
Abstract 1	  

Persistent divergences among the predictions of complex carbon cycle models include 2	  
differences in the sign as well as the magnitude of the response of global terrestrial 3	  
primary production to climate change. This and other problems with current models 4	  
indicate an urgent need to re-assess the principles underlying the environmental 5	  
controls of primary production. The global patterns of annual and maximum monthly 6	  
terrestrial gross primary production (GPP) by C3 plants are explored here using a 7	  
simple first-principles model based on the light-use efficiency formalism and the 8	  
Farquhar model for C3 photosynthesis. The model is driven by incident 9	  
photosynthetically active radiation (PAR) and remotely sensed green vegetation cover, 10	  
with additional constraints imposed by low-temperature inhibition and CO2 limitation. 11	  
The ratio of leaf-internal to ambient CO2 concentration in the model responds to 12	  
growing-season mean temperature, atmospheric dryness (indexed by the cumulative 13	  
water deficit, ΔE) and elevation, based on optimality theory. The greatest annual GPP 14	  
is predicted for tropical moist forests, but the maximum (summer) monthly GPP can 15	  
be as high or higher in boreal or temperate forests. These findings are supported by a 16	  
new analysis of CO2 flux measurements. The explanation is simply based on the 17	  
seasonal and latitudinal distribution of PAR combined with the physiology of 18	  
photosynthesis. By successively imposing biophysical constraints, it is shown that 19	  
partial vegetation cover – driven primarily by water shortage – represents the largest 20	  
constraint on global GPP. 21	  

1 Introduction 22	  

Differences among model predictions of the terrestrial carbon balance response to 23	  
changes in climate and atmospheric carbon dioxide concentration ([CO2]) remain 24	  
stubbornly large (Ciais et al., 2013; Friedlingstein et al., 2006; Sitch et al., 2008). 25	  
After re-analysing coupled climate-carbon cycle model results from	  Friedlingstein et 26	  
al. (2006), Denman et al. (2007) revealed disagreements in the overall magnitude of 27	  
the modelled (positive) climate-CO2 feedback and also in the responses of key 28	  
processes – ocean CO2 uptake, soil organic mater decomposition, and especially 29	  
terrestrial net primary production (NPP) – to [CO2] increase and/or climate change. 30	  
Modelled positive responses of global NPP to [CO2] varied by a factor greater than 31	  
five, while the models disagreed even on the sign of the response of global NPP to 32	  
climate. The more recent Earth System Models (ESMs) in the Coupled Model 33	  
Intercomparison Project 5 (CMIP5) archive show no better agreement (Ahlström et al., 34	  
2012; Anav et al., 2013; Arora et al., 2013; Friedlingstein et al., 2014; Jones et al., 35	  
2013; Todd-Brown et al., 2013). Ciais et al. (2013) summarized the CMIP5 36	  
carbon-cycle results (their Fig. 6.21) and highlighted the weak land carbon uptake 37	  
response to both [CO2] and climate change shown by two ‘N-coupled’ ESMs (models 38	  
allowing for interactions between the terrestrial C and N cycles). The CMIP5 models 39	  
collectively show a high bias in the simulation of recent trends in atmospheric [CO2] 40	  



because the modelled uptake of CO2 by the oceans and/or land is too small, being 41	  
smallest in the N-coupled models (Hoffman et al., 2013). Several ‘offline’ N-coupled 42	  
land carbon cycle models have also generated contradictory, and in some cases 43	  
apparently unrealistic, responses of NPP to climate (Thomas et al., 2013; Zaehle and 44	  
Dalmonech, 2011). These disappointing outcomes of recent model development 45	  
suggest to us that the controls of NPP, not least the role of nutrient limitations, are 46	  
inadequately understood and that this is a major impediment to the development of 47	  
reliable ESMs. 48	  

Perusal of the terrestrial ecology literature confirms that there is indeed no consensus 49	  
on the controls of either GPP or NPP. Some empirical primary production models 50	  
have continued to rely on correlations with mean annual temperature and precipitation 51	  
(Del Grosso et al., 2008), even though the positive geographic relationship of GPP or 52	  
NPP with temperature is almost certainly indirect rather than causative (Bonan, 1993; 53	  
Garbulsky et al., 2010). There is a strong correlation between the latitudinal gradients 54	  
of photosynthetically active radiation (PAR) and mean annual temperature; PAR is 55	  
the driving force of photosynthesis but also constitutes a nearly constant fraction of 56	  
solar shortwave radiation, which is the driving force of the latitudinal temperature 57	  
gradient. It is therefore very likely that the observed global relationships of GPP and 58	  
NPP to temperature are caused at least in part by this correlation between temperature 59	  
and PAR. Based on a model simulation, Churkina and Running (1998) assessed the 60	  
relative importance of different climatic controls (temperature, water availability, 61	  
PAR) on terrestrial primary production, indicating different controls or combinations 62	  
of controls to be dominant in different regions. This analysis implicitly discounts the 63	  
possibility that all three factors could simultaneously limit photosynthesis, and 64	  
ignores the ubiquitous experimentally observed stimulation of C3 photosynthesis by 65	  
increasing [CO2]. It has long been established that agricultural crop production is 66	  
proportional to the cumulative PAR absorbed by the crop (Monteith and Moss, 1977a; 67	  
Monteith and Moss, 1977b); yet Pongratz et al. (2012) and others have modelled crop 68	  
production without considering PAR. Many models have invoked N and/or P 69	  
limitations as ancillary controls on primary production; Huston and Wolverton (2009) 70	  
went further, arguing that soil nutrients (rather than climate) primarily determine the 71	  
global pattern of NPP. Finally, Fatichi et al. (2013) claimed that NPP is not controlled 72	  
by photosynthesis at all, but rather by environmental constraints on growth. 73	  

