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Abstract

Most plot-scale methane emission models – of which many have been developed in
the recent past – are validated using data collected with the closed-chamber tech-
nique. This method, however, suffers from a low spatial representativeness and a poor
temporal resolution. Also, during a chamber-flux measurement the air within a cham-5

ber is separated from the ambient atmosphere, which negates the influence of wind on
emissions.

Additionally, some methane models are validated by upscaling fluxes based on the
area-weighted averages of closed-chamber measurements, and by comparing those
to the eddy covariance (EC) flux. This technique is rather inaccurate, as the area of up-10

scaling might be different from the EC tower footprint, therefore introducing significant
mismatch.

In this study, we present an approach to validate plot-scale methane models with
EC observations using the footprint-weighted average method. Our results show that
the fluxes obtained by the footprint-weighted average method are of the same magni-15

tude as the EC flux. More importantly, the temporal dynamics of the EC flux on a daily
time scale are also captured (r2 = 0.7). In contrast, using the area-weighted average
method yielded a low (r2 = 0.14) correlation with the EC measurements and an un-
derestimation of methane emissions by 27.4 %. This shows that the footprint-weighted
average method is preferable when validating methane emission models with EC fluxes20

for areas with a heterogeneous and irregular vegetation pattern.

1 Introduction

Northern wetlands are typically characterized by a heterogeneous pattern in both vege-
tation and hydrological conditions. This heterogeneity leads to a high spatial variation in
methane (CH4) fluxes in these ecosystems. The net exchange of CH4 in northern wet-25

lands between the soil and the atmosphere is a balance of production and consumption
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processes that depend on many factors such as water table position, soil temperature,
substrate availability, vegetation composition etc. (Shurpali et al., 1993; Bubier, 1995;
Kim et al., 1998; Ström et al., 2003; Kutzbach et al., 2004; Wille et al., 2008). In contin-
uous permafrost environments these factors are additionally affected by thawing and
freezing of permafrost (Turetsky et al., 2002; Christensen et al., 2004). This complexity5

imposes difficulties on the quantification of methane emissions and increases the un-
certainty of methane budget estimations. The use of widespread techniques such as
the closed-chamber method and eddy covariance (EC) yields measurements over lim-
ited areas, therefore it is necessary to produce reliable models for an accurate methane
budget estimation over larger areas through upscaling.10

Several process-based and empirical models were developed during the last two
decades to achieve that goal (Cao et al., 1996; Christensen et al., 1996; Bekki and
Law, 1997; Walter et al., 2001; Zhuang et al., 2004; van Huissteden et al., 2006; Wania
et al., 2010; Zhang et al., 2012). Two methods are usually employed to validate these
models: (i) comparison with data, acquired with the closed-chamber method and (ii)15

weighing of the flux of each vegetation class in the typical fetch area of the EC tower
by its areal fraction and comparison to the EC measurements.

Studies using the first method for validation rely on datasets collected with the
closed-chamber method. It was shown however (Kellner et al., 2006; Sachs et al.,
2008) that measurements with closed-chambers are affected by several problems such20

as a low spatial representativeness, low temporal resolution, inability to register trans-
port of methane by ebullition events etc., which all increase the uncertainty of the
measurements. One extreme example of low spatial representativeness was shown
by Simpson et al. (1997), who discovered that an Aspen site previously reported as
a methane sink, according to the data collected with closed-chambers, was actually25

a methane source when measured with an eddy covariance system. In turn, a way to
avoid low temporal resolution is the use of automatic chambers. For the measurements
to be representative of the site, many such devices should be installed, which increases
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the costs not only in monetary terms, but also in terms of logistics and power supply.
The latter two factors are important for remote sites.

The second method solves these problems with the use of the EC technique, which
typically has a high frequency of measurements (half-hourly flux calculations are be-
coming a de facto standard), large coverage (e.g. several hectares), and which is also5

a non-intrusive way of measuring ecosystem scale fluxes (Aubinet, 2000; Baldocchi,
2003; Aubinet et al., 2012). In many of the studies using this method, however, veg-
etation composition in the EC tower footprint is not taken into account and only areal
fractions of different vegetation types of the whole area are used for upscaling (Hen-
driks et al., 2008; Sachs et al., 2010; Zhang et al., 2012). Significant mismatches may10

be introduced for sites with a heterogeneous and irregular vegetation pattern when do-
ing so, for example when the EC footprint area is covering only one or a limited group
of vegetation types, leaving emissions from other types unaccounted for.

