
Abstract 1	
  

Persistent divergences among the predictions of complex carbon cycle models include 2	
  
differences in the sign as well as the magnitude of the response of global terrestrial 3	
  
primary production to climate change. Such problems with current models indicate an 4	
  
urgent need to re-assess the principles underlying the environmental controls of 5	
  
primary production. The global patterns of annual and maximum monthly terrestrial 6	
  
gross primary production (GPP) by C3 plants are explored here using a simple 7	
  
first-principles model based on the light-use efficiency formalism and the Farquhar 8	
  
model for C3 photosynthesis. The model is driven by incident photosynthetically 9	
  
active radiation (PAR) and remotely sensed green vegetation cover, with additional 10	
  
constraints imposed by low-temperature inhibition and CO2 limitation. The ratio of 11	
  
leaf-internal to ambient CO2 concentration in the model responds to growing-season 12	
  
mean temperature, atmospheric dryness (indexed by the cumulative water deficit, ΔE) 13	
  
and elevation, based on optimality theory. The greatest annual GPP is predicted for 14	
  
tropical moist forests, but the maximum (summer) monthly GPP can be as high or 15	
  
higher in boreal or temperate forests. These findings are supported by a new analysis 16	
  
of CO2 flux measurements. The explanation is simply based on the seasonal and 17	
  
latitudinal distribution of PAR combined with the physiology of photosynthesis. By 18	
  
successively imposing biophysical constraints, it is shown that partial vegetation 19	
  
cover – driven primarily by water shortage – represents the largest constraint on 20	
  
global GPP. 21	
  

1 Introduction 22	
  

Differences among model predictions of the terrestrial carbon balance response to 23	
  
changes in climate and atmospheric carbon dioxide concentration ([CO2]) remain 24	
  
stubbornly large (Ciais et al., 2013; Friedlingstein et al., 2006; Sitch et al., 2008). 25	
  
After re-analysing coupled climate-carbon cycle model results from	
  Friedlingstein et 26	
  
al. (2006), Denman et al. (2007) revealed disagreements in the overall magnitude of 27	
  
the modelled (positive) climate-CO2 feedback and also in the responses of key 28	
  
processes – ocean CO2 uptake, soil organic mater decomposition, and especially 29	
  
terrestrial net primary production (NPP) – to [CO2] increase and/or climate change. 30	
  
Modelled positive responses of global NPP to [CO2] varied by a factor greater than 31	
  
five, while the models disagreed even on the sign of the response of global NPP to 32	
  
climate. The more recent Earth System Models (ESMs) in the Coupled Model 33	
  
Intercomparison Project 5 (CMIP5) archive show no better agreement (Ahlström et al., 34	
  
2012; Anav et al., 2013; Arora et al., 2013; Friedlingstein et al., 2014; Jones et al., 35	
  
2013; Todd-Brown et al., 2013). Ciais et al. (2013) summarized the CMIP5 36	
  
carbon-cycle results (their Fig. 6.21) and highlighted the weak land carbon uptake 37	
  
response to both [CO2] and climate change shown by two ‘N-coupled’ ESMs (models 38	
  
allowing for interactions between the terrestrial C and N cycles). The CMIP5 models 39	
  
collectively show a high bias in the simulation of recent trends in atmospheric [CO2] 40	
  



because the modelled uptake of CO2 by the oceans and/or land is too small, being 41	
  
smallest in the N-coupled models (Hoffman et al., 2013). Several ‘offline’ N-coupled 42	
  
land carbon cycle models have also generated contradictory, and in some cases 43	
  
apparently unrealistic, responses of NPP to climate (Thomas et al., 2013; Zaehle and 44	
  
Dalmonech, 2011). These disappointing outcomes of recent model development 45	
  
suggest to us that the controls of NPP, not least the role of nutrient limitations, are 46	
  
inadequately understood and that this is a major impediment to the development of 47	
  
reliable ESMs. 48	
  

Perusal of the terrestrial ecology literature confirms that there is indeed no consensus 49	
  
on the controls of either GPP or NPP. Some empirical primary production models 50	
  
have continued to rely on correlations with mean annual temperature and precipitation 51	
  
(Del Grosso et al., 2008), even though the positive geographic relationship of GPP or 52	
  
NPP with temperature is almost certainly indirect rather than causative (Bonan, 1993; 53	
  
Garbulsky et al., 2010). There is a strong correlation between the latitudinal gradients 54	
  
of photosynthetically active radiation (PAR) and mean annual temperature; PAR is 55	
  
the driving force of photosynthesis but also constitutes a nearly constant fraction of 56	
  
solar shortwave radiation, which is the driving force of the latitudinal temperature 57	
  
gradient. It is therefore very likely that the observed global relationships of GPP and 58	
  
NPP to temperature are caused at least in part by this correlation between temperature 59	
  
and PAR. Based on a model simulation, Churkina and Running (1998) assessed the 60	
  
relative importance of different climatic controls (temperature, water availability, 61	
  
PAR) on terrestrial primary production, indicating different controls or combinations 62	
  
of controls to be dominant in different regions. However, the analysis by Churkina 63	
  
and Running implicitly discounts the possibility that all three factors could 64	
  
simultaneously limit photosynthesis, and ignores the ubiquitous experimentally 65	
  
observed stimulation of C3 photosynthesis by increasing [CO2]. It has long been 66	
  
established that agricultural crop production is proportional to the cumulative PAR 67	
  
absorbed by the crop (Monteith and Moss, 1977a; Monteith and Moss, 1977b); yet 68	
  
Pongratz et al. (2012) and others have modelled crop production without considering 69	
  
PAR. Many models have invoked N and/or P limitations as ancillary controls on 70	
  
primary production; Huston and Wolverton (2009) went further, arguing that soil 71	
  
nutrients (rather than climate) primarily determine the global pattern of NPP. Finally, 72	
  
Fatichi et al. (2013) claimed that NPP is not controlled by photosynthesis at all, but 73	
  
rather by environmental constraints on growth. 74	
  

Different explanations of the controls of terrestrial primary production are thus rife in 75	
  
the ecological literature. Yet the choice of model assumptions can imply radically 76	
  
different responses to global change (Wang et al., 2012). It is therefore time for a 77	
  
fundamental re-assessment of the controls of primary production. With this goal in 78	
  
mind, we define a conceptually very simple model for GPP. The model allows us to 79	
  
explore the consequences (and potentially, the limitations) of the hypothesis that the 80	
  
primary controls on terrestrial GPP are incident PAR, green vegetation cover and 81	
  
