

Supplementary Figure 1. H_2O_2 and antioxidant activity release kinetics over long incubation experiments of four individual coral fragments (a-d) showing comparable patterns of linear antioxidant activity accumulation (red diamonds) and changing H_2O_2 accumulation (blue squares) and release rate (green triangle) as showed also in Fig. 3. The total H_2O_2 amount been released by the corals (indicated in the title) were summed using the frequent H_2O_2 release rates calculations.

Supplementary Figure 2. H_2O_2 release by *S. pistillata* coral fragments at low light intensity (of 10 µE) and complete darkness. The initial H_2O_2 accumulation rates calculated in nmol per min shows that corals release H_2O_2 in a similar manner at dark and low light conditions. These results suggest that H_2O_2 is not produced via photosynthesis during the experiment. Alternatively, the symbiotic algae may produce extracellular H_2O_2 or generate an internal H_2O_2 pool prior to the experiment, which is released to the water upon stirring and ventilation of the coral.

