Biogeosciences Discuss., 11, 4151–4186, 2014 www.biogeosciences-discuss.net/11/4151/2014/ doi:10.5194/bgd-11-4151-2014 © Author(s) 2014. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Biogeosciences (BG). Please refer to the corresponding final paper in BG if available.

The effect of drought and interspecific interactions on the depth of water uptake in deep- and shallow-rooting grassland species as determined by δ^{18} O natural abundance

N. J. Hoekstra^{1,2}, J. A. Finn¹, and A. Lüscher²

¹Teagasc, Environment Research Centre, Johnstown Castle, Wexford, Ireland ²Agroscope, Institute for Sustainability Sciences ISS, 8046 Zürich, Switzerland

Received: 5 February 2014 - Accepted: 3 March 2014 - Published: 15 March 2014

Correspondence to: J. A. Finn (john.finn@teagasc.ie)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Abstract

Increased incidence of weather drought, as predicted under climate change, has the potential to negatively affect grassland production. Compared to monocultures, vertical belowground niche complementarity between shallow- and deep-rooting species may

- ⁵ be an important mechanism resulting in higher yields and higher resistance to drought in grassland mixtures. However, very little is known about the belowground responses in grassland systems and increased insight into these processes may yield important information both to predict the effect of future climate change and better design agricultural systems to cope with this.
- ¹⁰ This study assessed the effect of a 10-week experimental summer drought on the depth of water uptake of two shallow-rooting species (*Lolium perenne* L. and *Trifolium repens* L.) and two deep-rooting species (*Chicorium intybus* L. and *Trifolium pratense* L.) in grassland monocultures and four-species-mixtures by using the natural abundance δ^{18} O isotope method. We tested the following hypotheses: (1) drought results in
- a shift of water uptake to deeper soil layers, (2) deep-rooting species take up a higher proportion of water from deeper soil layers relative to shallow-rooting species, (3) as a result of interspecific interactions in mixtures, the water uptake of shallow-rooting species become shallower when grown together with deep-rooting species and vice versa, resulting in reduced niche overlap.
- ²⁰ The natural abundance δ^{18} O technique provided novel insights into the depth of water uptake of deep- and shallow- rooting grassland species and revealed large shifts in response to drought and interspecific interactions.

Compared to control conditions, drought reduced the proportional water uptake from 0–10 cm soil depth (PCWU₀₋₁₀) of *L. perenne*, *T. repens* and *C. intybus* in mono-²⁵ cultures by on average 54 %. In contrast, the PCWU₀₋₁₀ of *T. pratense* in monoculture increased by 44 %, and only when grown in mixture did the PCWU₀₋₁₀ of *T. pratense* decrease under drought conditions. In line with hypothesis 2, in monoculture, the PCWU₀₋₁₀ of shallow-rooting species *L. perenne* and *T. repens* was 0.53

averaged over the two drought treatments, compared to 0.16 for the deep-rooting *C. intybus*. Surprisingly, in monoculture, water uptake by *T. pratense* was shallower than for the shallow-rooting species ($PCWU_{0-10} = 0.68$).

Interspecific interactions in mixtures resulted in a shift in the depth of water uptake
 by the different species. As hypothesised, the shallow-rooting species *L. perenne* and *T. repens* tended to become shallower, and the deep-rooting *T. pratense* made a dramatic shift to deeper soil layers (reduction in PCWU₀₋₁₀ of 58 % on average) in mixture compared to monoculture. However, these shifts did not result in a reduction in the proportional similarity of the proportional water uptake from different soil depth intervals
 (niche overlap) in mixtures compared to monocultures.

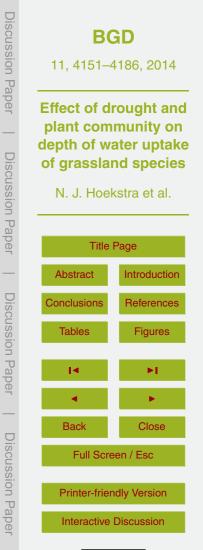
There was no clear link between interspecific differences in depth of water uptake and drought resistance. *C. intybus*, the species with water uptake from the deepest soil layers was one of the species most affected by drought. However, *T. pratense*, the species with the highest plasticity in depth of water uptake, was least affected by drought, suggesting an indirect effect of rooting depth on drought resistance. Our

results show that niche complementarity in the depth of water uptake between shallowand deep-rooting species may have contributed to the diversity effect in mixtures.

1 Introduction

15

Both the frequency and the intensity of extreme weather events is predicted to increase under climate change (IPCC, 2007). These discrete events include droughts, heat-waves and storms, and can have a large impact on a variety of ecosystem functions and services. Increased incidence of drought has the potential to disrupt crop and grassland production, and there is a need to consider adaptation options to support global food security. Research on temperate grasslands shows a strong negative effect of drought on aboveground production (Gilgen and Buchmann, 2009; Grime et al.,


2000; Kahmen et al., 2005; Vogel et al., 2012; De Boeck et al., 2008), however, there is high variability in the observed responses. This variability could be related to differ-

ences across experiments in the severity (Vicca et al., 2012) and timing of the drought stress, as well as differences in plant functional types present in the ecosystem. In the current study, we focus on studying different plant functional types, i.e. deep-rooting and shallow-rooting grassland species.