In this study, we present an evaluation of the PEATLAND-VU methane emission
model using EC observations collected at the Kytalyk research station in northeastern15

Siberia, Russia. We weigh each unit source area on a high-resolution vegetation map in
the fetch of the EC tower by its contribution to the total flux (so called ‘footprint function‘
or “source weight function”) with subsequent integration. This method benefits from
advantages of the EC technique and also takes into account the vegetation composition
in the EC tower footprint.20

The objectives of this study are: (1) to evaluate the simulation of methane emissions
from the PEATLAND-VU model with eddy covariance measurements from an ecosys-
tem with heterogeneous vegetation, while using a footprint-weighted average upscaling
approach on a daily time scale, and (2) to compare the area-weighted average to the
footprint-weighted average upscaling approach.25
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2 Materials and methods

2.1 Validation site

The validation site “Kytalyk” is located in an oligotrophic tundra area in the Indigirka
lowlands, Russia (70.82◦ N, 147.50◦ E) (Fig. 1). The area is underlain by continuous
ice-rich permafrost. Microrelief at the surface consists of high- and low-centered ice5

wedge polygons and low palsas (ice-rich mounds). The typical active layer depth during
summer ranges from around 10 cm in dry areas to 50 cm in wet areas. The station
is situated in a drained thaw lake basin (van der Molen et al., 2007). Based on the
development of the vegetation and periglacial features it can be classified as ancient
(Hinkel et al., 2003), suggesting drainage at least several thousand years ago. The10

landscape is relatively flat, except for yedoma ridges situated approximately 400 m to
the west and east of the EC tower.

The vegetation consists primarily of Betula nana, Eriophorum angustifolium, Erio-
phorum vaginatum, Salix pulchra and Sphagnum sp. on the terrace. To the west and
southwest of the station there’s a meander of the Berelekh river (lower course is also15

known as “Yelon”) with a floodplain, dominated by Arctophila fulva and Arctagrostis lat-
ifolia grasses with patches of Salix pulchra on the floodplain and on the levees. The
typical vegetation height on the terrace ranges from 10 to 50 cm and some Salix pul-
chra shrubs may reach 2 m on the levees along the river.

The eddy covariance tower together with a meteo tower is installed approximately20

200 m to the north of the research station.

2.2 Measurements of environmental parameters

A set of environmental parameters was measured by the meteorological tower installed
5 m away from the EC tower. Soil temperature was measured with two profiles (type
Pb107, manufactured at the VU University Amsterdam), reaching 60 cm depth with 1025

sensors each. A shortwave radiometer (CM7b, type albedometer, Kipp & Zn, Delft, the
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Netherlands), up- and down-facing longwave radiometers (type PIR, The Eppley Lab-
oratory, Newport, RI, USA) and a net radiometer (type Q7, Campbell Scientific, Logan,
UT, USA) were installed. A tipping bucket rain gauge (Campbell Scientific, Logan, UT,
USA) was installed to monitor precipitation. Water table position was measured man-
ually by a piezometer on a daily basis. The daily averages of soil temperature at 4 cm5

depth, water table and daily cumulative precipitation are shown in Fig. 2.

2.3 Eddy covariance measurements

An ultrasonic anemometer (Gill Instruments, Lymington, UK, type R3-50) was used
to measure wind speed and temperature, while a closed-path fast methane analyzer
(Los Gatos Research, Mountain View, California, USA, type DLT-100) was used for10

the fast methane measurements. These measurements were conducted from 25 July
till 9 August in 2008 and from 5 July till 4 August in 2009. The instruments were in-
stalled at a height (zm) of 4.7 m. The air intake was situated 20 cm from the anemome-
ter and leveled at approximately the same level as the anemometer’s central point.
At the other end of the tube, a vacuum scroll pump (XDS35i, BOC Edwards, Crawly,15

UK) was installed. The fluxes were calculated following the EUROFLUX methodol-
ogy (Aubinet, 2000) with the addition of the angle of attack correction by Nakai et al.
(2006). For a detailed description of the EC setup and flux calculation we refer to
Parmentier et al. (2011).

As reported by Parmentier et al. (2011), the EC measurements during periods when20

the wind is blowing from the direction of the research station (155◦ > α < 195◦) might
be disturbed. Since there are no artificial methane sinks any disturbance would lead
to elevated emissions. However we did not find a significant difference in magnitude
of concentrations and fluxes coming from this wind sector. Moreover, all the potential
artificial methane sources are point-like and located at the distance of at least 200 m,25

therefore the footprint function value for these locations would be very small decreasing
the artifical component of the measured fluxes. Thus, the screening for this wind sector
was not applied.
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An energy balance analysis of the system was done by van der Molen et al. (2007)
and Parmentier et al. (2011), who found a good energy balance closure.