[CO2]. We consider first a counterfactual, continuously vegetated world in which C3 82	
  
photosynthesis operates at its full biophysical potential everywhere, and PAR is not 83	
  



attenuated by atmospheric absorption and clouds. Then we add constraints one by one. 84	
  
The model has the form of a ‘light use efficiency’ (LUE) model (i.e. modelled GPP is 85	
  
proportional to absorbed PAR). However, unlike empirical LUE models, the value of 86	
  
LUE and its variation with environmental factors are derived from first principles, 87	
  
beginning with the standard model of C3 photosynthesis (Farquhar et al., 1980). The 88	
  
derivation rests on the ‘co-limitation’ or ‘co-ordination’ hypothesis, which predicts 89	
  
that the photosynthetic capacity of leaves at any location and canopy level acclimates 90	
  
over times longer than a day to the prevailing daytime PAR so as to be neither in 91	
  
excess (which would entail additional, non-productive maintenance respiration) nor 92	
  
less than is required for full exploitation of the available PAR. This hypothesis 93	
  
implies that average daily photosynthesis under field conditions is close to the point 94	
  
where the Rubisco- and electron transport-limited rates are equal. The co-limitation 95	
  
hypothesis has strong experimental support, as was recently demonstrated by Maire et 96	
  
al. (2012).  97	
  

The LUE concept has been applied in diagnostic primary production models, 98	
  
including the Simple Diagnostic Biosphere Model, SDBM (Knorr and Heimann, 99	
  
1995), the Carnegie-Ames-Stanford Approach model, CASA (Field et al., 1995; 100	
  
Potter et al., 1993), the Simple Diagnostic Photosynthesis and Respiration Model, 101	
  
SDPRM (Badawy et al., 2013), and the widely used algorithms to estimate GPP and 102	
  
NPP from remotely-sensed ‘greenness’ data provided by MODIS (Running et al., 103	
  
2004). (By diagnostic, we mean models that rely on remotely sensed green vegetation 104	
  
as an input – distinct from prognostic models that simulate vegetation cover.) A 105	
  
particular version of the co-limitation hypothesis was used to derive an explicit LUE 106	
  
formula in the strand of complex, prognostic terrestrial carbon cycle models that 107	
  
originated with BIOME3 (Haxeltine and Prentice, 1996) and the Lund-Potsdam-Jena 108	
  
(LPJ) DGVM (Sitch et al., 2003). CO2 limitation can be represented in a natural way 109	
  
in the co-limitation framework, if the ratio of leaf-internal to ambient [CO2] (ci/ca) can 110	
  
be specified. This is done here with the help of the ‘least-cost hypothesis’ (Wright et 111	
  
al., 2003), which states that the long-term effective value of ci/ca minimizes the 112	
  
combined unit costs of carboxylation (proportional to photosynthetic capacity) and 113	
  
transpiration (proportional to sapflow capacity). This hypothesis also has strong 114	
  
empirical support (Prentice et al., 2014) and provides a continuous prediction of the 115	
  
ci/ca ratio as a function of environmental aridity, temperature and elevation. Our 116	
  
modelling approach thus does not require that we divide plants into functional types 117	
  
(PFTs) with apparently differing physiological responses, as has usually been done in 118	
  
complex models, and is now commonly done in models based on remote sensing as 119	
  
well.  120	
  

We focus exclusively on GPP. It is probably reasonable to extrapolate the first-order 121	
  
results to NPP, given that on a global scale NPP is approximately a constant fraction 122	
  
of GPP (Waring et al., 1998) – although caution is needed because this fraction may 123	
  
vary (DeLUCIA et al., 2007). The fine-tuning of the NPP/GPP ratio is a separate issue, 124	
  
which will be considered in forthcoming work. C4 and CAM photosynthesis are not 125	
  



modelled. For this reason, evaluation of the model results is based on data from 126	
  
forests, where C3 photosynthesis predominates. 127	
  

2 Methods 128	
  

2.1 Model summary and protocol 129	
  

The model was applied to the global land surface, excluding ice-covered regions and 130	
  
Antarctica, at a grid resolution of 0.5˚. It was driven with a fixed seasonal cycle of 131	
  
PAR and climate. Insolation (shortwave solar radiation at the top of the atmosphere) 132	
  
was computed using standard methods. Half of solar shortwave radiation was 133	
  
assumed to be PAR. PAR was converted from energy to photon units using a 134	
  
conversion factor of 4.5 MJ mol-1. Remotely sensed green vegetation cover data were 135	
  
used to derive absorbed PAR. Required climate data (mean monthly temperature, 136	
  
precipitation and fractional cloud cover) were derived from Climate Research Unit 137	
  
data (CRU TS3.1), averaged over the same period as the remote sensing 138	
  
measurements. 139	
  

We first considered a hypothetical world in which PAR at the top of the atmosphere 140	
  
(PARtoa, see more detailed calculations in Sect. A1) could be fully utilized by plants. 141	
  
In other words, we assumed a continuous vegetation cover, ideal temperature and 142	
  
moisture conditions, and a perfectly clear atmosphere containing adequate CO2 for 143	
  
optimal photosynthesis (Table 1). Potential GPP under these conditions is the product 144	
  
of PARtoa, leaf absorptance (ã), and the intrinsic quantum efficiency of photosynthesis 145	
  
(φ0). The leaf absorptance accounts for the fraction of PAR lost by reflection (albedo), 146	
  
transmission, and incomplete utilization of the PAR spectrum. We assumed a leaf 147	
  
absorptance of 0.8 (Collatz et al., 1998) – bearing in mind that this quantity shows 148	
  
substantial variation among species (Long et al., 1993). The intrinsic quantum 149	
  
efficiency of photosynthesis is the LUE (mol mol-1) that can be realized at low PAR, 150	
  
low [O2] and saturating [CO2]. We assigned an intrinsic quantum efficiency of 0.085, 151	
  
again following Collatz et al. (1998). This is in the mid-range of reported values for 152	
  
the intrinsic quantum efficiency of C3 photosynthesis. 153	
  

As the real atmosphere is not perfectly clear and contains clouds, we considered next 154	
  
the effect of atmospheric absorption and reflection of PAR. PARtoa for each month of 155	
  
the year was converted to the PAR incident on vegetation canopies (Table 1) using the 156	
  