- It is often assumed that plants respond to water shortage in the (upper part of the) soil by shifting water extraction to deeper soil layers that generally have higher levels of water (Sharp and Davies, 1985; Garwood and Sinclair, 1979). By doing so, plants are able to delay loss of turgor, prevent stomatal closure, and maintain a high rate of photosynthesis. Rather than by a complete adjustment of the root density profile, plants can advent the development of the root density profile, plants can
- adapt to drought by rapidly developing fine roots (Coelho and Or, 1999), or by increasing the activity and efficiency of deep roots (Sharp and Davies, 1985; Kulmatiski and Beard, 2013). More deeply-rooted plants are more likely to survive extended periods of drought by accessing lower soil layers that contain higher soil moisture levels (Chaves et al., 2003). However, there are quite varied responses in the few studies of grassland
- plants that have investigated the effect of drought on rooting depth (Skinner, 2008; Garwood and Sinclair, 1979; Jupp and Newman, 1987), or on the depth of water uptake (Asbjornsen et al., 2008; Kulmatiski and Beard, 2013; Nippert and Knapp, 2007a, b; Grieu et al., 2001) and only very few studies were conducted in temperate grassland systems with grasses and herbaceous plants only (Grieu et al., 2001; Prechsl, 2013).
- Plant species diversity in both semi-natural (e.g. Tilman et al., 1996, 2002; Hector et al., 1999; Kennedy et al., 2002) and agricultural (e.g. Finn et al., 2013; Kirwan et al., 2007; Nyfeler et al., 2009, 2011) ecosystems has been related to higher primary production, nutrient retention, resistance to weed invasion and stability in response to disturbance, and is often attributed to complementarity in a variety of plant traits and
- niches and interspecific interactions. One commonly proposed mechanism to achieve functional complementarity is belowground vertical niche complementarity between shallow-rooting and deep-rooting species (Berendse, 1982; von Felten and Schmid, 2008).

When grown in monoculture, a species with roots that mainly occupy the shallow soil layers (shallow-rooting species) will be expected to mainly utilise water and nutrients from shallow soil layers. Deep-rooting species in monoculture have roots that occupy both shallow and deeper soil layers and can also access water and nutrients from deeper soil layers. A combination of these two types of species in mixture could result in a more complete exploitation of available soil resources than could be achieved by either species grown in monoculture. This complementarity could be enhanced if the belowground niche occupation of a given species would move away from zones of intense resource competition with neighbours when grown in mixture (von Felten et al., 2009; Mommer et al., 2010). In such a scenario, deep-rooting species can be expected to root even deeper and shallow-rooting species even shallower when grown in mixtures compared to monocultures. Ultimately, this total increase in utilisation of water and nutrients may

¹⁵ monoculture performances.

However, the majority of research in grassland systems has focussed on above-ground responses, since the measurement of belowground biomass is much more labour intensive. Also, it is very hard to distinguish the roots of different species grown in mixtures in the field (see Mommer et al., 2008). Even when the roots of different species are identified, the presence and abundance of roots is not necessarily equivalent to root activity (Kulmatiski and Beard, 2013). Thus, insight into and evidence of belowground vertical niche complementarity and niche shifts of individual species in response to drought and interspecifc interactions is very limited.

lead to higher above-ground biomass production than expected from a combination of

Work is on-going to address these methodological challenges. Recently, ¹⁵N tracers have been used to study nitrogen uptake patterns from different soil depths in grasslands with varying diversity levels (Pirhofer-Walzl et al., 2013; von Felten et al., 2009). As a measure of soil water utilisation, the natural abundance of δ^{18} O in soil and plant water can be used to measure the depth of water uptake of individual species (Durand et al., 2010; Dawson and Ehleringer, 1993; Nippert and Knapp, 2007a; Asbjornsen

et al., 2008). Enabled by these methodological advances, new insights into these processes can yield important information with which to predict both the effect of future climate change on grassland production, and to better design agricultural systems with improved resource utilisation and resistance to drought.

- ⁵ The objective of this study was to use the natural abundance δ^{18} O isotope method to assess the effect of experimentally-induced drought on the depth of water uptake of shallow-rooting and deep-rooting species in intensively-managed grassland mixtures and monocultures. We tested the following hypotheses: (1) summer drought will result in a shift of water uptake to deeper soil layers, (2) deep-rooting species take up a higher
- proportion of water from deeper soil layers relative to shallow-rooting species, which is expected to give them an advantage under drought conditions, and (3) interspecific interactions result in a shift in the depth of water uptake of individual species grown in mixtures compared to monocultures. We hypothesise that water uptake by shallowrooting species will become shallower when grown together with deep-rooting species and vice verse, resulting in reduced picke everlap.

 $_{15}$ $\,$ and vice versa, resulting in reduced niche overlap.

2 Materials and methods

2.1 Site and maintenance

20

We report measurements from two experiments that were conducted at Tänikon Research Station, Aadorf (47°48′ N, 8°91′ E) and Reckenholz, Zürich (47°43′ N, 8°53′ E) in Switzerland (Table 1). The experimental site at Tänikon was situated on a brown earth (topsoil sandy loam, subsoil clay) and the site at Reckenholz was a cambisol (topsoil 20–30 % clay, subsoil 30–40 % clay). Swards were sown in August 2010 and 2011 (Tänikon and Reckenholz, respectively) on $3m \times 5m$ plots. Plots were cut seven times

per year in Tänikon (2011), including a clearing cut in April, and six times in Reckenholz (2012). Plots received 145 and 200 kgNha⁻¹ yr⁻¹ (Tänikon and Reckenholz,

respectively) split over five applications, and enough P and K as to be non-limiting for intensively managed grassland.

2.2 Experimental design

Four grassland species were selected based on their rooting depth: two shallow-rooting species, Lolium perenne L. (L. perenne) cultivar (cv.) Aligator and Trifolium repens L (*T. repens*) cv. Hebe, and two deep-rooting species, *Chicorium intybus* L. (*C. intybus*) cv. Puna II and Trifolium pratense L. (T. pratense) cv. Pastor in Tänikon and cv. Dafila in Reckenholz. L. perenne and T. repens generally have the bulk of their roots in the top 10 cm, whereas C. intybus and T. pratense have tap roots that allow access to deeper soil depths. All four species were sown in four monocultures and in one mixture with equal proportions of all four species, resulting in five different plant communities. Monocultures of L. perenne, C. intybus, T. repens and T. pratense were sown with 30, 6.5, 16 and 16.4 kg germinable seeds ha⁻¹, respectively.