Different explanations of the controls of terrestrial primary production are thus rife in 74	  
the ecological literature. Yet the choice of model assumptions can imply radically 75	  
different responses to global change (Wang et al., 2012). It is therefore time for a 76	  
fundamental re-assessment of the controls of primary production. With this goal in 77	  
mind, we define a conceptually very simple model for GPP. The model allows us to 78	  
explore the consequences (and potentially, the limitations) of the hypothesis that the 79	  
primary controls on terrestrial GPP are incident PAR, green vegetation cover and 80	  
[CO2]. We consider first a counterfactual, continuously vegetated world in which C3 81	  
photosynthesis operates at its full biophysical potential everywhere, and PAR is not 82	  
attenuated by atmospheric absorption and clouds. Then we add constraints one by one. 83	  



The model has the form of a ‘light use efficiency’ (LUE) model (i.e. modelled GPP is 84	  
proportional to absorbed PAR). However, unlike empirical LUE models, the value of 85	  
LUE and its variation with environmental factors are derived from first principles, 86	  
beginning with the standard model of C3 photosynthesis (Farquhar et al., 1980). The 87	  
derivation rests on the ‘co-limitation’ or ‘co-ordination’ hypothesis, which predicts 88	  
that the photosynthetic capacity of leaves at any location and canopy level acclimates 89	  
to the prevailing daytime PAR so as to be neither in excess (which would entail 90	  
additional, non-productive maintenance respiration) nor less than is required for full 91	  
exploitation of the available PAR. This hypothesis implies that average daily 92	  
photosynthesis under field conditions is close to the point where the Rubisco- and 93	  
electron transport-limited rates are equal. The co-limitation hypothesis has strong 94	  
experimental support, as was recently demonstrated by Maire et al. (2012).  95	  

The LUE concept has been applied in diagnostic primary production models, 96	  
including the Simple Diagnostic Biosphere Model, SDBM (Knorr and Heimann, 97	  
1995), the Carnegie-Ames-Stanford Approach model, CASA (Field et al., 1995; 98	  
Potter et al., 1993), the Simple Diagnostic Photosynthesis and Respiration Model, 99	  
SDPRM (Badawy et al., 2013), and the widely used algorithms to estimate GPP and 100	  
NPP from remotely-sensed ‘greenness’ data provided by MODIS (Running et al., 101	  
2004). (By diagnostic, we mean models that rely on remotely sensed green vegetation 102	  
as an input – distinct from prognostic models that simulate vegetation cover.) A 103	  
particular version of the co-limitation hypothesis was used to derive an explicit LUE 104	  
formula in the strand of complex, prognostic terrestrial carbon cycle models that 105	  
originated with BIOME3 (Haxeltine and Prentice, 1996) and the Lund-Potsdam-Jena 106	  
(LPJ) DGVM (Sitch et al., 2003). CO2 limitation can be represented in a natural way 107	  
in the co-limitation framework, if the ratio of leaf-internal to ambient [CO2] (ci/ca) can 108	  
be specified. This is done here with the help of the ‘least-cost hypothesis’ (Wright et 109	  
al., 2003), which states that the long-term effective value of ci/ca minimizes the 110	  
combined unit costs of carboxylation (proportional to photosynthetic capacity) and 111	  
transpiration (proportional to sapflow capacity). This hypothesis also has strong 112	  
empirical support (Prentice et al., 2013) and provides a continuous prediction of the 113	  
ci/ca ratio as a function of environmental aridity, temperature and elevation. Our 114	  
modelling approach thus does not require that we divide plants into functional types 115	  
(PFTs) with apparently differing physiological responses, as has usually been done in 116	  
complex models, and is now commonly done in models based on remote sensing as 117	  
well.  118	  

We focus exclusively on GPP. It is probably reasonable to extrapolate the first-order 119	  
results to NPP, given that on a global scale NPP is approximately a constant fraction 120	  
of GPP (Waring et al., 1998) – although caution is needed because this fraction may 121	  
vary (DeLUCIA et al., 2007). The fine-tuning of the NPP/GPP ratio is a separate issue, 122	  
which will be considered in forthcoming work. C4 and CAM photosynthesis are not 123	  
modelled. For this reason, evaluation of the model results is based on data from 124	  
forests, where C3 photosynthesis predominates. 125	  



2 Methods 126	  

2.1 Model summary and protocol 127	  

The model was applied to the global land surface, excluding ice-covered regions and 128	  
Antarctica, at a grid resolution of 0.5˚. It was driven with a fixed seasonal cycle of 129	  
PAR and climate. Insolation (shortwave solar radiation at the top of the atmosphere) 130	  
was computed using standard methods. Half of solar shortwave radiation was 131	  
assumed to be PAR. PAR was converted from energy to photon units using a 132	  
conversion factor of 4.5 MJ mol-1. Remotely sensed green vegetation cover data were 133	  
used to derive absorbed PAR. Required climate data (mean monthly temperature, 134	  
precipitation and fractional cloud cover) were derived from Climate Research Unit 135	  
data (CRU TS3.1), averaged over the same period as the remote sensing 136	  
measurements. 137	  

We first considered a hypothetical world in which PAR at the top of the atmosphere 138	  
(PARtoa, see more detailed calculations in Sect. A1) could be fully utilized by plants. 139	  
In other words, we assumed a continuous vegetation cover, ideal temperature and 140	  
moisture conditions, and a perfectly clear atmosphere containing adequate CO2 for 141	  
optimal photosynthesis (Table 1). Potential GPP under these conditions is the product 142	  
of PARtoa, leaf absorptance (a), and the intrinsic quantum efficiency of photosynthesis 143	  
(φ0). The leaf absorptance accounts for the fraction of PAR lost by reflection (albedo), 144	  
transmission, and incomplete utilization of the PAR spectrum. We assumed a leaf 145	  
absorptance of 0.8 (Collatz et al., 1998) – bearing in mind that this quantity shows 146	  
substantial variation among species (Long et al., 1993). The intrinsic quantum 147	  
efficiency of photosynthesis is the LUE (mol mol-1) that can be realized at low PAR, 148	  
low [O2] and saturating [CO2]. We assigned an intrinsic quantum efficiency of 0.085, 149	  
again following Collatz et al. (1998). This is in the mid-range of reported values for 150	  
the intrinsic quantum efficiency of C3 photosynthesis. 151	  