Prescott formula (Linacre, 1968). This modifies GPP by a factor of 0.75 (the clear-sky 157	
  
transmittivity) under clear skies, declining to 0.25 under completely cloudy skies. The 158	
  
values thus obtained were increased by 2.7% per km of elevation (Allen, 2005) to 159	
  
account for the reduced thickness of the atmosphere at higher elevations (Eq. A3). 160	
  

The fraction of absorbed PAR (fAPAR), indicating actual green vegetation cover, was 161	
  
introduced next. fAPAR is assumed to represent effects of limited water availability, 162	
  
low temperatures and nutrient deficits in reducing the NPP available for allocation to 163	
  



leaves as well as the varying phenology and turnover time of leaves (Table 1). It was 164	
  
further assumed that fAPAR implicitly accounts for the differential penetration of 165	
  
diffuse and direct PAR into dense vegetation canopies (Mercado et al., 2009). We 166	
  
used the SeaWiFS fAPAR product (1998 to 2004) (Gobron et al., 2006), which we 167	
  
have previously used to drive the SDBM in a benchmarking study (Kelley et al., 168	
  
2013). The extent to which different schemes to derive fAPAR from remotely sensed 169	
  
reflectance data account for the various losses included in ã is unclear. However, if 170	
  
fAPAR includes these losses then values should nowhere exceed about 0.8; whereas 171	
  
the SeaWifS fAPAR reaches 1.0. Accordingly, we have retained ã in the expressions 172	
  
for GPP that include fAPAR. For the present application we averaged different years’ 173	
  
values for each month of the year, to produce a monthly climatology of fAPAR. 174	
  
Missing values in winter were set to zero. The monthly values of fAPAR were used to 175	
  
multiply the monthly values of PAR. 176	
  

In the next step the inhibition of CO2 assimilation at low temperatures was described 177	
  
by a ramp function, reducing the utilization of PAR for photosynthesis linearly from 178	
  
10˚C to 0˚C with zero photosynthesis at daily temperatures below 0˚C. Daily values 179	
  
of PAR were thus integrated over the month to give monthly PAR0, as defined in 180	
  
Table 1. PAR0 is a weighted monthly PAR, with the weighting provided by the ramp 181	
  
function (Eq. A4, A5). 182	
  

The final step accounts for the effect of photorespiration and substrate limitation at 183	
  
subsaturating [CO2], based on the Farquhar model (Table 1). GPP was reduced by the 184	
  
factor (ci − Γ*)/(ci + 2Γ*) where Γ* is the photorespiratory compensation point. (The 185	
  
co-limitation hypothesis equates the Rubisco- and electron-transport limited rates of 186	
  
photosynthesis. We use the electron-transport limited rate as this yields an estimate of 187	
  
LUE. We neglect Jmax limitation, thus making the approximation that Rubisco is 188	
  
always limiting at high PAR.) The temperature dependence of Γ* was described by an 189	
  
Arrhenius function (Bernacchi et al., 2003), evaluated at the growing-season mean 190	
  
temperature (mGDD0). mGDD0 is defined as the annual sum of temperatures above 191	
  
0˚C (GDD, Growing Degree Days) divided by the length of the period with 192	
  
temperatures above 0˚C. The ratio ci/ca was predicted as a function of mGDD0, 193	
  
atmospheric aridity (ΔE) and elevation, based on the least-cost hypothesis (Prentice et 194	
  
al., 2014). ΔE is the cumulative annual difference between actual and equilibrium 195	
  
evapotranspiration, where actual evapotranspiration is computed using a quasi-daily 196	
  
soil-moisture accounting scheme (Cramer and Prentice, 1988). This measure is 197	
  
approximately proportional to the effective growing-season average value of vapour 198	
  
pressure deficit experienced by the plants (see Prentice et al., 2014, Supporting 199	
  
Information, for a derivation). Further details on the calculation of ci/ca and Γ* are 200	
  
given in Sections A4 and A5, respectively. 201	
  

2.2 Driving data 202	
  

PAR, PAR0, mGDD0 and ΔE were calculated from insolation and climate data with a 203	
  
modified version of the STASH model (Gallego-Sala et al., 2010; Sykes et al., 1996). 204	
  



STASH was modified to account for the effects of elevation on atmospheric 205	
  
transmittivity and the effect of atmospheric pressure on the psychrometer constant, 206	
  
used in the calculation of equilibrium evapotranspiration 207	
  
(http://www.fao.org/docrep/X0490E/x0490e07.htm). The algorithm to compute 208	
  
insolation was also revised to more accurately compute celestial longitude (the angle 209	
  
between the Earth’s position and its position at the vernal equinox) on each day of the 210	
  
year, given the orbital parameters (eccentricity, obliquity and precession). The method 211	
  
of Kutzbach and Gallimore (1988) was used to represent the effect of precession. 212	
  
(This modification has little effect under the present-day orbital configuration.) 213	
  
Elevations were taken to be the mean elevations of each grid cell as given by CRU	
  214	
  
(http://www.cru.uea.ac.uk/~timm/grid/CRU_TS_2_1.html). [CO2] was set at its mean 215	
  
value during 1998 to 2005 (370 µmol mol-1). 216	
  

2.3 Analysis of annual fAPAR data 217	
  

In order to clarify how environmental variables affect the global GPP pattern through 218	
  
fAPAR, we performed a supplementary analysis of the controls of annual fAPAR. 219	
  
Annual fAPAR was calculated as a weighted average of the monthly values, the 220	
  
weighting provided by the mean monthly incident PAR, neglecting periods with mean 221	
  
temperatures below 0˚C (as described in Kelley et al., 2013). We carried out an 222	
  
ordinary linear regression of fAPAR against the α coefficient (ratio of actual to 223	
  
equilibrium evapotranspiration) calculated as in Cramer and Prentice (1988) and 224	
  
Gallego-Sala et al. (2010), modified as described above. We also performed a 225	
  
generalized linear model analysis using α and mGDD0, then α, mGDD0 and total soil 226	
  
cation exchange capacity from the ISRIC-WISE gridded data set (Batjes, 2009) as 227	
  
predictors of fAPAR. 228	
  

2.4 GPP data-model comparisons 229	
  

GPP predictions from the final modelling step were compared to the Luyssaert et al. 230	
  