Figure 3 shows frequency binned and averaged co-spectra of sensible heat and
methane fluxes for both measurement periods. The inertial sub-range decays accord-
ing to a −4/3 power law as expected. As described by Hendriks et al. (2008), there is5

an underestimation of the normalised co-spectral density of the methane fluxes in the
high frequency range and an overestimation in the lower range, which is a characteris-
tic of the system.

The good energy balance closure and expected shapes of co-spectral densities of
sensible heat and methane fluxes indicate that the calculated fluxes are of high quality10

and can be used as a reference in our analysis.
Since the PEATLAND-VU model works only on a daily time scale, half-hourly mea-

surements were downsampled to daily averages, if more than 35 measurements were
available (∼73 % or more measurements) per day. Using this method for averaging,
5 days were discarded in total – 25, 28 July and 9 August in 2008 and 5 July and 415

August in 2009.

2.4 Closed-chamber measurements

Measurements of methane fluxes with the manual closed-chamber technique were
conducted from 31 July until 7 August in 2008 and 11 July until 1 August in 2009.
A round transparent chamber and a photo-acoustic gas monitor (model 1312, Innova20

AirTech Instruments, Ballerup, Denmark) were used to measure methane concentra-
tions in the chamber with an interval of 2 min and a total duration of 8 min. The chamber
was shielded from the sun during the measurements to prevent large temperature in-
creases. A linear regression was then applied to this data to calculate the methane
fluxes. A quality check according to van Huissteden et al. (2005) was performed and25

data which showed chamber leakage or ebullition spikes were discarded. Together with
the flux measurements, soil temperature at 10 cm depth, active layer depth and water
table position were recorded.
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2.5 Vegetation map

A GeoEye-1 image acquired on 19 August 2010 was used to produce a high-resolution
vegetation map. A maximum likelihood classification algorithm implemented in ENVI
4.8 (ITT Visual Information Solutions, Boulder, USA) was used for the classification. 31
georeferenced plots with known vegetation and land cover type were used as training5

areas for 5 vegetation types. The resulting resolution of the map is 2 m. Because the
model uses the classification by van Huissteden et al. (2005), a reclassification of the
vegetation map was done to match the model’s output (see Table 1). An Arctophila fulva
and Arctagrostis latifolia class was divided into two different subclasses – TW1 on the
terrace and FW2 on the floodplain (Fig. 4). As it was shown previously (van Huissteden10

et al., 2005), the floodplain may have significantly higher methane emissions, therefore
using either the TW1 or FW2 class for both terrace and floodplain would yield biased
results.

The river and lakes class, which comprise nearly 6 % of the map, had no mea-
surements of methane fluxes. There are very few studies that provide some insight15

into methane emissions from Arctic rivers. One study (Kling et al., 1992) reported
0.36 mmolm−2 d−1 (0.24 mg CH4 m−2 h−1) from Kaparuk river, Alaska, USA. A recent
study by Striegl et al. (2012) showed a similar emission estimate of 0.39 mmolm−2 d−1

(0.26 mg CH4 m−2 h−1) from the middle course (Arctic part) of the Yukon river, Alaska,
USA. We take an average of 0.375 mmolm−2 d−1 (0.25 mg CH4 m−2 h−1) and assume20

this emission as constant for the class throughout the EC measurement periods for
both years. The error introduced by this assumption is bound to be small as this class
only covers 6 % of the map.

There are only 2 % of the pixels on the map left unclassified due to cloud cover in
the original image, which has only a minor impact on the final figure.25

It is important to notice, that high-resolution mapping of such ecosystems is essential
for upscaling methane fluxes with any upscaling method (Riutta et al., 2007; Schrier-Uijl
et al., 2010; Sachs et al., 2010).
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2.6 PEATLAND-VU model description

The latest version of the PEATLAND-VU model was used in this study (van Huissteden
et al., 2006). It is a process-based, plot-scale model developed for the quantification of
CO2 and CH4 fluxes from wetlands. A CH4 sub-model is implemented following Wal-
ter and Heimann (2000) for production, oxidation and transport of methane, and for5

addition of organic material to the root zone. Changes to the model include the addi-
tion of a water table model to calculate water table from precipitation and evaporation
(Granberg et al., 1999; Yurova et al., 2007) and a photosynthesis module for the esti-
mation of gross primary production (GPP) (Haxeltine et al., 1996; Sitch et al., 2003).
The model was calibrated with data collected with the closed-chamber method during10

the summer periods from 2004 to 2010 excluding 2007 data from the floodplain. The
model operates with classification defined by van Huissteden et al. (2005) and has
daily temporal resolution. For a detailed description of the model we refer to Mi et al.
(2013).