Using rainout shelters, half of the plots were subjected to a drought treatment of 10 and 9 weeks duration in Tänikon 2011 and Reckenholz 2012, respectively (spanning 15 two regrowth periods, Table 1), with three replicate plots per treatment. The tunnelshaped shelters consisted of steel frames of 5.5 m × 3 m × 1.4 m height, covered with 1.5 µm thick transparent plastic foil (Gewächshausfolien-Zuschnitt UV4, 190my) with the opposing ends left uncovered. Gutters were installed to prevent the water from flowing onto adjacent plots, and a ventilation opening at the top and bottom 50 cm was included to stimulate air circulation and minimise temperature increases underneath the shelters.

Air temperature and relative humidity (RH) were measured at 80 cm height with combined temperature and RH probes (Decagon EHT durable RH/temperature sensor) in four mixture plots at Tänikon and six mixture plots at Reckenholz, respectively (both 25 control and drought plots) and logged (EM50, Decagon). Rainfall for the two experiments was recorded at the weather stations located at Tänikon Research Centre and ART, Reckenholz, Zürich which were within 2 km distance of the experimental sites.

2.3 Sampling

At the end of the drought period, dry matter yield of the aboveground biomass was determined by cutting a $5m \times 1.5m$ strip at 7 cm height from the centre of each plot using a Hege plot harvester. The species proportions were determined by cutting a 50 cm w 50 cm w 50 cm and control of each plot using a lost is a species of each plot using a lost is a species of each plot using a lost is a species of each plot using a lost is a species of each plot using a lost is a species of each plot using a lost is a species of each plot using a lost is a species of each plot using a lost is a species of each plot using a lost is a species of each plot using a lost is a species of each plot using a lost is a species of each plot using a lost is a species of each plot using a species of each plot usin

a 50 cm × 50 cm square from the centre of each plot using electric shears and sorting the herbage into the four sown species, dead material and unsown species. All herbage samples were oven-dried in a forced air oven at 60 °C for 48 h to determine the dry matter content.

δ¹⁸O natural abundance of soil water and plant water was used to assess the depth
 of water uptake of individual species. The lower evaporation rate of heavy isotopes increases the concentration of ¹⁸O in water at the soil surface. Diffusion of the isotopes in soil then follows from the top of the profile downwards. This results in a vertical gradient in isotopic composition of water in the soil (Durand et al., 2007). No isotopic fractionation occurs during soil water uptake by root systems, and therefore the composition of plant xylem water is an indicator of the mean depth of water uptake (Dawson et al., 2002).

Approximately one week before the end of the drought period, stem bases (up to 1.5 cm above soil level) were collected from five to eight tillers (depending on tiller weight) of all four sown species. Samples were taken from two replicate plots of all treatment combinations. For *L. perenne*, the outer sheath, which may contain photosynthetically active material and therefore an altered δ^{18} O signal (Durand et al., 2007) was removed. At the same time, three 2 cm diameter soil cores were taken to 40 cm depth per plot and divided into four segments for Tänikon 2011 (0–10, 10–20, 20–30 and 30–40 cm) and five segments in 2012 (0–10 cm segment split into 0–5 cm and 5–

10 cm). All samples were taken in the core plot area, excluding the outer 1 m border of the plot. All plant samples and a bulked sub-sample of the soil material were stored frozen in airtight glass vials (Exetainers, Labco, UK). The remainder of the soil material was oven-dried at 100 °C for 48 h to determine the soil moisture content (SMC). Wa-

ter from the soil and plant samples was extracted using cryogenic vacuum distillation (Ehleringer and Osmond, 1989).

Water samples were analysed for oxygen 18 isotopes at the Boston University Stable Isotope Laboratory on a MultiFlow (GV Instruments, Lyon, France) interfaced to an Iso-

- ⁵ Prime isotope ratio mass spectrometer (GV Instruments, Lyon, France). The procedure is based on the headspace equilibration technique (Socki et al., 1992). One hundred mL of water was placed in a Labco vial and capped. The vials were placed in a Gilson Autosampler and flushed with a mix of 5% CO₂/95% He, and then allowed to equilibrate for 8 h at 40°C. During this time the oxygen isotopes in the water fully exchange with the oxygen in the CO. The headspace was subsempled and measured against the CO.
- with the oxygen in the CO₂. The headspace was subsampled and measured against a reference CO₂ gas. Samples were calibrated using IAEA standards and normalized to the V-SMOW/SLAP scale. Check standards were run every 10 samples to insure quality control and to correct for drift (if needed) and precision was usually 0.1 permil or better.