(2007) global synthesis of annual GPP measurements from forests. The model’s 231	
  
prediction of global GPP was compared with the range of published, observationally 232	
  
based estimates (Beer et al., 2010).  233	
  

Modelled seasonal cycles of GPP were compared with seasonal cycles of gap-filled 234	
  
GPP derived from eddy covariance measurements of CO2 exchange in the FLUXNET 235	
  
archive (http://www.fluxdata.org/). One hundred and forty-six flux towers in 236	
  
FLUXNET have publicly available data between 2002 and 2006. We used all of these 237	
  
data. Half-hourly measurement pairs of net ecosystem exchange (NEE) and 238	
  
photosynthetic photon flux density (PPFD) (equivalent to PAR, in photon units) were 239	
  
partitioned into GPP and ecosystem respiration by fitting the rectangular hyperbola 240	
  
response model as presented by Ruimy et al. (1995) (their Eq. 27). Non-linear 241	
  
least-squares regression was performed on each monthly set of NEE-PPFD 242	
  
observation pairs at each tower, after anomalous data points (identified using Peirce’s 243	
  
criterion) had been deleted. Monthly totals of GPP were then calculated as follows. 244	
  



First, each PPFD time series was completed using a gap-filling product based on a 245	
  
half-hourly calculation of solar radiation at the top of the atmosphere, scaled down in 246	
  
magnitude by daily observations of shortwave downwelling solar radiation as 247	
  
provided by the WATCH Forcing Data based on the ERA Interim re-analysis 248	
  
(Weedon et al., 2012). Then the gap-filled PPFD data were converted to GPP using 249	
  
the model-fitted parameters for each month and tower, and cumulated to monthly 250	
  
totals. Months for which the data could not be fitted with a rectangular hyperbola 251	
  
were excluded from analysis. 252	
  

3 Results 253	
  

3.1 Model predictions: annual GPP 254	
  

The patterns and total values of global annual GPP show a progressive reduction 255	
  
during the course of imposing biophysical and ecophysiological constraints (Fig. 1; 256	
  
Table 1). Potential GPP based on PARtoa varies only with latitude, being maximal at 257	
  
the equator and declining smoothly towards the poles (Fig. 1a). The decline is almost 258	
  
but not quite symmetrical. The southern hemisphere shows slightly higher values at 259	
  
any given latitude because the Earth is currently nearest to the Sun in northern winter 260	
  
(southern summer). 261	
  

The strict latitudinal pattern of potential GPP is altered by cloud cover (Fig. 1b). 262	
  
Values are lowered around the equator and at high latitudes due to cloudiness. The 263	
  
highest values are found in subtropical deserts. The combined effects of atmospheric 264	
  
absorption and clouds reduce total global annual GPP by nearly half (Table 1). 265	
  

The largest drop in modelled GPP, by about 78%, occurs at the next step (Fig. 1c) due 266	
  
to the introduction of fAPAR. Obvious modifications include the effects of low water 267	
  
availability in desert regions. fAPAR values of unity are restricted to a very few 268	
  
locations (e.g. subantarctic islands). Forested regions typically have fAPAR values in 269	
  
the range 0.2 to 0.8. The moisture indicator α alone accounted for 45% of the variance 270	
  
in annual fAPAR. This figure rose to 54% after inclusion of mGDD0 as an additional 271	
  
predictor, and to 55% after inclusion of soil cation exchange capacity. All three 272	
  
predictors had highly significant effects (P < 0.001). 273	
  

Additional effects of temperature limitation, introduced after the influence of fAPAR 274	
  
has been taken into account, further diminish GPP only in those regions of the world 275	
  
(temperate, boreal, polar and high-mountain regions) that routinely experience cold 276	
  
conditions (Fig. 1d). The reduction in global total annual GPP (Table 1) at this step is 277	
  
only about 7%.  278	
  

The effects of subsaturating [CO2] in limiting GPP (with fAPAR held constant) are 279	
  
also relatively slight (30%), but pervasive across terrestrial ecosystems (Table 1). The 280	
  
strongest CO2 constraint on GPP is predicted for hot and dry regions such as the 281	
  



Australian deserts; the weakest constraint is predicted for cold and humid regions, 282	
  
such as eastern Siberia (Fig. 1e).  283	
  

Elevation effects are slight in a global perspective, although significant locally. A 284	
  
sensitivity test showed that increasing the elevation of the global land surface by 4000 285	
  
m, with all other factors unchanged, would increase global GPP by 7%. The net effect 286	
  
is positive because the thinner atmosphere (greater PAR transmission) and reduced 287	
  
partial pressure of O2 (implying a greater affinity of Rubisco for CO2) at high 288	
  
elevations more than counteract the negative effects of the reduced psychrometer 289	
  
constant (increased water loss) and the reduced partial pressure of CO2. 290	
  

3.2 Data-model comparisons: annual GPP 291	
  

Comparison with the Luyssaert et al. observations on annual GPP indicates a 292	
  
satisfying model prediction at the high end (tropical forests), but a general tendency to 293	
  
overestimate GPP in temperate and boreal forests (Fig. 2). The predicted global total 294	
  
GPP value (211 Pg C a-1) lies above the range of 123 ± 8 Pg C a-1 provided by Beer et 295	
  
al. (2010) based on eddy covariance flux data and various diagnostic models, and also 296	
  
above the value of Welp et al. (2011), 150–175 Pg C a-1, inferred from oxygen isotope 297	
  
data. Nevertheless, inspection of Fig. 2 suggests that the model approximates a 298	
  
‘boundary line’ for temperate and boreal forest GPP. A few sites show GPP close to 299	
  
that modelled, but many others show GPP lower than this. In other words, the model 300	
  
appears to be predicting an upper bound for GPP, which is not always achieved in the 301	
  
field. There is no systematic difference between broadleaf and needleleaf forests in 302	
  
the extent to which the model overpredicts GPP. 303	
  

3.3 The seasonal maximum of GPP 304	
  

Although the greatest annual GPP is both predicted and observed for tropical moist 305	
  
forests (Figs 1, 2), the GPP achieved during the month with maximum GPP can be as 306	
  
high or higher in boreal or temperate forests. This tendency is shown both by model 307	
  
predictions (Fig. 3) and flux observations (Fig. 4). Tropical evergreen broadleaf 308	
  
forests have high GPP throughout the year, with a muted seasonal cycle reflecting the 309	
  
alternation of wetter and drier seasons (Fig. 4). The estimated average annual GPP of 310	
  