2.7 Footprint model description15

For modelling of the EC tower footprints we used the model by Kormann and Meixner
(2001) (Eq. 1).

φ(x,y) =
1

√
2πσ(x)

exp

(
−y2

2σ2(x)

)
× 1
Γ(µ)

ξµ

x1+µ
exp
(−ξ

x

)
, (1)

where φ(x,y) is the 2-D footprint function, σ(x) = σv×x/u is the cross-wind dispersion,20

u is the effective plume velocity, σv is the constant crosswind fluctuation, ξ the flux
length scale, µ = (1+m)/r is a constant, r = 2+m−n the shape factor, m exponent of
the wind velocity power law, n exponent of the eddy diffusivity power law.

The model uses a gamma distribution for along-wind and a gaussian distribution for
cross-wind footprint estimation. Because the model is based on the Monin–Obukhov25
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similarity theory, which only holds in the atmospheric stability regimes defined by −1 <
ς < +1 (where ς = zm/L, and L the Monin–Obukhov length), we only used flux data and
footprint estimations of periods characterized by this stability regime in our analysis.

The 2-D footprint estimations provided by the model on an half-hourly basis were
then averaged to get daily means. After all mentioned quality screenings, 40 daily5

means were available for further analysis.
Mean daily 2-D footprint estimates were integrated within the domain defined by the

available vegetation map. It was found that 56 % of the time the integral (Ω) exceeded
the value of 0.85 – with a minimum of 0.78 – suggesting that the vegetation map is
large enough for the purposes of our analysis.10

Figure 5 shows flux footprint climatology of the EC tower. The peak value of footprint
function typically stays at a ∼51 m distance from the tower and average 80 % cumula-
tive flux distance is ∼377 m. The peak location and the 80 % cumulative flux distance
are distributed evenly across the wind directions, except the S–E direction where the
80 % cumulative flux distance extends to more than 500 m.15

For the footprint model to be applicable to the site, it’s necessary to assume that
while the vegetation pattern is heterogeneous, the surface is relatively homogeneous
in terms of vegetation height, so that momentum flux is not disturbed (Forbrich et al.,
2011). Considering the vegetation height of the site and the measurement height of EC
system, we assume this disturbance to be negligible.20

2.8 Upscaling

To compare fluxes modelled for the different classes (TD1, TW1, TW4, FW2 and River
and lakes in this study) to the EC flux, two upscaling methods were applied.

2.8.1 Area-weighted average

Upscaling with the area-weighted (AW) average was done by calculating the areal frac-25

tions of the vegetation types on the vegetation map and multiplying them by the emis-
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sion factor for that class. Subsequently, these area-weighted emissions were summed
(Eq. 2).

FAW =
5∑

i=1

fiFi (mgm−2 h−1), (2)

where FAW is the ecosystem scale methane flux, fi the fraction on the map (Table 1),5

and Fi the methane emission of the class. Numbers i = 1−5 indicate classes TD1,
TW1, TW4, FW2, and River and Lakes. This method was used in numerous studies
in the past and is considered to yield a good match on a monthly to seasonal scale
(van der Molen et al., 2007; Parmentier et al., 2011; Zhang et al., 2012).

2.8.2 Footprint-weighted average10

To derive a quantity that could be directly compared to measured EC fluxes, we calcu-
lated the ecosystem scale methane emissions with the footprint-weighted (FW) aver-
age, after substitution of classes with their respective emission factors on the vegeta-
tion map.

Every pixel on this methane emissions map was then weighted with the daily aver-15

aged 2-D footprint function. Subsequently, weighted emission factors from every pixel
were summed. To compensate for a limitation of footprint functions by the vegetation
map (Ω < 1 situations), the fluxes were normalized by Ω (Eq. 3). This operation was
needed to make individual flux estimates directly comparable, and it assumes that the
vegetation pattern outside the vegetation map does not differ significantly from the20

mapped one.