15 2.4 Data analysis

We used two methods to assess the ¹⁸O data. Firstly, we used the direct inference approach (Asbjornsen et al., 2008; Brunel et al., 1995) to determine the mean soil depth from which each of the four species was extracting water. In this approach, the δ^{18} O isotopic signature of plant stem water is compared with the δ^{18} O signature of water at

- varying depths in the soil profile to determine at which depth the two values correspond to each other (Fig. B1). This soil depth is interpreted as the mean depth from which the plant extracted its water during the preceding time period. This approach assumes that roots preferentially take soil water from a single depth zone during any given period of time (Asbjornsen et al., 2007).
- ²⁵ Secondly, we applied the IsoSource stable isotope mixing model (Phillips and Gregg, 2003) to quantitatively determine the proportional contribution of each of the sources (i.e. 4–5 soil depth intervals, as in Methods) to the plant stem water δ^{18} O signature. In this method, all possible combinations of each source contribution (1–100%) were

examined in 1 % increments. Combinations of source contributions that summed to the observed plant stem δ^{18} O signature within a small tolerance (1 %) were considered to be feasible solutions. Based on this set of all feasible solutions, the frequency distribution, mean and 1–99th percentile range of the potential proportional contribution of

- ⁵ each source were determined (for details, see Phillips and Gregg, 2003). Uncertainty associated with the proportional contributions from the 0–5 and 5–10 cm layer (Reck-enholz 2012) was high (i.e. the range of potential source contributions was relatively large). Therefore we used the a posteriori approach outlined by Phillips et al. (2005) to combine the 0–5 cm and 5–10 cm layer into one single layer (0–10 cm). To this end, we
- ¹⁰ imported the output files from the IsoSource model containing all the feasible source contribution solutions into Excel, and created the aggregate 0–10 cm soil layer as the sum of the 0–5 and 5–10 cm soil layer. Subsequently, we calculated the new mean and range for the aggregated 0–10 cm layer. Both the direct inference and the IsoSource method assume that the only water source was soil water in the 0 to 40 cm soil depth interval.

For Tänikon 2011, all the plant samples of *L. perenne*, *T. repens* and *C. intybus* and one sample of *T. pratense* (control, mixture, replicate 1) were contaminated during the cryogenic vacuum distillation process due to a faulty vacuum, and therefore we only present the results for *T. pratense* for Tänikon 2011. To avoid the risk of over-

interpreting the data and to increase the comparability with the direct inference approach we focus on the proportional contribution to water uptake from the 0–10 cm soil depth interval.

We aimed to assess whether the vertical soil niche occupation of different species became less similar in mixture compared to monoculture (hypothesis 3). To this end,

²⁵ we calculated the proportional similarity index (PS) (Colwell and Futuyma, 1971) of the proportional contribution to water uptake of the 0–10 and 10–40 cm soil depth interval

 (p_i) , between pairs of species (species 1 and 2) for the Reckenholz 2012 data.

$$PS = 1 - 0.5 \sum_{i=1}^{n} |p_{1i} - p_{2i}|$$

The value of PS is minimum (0) when there is no overlap of the proportional water contribution of the two soil layers between two species within a species pair, and is maximum (1) when there is complete overlap.


2.5 Statistical analysis

10

Data were analysed by analysis of variance (ANOVA), considering the within-plot correlation of soil depth data and species where necessary by specifying a random plot grouping factor, and subsequent testing using a linear mixed model (Pinheiro and Bates, 2009). The full models consisted of all main effects and higher-order interactions, and were run separately for the two experiments. Differences among treatment levels were analysed based on model contrasts.

Main effects for soil moisture content and δ^{18} O values of the soil were water supply (drought and control), community (*L. perenne* monoculture, *T. repens* monoculture, *C.*

- intybus monoculture, *T. pratense* monoculture and the equi-proportional mixture) and soil depth interval (0–10, 10–20, 20–30 and 30–40 cm) (Table A1). With respect to dry matter yield of the aboveground biomass, main factors were water supply and community (Table A2), while for the species' proportions in the mixture, main factors were water supply and species (*L. perenne*, *T. repens*, *C. intybus*, *T. pratense*) (Table A3). The
- ²⁰ main factors for the mean inferred depth of water uptake (direct inference approach) and the proportional contribution to plant water uptake of the 0–10 cm soil depth interval (Isosource model) were water supply, diversity (monoculture, mixture) and species (the latter for 2012 only) (Table A4). For the proportional similarity (Eq. 1) the main factors were water supply, diversity and species pair (*L. perenne–T. repens, L. perenne–C. intubus, L. perenne–C.*
- ²⁵ intybus, L. perenne–T. pratense; T. repens–C. intybus, T. repens–T. pratense and C.

(1)

intybus–T. pratense) or rooting-depth pair (Shallow, Mixed, Deep) (Table A5). All statistical analyses were carried out using the statistical software R (R Development Core Team, 2012).

3 Results

5 3.1 Growth conditions

During the drought period, a total of 306 and 247 mm of rain was excluded from the drought plots, which corresponded to 33% and 21% of the total annual rainfall for Tänikon 2011 and 2012, respectively (Table 1). The mean air temperature under the shelters was slightly higher (0.8°C and 0.4°C increase for Tänikon 2011 and Reckenholz 2012, respectively), whereas the relative humidity was slightly lower (-0.02% and -0.01%, respectively) (Table 1). In both experiments, soil moisture content was significantly lower under drought conditions (p < 0.001), but the difference between control and drought became smaller at deeper soil depth intervals, resulting in a significant water supply × depth interaction (p < 0.001, Fig. 1a and b and Table A1).

15 3.2 Aboveground biomass

There was a significant reduction in herbage dry matter yield under drought conditions of 18 % (p < 0.05) for Tänikon and 41 % for Reckenholz (p < 0.001) (Tables 2 and A2). Overall, there was a significant effect of community (p < 0.001) on the herbage dry matter yield. Yield values were highest for the *T. pratense* monoculture followed by the equi-proportional mixture and lowest for the *L. perenne* monocultures (mean dry matter yield of 2854, 2211 and 671 kgha⁻¹, respectively). The yield reduction (for Tänikon 2011 and Reckenholz 2012, respectively) under drought conditions was highest for *L. perenne* (65 % and 76 %) and *C. intybus* (37 % and 62 %), and lowest for *T. pratense* (2 % and 21 %) and in 2012 this resulted in a borderline significant (p = 0.08) community × water supply interaction (Tables 2 and A2).

