/10.1126/science.271.5255.1576
http://dx.doi.org/10.1641/B580311
http://dx.doi.org/10.1016/j.rse.2013.01.010


BGD
11, 2305–2342, 2014

Evaluating remote
sensing with
PhenoCam

S. T. Klosterman et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Huemmrich, K. F., Black, T. A., Jarvis, P. G., McCaughey, J. H., and Hall, F. G.: High temporal
resolution NDVI phenology from micrometeorological radiation sensors, J. Geophys. Res.,
104, 27935, doi:10.1029/1999JD900164, 1999.

Huete, A., Didan, K., Miura, T., Rodriguez, E., Gao, X., and Ferreira, L.: Overview of the radio-
metric and biophysical performance of the MODIS vegetation indices, Remote Sens. Envi-5

ron., 83, 195–213, doi:10.1016/S0034-4257(02)00096-2, 2002.
Hufkens, K., Friedl, M., Sonnentag, O., Braswell, B. H., Milliman, T., and Richardson, A. D.: Link-

ing near-surface and satellite remote sensing measurements of deciduous broadleaf forest
phenology, Remote Sens. Environ., 117, 307–321, doi:10.1016/j.rse.2011.10.006, 2012.

Jenkins, J. P., Richardson, A. D., Braswell, B. H., Ollinger, S. V., Hollinger, D. Y., and10

Smith, M. L.: Refining light-use efficiency calculations for a deciduous forest canopy using si-
multaneous tower-based carbon flux and radiometric measurements, Agr. Forest Meteorol.,
143, 64–79, doi:10.1016/j.agrformet.2006.11.008, 2007.

Keenan, T. F., Darby, B., Felts, E., Sonnentag, O., Friedl, M., Hufkens, K., O’Keefe, J., Kloster-
man, S., Munger, J. W., Toomey, M., and Richardson, A. D.: Tracking forest phenology and15

seasonal physiology using digital repeat photography: a critical assessment, Ecol. Appl., in
press, 2014.

Kline, M.: Calculus: an Intuitive and Physical Approach, 2nd edn., Dover Books on Mathematics,
Dover Publications, 1998.

Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson, S. C.,20

Lawrence, P. J., Zeng, X., Yang, Z.-L., Levis, S., Sakaguchi, K., Bonan, G. B., and
Slater, A. G.: Parameterization improvements and functional and structural advances
in Version 4 of the Community Land Model, J. Adv. Model. Earth Syst., 3, 1–27,
doi:10.1029/2011MS000045, 2011.

Liang, L., Schwartz, M. D., and Fei, S.: Validating satellite phenology through intensive ground25

observation and landscape scaling in a mixed seasonal forest, Remote Sens. Environ., 115,
143–157, doi:10.1016/j.rse.2010.08.013, 2011.

Medvigy, D., Wofsy, S. C., Munger, J. W., Hollinger, D. Y., and Moorcroft, P. R.: Mechanistic
scaling of ecosystem function and dynamics in space and time: Ecosystem Demography
model version 2, J. Geophys. Res., 114, G01002, doi:10.1029/2008JG000812, 2009.30

Menzel, A.: Trends in phenological phases in Europe between 1951 and 1996, Int. J. Biomete-
orol., 44, 76–81, doi:10.1007/s004840000054, 2000.

2326

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/2305/2014/bgd-11-2305-2014-print.pdf
http://www.biogeosciences-discuss.net/11/2305/2014/bgd-11-2305-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1029/1999JD900164
http://dx.doi.org/10.1016/S0034-4257(02)00096-2
http://dx.doi.org/10.1016/j.rse.2011.10.006
http://dx.doi.org/10.1016/j.agrformet.2006.11.008
http://dx.doi.org/10.1029/2011MS000045
http://dx.doi.org/10.1016/j.rse.2010.08.013
http://dx.doi.org/10.1029/2008JG000812
http://dx.doi.org/10.1007/s004840000054


BGD
11, 2305–2342, 2014

Evaluating remote
sensing with
PhenoCam

S. T. Klosterman et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Morisette, J. T., Richardson, A. D., Knapp, A. K., Fisher, J. I., Graham, E. A., Abatzoglou, J.,
Wilson, B. E., Breshears, D. D., Henebry, G. M., Hanes, J. M., and Liang, L.: Tracking the
rhythm of the seasons in the face of global change: phenological research in the 21st century,
Front. Ecol. Environ., 7, 253–260, doi:10.1890/070217, 2009.