As the real atmosphere is not perfectly clear and contains clouds, we considered next 152	  
the effect of atmospheric absorption and reflection of PAR. PARtoa for each month of 153	  
the year was converted to the PAR incident on vegetation canopies (Table 1) using the 154	  
Prescott formula (Linacre, 1968). This modifies GPP by a factor of 0.75 (the clear-sky 155	  
transmittivity) under clear skies, declining to 0.25 under completely cloudy skies. The 156	  
values thus obtained were increased by 2.7% per km of elevation (Allen, 2005) to 157	  
account for the reduced thickness of the atmosphere at higher elevations (Eq. A3). 158	  

The fraction of absorbed PAR (fAPAR), indicating actual green vegetation cover, was 159	  
introduced next. fAPAR is assumed to represent effects of limited water availability, 160	  
low temperatures and nutrient deficits in reducing the NPP available for allocation to 161	  
leaves as well as the varying phenology and turnover time of leaves (Table 1). It was 162	  
further assumed that fAPAR implicitly accounts for the differential penetration of 163	  
diffuse and direct PAR into dense vegetation canopies (Mercado et al., 2009). We 164	  



used the SeaWiFS fAPAR product (1998 to 2004) (Gobron et al., 2006), which we 165	  
have previously used to drive the SDBM in a benchmarking study (Kelley et al., 166	  
2013). For the present application we averaged different years’ values for each month 167	  
of the year, to produce a monthly climatology of fAPAR. Missing values in winter 168	  
were set to zero. The monthly values of fAPAR were used to multiply the monthly 169	  
values of PAR. 170	  

In the next step the inhibition of CO2 assimilation at low temperatures was described 171	  
by a ramp function, reducing the utilization of PAR for photosynthesis linearly from 172	  
10˚C to 0˚C with zero photosynthesis at daily temperatures below 0˚C. Daily values 173	  
of PAR were thus integrated over the month to give monthly PAR0, as defined in 174	  
Table 1. PAR0 is a weighted monthly PAR, with the weighting provided by the ramp 175	  
function (Eq. A4, A5). 176	  

The final step accounts for the effect of photorespiration and substrate limitation at 177	  
subsaturating [CO2], based on the Farquhar model (Table 1). GPP was reduced by the 178	  
factor (ci − Γ*)/(ci + 2Γ*) where Γ* is the photorespiratory compensation point. (The 179	  
co-limitation hypothesis simply equates the Rubisco- and electron-transport limited 180	  
rates of photosynthesis. We use the electron-transport limited rate as this yields an 181	  
estimate of LUE. We neglect Jmax limitation, thus making the approximation that 182	  
Rubisco is always limiting at high PAR.) The temperature dependence of Γ* was 183	  
described by an Arrhenius function (Bernacchi et al., 2003), evaluated at the 184	  
growing-season mean temperature (mGDD0). mGDD0 is defined as the annual sum of 185	  
temperatures above 0˚C (growing degree days) divided by the length of the period 186	  
with temperatures above 0˚C. The ratio ci/ca was predicted as a function of mGDD0, 187	  
atmospheric aridity (ΔE) and elevation, based on the least-cost hypothesis (Prentice et 188	  
al., 2013). ΔE is the cumulative annual difference between actual and equilibrium 189	  
evapotranspiration, where actual evapotranspiration is computed using a quasi-daily 190	  
soil-moisture accounting scheme (Cramer and Prentice, 1988). This measure is a 191	  
proxy for the effective average value of vapour pressure deficit experienced by the 192	  
plants (Prentice et al., 2013). Further details on the calculation of ci/ca are given in 193	  
Sect. A4. 194	  

2.2 Driving data 195	  

PAR, PAR0, mGDD0 and ΔE were calculated from insolation and climate data with a 196	  
modified version of the STASH model (Gallego-Sala et al., 2010; Sykes et al., 1996). 197	  
STASH was modified to account for the effects of elevation on atmospheric 198	  
transmittivity and the effect of atmospheric pressure on the psychrometer constant, 199	  
used in the calculation of equilibrium evapotranspiration 200	  
(http://www.fao.org/docrep/X0490E/x0490e07.htm). The algorithm to compute 201	  
insolation was also revised to more accurately compute celestial longitude (the angle 202	  
between the Earth’s position and its position at the vernal equinox) on each day of the 203	  
year, given the orbital parameters (eccentricity, obliquity and precession). The method 204	  
of Kutzbach and Gallimore (1988) was used to represent the effect of precession. 205	  



(This modification has little effect under the present-day orbital configuration.) 206	  
Elevations were taken to be the mean elevations of each grid cell as given by CRU	  207	  
(http://www.cru.uea.ac.uk/~timm/grid/CRU_TS_2_1.html). [CO2] was set at its mean 208	  
value during 1998 to 2005 (370 ppm). 209	  

2.3 Analysis of annual fAPAR data 210	  

We performed an analysis of the controls of (annual) fAPAR. Annual fAPAR was 211	  
calculated as a weighted average of the monthly values, the weighting provided by the 212	  
mean monthly incident PAR, neglecting periods with mean temperatures below 0˚C 213	  
(as described in Kelley et al., 2013). We carried out an ordinary linear regression of 214	  
fAPAR against the α coefficient (ratio of actual and equilibrium evapotranspiration) 215	  
calculated as in Cramer and Prentice (1988) and Gallego-Sala et al. (2010), modified 216	  
as described above. We also performed a generalized linear model analysis using α 217	  
and mGDD0, then α, mGDD0 and total soil cation exchange capacity from the 218	  
ISRIC-WISE gridded data set (Batjes, 2009) as predictors of fAPAR. 219	  