In mixture, *T. pratense* was always the dominant species with an average proportional contribution to dry matter yield of 0.55, whereas the proportions of the other species were on average 0.20, 0.08 and 0.08 for *L. perenne*, *T. repens* and *C. inty-bus*, respectively, resulting in a significant (p < 0.001) effect of species on the species proportion (Tables 2 and A3).

3.3 Soil water δ^{18} O

5

10

Soil water δ^{18} O was significantly more negative under drought compared to control conditions (p < 0.001, Table A1). Generally, the δ^{18} O values of soil water were highest (least negative) in the top 10 cm and values significantly declined at deeper soil depth intervals (p < 0.001, Fig. 1c and d and Table A1). The difference between control and drought plots was smaller at shallow compared to deep soil depth intervals, resulting in a significant water supply × depth interaction (p < 0.001, Fig. 1c and d and Table A1).

3.4 Depth of water uptake

3.4.1 Comparison of methods

¹⁵ The mean inferred soil depth of water uptake was 13 cm (Fig. 2a–e) and varied from 5 cm for *T. repens* (control, mixture, see Fig. 2c) to 26 cm for *C. intybus* (drought, monoculture, Fig. 2d). The mean proportional contribution of the 0–10 cm soil layer to plant water uptake (PCWU₀₋₁₀) was on average 0.48 (Fig. 2f–j) and ranged from 0.07 to 0.88, corresponding to the treatments with the lowest and highest depth of soil water uptake, respectively. In general there was good agreement between the two methods to assess the depth of water uptake based on δ^{18} O analysis (*r* = 0.86, Fig. 3), but the Isosource method resulted in more statistically significant effects, as outlined below and in Table A4. There was a strong agreement between the *T. pratense* data from Tänikon 2011 and Reckenholz 2012 (Fig. 2), giving confidence in the robustness of the dataset.

The proportional contribution to plant water uptake of the 10–20 cm, 20–30 cm and 30–40 cm soil depth interval was very similar and on average 0.16, 0.17 and 0.19, respectively (Fig. C1). Therefore, we present a two-pool model, in which the 10–40 cm soil depth interval is the mirror image of the 0–10 cm soil depth interval.

5 3.4.2 Drought effect

10

When grown in monoculture, the PCWU₀₋₁₀ of *L. perenne*, *T. repens* and *C. intybus* was reduced by 0.35 (p < 0.05), 0.29 (p = 0.06) and 0.17 (p = 0.27), respectively under drought compared to control conditions, indicating a shift to deeper soil layers (Figs. 2f– j and 4a). In contrast, the PCWU₀₋₁₀ of *T. pratense* grown in monoculture increased by 0.27 (p < 0.05) and 0.20 (p = 0.17) in 2011 and 2012, respectively.

When grown in mixture, the effect of drought on the PCWU₀₋₁₀ of *L. perenne* and *T. repens* was in the same direction but less pronounced compared to when grown in monoculture (reduction in PCWU₀₋₁₀ of 0.27 (p = 0.08) and 0.17 (p = 0.27), respectively (Fig. 4b). However, the drought effect on the PCWU₀₋₁₀ of *T. pratense* was inversed in mixture compared to monoculture as PCWU₀₋₁₀ decreased with 0.23 (p < 0.05) and 0.28 (p = 0.07), for 2011 and 2012 respectively, resulting in a borderline significant (p = 0.05) water supply × species × diversity interaction (Figs. 2f–j, 4a and b and Table A4).

3.4.3 Differences among species' monocultures

²⁰ There was a significant effect of plant species in monoculture (p < 0.01, Table A4, Fig. 2) on the inferred depth of water uptake and the PCWU₀₋₁₀, when grown in monoculture. For the two shallow-rooting species *L. perenne* and *T. repens*, water uptake was concentrated in the top 0–10 soil depth interval (10 cm depth and PCWU₀₋₁₀ = 0.53 averaged for both species and water supply treatments). In contrast, the deep-rooting *C. intybus* mainly relied on deeper soil layers (25 cm depth and PCWU₀₋₁₀ = 0.16). Surprisingly, water uptake of the deep-rooting species *T. pratense*

was comparable or even more shallow than for the shallow-rooting species in both experiments (on average 9.6 cm depth and PCWU₀₋₁₀ = 0.68, Fig. 2).

3.4.4 Effect of interspecific interactions in mixtures

T. pratense showed a strong shift to deeper soil water uptake in response to being grown in mixture compared to monoculture. The PCWU₀₋₁₀ averaged over the two ex-5 periments decreased by 0.17 and 0.67 under control and drought conditions, respectively (Figs. 2 and 4c and d). Similarly the inferred depth of water uptake increased from 12.8 to 16.8 cm and from 6.4 to 17.0 cm under control and drought conditions, respectively. The opposite was found for the other species, which tended to move their water uptake to shallower soil depth intervals resulting in a significant (p < 0.05 and p < 0.0110 for depth of water uptake and PCWU₀₋₁₀, respectively) species \times diversity interaction (Table A4 and Figs. 2 and 4c and d).