Richards, F. J.: A flexible growth function for empirical use, J. Exp. Bot., 10, 290–301,5

doi:10.1093/jxb/10.2.290, 1959.
Richardson, A. D., Anderson, R. S., Arain, M. A., Barr, A. G., Bohrer, G., Chen, G., Chen, J. M.,

Ciais, P., Davis, K. J., Desai, A. R., Dietze, M. C., Dragoni, D., Garrity, S. R., Gough, C. M.,
Grant, R., Hollinger, D. Y., Margolis, H. A., McCaughey, H., Migliavacca, M., Monson, R. K.,
Munger, J. W., Poulter, B., Raczka, B. M., Ricciuto, D. M., Sahoo, A. K., Schaefer, K., Tian, H.,10

Vargas, R., Verbeeck, H., Xiao, J., and Xue, Y.: Terrestrial biosphere models need better
representation of vegetation phenology: results from the North American Carbon Program
Site Synthesis, Glob. Change Biol., 18, 566–584, doi:10.1111/j.1365-2486.2011.02562.x,
2012.

Richardson, A. D., Jenkins, J. P., Braswell, B. H., Hollinger, D. Y., Ollinger, S. V., and Smith, M.-15

L.: Use of digital webcam images to track spring green-up in a deciduous broadleaf forest,
Oecologia, 152, 323–334, doi:10.1007/s00442-006-0657-z, 2007.

Richardson, A. D., Braswell, B. H., Hollinger, D. Y., Jenkins, J. P., and Ollinger, S. V.: Near-
surface remote sensing of spatial and temporal variation in canopy phenology, Ecol. Appl.,
19, 1417–28, 2009.20

Richardson, A. D., Keenan, T. F., Migliavacca, M., Ryu, Y., Sonnentag, O., and Toomey, M.:
Climate change, phenology, and phenological control of vegetation feedbacks to the climate
system, Agr. Forest Meteorol., 169, 156–173, doi:10.1016/j.agrformet.2012.09.012, 2013a.

Richardson, A. D., Klosterman, S., and Toomey, M.: Near-surface sensor derived phenology,
in: Phenology: an Integrative Environmental Science, edited by: Schwartz, M. D., Kluwer25

Academic Publishers, 2013b.
Rouse, J., Haas, R., Schell, J., and Deering, D.: Monitoring vegetation systems in the great

plains with ERTS, in: Third ERTS Symposium, vol. 1, NASA SP-351, 309–317, 1973.
Schaaf, C. B., Gao, F., Strahler, A. H., Lucht, W., Li, X., Tsang, T., Strugnell, N. C., Zhang, X.,

Jin, Y., Muller, J.-P., Lewis, P., Barnsley, M., Hobson, P., Disney, M., Roberts, G., Dun-30

derdale, M., Doll, C., d’Entremont, R. P., Hu, B., Liang, S., Privette, J. L., and Roy, D.: First
operational BRDF, albedo nadir reflectance products from MODIS, Remote Sens. Environ.,
83, 135–148, doi:10.1016/S0034-4257(02)00091-3, 2002.

2327

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/2305/2014/bgd-11-2305-2014-print.pdf
http://www.biogeosciences-discuss.net/11/2305/2014/bgd-11-2305-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1890/070217
http://dx.doi.org/10.1093/jxb/10.2.290
http://dx.doi.org/10.1111/j.1365-2486.2011.02562.x
http://dx.doi.org/10.1007/s00442-006-0657-z
http://dx.doi.org/10.1016/j.agrformet.2012.09.012
http://dx.doi.org/10.1016/S0034-4257(02)00091-3


BGD
11, 2305–2342, 2014

Evaluating remote
sensing with
PhenoCam

S. T. Klosterman et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Schaaf, C. B., Liu, J., Gao, F., and Strahler, A. H.: Aqua and terra MODIS albedo and reflectance
anisotropy products, in: Land Remote Sensing and Global Environmental Change, vol. 11,
edited by: Ramachandran, B., Justice, C. O., and Abrams, M. J., Springer, New York, 549–
561, 2011.

Sonnentag, O., Hufkens, K., Teshera-Sterne, C., Young, A. M., Friedl, M., Braswell, B. H.,5

Milliman, T., O’Keefe, J., and Richardson, A. D.: Digital repeat photography for
phenological research in forest ecosystems, Agr. Forest Meteorol., 152, 159–177,
doi:10.1016/j.agrformet.2011.09.009, 2012.