2.4 GPP data-model comparisons 220	  

GPP predictions from the final modelling step were compared to the Luyssaert et al. 221	  
(2007) global synthesis of annual GPP measurements from forests. The model’s 222	  
prediction of global GPP was compared with the range of published, observationally 223	  
based estimates (Beer et al., 2010).  224	  

Modelled seasonal cycles of GPP were compared with seasonal cycles of gap-filled 225	  
GPP derived from eddy covariance measurements of CO2 exchange in the FLUXNET 226	  
archive (http://www.fluxdata.org/). One hundred and forty-six flux towers in 227	  
FLUXNET have publicly available data between 2002 and 2006. We used all of these 228	  
data. Half-hourly measurement pairs of net ecosystem exchange (NEE) and 229	  
photosynthetic photon flux density (PPFD) (equivalent to PAR, in photon units) were 230	  
partitioned into GPP and ecosystem respiration by fitting the rectangular hyperbola 231	  
response model as presented by Ruimy et al. (1995) (their Eq. 27). Non-linear 232	  
least-squares regression was performed on each monthly set of NEE-PPFD 233	  
observation pairs at each tower, after anomalous data points (identified using Peirce’s 234	  
criterion) had been deleted. Monthly totals of GPP were then calculated as follows. 235	  
First, each PPFD time series was completed using a gap-filling product based on a 236	  
half-hourly calculation of solar radiation at the top of the atmosphere, scaled down in 237	  
magnitude by daily observations of shortwave downwelling solar radiation as 238	  
provided by the WATCH Forcing Data based on the ERA Interim re-analysis 239	  
(Weedon et al., 2012). Then the gap-filled PPFD data were converted to GPP using 240	  
the model-fitted parameters for each month and tower, and cumulated to monthly 241	  
totals. Months for which the data could not be fitted with a rectangular hyperbola 242	  
were excluded from analysis. 243	  



3 Results 244	  

3.1 Model predictions: annual GPP 245	  

The patterns and total values of global annual GPP show a progressive reduction 246	  
during the course of imposing biophysical and ecophysiological constraints (Fig. 1; 247	  
Table 1). Potential GPP based on PARtoa varies only with latitude, being maximal at 248	  
the equator and declining smoothly towards the poles (Fig. 1a). The decline is almost 249	  
but not quite symmetrical. The southern hemisphere shows slightly higher values at 250	  
any given latitude because the Earth is currently nearest to the Sun in northern winter 251	  
(southern summer). 252	  

The strict latitudinal pattern of potential GPP is altered by cloud cover (Fig. 1b). 253	  
Values are lowered around the equator and at high latitudes due to cloudiness. The 254	  
highest values are found in subtropical deserts. The combined effects of atmospheric 255	  
absorption and clouds reduce total global annual GPP by nearly half (Table 1). 256	  

The largest drop in modelled GPP, by about 78%, occurs at the next step (Fig. 1c) due 257	  
to the introduction of fAPAR. Obvious modifications include the effects of low water 258	  
availability in desert regions. fAPAR values of unity are restricted to a very few 259	  
locations (e.g. subantarctic islands). Forested regions typically have fAPAR values in 260	  
the range 0.2 to 0.8. The moisture indicator α alone accounted for 45% of the variance 261	  
in annual fAPAR. This figure rose to 54% after inclusion of mGDD0 as an additional 262	  
predictor, and to 55% after inclusion of soil cation exchange capacity. All three 263	  
predictors had highly significant effects (P < 0.001). 264	  

Additional effects of temperature limitation, introduced after the influence of fAPAR 265	  
has been taken into account, further diminish GPP only in those regions of the world 266	  
(temperate, boreal, polar and high-mountain regions) that routinely experience cold 267	  
conditions (Fig. 1d). The reduction in global total annual GPP (Table 1) at this step is 268	  
only about 7%.  269	  

The effects of subsaturating [CO2] in limiting GPP are also relatively slight (30%), 270	  
but pervasive across terrestrial ecosystems (Table 1). The strongest CO2 constraint on 271	  
GPP is predicted for hot and dry regions such as the Australian deserts; the weakest 272	  
constraint is predicted for cold and humid regions, such as eastern Siberia (Fig. 1e).  273	  

Elevation effects are slight in a global perspective, although significant locally. A 274	  
sensitivity test showed that increasing the elevation of the global land surface by 4000 275	  
m, with all other factors unchanged, would increase global GPP by 7%. The net effect 276	  
is positive because the thinner atmosphere (greater PAR transmission) and reduced 277	  
oxygen partial pressure (greater affinity of Rubisco for CO2) at high elevations more 278	  
than counteract the negative effects of the reduced psychrometer constant (increased 279	  
water loss) and reduced partial pressure of CO2. 280	  



3.2 Data-model comparisons: annual GPP 281	  

The comparison with the Luyssaert et al. observations on annual GPP indicates a 282	  
satisfying model prediction at the high end (tropical forests), but a general tendency to 283	  
overestimate GPP in temperate and boreal forests (Fig. 2). The predicted global total 284	  
GPP value (210 Pg C a-1) lies above the range of 123 ± 8 Pg C a-1 provided by Beer et 285	  
al. (2010) based on eddy covariance flux data and various diagnostic models, and also 286	  
above the value of Welp et al. (2011), 150–175 Pg C a-1, inferred from oxygen isotope 287	  
data. Nevertheless, inspection of Fig. 2 suggests that the model approximates a 288	  
‘boundary line’ for temperate and boreal forest GPP. A few sites show GPP close to 289	  
that modelled, but many others show GPP lower than this. In other words, the model 290	  
appears to be predicting an upper bound for GPP, which is not always achieved in the 291	  
field. There is no systematic difference between broadleaf and needleleaf forests in 292	  
the extent to which the model overpredicts GPP. 293	  