We calculated the proportional similarity (Eq. 1) of the proportional water contribution of the different soil depth intervals to assess whether this shift in response to diversity resulted in reduced similarity between shallow- and deep-rooting species in mixtures 15 compared to monocultures. The proportional similarity of mixed- and shallow-rooting species pairs was the same in monoculture compared to mixture, whereas the proportional similarity of the deep-rooting species pair C. intybus-T. pratense actually increased in mixtures compared to monocultures (significant rooting depth pair × diversity interaction, p < 0.001, Fig. 5, Table A5). 20

Discussion 4

25

4.1 The effect of drought on the depth of water uptake

In line with our hypothesis, under drought compared to control conditions, *L. perenne*, T. repens and C. intybus substantially decreased the proportional water uptake from the 0-10 cm soil depth interval when grown in monoculture, and instead increased

Discussion

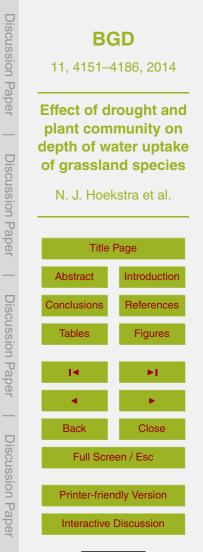
the proportional uptake from deeper and less dry soil layers. In contrast, *T. pratense* grown in monoculture actually shifted its proportional water uptake to more shallow soil depths under drought compared to control conditions which was consistent for the two experiments. We do not have a clear explanation for this upward shift and it is contrary

to general expectation, but the effect was clear and consistent for both experimental sites/years. The soil moisture content and distribution throughout the soil profile was similar to the other plant communities (no significant effect of community, Table A1), and does not indicate increased water extraction from the top soil layer.

There are very few data on the effect of drought on the depth of water uptake in grassland systems in the literature, and the findings are highly variable. Grieu et al. (2001) reported a substantial increase in the soil water uptake from deeper soil layers by *L. perenne* and *T. repens* seedlings grown in containers under moderate soil water deficit. In contrast, using the natural abundance δ^{18} O technique, Prechsl (2013) found that mixed C3 grassland communities (dominated by *Phleum pratense, Lolium multi-*

- florum, Poa pratensis, Taraxacum officinale, Trifolium repens and Rumex obtusifolius) subjected to artificial summer drought relied strongly on the topsoil (0–10 cm) for water (about 56 %) during drought, whereas the roots of plants that were not subjected to drought shifted to deeper soil layers during the summer months and relied less on the topsoil (about 30 %). These results were reflected in changes in root biomass at the dif-
- ²⁰ ferent soil depth intervals. Similarly, a number of studies using natural abundance δ^{18} O techniques (Asbjornsen et al., 2008; Nippert and Knapp, 2007a, b) or deuterium oxide labelling techniques (Kulmatiski and Beard, 2013) focussing on C4 grasses and herbaceous species grown in combination with shrubs or trees in relatively arid systems, show that the grasses tended to solely rely on shallow soil water, whereas shrubs and trees are more dependent on deeper soil water (20 cm to > 150 cm coil depth) under
- trees are more dependent on deeper soil water (30 cm to > 150 cm soil depth) under natural seasonal drought conditions.

Also, reported responses of root growth to drought are variable. For example, Garwood and Sinclair (1979) reported a slight increase in percentage of L. perenne root length in the 0–10 cm soil depth under non-irrigated compared to irrigated plots (72)



and 63 % respectively) whereas Skinner (2008) found that mixtures of *L. perenne* and *T. repens* and *L. perenne*, *T. repens* and *C. intybus* had decreased root counts in the upper 40 cm and increased root counts at lower depths in drought stressed plots compared to control plots.

- ⁵ There are a number of reasons that may explain the different findings. Firstly, the severity and length of the drought will affect the plant water availability throughout the soil profile and therefore the impact of the drought. For example, during the drought period in our study, water availability was more limited in the 0–10 cm soil layer compared to the deeper soil layers (Fig. 1a and b). During the natural seasonal drought reported
- ¹⁰ by Kulmatiski and Beard (2013), the water availability under drought conditions did not increase with soil depth within the rooting zone, and therefore, under those conditions, there is no obvious benefit for relatively shallow rooting species to invest in root growth to explore deeper layers. Other studies do not include sufficiently detailed information on soil water availability throughout the profile (Nippert and Knapp, 2007a, b; Asbjornsen et al., 2008), which emphasises the importance of measuring and reporting
- the soil moisture content throughout the rooting zone (Vicca et al., 2012).

Secondly, differences in species and plant communities may affect the response to drought. Our results show that plants grown in mixtures can have a different response to drought compared to their response in monoculture. For example, in con-

- ²⁰ trast to its unexpected increase in the $PCWU_{0-10}$ under drought conditions in monoculture, *T. pratense* decreased $PCWU_{0-10}$ in response to drought when grown in mixture (Fig. 4b). Most of the studies above (Nippert and Knapp, 2007a, b; Asbjornsen et al., 2008; Kulmatiski and Beard, 2013; Prechsl, 2013) only look at the response in mixtures and not monocultures. Also they are based on very different systems of
- relatively shallow-rooting grasses and herbaceous species with deep-rooting shrubs or trees (with a much deeper rooting depth) in relatively arid systems (Nippert and Knapp, 2007a, b; Asbjornsen et al., 2008; Kulmatiski and Beard, 2013). In such systems there is competitive benefit for grasses to focus water uptake in surface soils due to their

4168

fibrous roots and a greater ability to respond to pulses in water availability (Nippert and Knapp, 2007b; Caldwell and Richards, 1986).

4.2 Depth of water uptake of shallow- and deep-rooting species

The two shallow-rooting species in this study (L. perenne and T. repens), had a significantly higher proportional water uptake from the shallow (0-10 cm) soil depth interval compared to the deep rooting species C. intybus, showing that these deep- and shallow-rooting species occupy distinctly different vertical niches in relation to water uptake. This is in line with work by Pirhofer-Walzl et al. (2013) who reported that the proportion of ¹⁵N uptake from shallow root layers (0-40 cm) decreased in the order L perenne > T repens > C intybus.10

However, in contrast to our expectation, the depth of water uptake of the deep-rooting species T. pratense grown in monoculture tended to be shallower than the two shallowrooting species. We classified T. pratense as a deep-rooting species because it has tap roots, which can access deeper soil layers (Black et al., 2009). However, the δ^{18} O