FFW =

 Y∑
y=1

X∑
x=1

φ(x,y)F (x,y)Ares

/Ω(mgm−2 h−1), (3)

where FFW represents the ecosystem scale methane flux, φ(x,y) the footprint (or
source area) weight value at point (x,y), F (x,y) the methane emission rate at point25

3938

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/3927/2014/bgd-11-3927-2014-print.pdf
http://www.biogeosciences-discuss.net/11/3927/2014/bgd-11-3927-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
11, 3927–3961, 2014

Evaluation of a
methane emission

model at the
ecosystem scale

A. Budishchev et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

(x,y), Ares the area of a pixel and X, Y the dimensions of the vegetation map. A similar
approach was used by Forbrich et al. (2011), but for downscaling instead of upscaling.

2.9 Similarity between the upscaling methods

The two upscaling methods – even though different – share some similarities. As mod-
elled footprints cover only a portion of a vegetation map, one may think of the FW5

method as a subset of the AW method, which covers the whole vegetation map. In this
regard, it is possible to imagine the AW method as the FW method with a footprint of
constant shape, such that the contribution of each vegetation type equals the fractional
area of these types on a vegetation map.

To show this, we calculate the difference between the fluxes upscaled by the two10

methods (Eq. 4) and the “vegetation composition difference” (Eq. 5), which shows the
sum of absolute differences between the total footprint function of the emitting class
normalised by Ω and fractional cover of that class on the vegetation map.

D = |FFW − FAW|(mgm−2 h−1), (4)

Dveg =
3∑

i=1

∣∣∣∣φi

Ω
− fi

∣∣∣∣×100(%), (5)15

where i = 1−3 represents the classes TW1, TW4 and FW2.

3 Results

3.1 PEATLAND-VU methane emissions modelling results

Figure 6 shows the methane fluxes from the PEATLAND-VU model for 2008 and 2009.20

The TD1 class shows near zero emissions throughout both periods. The TW1 and TW4
classes show little variation in methane emissions during both periods, which is partly
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explained by a small change in soil temperature and water table (by results of multi-
linear regression analysis – r2 = 0.64 and 0.56 for TW1 and TW4 respectively). FW2
shows a strong relationship with soil temperature (r2 = 0.68), which slightly improves
when water table is added as another predictor (r2 = 0.73). The model shows a poor
fit to the chamber measurements in 2008 (Fig. 6). The model failed to reproduce the5

temporal patterns and the magnitude of the emissions from the TW4 and FW2 classes.
There are not enough measurements from the TW1 class to draw conclusions on the
temporal pattern, although the existing data suggests an underestimation of fluxes by
nearly 20 %. In 2009, the model follows the chamber measurements much closer. Most
of the time, the modelled fluxes stay within one standard deviation from the observed10

values.

3.2 Upscaling by AW average

Figure 7a shows a comparison of the methane flux modelled with the PEATLAND-VU
model and upscaled using the AW approach and the EC flux observations. Using the
AW method to upscale the modelled fluxes yields a low correlation with the EC flux15

on a daily time scale with r2 = 0.14. The upscaled fluxes do not follow the temporal
pattern observed by the EC system, having little variation throughout both seasons.
The magnitude of the upscaled flux is noticeably lower than the EC flux. Cumula-
tive modelled emissions during the EC measurement periods in 2008 and 2009 are
0.53 and 0.87 g CH4 m−2 respectively, while the cumulative EC flux shows 0.83 and20

1.09 g CH4 m−2 respectively for the same periods. Thus, the AW upscaling approach
underestimates methane emissions by 27.4 % when compared to the EC flux.

There were only 8 days in total where chamber measurements were performed on
all of the relevant vegetation types during the same day. Daily averages of these mea-
surements were upscaled using the same technique. The magnitude of the upscaled25

fluxes is close to the EC flux.
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3.3 Upscaling by FW average

The methane flux modelled with the PEATLAND-VU model and upscaled using the
FW approach shows a good correlation with the EC flux with r2 = 0.7 (Fig. 7b). The
magnitude of the upscaled flux is similar to the EC flux. More importantly, however, it
also follows the temporal pattern of the EC flux. The cumulative flux for 2008 and 20095

is 0.84 and 1.3 g CH4 m−2 respectively, while the cumulative EC flux shows 0.83 and
1.09 g CH4 m−2 respectively for the same periods. Therefore, using the FW upscaling
approach yields slightly higher (+11.4 %) methane emissions as compared to the EC
observations. The upscaled fluxes from the chamber measurements are significantly
higher than the EC flux in 2008, but not in 2009.10