2760 g C m-2 a-1 marks tropical forests as the most productive, but the maximum 311	
  
monthly GPP in tropical evergreen broadleaf forests (about 300 g C m-2 month-1) is 312	
  
exceeded by forests in the temperate zone (Fig. 4). The highest mean monthly GPP 313	
  
values in our flux data set are 358 g C m-2 month-1 in a temperate evergreen needleleaf 314	
  
forest and 484 g C m-2 month-1 in a temperate deciduous broadleaf forest. The 315	
  
monthly maximum GPP in boreal forests (in June or July), the lower quartile for 316	
  
temperate deciduous broadleaf forest, and the upper quartile for temperate evergreen 317	
  
and mixed forests are similar to or even larger than the maximum for tropical 318	
  
evergreen broadleaf forests.  319	
  



Fig. 3 provides a biophysically based prediction of this phenomenon. In the top panel, 320	
  
it is already clear that the maximum monthly potential GPP – being proportional to 321	
  
insolation – is greatest in high latitudes, declining towards the equator. This is 322	
  
because the day length in high-latitude summer more than compensates for the low 323	
  
sun angles. The maximum daily insolation at any place and time on the Earth’s 324	
  
surface occurs near the polar circles in the days around the summer solstice in each 325	
  
hemisphere. High cloud cover (Fig. 3b), low vegetation cover (Fig. 3c) and low 326	
  
temperatures (Fig. 3d) all tend to reduce the maximum monthly GPP in the Arctic, but 327	
  
the basic pattern persists (Fig. 3e) even after all constraints are included, allowing 328	
  
high maximum monthly GPP – comparable to or higher than that in tropical forests – 329	
  
to be achieved in boreal or temperate forests. The highest values of maximum 330	
  
monthly GPP (> 600 g C m-2 a-1) are predicted for certain mid-latitude temperate and 331	
  
boreal forest regions, including the Caucasus and Altai mountains.  332	
  

4 Discussion 333	
  

4.1 Key patterns explained 334	
  

Our simple model predicts, among other things, that GPP in the summer months can 335	
  
be as high as or higher in boreal or temperate forests than it is in tropical forests. This 336	
  
prediction is supported by flux data (Fig. 4) and consistent with analyses of NPP data 337	
  
by Kerkhoff et al. (2005) and Huston and Wolverton (2009). Huston and Wolverton 338	
  
(2009) attributed this pattern to the prevalence of highly weathered, nutrient-poor 339	
  
soils in the tropics. Our explanation is simpler, based on the latitudinal and seasonal 340	
  
distribution of insolation and cloud cover combined with the physiology of 341	
  
photosynthesis. Although it is possible that variations in soil nutrient status are 342	
  
reflected to some extent in fAPAR with allocation to leaves being reduced and 343	
  
allocation to fine roots increased under low-nutrient conditions (Poorter et al. 2012), 344	
  
the fact that temperate forests do not consistently have lower fAPAR than tropical 345	
  
forests suggests that this effect is not predominant; while our analysis of the controls 346	
  
of fAPAR suggest dominant control by climate, principally water supply, with smaller 347	
  
contributions from growing-season temperature (reduced fAPAR in cold climates) 348	
  
and soil properties. 349	
  

We argue therefore that the first-order latitudinal patterns of GPP and its seasonal 350	
  
cycle are ultimately determined astronomically, by the distribution of insolation. Due 351	
  
to the obliquity of the Earth’s axis relative to the ecliptic, the latitude where the Sun is 352	
  
directly overhead swings between the Tropics of Cancer and Capricorn, crossing the 353	
  
equator twice a year. The tropics therefore receive maximum annual insolation. But 354	
  
the maximum insolation in any one month shows a very different pattern, with highest 355	
  
values at high latitudes. At latitudes > 50˚ in both hemispheres the high maximum 356	
  
monthly insolation is counteracted in its effect on GPP by high cloud cover and 357	
  
seasonally low temperatures. High incident and absorbed PAR are experienced widely 358	
  
in summer in boreal and temperate latitudes, resulting in a high seasonal GPP. Our 359	
  



model is nonetheless consistent with total annual GPP being highest in tropical forests, 360	
  
due to relatively high insolation combined with adequate temperature and moisture 361	
  
conditions that persist throughout the year. 362	
  

A novel feature of the model is its inclusion of elevation effects on GPP. Elevation 363	
  
affects GPP in several ways. Enhanced PAR is a direct result of a reduced path length 364	
  
through the atmosphere. Reduced stomatal conductance and ci/ca ratios (and 365	
  
correspondingly higher photosynthetic capacity) are predictions of the least-cost 366	
  
hypothesis. These predictions have long-standing empirical support (Friend et al., 367	
  
1989; Körner and Diemer, 1987), but are accounted for here as a consequence of the 368	
  
reduced partial pressure of O2, which lowers the cost of carboxylation relative to 369	
  
transpiration. On the other hand, the reduced psychrometer constant tends to increase 370	
  
ΔΕ. The net effect in our model, ceteris paribus, is that GPP increases with elevation. 371	
  
The global effect is small, but the prediction would be worth exploring in the context 372	
  
of elevational transects. It has implications especially for primary production in 373	
  
high-mountain regions in the tropics and subtropics. 374	
  

4.2 [CO2] and nutrient supply effects 375	
  

We have implicitly assumed that fAPAR is independent of [CO2]. Thus, the effect of 376	
  
the final constraint – where the effect of sub-saturating CO2 and with it, the effect of 377	
  
restrictions on ci and GPP due to stomatal closure in dry environments, are added – 378	
  
reflects only the effects of [CO2] on the rate of photosynthesis that could be achieved 379	
  
on the assumption of unchanging vegetation cover. The resulting prediction is a 380	
  
relatively modest potential for increased GPP with increasing [CO2], following the 381	
  