- results indicate that the presence of roots in a particular soil layer is not necessar-15 ily equivalent to root activity, which has been confirmed in other studies (Nippert and Knapp, 2007a; Kulmatiski and Beard, 2013). In the current study, the deep-rooting T. pratense actually had shallow water uptake in monoculture, and it would seem that the plant rooting depth determines the potential range or plasticity in depth of water uptake
- rather than the actual depth of water uptake. Indeed, the plasticity of T. pratense in re-20 lation to depth of water uptake was very large and the $PCWU_{0-10}$ ranged from 0.13 to 0.82, which could have clear competitive advantages. Under control conditions, when water availability was not limited, reliance on water from shallow soil depths makes sense, as it is more convenient to take up water from shallower soil depths. The fact
- that the other deep-rooting species C. intybus relied on deeper soil water under control 25 conditions even when grown in monoculture, indicates that C. intybus roots may have a lower plasticity for water uptake from different soil depths compared to T. pratense.

all species are equally weighted. A substantial decrease in the proportional similarity of

More research is required to relate the changes in depth of water uptake to developments in root morphology.

4.3 Shift in depth of water uptake in mixed communities

We hypothesised that shallow-rooting species would move their water uptake to more
shallow soil depth intervals and deep-rooting species to deeper soil depth intervals in mixtures compared to monocultures. Our results partly support this hypothesis as both shallow-rooting species *L. perenne* and *T. repens* tended to take up water from shallower soil depth intervals when grown in mixtures compared to monocultures (Fig. 4c and d). Additionally, the deep-rooting species *T. pratense* dramatically increased its proportional water uptake from deeper soil layers in mixtures compared to monocultures, particularly under drought conditions. However, the opposite was true for the other deep-rooting species *C. intybus*. The diverging response of *C. intybus* may be explained by the fact that *T. pratense* was the dominant deep-rooting species (aboveground species' proportions were on average 55 and 8% for *T. pratense* and *C. intybus*, respectively), which may have outcompeted *C. intybus* at the deeper soil levels forcing it upward instead.

This niche differentiation did not result in a reduction of niche overlap between deepand shallow-rooting species, as the proportional similarity of PCWU of the different soil depth intervals between shallow- and deep-rooting species did not decrease in ²⁰ mixtures compared to monocultures (Fig. 5). This was the result of (1) the increase in proportional similarity between *C. intybus* and the shallow-rooting species and (2) the net effect of the strong change to deeper depth for *T. pratense* was limited under drought conditions, since it started from a very shallow depth when grown in monoculture (Fig. 4c and d). However, the strong dominance of *T. pratense* compared to the other species in terms of aboveground biomass, may limit the value of the proportional similarity as an indication of community resource utilisation, since the contributions of

a pair of sub-dominant species may not affect the community resource utilisation (von Felten et al., 2009).

Our results show very little evidence for shifts in the vertical niche of shallow and deep rooting grassland species in mixtures compared to monocultures, and we could find none relating to depth of water uptake. Berendse (1982) showed that *Plantago*

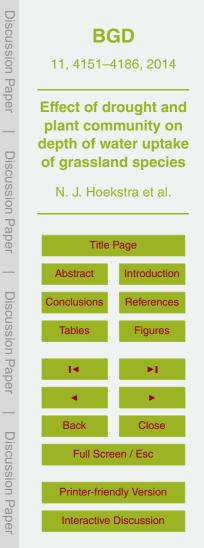
- ⁵ find none relating to depth of water uptake. Berendse (1982) showed that *Plantago lanceolata* acquired nutrients from deeper soil layers when grown together with the shallow-rooting grass *Anthoxanthum odoratum* than when grown in monoculture. Using ¹⁵N tracers to examine N partitioning, von Felten et al. (2009, 2012) showed that both niche breadth of individual species and niche overlap among species decreased
- with increasing species richness. Using a DNA-based technique to compare speciesspecific root distribution, Mommer et al. (2010) found that even though root biomass was significantly larger in a four-species grassland mixture compared to monocultures, this was not due to a shift in vertical niche distribution. In contrast, the rooting depth of the community tended to decrease, rather than increase in mixtures compared to monocultures.

4.4 Higher drought resistance for deep-rooting species?

20

There was no clear link between interspecific differences in the depth of water uptake and the reduction in aboveground biomass under drought conditions. In line with our hypothesis, the shallow-rooting *L. perenne* was most affected by drought, however, *C. intybus*, the species with the deepest water uptake also had a very large reduction in

- the aboveground biomass under drought conditions. Interestingly, *T. pratense*, which was least affected by drought, also had the greatest plasticity in depth of water uptake. This suggests that there may be an indirect effect of rooting depth on drought resistance, as it determines the potential plasticity in the depth of water uptake (as dis-
- ²⁵ cussed in Sect. 3.2). Additionally, other mechanisms such as species drought tolerance (Chaves et al., 2003) and nutrient availability (i.e. restrictions in available nitrogen under drought conditions, Hofer et al., 2013) are likely to affect the resistance to drought.


4.5 Does belowground vertical niche complementarity in depth of water uptake underpin the diversity effect in aboveground biomass?

The δ¹⁸O results shows that at least some of the deep- and shallow-rooting species in this experiment occupied a distinctly different vertical niche in relation to proportional
water uptake from different soil depth intervals and also showed shifts in niche occupation in response to diversity. However, the natural abundance δ¹⁸O method does not provide a quantitative measure of water uptake, as it is limited to measuring the proportional uptake from the different soil depth intervals. Therefore, it remains unknown whether total water uptake of the mixture was increased or not. Recent studies using ¹⁵N tracers allowed the measurement of total nutrient uptake in addition to the proportional contribution (Pirhofer-Walzl et al., 2013; von Felten et al., 2009, 2012; Kahmen et al., 2006). These studies reported that even though plants did occupy complementary spatial niches, this did not result in increased community nitrogen uptake in more diverse communities. von Felten et al. (2009) reported that the decrease in niche

 ¹⁵ breadth and niche overlap mostly occurred among subordinate species or pairs of subordinate and dominant species, rather than among dominant species. Therefore, they concluded that niche differentiation with respect to N uptake from different chemical forms and soil depths was not a major driver of positive diversity–ecosystem functioning relationships in their experiment, but facilitated the co-existence of sub-ordinate
 ²⁰ species. In contrast, in the current study, the main shift in depth of water uptake in mixture compared to monoculture was for the dominant species, *T. pratense*.