3.4 Similarity between the upscaling methods

The difference between the two upscaling methods becomes minimal, when the “veg-
etation composition difference” is low (Fig. 8). At our validation site, the occurence of
(nearly) non-emitting vegetation types is high. Therefore more often than not limiting
the contribution area to EC footprint extent leads to a change in vegetation composition,15

such that the contribution of high-emitting vegetation types is higher. This in turn leads
to elevated values of upscaled fluxes. In some cases, however, when the contribution
of vegetation types as calculated by the footprint model roughly matches the fractional
areas of these types on the vegetation map, the upscaled fluxes by both methods and
the EC flux match as well. This only happened when the EC flux was low, suggesting20

a high contribution of non-emitting types.
On larger scales (i.e. when a vegetation map extent is much larger than a typical

footprint of an EC tower) this similarity may not hold, as environmental parameters and
vegetation become latitude- and longitude-dependent.
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4 Discussion

4.1 Upscaling by AW average

The magnitude of the modelled CH4 flux upscaled by the AW approach was ∼27 %
lower than the magnitude of the EC observations. The temporal dynamics were also
not captured, leading to a low correlation with the EC flux. To explain this, we calcu-5

lated the contribution of each class to the total upscaled flux. Cumulative contributions
are presented on Fig. 9a. The TW1 class dominates the upscaled flux for both study
periods, having 67 % contribution on average. TW4 and FW2 classes contribute nearly
15 % each. Variations in the upscaled flux could be explained largely by variations in
the soil temperature at 4 cm depth and the water table (r2 = 0.61).10

Several reasons may have contributed to the low correlation with the EC flux. Firstly,
as the vegetation composition in the EC tower footprint is not taken into account, sig-
nificant mismatches can be introduced (Hargreaves and Fowler, 1998; Forbrich et al.,
2011). In the case of a homogeneous and isotropic vegetation pattern, the considera-
tion of a dynamic footprint will not lead to a significantly different flux. However, when15

the vegetation pattern is heterogeneous and moreover anisotropic (i. e. not the same
in different directions as seen from the EC tower), a dynamic footprint will have a size-
able impact on the measured flux. A changing vegetation composition in the EC tower
footprint will change the influence of different vegetation types on the EC flux. The im-
portance of the vegetation distribution (Shannon et al., 1996) and the EC flux footprint20

consideration (Leclerc and Thurtell, 1990) were recognized almost two decades ago.
The latter, however, is still not properly considered, when comparing modelled methane
fluxes with EC observations. To mitigate this issue, we present a validation approach,
which considers both these phenomena in the next sub-section.

Secondly, as it was shown previously (Becker et al., 2008; Forbrich et al., 2011),25

the vegetation map classification may contribute to the mismatches. Since the resolu-
tion of the map is 2 m, it is possible that some of the classes might have been over-
or underestimated. From field observations, however, it is likely that this inaccuracy
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will explain only a small portion of the mismatch. Betula nana dwarf shrubs and Salix
bushes that form the TD1 class tend to grow in patches on palsa-like formations with
radii (linear sizes) larger than 2 m. Therefore, only borders of these patches will be
uncertain, largely preserving the surface area of this class. Grasses that comprise the
TW1 class have a similar growth pattern, but usually grow in wetter areas. The FW25

class is localized on the floodplain, and consists of large contiguous areas (Fig. 4). It
forms two large patches, separated by the small creek with patches of Salix pulchra.
We use this class for the whole wet area on the floodplain, despite apparently hetero-
geneous vegetation. This may not be realistic as van Huissteden et al. (2005) reported
high spatial variability of methane fluxes from that area. Hotspots of methane emis-10

sions that cannot be recognized on the satellite image due to the limited resolution
may exist. Significant uncertainty may also exist in the TW4 class classification, which
has a highly heterogeneous pattern. Parmentier et al. (2011) made an assessment of
the accuracy of the vegetation map and report 86.79 % accuracy. This accuracy pro-
vides us with confidence, that even with a higher resolution, the distribution of different15

vegetation types on the map will be largely preserved.
Thirdly, PEATLAND-VU model errors could be a reason for the mismatch. van Huis-

steden et al. (2009) conducted a model sensitivity analysis with the Generalized Like-
lihood Uncertainty Estimation (GLUE) method, showing that the model performs no-
ticeably better for the terrace and somewhat worse for the floodplain. Together with the20

neglected hot spots on the floodplain, it is possible that the emissions from the flood-
plain are significantly different from the values reported by the model. Another source
of error is the lack of spatial variation of the environmental parameters in the model.
Currently, the same temperature and water table position measurements, for example,
are used to model CH4 fluxes from different classes. In reality, some variation in these25

parameters exist within each class which is not accounted for in the model. This effect
would be more pronounced on a plot scale and will diminish on the ecosystem scale.
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4.2 Upscaling by FW average

Upscaled methane fluxes with the FW approach showed a good correlation with the EC
measurements on a daily time scale with r2 = 0.7 (Fig. 7b). Cumulative contributions
are presented on Fig. 9b. Contributions from TW1, TW4 and FW2 generally follow the
EC temporal pattern during both years. The TD1 class – comprising nearly half of the5

map (48.6 %) – and River and Lakes class – comprising almost 6 % – had nearly zero
contributions throughout both measurement periods.