A-ci curve for electron transport-limited photosynthesis. A sensitivity analysis in 382	
  
which [CO2] was elevated by 200 µmol mol-1 yielded a 5% to 25% stimulation of 383	
  
modelled annual GPP: on average smaller than the mean effect reported for temperate 384	
  
forest NPP (23 ± 2%) by Norby et al. (2005) based on Free-Air Carbon dioxide 385	
  
Enrichment (FACE) experiments. This analysis also suggested a strong relationship 386	
  
between CO2 fertilization and temperature with warm areas experiencing stronger 387	
  
CO2 fertilization. Annual GPP was predicted to increase by about 18% across the 388	
  
tropics but by no more than 12% in the high latitudes of both hemispheres. The 389	
  
relationship to temperature is much less marked than in the analysis by Hickler et al. 390	
  
(2008) because the LPJ-GUESS model used there did not account for the response of 391	
  
ci/ca to temperature. In our model, lower ci/ca at lower temperatures implies a 392	
  
strengthening of the response to ca because of the convexity of the A-ci curve. This 393	
  
strengthening partially counteracts the temperature effect on Γ*, which tends to 394	
  
produce a stronger CO2 response at higher temperatures. 395	
  

Additional effects, not considered here, could modify these model predictions. One is 396	
  
the possible increase of fAPAR resulting from ‘water saving’ by reduced stomatal 397	
  
conductance at increased [CO2]. Evidence has been presented for an increase of 398	
  
fAPAR, independently of precipitation trends, in warm and dry regions (Donohue et 399	
  



al., 2013). Such an increase would also tend to counteract any possible increase in 400	
  
runoff due to increasing [CO2] (Ukkola and Prentice, 2013; Wang et al., 2012).  401	
  

Another neglected effect is the possible restriction of [CO2] fertilization due to 402	
  
exacerbated nutrient shortages, which would reduce the potential for GPP to be 403	
  
influenced by [CO2]. For example, there is evidence for a decline in CO2-induced 404	
  
growth enhancement over the time scale of stand development in the Oak Ridge 405	
  
temperate forest FACE experiment (Norby et al., 2010) which appears to be a result 406	
  
of accelerated N depletion under CO2 enhancement. On the other hand, a comparative 407	
  
FACE study of grasslands showed photosynthetic responses to enhanced [CO2] to be 408	
  
independent of N supply (Lee et al., 2011). A possible resolution of apparently 409	
  
conflicting results on the nutrient dependence of primary production (and by 410	
  
extension, the [CO2] effect) would depend on the responses of GPP, NPP and biomass 411	
  
growth being distinguished (note that NPP includes components such as root 412	
  
exudation and volatile organic compound emission that do not directly contribute to 413	
  
biomass growth). Vicca et al. (2012) showed no difference in GPP between forests on 414	
  
fertile and infertile soils, and no evidence for differences in the NPP/GPP ratio, but a 415	
  
very large difference in biomass growth – suggesting that the key difference lies in the 416	
  
allocation of NPP to supporting root symbionts that assist trees in acquiring nutrients 417	
  
under conditions of low nutrient availability. This finding is consistent with that of 418	
  
Aoki et al. (2012), who measured many times greater exudation of organic acids from 419	
  
tropical trees on soils with low P availability, relative to more fertile soils in the same 420	
  
climate. The effect apparently extends to whole-ecosystem carbon uptake, which was 421	
  
shown by Fernández-Martínez et al. (2014) to be determined by nutrient availability 422	
  
to a far greater extent than GPP. These various findings suggest that the current 423	
  
paradigm for the inclusion of nutrient reponses in complex ecosystem models – 424	
  
whereby nutrient supplies influence photosynthetic rates, and thence NPP and 425	
  
biomass growth – is incorrect, and that the way forward will involve explicit 426	
  
modelling of how carbon allocation (to roots versus shoots and to investment in 427	
  
nutrient acquisition versus biomass growth) is influenced by nutrient availability. 428	
  

4.3 Implications for modelling strategy 429	
  

Global LUE models have a history dating back at least to the early 1990s, with the 430	
  
publication of the widely used Carnegie-Ames-Stanford Approach model, CASA 431	
  
(Field et al., 1995; Potter et al., 1993) and the SDBM (Knorr and Heimann, 1995) to 432	
  
predict NPP. Models based on the LUE principle continue to be developed, and 433	
  
compared, now most commonly in terms of their ability to reproduce GPP as derived 434	
  
from CO2 flux measurements (see e.g. Cheng et al., 2014; McCallum et al., 2009, 435	
  
2013; Verma et al., 2014; Horn and Schulz, 2011; Yuan et al., 2007, 2013). Their 436	
  
popularity depends on the fact that green vegetation cover in LUE models is directly 437	
  
provided from satellite observations, thus sidestepping one of the most serious 438	
  
limitations of current dynamic global vegetation models (DGVMs) – namely their 439	
  
(in)ability to realistically predict spatial and temporal patterns of green vegetation 440	
  
cover (Kelley et al., 2013). Despite persistent differences among different 441	
  



satellite-derived fAPAR products (McCallum et al., 2010), the physical definition of 442	
  
fAPAR is clear, and remotely sensed fAPAR values can be evaluated and ultimately 443	
  
improved by systematic comparison with in situ measurements (Pickett-Heaps et al., 444	
  
2014).   445	
  

On the other hand, reliable projection of the effects of future [CO2] and climate 446	
  
changes demands that fAPAR also be predicted from first principles. There must be a 447	
  
feedback from NPP to fAPAR, because sufficient NPP is required to sustain a given 448	
  
leaf area. Current DGVMs model this feedback implicitly but there has been little 449	
  
effort to evaluate their predictions of fAPAR and its response to environmental 450	
  
changes. When tested, models have been found wanting (e.g. Kelley et al. 2013, 451	
  
Keenan et al. 2014). Process-based prediction of fAPAR is an important goal for 452	
  
further research and presumably a feasible one, given the ready availability of fAPAR 453	
  
observations as a target. 454	
  

Meanwhile, the multiplicity of available LUE formulations, and the lack of agreement 455	
  
on (for example) the way temperature and CO2 responses are built into LUE models 456	
  