Soudani, K., le Maire, G., Dufrêne, E., François, C., Delpierre, N., Ulrich, E., and Cecchini, S.:
Evaluation of the onset of green-up in temperate deciduous broadleaf forests derived from10

Moderate Resolution Imaging Spectroradiometer (MODIS) data, Remote Sens. Environ.,
112, 2643–2655, doi:10.1016/j.rse.2007.12.004, 2008.

Soudani, K., Hmimina, G., Delpierre, N., Pontailler, J.-Y., Aubinet, M., Bonal, D., Caquet, B.,
de Grandcourt, A., Burban, B., Flechard, C., Guyon, D., Granier, A., Gross, P., Heinesh, B.,
Longdoz, B., Loustau, D., Moureaux, C., Ourcival, J.-M., Rambal, S., Saint André, L., and15

Dufrêne, E.: Ground-based Network of NDVI measurements for tracking temporal dynamics
of canopy structure and vegetation phenology in different biomes, Remote Sens. Environ.,
123, 234–245, doi:10.1016/j.rse.2012.03.012, 2012.

Sparks, T. H. and Carey, P. D.: The responses of species to climate over two centuries: an
analysis of the Marsham phenological record, 1736–1947, J. Ecol., 83, 13-0652R, 1995.20

Vogelmann, J. E., Howard, S. M., Yang, L., Larson, C. R., Wylie, B. K., and Van Driel, N.:
Completion of the 1990s National Land Cover Data Set for the conterminous United States
from Landsat Thematic Mapper data and ancillary data sources, Photogramm. Eng. Rem.
S., 67, 650-662, 2001.

White, M. A., de Beurs, K. M., Didan, K., Inouye, D. W., Richardson, A. D., Jensen, O. P.,25

O’Keefe, J., Zhang, G., Nemani, R. R., van Leeuwen, W. J. D., Brown, J. F., de Wit, A.,
Schaepman, M., Lin, X., Dettinger, M., Bailey, A. S., Kimball, J., Schwartz, M. D., Baldoc-
chi, D. D., Lee, J. T., and Lauenroth, W. K.: Intercomparison, interpretation, and assessment
of spring phenology in North America estimated from remote sensing for 1982–2006, Glob.
Change Biol., 15, 2335–2359, doi:10.1111/j.1365-2486.2009.01910.x, 2009.30

Xin, Q., Olofsson, P., Zhu, Z., Tan, B., and Woodcock, C. E.: Toward near real-time monitoring
of forest disturbance by fusion of MODIS and Landsat data, Remote Sens. Environ., 135,
234–247, doi:10.1016/j.rse.2013.04.002, 2013.

2328

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/2305/2014/bgd-11-2305-2014-print.pdf
http://www.biogeosciences-discuss.net/11/2305/2014/bgd-11-2305-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.agrformet.2011.09.009
http://dx.doi.org/10.1016/j.rse.2007.12.004
http://dx.doi.org/10.1016/j.rse.2012.03.012
http://dx.doi.org/10.1111/j.1365-2486.2009.01910.x
http://dx.doi.org/10.1016/j.rse.2013.04.002


BGD
11, 2305–2342, 2014

Evaluating remote
sensing with
PhenoCam

S. T. Klosterman et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J. C. F., Gao, F., Reed, B. C.,
and Huete, A.: Monitoring vegetation phenology using MODIS, Remote Sens. Environ., 84,
471–475, doi:10.1016/S0034-4257(02)00135-9, 2003.

2329

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/2305/2014/bgd-11-2305-2014-print.pdf
http://www.biogeosciences-discuss.net/11/2305/2014/bgd-11-2305-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/S0034-4257(02)00135-9


BGD
11, 2305–2342, 2014

Evaluating remote
sensing with
PhenoCam

S. T. Klosterman et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 1. Study sites with land cover characterization. Fractional land coverage of each land
cover type was calculated from the NLCD (National Land Cover Database) for study sites lo-
cated in the US. “Other” includes shrub/scrub, developed; low intensity, developed; medium in-
tensity, grassland/herbaceous, developed; high intensity, emergent herbaceous wetlands, pas-
ture/hay, and barren land (rock/sand/clay).