In general, using this upscaling approach leads to a small (∼11.4 %) overestimation
of the flux as compared to the EC flux. The upscaled flux was close to or within one
standard deviation of the EC flux during both years, with a closer fit in 2009.10

The magnitude of the three peaks in the EC measurements in 2008 on 29, 30 July,
1, 2 August, and 4 August was not reproduced. As mentioned earlier, this could be
the result of model misperformance for the TW4 and FW2 classes as compared to the
chamber measurements. The high water table position in 2008 could be the reason for
this. Since the model failed to reproduce the magnitude of the fluxes, an underestima-15

tion occurs on these days. We hypothesize that a peak in modelled fluxes on 6 August
is caused by a peak in soil temperature which occurred on that same day. Interestingly,
this behaviour in ecosystem scale flux cannot be seen in the EC data on that day. The
actual value is very close to one standard deviation of the EC flux however.

An explanation of this mismatch involves the two arguments about the vegetation20

map classification error and the PEATLAND-VU model performance, that are inherent
to both upscaling methods. However, due to the addition of the footprint model to the
upscaling scheme, the uncertainty of this model also needs to be considered. The ex-
act uncertainty of the footprint model used in this study is unknown as no artificial tracer
experiment was conducted to validate it. This is a general problem in footprint modelling25

(Schmid, 2002), because – as stated by Foken and Leclerc (2004) – artificial tracer val-
idation experiments are too expensive. Many validation studies, therefore, compare an-
alytical models to Lagrangian stochastic models, which are in turn compared to Large
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Eddy Simulation (LES) models (Foken and Leclerc, 2004). Another way is to use nat-
ural tracer experiments. In one such study (Neftel et al., 2008), it was shown that this
particular footprint model performed quite well at a grassland site on the Central Swiss
Plateau. Furthermore, the authors suggest that the model still produces useable, semi-
qualitative results under a broader range of the stability parameter (−3 < ς < +3) than5

used in this study. Considering the similar vegetation height (∼30 cm), we believe it is
safe to assume that the model’s result represents the “real” flux footprint quite closely.

We showed that this approach is more favourable for the validation of methane emis-
sion models with EC observations rather than the AW approach on a daily time scale.
Zhang et al. (2012) presented a study on the upscaling of methane fluxes based on the10

AW approach, and got a poor correlation with their EC measurements, even though
they used a more than two times longer dataset for validation. We believe that one of
the main reasons behind this mismatch may be the AW upscaling method used in the
study. While no changes were made to the data and model configuration, using the FW
method for upscaling improved the fit dramatically (from 0.14 to 0.7). Even though the15

FW approach requires a footprint model – which has it’s own sources of uncertainty –
this method allows useful insight into the performance of methane emission models.

In our study, the spatial resolution of the satellite image allowed for accurate map-
ping of highly heterogeneous vegetation patterns. The AW method, however, produced
a cumulative methane emission estimate, which is ∼27 % lower than that of measured20

by the EC system. This could lead to a conclusion that not all the methane emission hot
spots are recognized and accounted for in the analysis. However, when upscaling by
the FW method the difference between the upscaled flux and the EC flux changes from
underestimation to overestimation by ∼11 %, and can be associated with the methane
emission model error, footprint model error, map accuracy or other unaccounted phe-25

nomena aside from the EC error. Constraining these uncertainties will provide further
insight into major sources of error and will allow for more accurate validation of plot-
scale datasets.
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The detailed analysis of the EC footprint for upscaling methane fluxes in ecosystems
with high spatial heterogeneity to ecosystem scale has been recently recognised as
necessary (Sachs et al., 2010; Nicolini et al., 2013), but is still not being carried out in
some studies (Sun et al., 2013).