3.3 The seasonal maximum of GPP 294	  

Although the greatest annual GPP is both predicted and observed for tropical moist 295	  
forests (Figs 1, 2), the GPP achieved during the month with maximum GPP can be as 296	  
high or higher in boreal or temperate forests. This tendency is shown both by model 297	  
predictions (Fig. 3) and flux observations (Fig. 4). Tropical evergreen broadleaf 298	  
forests have high GPP throughout the year, with a muted seasonal cycle reflecting the 299	  
alternation of wetter and drier seasons (Fig. 4). The estimated average annual GPP of 300	  
2760 g C m-2 a-1 marks tropical forests as the most productive, but the maximum 301	  
monthly GPP in tropical evergreen broadleaf forests (about 300 g C m-2 month-1) is 302	  
exceeded by forests in the temperate zone (Fig. 4). The highest mean monthly GPP 303	  
values in our flux data set are 358 g C m-2 month-1 in a temperate evergreen needleleaf 304	  
forest and 484 g C m-2 month-1 in a temperate deciduous broadleaf forest. The 305	  
monthly maximum GPP in boreal forests (in June or July), the lower quartile for 306	  
temperate deciduous broadleaf forest, and the upper quartile for temperate evergreen 307	  
and mixed forests are similar to or even larger than the maximum for tropical 308	  
evergreen broadleaf forests.  309	  

Fig. 3 provides a biophysically based prediction of this phenomenon. In the top panel, 310	  
it is already clear that the maximum monthly potential GPP – being proportional to 311	  
insolation – is greatest in high latitudes, declining towards the equator. This is 312	  
because the day length in high-latitude summer more than compensates for the low 313	  
sun angles. The maximum daily insolation at any place and time on the Earth’s 314	  
surface occurs near the polar circles in the days around the summer solstice. High 315	  
cloud cover (Fig. 3b), low vegetation cover (Fig. 3c) and low temperatures (Fig. 3d) 316	  
all tend to reduce the maximum monthly GPP in the Arctic, but the basic pattern 317	  
persists (Fig. 3e) even after all constraints are included, allowing high maximum 318	  
monthly GPP – comparable to or higher than that in tropical forests – to be achieved 319	  
in boreal or temperate forests. The highest values of maximum monthly GPP (> 600 g 320	  



C m-2 a-1) are predicted for certain mid-latitude temperate and boreal forest regions, 321	  
including the Caucasus and Altai mountains.  322	  

4 Discussion 323	  

4.1 Key patterns explained 324	  

Our simple model predicts, among other things, that GPP in the summer months can 325	  
be as high as or higher in boreal or temperate forests than it is in tropical forests. This 326	  
prediction is supported by flux data (Fig. 4) and consistent with analyses of NPP data 327	  
by Kerkhoff et al. (2005) and Huston and Wolverton (2009). Huston and Wolverton 328	  
(2009) attributed this pattern to the prevalence of highly weathered, nutrient-poor 329	  
soils in the tropics. Our explanation is simpler, based on the latitudinal and seasonal 330	  
distribution of insolation and cloud cover combined with the physiology of 331	  
photosynthesis. Although it is possible that variations in soil nutrient status are 332	  
reflected to some extent in fAPAR (with allocation to leaves being reduced and 333	  
allocation to fine roots increased under low-nutrient conditions: Poorter et al. (2012)), 334	  
the fact that temperate forests do not consistently have lower fAPAR than tropical 335	  
forests suggests that this effect is not predominant; while our analysis of the controls 336	  
of fAPAR suggest dominant control by climate, principally water supply, with smaller 337	  
contributions from growing-season temperature (reduced fAPAR in cold climates) 338	  
and soil properties. 339	  

We argue therefore that the first-order latitudinal patterns of GPP and its seasonal 340	  
cycle are ultimately determined astronomically, by the distribution of insolation. Due 341	  
to the obliquity of the Earth’s axis relative to the ecliptic, the latitude where the Sun is 342	  
directly overhead swings between the Tropics of Cancer and Capricorn, crossing the 343	  
equator twice a year. The tropics therefore receive maximum annual insolation. But 344	  
the maximum insolation in any one month shows a very different pattern, with highest 345	  
values at high latitudes. At latitudes > 50˚ in both hemispheres the high maximum 346	  
monthly insolation is counteracted in its effect on GPP by high cloud cover and 347	  
seasonally low temperatures. High incident and absorbed PAR are experienced widely 348	  
in summer in boreal and temperate latitudes, resulting in a high seasonal GPP. Our 349	  
model is nonetheless consistent with total annual GPP being highest in tropical forests, 350	  
due to relatively high insolation combined with adequate temperature and moisture 351	  
conditions that persist throughout the year. 352	  

A novel feature of the model is its inclusion of elevation effects on GPP. Elevation 353	  
affects GPP in several ways. Enhanced PAR is a direct result of a reduced path length 354	  
through the atmosphere. Reduced stomatal conductance and ci/ca ratios (and 355	  
correspondingly higher photosynthetic capacity) are predictions of the least-cost 356	  
hypothesis. These predictions have long-standing empirical support (Friend et al., 357	  
1989; Körner and Diemer, 1994), but are accounted for here as a consequence of the 358	  
reduced partial pressure of O2, which lowers the cost of carboxylation relative to 359	  



transpiration. On the other hand, the reduced psychrometer constant tends to increase 360	  
ΔΕ. The net effect in our model, ceteris paribus, is that GPP increases with elevation. 361	  
The global effect is small, but the prediction would be worth exploring in the context 362	  
of elevational transects. It has implications especially for primary production in 363	  
high-mountain regions in the tropics and subtropics. 364	  