(Verma et al., 2014) or whether or not these responses should be PFT-specific (Yuan 457	
  
et al., 2013), are causes for concern. These differences ultimately reflect the lack of a 458	
  
clear theoretical basis for LUE modelling. In this paper, we have attempted to provide 459	
  
such a basis through the adoption of two optimality hypotheses with independent 460	
  
empirical support, namely the co-limitation hypothesis (Maire et al., 2012), which 461	
  
predicts that LUE is determined by the electron-transport limited rate of 462	
  
photosynthesis according to the Farquhar model, and the least-cost hypothesis 463	
  
(Prentice et al., 2014), which provides an explicit prediction of ci/ca ratios as a 464	
  
function of the physical environment. Our model makes the further explicit 465	
  
assumptions that (a) the controls of LUE are universal in all C3 plants (thus, we do not 466	
  
distinguish among PFTs), and (b) soil moisture and nutrient availability constraints on 467	
  
GPP are mediated by fAPAR and thus do not influence LUE.  468	
  

As a result of these hypotheses and assumptions, the model has far fewer parameters 469	
  
than most. Aside from constants (such as the intrinsic quantum efficiency of 470	
  
photosynthesis) that are independently measured to within ± 10% or better, the model 471	
  
has just one parameter – C in equation A7 – that has to be estimated (and we have 472	
  
also done this from independent observations). Moreover, the model’s explicit 473	
  
relationship to the Farquhar model of photosynthesis allows a natural way to include 474	
  
the effect of changes in [CO2], requiring no additional parameters to be specified – in 475	
  
contrast with (for example) Los et al.’s (2013) modification of CASA to include a 476	
  
CO2 response, which is otherwise missing from the CASA model. 477	
  

It is commonly impossible to discern the extent to which parameter values in complex 478	
  
models have been tuned to data that may then be used to evaluate their performance. 479	
  
However, many models contain ‘hidden’ parameters whose values are not traceable to 480	
  
measurements. For example, the temperature response equations of LUE in CASA 481	
  
(Potter et al., 1993) contain six hard-wired numerical constants, in addition to the 482	
  



maximum LUE for NPP (ε*) that is explicitly calibrated. The LPJ model (Sitch et al., 483	
  
2003) similarly contains PFT-specific temperature ‘envelope’ responses of unclear 484	
  
provenance and reliability. This situation reflects the data-poor world into which 485	
  
models such as CASA and LPJ were born. More recently developed models are often 486	
  
simpler, with process formulations derived more directly from observations such as 487	
  
flux measurements. The model presented here represents a further step towards 488	
  
simplicity and traceability which, we suggest, will be necessary attributes of 489	
  
‘next-generation’ ecosystem models. 490	
  

Appendix A  491	
  

Estimation of biophysical constraints in the model 492	
  

A1 PAR at the top of the atmosphere 493	
  

Instantaneous incoming solar radiation (insolation) on a horizontal surface at the top 494	
  
of the atmosphere is given by: 495	
  

                                A1 496	
  

Here, Qsc is the solar constant (1369 W m-2) (Willson and Mordvinov, 2003), dr is the 497	
  
inverse square of the relative Sun-Earth distance (dimensionless), l is latitude in 498	
  
radians, δ is solar declination in radians, and h is the 'hour angle' (the time before or 499	
  
after solar noon, in radians). We use formulae based on the day number to obtain dr 500	
  
and δ. We assume that over the course of one day there is effectively no variation in dr 501	
  
or δ. As Qsc and l do not vary either, we can obtain daily insolation by integrating with 502	
  
respect to h between the hours of sunrise and sunset. The result is: 503	
  

                    A2 504	
  

where hs is the hour angle of sunset, given by hs = arccos [−tan l tan δ]. 86400 is the 505	
  
number of seconds in a day. The term in square brackets is set to 1 if it exceeds 1, or 506	
  

−1 if it becomes less than −1, which are the special cases of polar day and night. 507	
  

Daily total PAR at the top of the atmosphere is taken to be 0.5 Q (J m-2), which is then 508	
  
converted to quantum units (mol m-2) using the factor 4.5 MJ mol-1 (a spectrally 509	
  
averaged value for the energy content of 1 mol of photosynthetically active photons). 510	
  
Quantum units are preferred because photosynthesis depends on the absorption of a 511	
  
given number of quanta, rather than a given amount of electromagnetic energy. LUE 512	
  
is thus a dimensionless quantity. 513	
  

A2 Atmospheric transmissivity and cloud cover 514	
  

Q =  Qscdr sin l ⋅sinδ + cos l ⋅cosδ ⋅cosh( )

Q =  86400 /π( )Qscdr hs ⋅sin l ⋅sinδ + cos l ⋅cosδ ⋅sinhs( )



Daily solar shortwave radiation ( ) is given by a modification of the Prescott 515	
  

formula: 516	
  

                                      A3 517	
  

where ni is the daily fractional hours of bright sunshine (dimensionless), which we 518	
  
equate with the one-complement of fractional cloud cover as given in the CRU TS3.1 519	
  
dataset, and z is elevation (km) above sea level. The last term in A3 is a correction for 520	
  
the thinning of the atmosphere with increasing elevation.  521	
  

A3 Low-temperature inhibition 522	
  

Low-temperature inhibition of photosynthesis is accounted for by weighting daily 523	
  
values of PAR (PARd) in the accumulation of PAR during a month. We denote the 524	
  
weighted monthly PAR by PAR0. The weighting is calculated as follows:   525	
  

PAR0d = 0     Td ≤ 0˚C         526	
  

PAR0d = PARd (Td/10)    0˚C < Td < 10˚C                               A4 527	
  

PAR0d = PARd    Td ≥ 10˚C 528	
  

where Td (˚C) is daily temperature, giving  529	
  

PAR0 = PAR0d
d=1

n

∑                                                     A5 530	
  

where n is the total number of days in the month.  531	
  

A4 Leaf-internal [CO2]  532	
  

The ‘least-cost’ hypothesis states that the sum of the unit costs of maintaining 533	
  
carboxylation and transpiration capacities is minimized. To a good approximation, 534	
  
this applies when the long-term effective value of ci/ca is given by ξ/(ξ + √D) 535	
  