5 Conclusions5

Methane fluxes upscaled with the footprint-weighted average approach were shown
to be of the same magnitude as the EC flux with a small overestimation (by 11.4 %).
The temporal pattern of the EC flux on a daily time scale was captured, with r2 = 0.7.
Most of the variations in the upscaled flux could be explained through a changing EC
flux footprint and therefore a changing vegetation distribution within the footprint. This10

upscaling approach is more appropriate for model validation using EC measurements,
especially for sites with a heterogeneous and irregular vegetation pattern, as it takes
into account the vegetation composition in the EC tower footprint.

Since the area-weighted upscaling lacks this dynamic spatial and temporal informa-
tion, it is unsurprising that this approach failed to reproduce the temporal dynamics of15

the EC flux, which led to a low correlation with r2 = 0.14, and an underestimation of
the methane emissions by 27.4 %. The variations in fluxes from different classes could
be largely explained by variations in soil temperature at depth of 4 cm and water table
position (r2 = 0.61).

The PEATLAND-VU model was able to capture not only the magnitude of the EC flux,20

but also the temporal dynamics on a daily time scale when the FW approach was used
for upscaling. This makes it possible to use the model for the upscaling of methane
fluxes to an ecosystem scale, delivering a better methane budget estimation, provided
that a suitable vegetation map is available.

Acknowledgements. This study was funded by the Darwin Center for Biogeosciences (project25
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Table 1. Vegetation classification and fractional area.

Mapped vegetation type Fractional area [%] Assigned class

Salix pulchra 6.47 TD1
Soil 0.53 TD1
Eriophorum vaginatum and Betula nana 48.60 TD1
Eriophorum angustifolium and Carex sp. 7.01 TW1
Arctophila fulva and Arctagrostis latifolia 9.7/7.54 TW1/FW2
Sphagnum sp. 12.29 TW4
River and lakes 5.66 N/A
Unclassified 2.18 N/A
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Fig. 1. Elevation map of Northeastern Siberia. Location of the validation site is marked with a white star.
GMRT 2.4 digital elevation model (DEM) was used to create the map (Ryan et al., 2009). Blue lines
represent rivers (GSHHG 2.2.4 (Wessel and Smith, 1996) and Natural Earth 2.0.0 datasets).

24

Fig. 1. Elevation map of Northeastern Siberia. Location of the validation site is marked with
a white star. GMRT 2.4 digital elevation model (DEM) was used to create the map (Ryan et al.,
2009). Blue lines represent rivers (GSHHG 2.2.4 Wessel and Smith, 1996, and Natural Earth
2.0.0 datasets).
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Fig. 2. Temporal dynamics of daily soil temperature at 4 cm depth (solid line), water table po-
sition (dashed line) and daily precipitation (bars) for the EC measurement periods in 2008 and
2009.
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Fig. 3. Frequency binned and averaged co-spectra of sensible heat and methane fluxes for periods with
unstable regime (-650 < L < 0). −4/3 power law is shown with a dashed line.
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Fig. 3. Frequency binned and averaged co-spectra of sensible heat and methane fluxes for
periods with unstable regime (−650 < L < 0). −4/3 power law is shown with a dashed line.
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Fig. 4. Vegetation map. Hatched area represents the area where the Arctophila fulva and Arc-
tagrostis latifolia vegetation type was assigned the FW2 class. Location of the EC tower is
marked with a white star.
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Fig. 5. Flux footprint climatology of the EC methane measurement periods. Red contour line shows a
typical 80% cumulative flux distance and darkgreen contour line shows a typical location of the footprint
function maximum. Location of the EC tower is marked with a white star. Dashed concentric circles show
the 100m, 300m and 500m distances to the EC tower. The underlying image shows spatial distribution
of the modelled methane fluxes.
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Fig. 5. Flux footprint climatology of the EC methane measurement periods. Red contour line
shows a typical 80 % cumulative flux distance and darkgreen contour line shows a typical lo-
cation of the footprint function maximum. Location of the EC tower is marked with a white star.
Dashed concentric circles show the 100 m, 300 m and 500 m distances to the EC tower. The
underlying image shows spatial distribution of the modelled methane fluxes.
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Fig. 8. Difference between the upscaled fluxes from the two methods vs. ’vegetation composition differ-
ence’. Colours from white to red show the magnitude of the EC flux.
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Fig. 8. Difference between the upscaled fluxes from the two methods vs. “vegetation composi-
tion difference”. Colours from white to red show the magnitude of the EC flux.
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Fig. 9. Temporal dynamics of the methane fluxes as measured by the EC system (dashed
black lines) and the upscaled output of the PEATLAND-VU model using (a) the AW and (b) FW
approaches for each class during 2008 and 2009. Contributions from TD1 as well as the River
and Lakes class are not shown as they are very close to zero.
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