4.2 [CO2] and nutrient supply effects 365	  

We have implicitly assumed that fAPAR is independent of [CO2]. Thus, the effect of 366	  
the final constraint – where the effect of sub-saturating CO2 and with it, the effect of 367	  
restrictions on ci and GPP due to stomatal closure in dry environments, are added – 368	  
reflects only the effects of [CO2] on the rate of photosynthesis that could be achieved 369	  
on the assumption of unchanging vegetation cover. The resulting prediction is a 370	  
relatively modest potential for increased GPP with increasing [CO2], following the 371	  
A-ci curve for electron transport-limited photosynthesis. A sensitivity analysis in 372	  
which [CO2] was elevated by 200 ppm yielded a 5% to 25% stimulation of modelled 373	  
annual GPP: smaller than the mean effect reported for temperate forest NPP (23 ± 2%) 374	  
by Norby et al. (2005) based on Free-Air Carbon dioxide Enrichment (FACE) 375	  
experiments. This analysis also suggested a strong relationship between CO2 376	  
fertilization and temperature with warm areas experiencing stronger CO2 fertilization. 377	  
Annual GPP was predicted to increase by about 18% across the tropics but by no 378	  
more than 12% in the high latitudes of both hemispheres. The relationship to 379	  
temperature is much less marked than in the analysis by Hickler et al. (2008) because 380	  
the LPJ-GUESS model used there did not account for the response of ci/ca to 381	  
temperature. In our model, lower ci/ca at lower temperatures implies a strengthening 382	  
of the response to ca because of the convexity of the A-ci curve. This strengthening 383	  
partially counteracts the temperature effect on Γ*, which tends to produce a stronger 384	  
CO2 response at higher temperatures. 385	  

Additional effects, not considered here, could modify these model predictions. One is 386	  
the possible increase of fAPAR resulting from ‘water saving’ by reduced stomatal 387	  
conductance at increased [CO2]. Evidence has been presented for an increase of 388	  
fAPAR, independently of precipitation trends, in warm and dry regions (Donohue et 389	  
al., 2013). Such an increase would also tend to counteract any possible increase in 390	  
runoff due to increasing [CO2] (Ukkola and Prentice, 2013; Wang et al., 2012).  391	  

Another neglected effect is the possible restriction of [CO2] fertilization due to 392	  
exacerbated nutrient shortages, which would reduce the potential for GPP to be 393	  
influenced by [CO2]. For example, there is evidence for a decline in CO2-induced 394	  
growth enhancement over the time scale of stand development in the Oak Ridge 395	  
temperate forest FACE experiment (Norby et al., 2010) which appears to be a result 396	  
of accelerated N depletion under CO2 enhancement. On the other hand, a comparative 397	  
FACE study of grasslands showed photosynthetic responses to enhanced [CO2] to be 398	  
independent of N supply (Lee et al., 2011). A possible resolution of apparently 399	  
conflicting results on the nutrient dependence of primary production (and by 400	  



extension, the [CO2] effect) would depend on the responses of GPP, NPP and biomass 401	  
growth being distinguished (note that NPP includes components such as root 402	  
exudation and volatile organic compound emission that do not directly contribute to 403	  
biomass growth). Vicca et al. (2012) showed no difference in GPP between forests on 404	  
fertile and infertile soils, and no evidence for differences in the NPP/GPP ratio, but a 405	  
very large difference in biomass growth – suggesting that the key difference lies in the 406	  
allocation of NPP to supporting root symbionts that assist trees in acquiring nutrients 407	  
under conditions of low nutrient availability. This finding is consistent with that of 408	  
Aoki et al. (2012), who measured many times greater exudation of organic acids from 409	  
tropical trees on soils with low P availability, relative to more fertile soils in the same 410	  
climate. The effect apparently extends to whole-ecosystem carbon uptake, which was 411	  
shown by Fernández-Martínez et al. (2014) to be determined by nutrient availability 412	  
to a far greater extent than GPP. These various findings suggest that the current 413	  
paradigm for the inclusion of nutrient reponses in complex ecosystem models – 414	  
whereby nutrient supplies influence photosynthetic rates, and thence NPP and 415	  
biomass growth – is incorrect, and that the way forward will involve explicit 416	  
modelling of how carbon allocation (to roots versus shoots, and to investment in 417	  
nutrient acquisition versus biomass growth) is influenced by nutrient availability. 418	  

4.3 Implications for modelling strategy 419	  

Global LUE models have a history dating back at least to the early 1990s, with the 420	  
publication of the widely used Carnegie-Ames-Stanford Approach model, CASA 421	  
(Field et al., 1995; Potter et al., 1993) and the SDBM (Knorr and Heimann, 1995) to 422	  
predict NPP. Models based on the LUE principle continue to be developed, and 423	  
compared, now most commonly in terms of their ability to reproduce GPP as derived 424	  
from CO2 flux measurements (see e.g. Cheng et al., 2014; McCallum et al., 2009, 425	  
2013; Verma et al., 2014; Horn and Schulz, 2011; Yuan et al., 2007, 2013). Their 426	  
popularity depends on the fact that green vegetation cover in LUE models is directly 427	  
provided from satellite observations, thus sidestepping one of the most serious 428	  
limitations of current dynamic global vegetation models (DGVMs) – namely their 429	  
(in)ability to realistically predict spatial and temporal patterns of green vegetation 430	  
cover (Kelley et al., 2013). Despite persistent differences among different 431	  
satellite-derived fAPAR products (McCallum et al., 2010), the physical definition of 432	  
fAPAR is clear, and remotely sensed fAPAR values can be evaluated and ultimately 433	  
improved by systematic comparison with in situ measurements (Pickett-Heaps et al., 434	  
2014).   435	  