(Prentice et al. 2014). Here D is an annual effective growing-season value of the 536	
  
atmospheric vapour pressure deficit (Pa) and ξ is given by √(bK/1.6a) where K is the 537	
  
effective Michaelis-Menten coefficient for Rubisco-limited photosynthesis (Pa). The 538	
  
cost factor b is the (assumed conservative) dimensionless ratio of leaf maintenance 539	
  
respiration to Rubisco carboxylation capacity; the cost factor a is the dimensionless 540	
  
ratio of sapwood maintenance respiration to transpiration capacity, which is expected 541	
  
to increase with plant height (H, in m) and the dyna 542	
  

 543	
  

Rsw↓

Rsw↓ =Q 0.25 + 0.5ni( ) 1+ 0.027z( )



mic viscosity of water (η, in Pa s) according to equation (11) in Prentice et al. (2014).  544	
  

Here we express a as the product of H2, η and a constant (aref), allowing the equation 545	
  
for optimal ci/ca to be re-written as: 546	
  

ci
ca

= 1

1+
1.6arefηD

bΚ
⋅H

                                               A6 547	
  

We put the constant terms (1.6, aref and b) together outside the square root and denote 548	
  
them collectively as C. Equation A6 can then be simplified to:  549	
  

ci
ca

= 1

1+C ⋅ ηD
Κ

⋅H
                                                 

A7 550	
  

Using a satellite-derived global dataset on vegetation height (Simard et al., 2011), we 551	
  
performed a multiple regression of H against ΔΕ and annual PAR0 (all three variables 552	
  
log-transformed) yielding the following relationship: 553	
  

H = q ⋅PAR0
0.46 ⋅ ΔE−0.21

                                                

A8 554	
  

where q is a fitted constant, which subsumes the proportionality between ΔE and D. 555	
  
This relationship suggests a further simplification of equation A7 to allow for the 556	
  
compensating effect of reduced vegetation height on the costs of water transport in 557	
  

more arid climates. We made the approximation H ∝ ΔΕ–0.25, leading to: 558	
  

ci
ca

= 1

1+C ' ⋅ η
Κ

⋅ΔE0.25

                                               A9 559	
  

where C’ = qC. Temperature effects were imposed through the known temperature 560	
  
dependencies of η and K (Prentice et al. 2014). The variation of K with elevation 561	
  
takes account of the effect of pO (the partial pressure of O2) as K = Kc (1 + pO/Ko) 562	
  
where Kc and Ko are the Michaelis-Menten coefficients of Rubisco for carboxylation 563	
  
(in the absence of O2) and oxygenation, respectively. pO declines with elevation in 564	
  
proportion to atmospheric pressure (P), which we approximated by: 565	
  

P = 101.325e−0.114 z                                                   A10 566	
  



(Jacob, 1999). We estimated C’ based on the common observation that ci/ca ≈ 0.8 at 567	
  
low elevations in warm, mesic climates. As a reference case we considered z = 0 km, 568	
  
mGDD0 = 18˚C and ΔE = 100 mm (similar to the environment of Sydney, Australia), 569	
  
yielding C’ = 15.47 mm–0.25 s–0.5. 570	
  

Although the optimal ci/ca ratio is derived in pressure units (to account properly for 571	
  
elevation effects), ci and Γ* are in mole fraction units (µmol mol-1) in the full model 572	
  
for GPP. This takes care of the fact that Γ* and the partial pressure of CO2 both 573	
  
decline in proportion to atmospheric pressure.  574	
  

A5 Photorespiratory compensation point (Γ*) 575	
  

The photorespiratory compensation point (Γ*) depends strongly on temperature. 576	
  
Bernacchi et al. (2004) fitted an Arrhenius relationship to in vivo measurements of Γ* 577	
  
at different temperatures: 578	
  

Γ∗ = e
c−ΔH

RT                                                          A11 579	
  

where c = 19.02, ΔH is the activation energy (37.83 kJ mol−1), R is the molar gas 580	
  
constant (8.314 J mol−1 K−1) and T is the temperature in K. We substituted 581	
  
growing-season mean temperature (mGDD0) for T to obtain an estimate of the 582	
  
effective Γ* during the growing season. 583	
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Tables 874	
  

Table 1. Model equations for each step and the global annual gross primary 875	
  
production (GPP, Pg C a-1) estimated by each model. φ0: intrinsic quantum efficiency 876	
  
of photosynthesis (mol mol-1), ã: leaf absorptance (dimensionless), PAR: incident 877	
  
photosyntheically active radiation (mol m-2), PARtoa: PAR at the top of the 878	
  
atmosphere (mol m-2), PAR0: accumulated PAR for the period with daily temperature 879	
  
above 0˚C (mol m-2), fAPAR: fractional absorbed PAR (dimensionless), ci: 880	
  
leaf-internal CO2 concentration (µmol mol-1), Γ*: photorespiratory compensation point 881	
  
(µmol mol-1). 882	
  

Model equation Global annual GPP  

GPP =ϕ0 ⋅ã ⋅PARtoa  2960 

GPP =ϕ0 ⋅ã ⋅PAR  1442 

GPP =ϕ0 ⋅ã ⋅PAR ⋅ fAPAR   322 

GPP =ϕ0 ⋅ã ⋅PAR0 ⋅ fAPAR   300 

GPP =ϕ0 ⋅ã ⋅PAR0 ⋅ fAPAR ⋅
ci − Γ

∗

ci + 2Γ
∗  
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Figures 884	
  

Figure 1  885	
  

The patterns of modelled global annual GPP (g C m-2 a-1) controlled by PAR at the 886	
  
top of atmosphere (a), and modified by a sequence of effects: atmospheric 887	
  
transmissivity and cloud cover (b), foliage cover (c), low-temperature inhibition (d) 888	
  
and CO2 limitation (e). 889	
  

  890	
  



Figure 2 891	
  

Relationship between observed annual GPP from Luyssaert et al. (2007) and predicted 892	
  
annual GPP.  893	
  

894	
  



Figure 3  895	
  

The patterns of modelled global maximum monthly GPP (g C m-2 month-1) controlled 896	
  
by PAR at the top of atmosphere and modified by a sequence of effects as in Figure 1.  897	
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Figure 4 899	
  

Box-and-whisker plot of monthly GPP (g C m-2 month-1) versus month, based on 900	
  
gap-filled GPP observations derived from the freely available measurements in the 901	
  
FLUXNET archive. The bottom of the box is the lower quartile and the top is the 902	
  
upper quartile. The whiskers extend to the lower and upper extremes, beyond which 903	
  
outliers are plotted as dots. 904	
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