Deciduous Mixed Evergreen Woody Developed; Open
Site forest forest forest wetlands open space water Other

Acadia 0.11 0.32 0.21 0.02 0.06 0.12 0.17
Arbutus Lake 0.41 0.07 0.13 0.12 0.01 0.23 0.01
Bartlett 0.37 0.48 0.08 0.00 0.05 0.00 0.02
Boundary Waters 0.10 0.24 0.21 0.22 0.04 0.04 0.14
Dolly Sods 0.56 0.04 0.21 0.11 0.06 0.00 0.03
Harvard Forest 0.41 0.22 0.20 0.12 0.04 0.00 0.00
Mammoth Cave 0.67 0.01 0.23 0.05 0.00 0.02 0.02
Washington DC 0.01 0.00 0.00 0.05 0.25 0.24 0.43
Smoky Look 0.72 0.05 0.08 0.00 0.09 0.00 0.06
U. of Michigan 0.68 0.06 0.03 0.04 0.05 0.01 0.13
Biological Station
Upper Buffalo 0.97 0.00 0.00 0.00 0.03 0.00 0.00

2330

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/2305/2014/bgd-11-2305-2014-print.pdf
http://www.biogeosciences-discuss.net/11/2305/2014/bgd-11-2305-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
11, 2305–2342, 2014

Evaluating remote
sensing with
PhenoCam

S. T. Klosterman et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 2. Statistical uncertainty in estimated phenology dates. Statistical uncertainty in sigmoid-
based methods is calculated as the average width of inner 95 % confidence intervals for each
phenology date. SOS, MOS, and EOS are start, middle, and end of spring. SOF, MOF, and EOF
are start, middle and end of fall. Statistical uncertainty in visual assessment is calculated as the
average length of time between earliest and latest assessments, after removing the minimum
and maximum estimates from the raw data. All units are in days.

Time series
Index method SOS MOS EOS SOF MOF EOF

GCC simple sigmoid 7 3 7 13 7 16
greendown sigmoid 4 2 6 14 7 11
generalized sigmoid 1 1 0 3 5 7

EVI simple sigmoid 9 4 9 24 13 28
greendown sigmoid 8 5 15 24 14 18
generalized sigmoid 8 6 8 8 9 12

NDVI simple sigmoid 16 8 16 24 15 27
greendown sigmoid 16 11 38 42 30 37
generalized sigmoid 10 6 10 11 14 18

Visual assessment 7 22 19 4 6
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Table 3. Statistics comparing visual assessment to phenology derived from near-surface image
processing. Visually assessed dates were compared to time series methods as follows: the date
when the majority of trees started leafing out was compared to SOS, the date of canopy maturity
to EOS, the date of first color change to SOF, the date of brightest fall colors to MOF, and the
date of leaf loss to EOF. Near surface imagery dates were estimated from greenness, except for
SOF, MOF, and EOF dates in the smoothing and interpolation approach, which were estimated
from redness. Statistics include RMSD and bias in units of days, and r2 for the comparison of
corresponding dates and methods across all site-years. Bias is calculated relative to time series
estimates, so a negative bias indicates that the corresponding visual assessment is later.

Time series
method Statistic SOS EOS SOF MOF EOF

simple RMSD 8 16 17 9 16
sigmoid Bias 3 −14 5 −6 −11

r2 0.79 0.69 0.45 0.80 0.64

greendown RMSD 7 13 22 9 16
sigmoid Bias 3 −11 16 −2 −14

r2 0.81 0.73 0.60 0.77 0.70

generalized RMSD 7 11 16 9 12
sigmoid Bias 0 −9 3 −6 −8

r2 0.80 0.70 0.52 0.80 0.68

smoothing RMSD 9 13 35 7 19
and Bias 3 −8 31 3 −18
interpolation r2 0.73 0.45 0.36 0.78 0.84
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Table 4. Statistics comparing remote sensing to greenness derived near-surface phenology.
Statistics are computed as in Table 3. The time series method indicated in the table was used
for both near-surface and remote sensing date estimates. Bias is calculated relative to near-
surface estimates, so a negative bias indicates that the corresponding remote sensing estimate
is later.