On the other hand, reliable projection of the effects of future [CO2] and climate 436	  
changes demands that fAPAR also be predicted from first principles. There must be a 437	  
feedback from NPP to fAPAR, because sufficient NPP is required to sustain a given 438	  
leaf area. Current DGVMs model this feedback implicitly but there has been little 439	  
effort to evaluate their predictions of fAPAR and its response to environmental 440	  
changes. When tested, models have been found wanting (e.g. Kelley et al. 2013, 441	  
Keenan et al. 2014). Process-based prediction of fAPAR is an important goal for 442	  



further research and presumably a feasible one, given the ready availability of fAPAR 443	  
observations as a target. 444	  

Meanwhile, the multiplicity of available LUE formulations, and the lack of agreement 445	  
on (for example) the way temperature and CO2 responses are built into LUE models 446	  
(Verma et al., 2014) or whether or not these responses should be PFT-specific (Yuan 447	  
et al., 2013), are causes for concern. These differences ultimately reflect the lack of a 448	  
clear theoretical basis for LUE modelling. In this paper, we have attempted to provide 449	  
such a basis through the adoption of two optimality hypotheses with independent 450	  
empirical support, namely the co-limitation hypothesis (Maire et al., 2012), which 451	  
predicts that LUE is determined by the electron-transport limited rate of 452	  
photosynthesis according to the Farquhar model, and the least-cost hypothesis 453	  
(Prentice et al., 2014), which provides an explicit prediction of ci/ca ratios as a 454	  
function of the physical environment. Our model makes the further explicit 455	  
assumptions that (a) the controls of LUE are universal in all C3 plants (thus, we do not 456	  
distinguish among PFTs), and (b) soil moisture and nutrient availability constraints on 457	  
GPP are mediated by fAPAR and thus do not influence LUE.  458	  

As a result of these hypotheses and assumptions, the model has far fewer parameters 459	  
than most. Aside from constants (such as the intrinsic quantum efficiency of 460	  
photosynthesis) that are independently measured to within ± 10% or better, the model 461	  
has just one parameter – C in equation A7 – that has to be estimated (and we have 462	  
done this from independent observations). Moreover, the model’s explicit relationship 463	  
to the Farquhar model of photosynthesis allows a natural way to include the effect of 464	  
changes in [CO2], requiring no additional parameters to be specified – in contrast with 465	  
(for example) Los et al.’s (2013) modification of CASA to include a CO2 response, 466	  
which is otherwise missing from the model. 467	  

It is commonly impossible to discern the extent to which parameter values in complex 468	  
models have been tuned to data that may then be used to evaluate their performance. 469	  
However, many models contain ‘hidden’ parameters whose values are not traceable to 470	  
measurements. For example, the temperature response equations of LUE in CASA 471	  
(Potter et al., 1993) contain six hard-wired numerical constants, in addition to the 472	  
maximum LUE for NPP (ε*) that is explicitly calibrated. The LPJ model (Sitch et al., 473	  
2003) similarly contains PFT-specific temperature ‘envelope’ responses of unclear 474	  
provenance and reliability. This situation reflects the data-poor world into which 475	  
models such as CASA and LPJ were born. More recently developed models are often 476	  
simpler, with process formulations derived more directly from observations such as 477	  
flux measurements. The model presented here represents a further step towards 478	  
simplicity and traceability which, we suggest, will be necessary attributes of 479	  
‘next-generation’ ecosystem models. 480	  

Appendix A  481	  

Estimations on the biophysical constraints in the model 482	  



A1 PAR at the top of the atmosphere 483	  

Instantaneous solar radiation (insolation) on a horizontal surface at the top of the 484	  
atmosphere is given by: 485	  

                                A1 486	  

Here, Qsc is the solar constant (1369 W m-2) (Willson and Mordvinov, 2003), dr is the 487	  
inverse square of the relative Sun-Earth distance (dimensionless), l is latitude in 488	  
radians, δ is solar declination in radians, and h is the 'hour angle' (the time before or 489	  
after solar noon, in radians). We use formulae based on the day number to obtain dr 490	  
and δ. We assume that over the course of one day there is no variation in dr or δ. As 491	  
Qsc and l do not vary either, we can obtain daily insolation by integrating with respect 492	  
to h between the hours of sunrise and sunset. The result is: 493	  

                    A2 494	  

where hs is the hour angle of sunset in the unit of radians, given by hs = arccos [−tan l 495	  
tan δ]. 86400 is the number of seconds in a day. The term in the square brackets has to 496	  
be set to 1 if it exceeds 1, or −1 if it becomes less than −1, which are the special cases 497	  
of polar day and night. 498	  

Daily total PAR at the top of the atmosphere is taken to be 0.5 Q (in energy units), 499	  
which is then converted to quantum units (photosynthetic photon flux density) using 500	  
the factor 4.5 MJ mol-1 (a spectrally averaged value for the energy content of 1 mol of 501	  
photosynthetically active photons). Photon units are preferred because photosynthesis 502	  
depends on the absorption of a given number of quanta, rather than a given amount of 503	  
electromagnetic energy. LUE is thus a dimensionless quantity. 504	  

A2 Atmospheric transmissivity and cloud cover 505	  

Daily solar shortwave radiation ( ) is given by a modification of the Prescott 506	  

formula: 507	  

                                      A3 508	  

where ni is the daily fractional hours of bright sunshine (dimensionless), which we 509	  
equate with the one-complement of fractional cloud cover as given in the CRU TS3.1 510	  
dataset, and z is elevation (km) above sea level. The second term in brackets is a 511	  
correction for the thinning of the atmosphere with increasing elevation.  512	  

Q =  Qscdr sin l ⋅sinδ + cos l ⋅cosδ ⋅cosh( )

Q =  86400 /π( )Qscdr hs ⋅sin l ⋅sinδ + cos l ⋅cosδ ⋅sinhs( )

Rsw↓

Rsw↓ =Q 0.25 + 0.5ni( ) 1+ 0.027z( )



A3 Low-temperature inhibition 513	  

Low-temperature inhibition of photosynthesis is accounted for by weighting daily 514	  
values of PAR (PARd) in the accumulation of PAR during a month. We denote the 515	  
weighted monthly PAR by PAR0. The weighting is calculated as follows:   516	  

PAR0d = 0     Td ≤ 0˚C         517	  

PAR0d = PARd (Td/10)    0˚C < Td < 10˚C                               A4 518	  

PAR0d = PARd    Td ≥ 10˚C 519	  

where Td (˚C) is daily temperature, giving  520	  

PAR0 = PAR0d
i=1

n

∑                                                     A5 521	  

where n is the total number of days in the month.  522	  

A4 Leaf-internal [CO2]  523	  

The ‘least-cost’ hypothesis states that the sum of the unit costs of maintaining 524	  
carboxylation and transpiration capacities is minimized. To a good approximation, 525	  
this applies when the long-term effective value of ci/ca is given by ξ/(ξ + √D). Here D 526	  
is an annual effective value of the vapor pressure deficit and ξ is given by √(bK/1.6a) 527	  
where K is the effective Michaelis-Menten coefficient for Rubisco-limited 528	  
photosynthesis. The cost factor b is the (assumed conservative) ratio of leaf 529	  
maintenance respiration to Rubisco carboxylation capacity; the cost factor a is the 530	  
ratio of sapwood maintenance respiration to transpiration capacity, which is expected 531	  
to vary with sapwood permeability, plant height (H), and the dynamic viscosity of 532	  
water (η). We assume that xylem element tapering is perfectly efficient (West et al., 533	  
1997, 1999) so the costs of maintaining the transpiration pathway vary only linearly 534	  
with height (because of the increase in the amount of respiring sapwood) and 535	  
conductance does not decline due to increasing path length. Efficient tapering is a 536	  
prerequisite of the pipe model (Shinozaki et al., 1964a, b) that empirically relates 537	  
sapwood area and subtended leaf area, independently of path length. Therefore, a can 538	  

be expressed as a product of H, η and a reference value of a (aref), and the equation for 539	  
optimum ci/ca can be re-written as: 540	  

                                               A6 541	  
ci
ca

= 1

1+
1.6aref HηD

bK



We put the constant terms (1.6, aref and b) together outside the square root and denote 542	  
them collectively as C. Equation A6 can then be simplified to:  543	  

                                                   

A7 544	  

Using a satellite-derived global dataset on vegetation height (Simard et al., 2011), we 545	  
performed a multiple regression of H against D and annual PAR0 (all three variables 546	  
log-transformed) yielding the following relationship between H and the other two 547	  
predictors: 548	  

                                                 A8 549	  

This relationship is helpful as it suggest a further simplification of equation A7 to 550	  
allow for the compensating effect of reduced vegetation height in more arid climates. 551	  

We simply make the approximation H ∝ D-0.25, leading to: 552	  

                                                   A9 553	  

Temperature effects are imposed through the known temperature dependencies of η 554	  
and K (Prentice et al. 2013). The variation of K with elevation takes account of the 555	  
effect of pO (the partial pressure of oxygen) as K = Kc (1 + pO/Ko) where Kc and Ko are 556	  
the Michaelis-Menten coefficients of Rubisco for carboxylation (in the absence of O2) 557	  
and oxygenation, respectively. pO declines with elevation in proportion to atmospheric 558	  
pressure (P),  559	  

P = 101.325e−0.114 z                                                   A10 560	  

(Jacob, 1999). We estimated C based on the common observation that ci/ca ≈ 0.8 at 561	  
low elevations in warm, mesic climates. As a reference case we considered z = 0km, 562	  
mGDD0 = 18˚C and ΔE = 100mm (similar to the environment of Sydney, Australia), 563	  
yielding C = 14.76.  564	  
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Tables 871	  

Table 1. Model equations for each step and the global annual GPP (Pg C a-1) estimated 872	  
by each model. 873	  

Model equation Global GPP  

 GPP =ϕ0 i a i PARtoa  2960 

 GPP =ϕ0 i a i PAR  1442 

 GPP =ϕ0 i a i PAR i fAPAR   322 

 GPP =ϕ0 i a i PAR0 i fAPAR   300 

 
GPP =ϕ0 i a i PAR0 i fAPAR i

ci – Γ
*

ci + 2Γ
*  

 210 

  874	  



Figures 875	  

Figure 1  876	  

The patterns of modelled global annual GPP (g C m-2 a-1) controlled by PAR at the 877	  
top of atmosphere (a), and modified by a sequence of effects: atmospheric 878	  
transmissivity and cloud cover (b), foliage cover (c), low-temperature inhibition (d) 879	  
and CO2 limitation (e). 880	  

  881	  



Figure 2 882	  

Relationship between observed annual GPP from Luyssaert et al. (2007) and predicted 883	  
annual GPP.  884	  

885	  



Figure 3  886	  

The patterns of modelled global maximum monthly GPP (g C m-2 month-1) controlled 887	  
by PAR at the top of atmosphere and modified by a sequence of effects as in Figure 1. 888	  

 889	  

 890	  



Figure 4 891	  

Box-and-whisker plot of monthly GPP (g C m-2 month-1) vs. months, based gap-filled 892	  
GPP observations derived from the publicly available measurements in the 893	  
FLUXNET archive. The bottom of the box is the lower quartile and the top is the 894	  
upper quartile. The whiskers extend to the lower and upper extremes, beyond which 895	  
outliers are defined and plotted as dots. 896	  
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