Remote Time series
sensing index method Statistic SOS MOS EOS SOF MOF EOF

EVI simple RMSD 10 6 14 28 10 24
sigmoid Bias 4 −4 −12 20 −1 −22

r2 0.74 0.91 0.76 0.11 0.51 0.74

greendown RMSD 9 7 17 21 11 18
sigmoid Bias 4 −5 −14 10 −3 −15

r2 0.76 0.91 0.73 0.20 0.58 0.65

generalized RMSD 9 6 12 14 10 11
sigmoid Bias 1 −3 −9 −6 −7 −8

r2 0.67 0.88 0.68 0.32 0.72 0.77

smoothing RMSD 8 6 13
and Bias 0 −4 −10

interpolation r2 0.72 0.90 0.65

NDVI simple RMSD 18 7 12 21 17 27
sigmoid Bias 9 1 −6 −3 −3 −3

r2 0.41 0.82 0.71 0.18 0.27 0.11

greendown RMSD 7 6 15 19 10 19
sigmoid Bias 1 0 −2 3 −6 −15

r2 0.81 0.83 0.47 0.23 0.76 0.67

generalized RMSD 13 10 13 15 11 12
sigmoid Bias 0 −1 −3 −7 −7 −6

r2 0.31 0.54 0.43 0.30 0.70 0.67

smoothing RMSD 12 6 12
and Bias 5 0 −7

interpolation r2 0.49 0.81 0.56
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Table 5. Statistics comparing remote sensing to redness derived near-surface phenology.
Statistics are reported as in Table 4. Smoothing and interpolation was used to estimate dates
from near-surface redness time series, while the time series method indicated in the table refers
to analysis of remote sensing indices.

Remote Time series
sensing index method Statistic SOF MOF EOF

EVI simple RMSD 50 13 23
sigmoid Bias 48 10 −22

r2 0.03 0.69 0.60

greendown RMSD 31 9 18
sigmoid Bias 28 5 −16

r2 0.29 0.70 0.57

generalized RMSD 23 7 17
sigmoid Bias 21 2 −15

r2 0.50 0.74 0.61

NDVI simple RMSD 27 10 13
sigmoid Bias 23 6 −9

r2 0.23 0.66 0.51

greendown RMSD 25 7 20
sigmoid Bias 21 1 −15

r2 0.37 0.72 0.33

generalized RMSD 25 7 16
sigmoid Bias 22 3 −12

r2 0.42 0.77 0.53
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Table 6. Statistics comparing the MEASURES phenology product to near-surface imagery.
Statistics computed as in Table 4.

Time series
method Statistic SOS MOS EOS SOF MOF EOF

simple RMSD 19 16 25 32 19 20
sigmoid Bias 1 −9 −19 16 5 −5

r2 0.29 0.36 0.20 0.01 0.05 0.18

greendown RMSD 19 16 24 39 20 21
sigmoid Bias 1 −8 −18 27 10 −8

r2 0.28 0.36 0.21 0.00 0.06 0.24

generalized RMSD 19 17 23 31 19 20
sigmoid Bias −2 −9 −15 17 8 −3

r2 0.26 0.30 0.11 0.00 0.07 0.23

2335

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/2305/2014/bgd-11-2305-2014-print.pdf
http://www.biogeosciences-discuss.net/11/2305/2014/bgd-11-2305-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
11, 2305–2342, 2014

Evaluating remote
sensing with
PhenoCam

S. T. Klosterman et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 7. Statistics comparing the MODIS phenology product to near-surface imagery. Statistics
computed as in Table 4.

Time series
method Statistic SOS EOS SOF EOF

simple RMSD 17 28 55 16
sigmoid Bias 11 −22 50 −10

r2 0.37 0.30 0.01 0.53

greendown RMSD 17 25 65 16
sigmoid Bias 12 −19 60 −12

r2 0.39 0.33 0.00 0.52

generalized RMSD 16 25 52 13
sigmoid Bias 8 −18 48 −6

r2 0.23 0.22 0.02 0.57
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Fig. 1. Study sites.
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Fig. 2. ROI shown on canopy image for Arbutus Lake in New York.
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Fig. 3. Example comparison of the simple sigmoid, greendown sigmoid, generalized sigmoid,
and smoothing and interpolation approaches for one year of GCC and NBAR-EVI data. Phe-
nology date estimates represent start of spring, middle of spring, and end of spring. The simple
sigmoid, greendown sigmoid, and generalized sigmoid models also have start of fall, middle of
fall, and end of fall. A single autumn phenology date is identified from RCC using the smoothing
and interpolation model.
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Fig. 4. Scatter plots of the comparison between visually assessed dates (y-axis) and dates
identified from near surface GCC (x-axis) using the generalized sigmoid method.
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Fig. 5. Scatter plots of the comparison between near surface GCC analysis and remote sensing
of NBAR-EVI using the generalized sigmoid method.
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Fig. 6. Scatter plot of bias in the end of spring (EOS) between near surface GCC date es-
timates and remote sensing NBAR-EVI estimates using the generalized sigmoid method, for
sites located in the US. Fractional forest cover is defined as the fraction of NLCD pixels in the
deciduous or mixed forest classes at each study site.
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