In the current study, the biomass results showed that the mixture yield was higher than the predicted mixture yield, indicating a diversity effect. Our results suggest that vertical niche complementarity in the depth of water uptake between deep-and shallow-

rooting species may have contributed to this overyielding. However, other factors, such as vertical soil niche complementarity for nutrients, or interactions between legumes and non-legumes, soil-biotic factors or a combination of factors may have also contributed to the diversity effect.

4.6 Methodology

The use of natural abundance δ^{18} O to assess the effect of drought on patterns of water use by co-occurring species worked well. We observed a clear soil gradient, which is common in soil depths up to 50 cm for perennial grass systems (Asbjornsen et al., 2007; Nippert and Knapp, 2007a). The δ^{18} O signal in soil water was more negative for drought compared to the control treatment. This might be the result of reduced evaporation from the drought plots, however, this seems unlikely as vegetation ground cover tended to be lower and temperature higher under drought conditions. More likely, the control plots may have become relatively enriched due to the increased enrichment of rain water as the season progressed (Gat, 1996).

In general, there was a good correlation between the depth of water uptake estimated through the direct inference method and the Isosource model (r = 0.86), and the trends in relation to species, diversity and water supply were similar for both methods. However, the treatment effects were more pronounced for the Isosource model,

- and therefore resulted in more significant effects. It should be noted that these treatment effects are based on the mean of the frequency distribution, and that the full range (1–99 percentile) of the possible proportional contribution showed overlap for some treatments (Fig. 2f–j). The two main drawbacks of the direct inference approach are (1) the assumption that plants rely on water uptake of one single mean depth and
- ²⁰ (2) that the determination of this soil depth can be arbitrary, particularly in situations when there is no strong gradient in the soil δ^{18} O profile (Asbjornsen et al., 2007). An advantage of the Isosource model over the direct inference method is the possibility to quantitatively describe relative contributions of water from the different soil depth intervals in a systematic way (Phillips and Gregg, 2003).

In this experiment, we simulated summer drought by using rainout shelters for a period of 10 weeks, resulting in a significant reduction in soil moisture content in the drought plots. The use of shelters resulted in an increase in the mean air temperature (3%), soil temperature (8%) and a decrease in air relative humidity (-2%). However,

analyses of naturally-occurring drought by De Boeck and Verbeeck (2011) showed that this was accompanied by a significant increase in temperature (11.1%) and a decrease in relative humidity (-11.6%) and these accompanying changes can have a significant effect on the system response to drought. Therefore, the observed effects in the current study are less confounded than in natural droughts and more explicitly linked to water shortage alone.

5 Conclusions

- The δ^{18} O natural abundance method provided new insights into the depth of water uptake of grassland species. There were large treatment effects on the depth of water uptake of *T. pratense* in particular.
- In line with our hypothesis, monocultures of *L. perenne*, *T. repens* and *C. intybus* moved their water uptake to deeper soil depth intervals in response to drought, However, *T. pratense* in monoculture did the opposite, and we have no clear explanation for this.
- As expected, the two shallow-rooting species had higher proportional water uptake from the shallow soil depth interval compared to the deep-rooting *C. intybus*. However, the deep-rooting *T. pratense* grown in monoculture relied more on shallow soil water than the shallow-rooting species.
 - As hypothesised, interspecific interactions in mixtures resulted in a shift in the depth of water uptake, which tended to become shallower for the shallow-rooting species and deeper for the deep-rooting *T. pratense*. However, this did not result in a net reduction in proportional similarity (niche overlap) between shallow and deep-rooting species in mixture.
 - There was no clear link between rooting depth and resistance to drought, as the species with the deepest water uptake (*C intybus*) was also most affected by

10

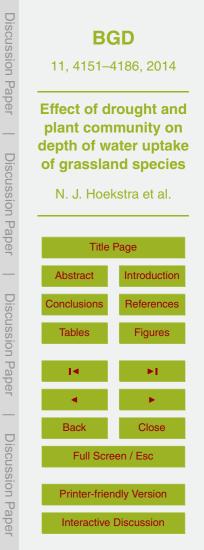
20

25

5

drought. However, T pratense, the species with the highest plasticity in terms of depth of water uptake, was least affected by drought, suggesting there may be an indirect effect of rooting depth on drought resistance.

- The results suggest that vertical niche complementarity in the depth of water uptake between deep- and shallow-rooting species may have contributed to the observed overyielding in aboveground biomass.


Supplementary material related to this article is available online at http://www.biogeosciences-discuss.net/11/4151/2014/ bgd-11-4151-2014-supplement.pdf.

Acknowledgements. N.J.H. was funded by the Irish Research Council, co-funded by Marie 10 Curie Actions under FP7. The field experiments were supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under the grant agreements FP7-266018 (AnimalChange) and FP7-244983 (MultiSward). The authors would like to thank Nina Buchmann, Ulrich Prechsl and Annika Akkermans at ETH Zürich for the introduction to the theory and practicalities of the δ^{18} O method and the use of water extraction facilities at ETH. We are 15 grateful to Daniel Hofer, Barbara Eickhoff, Sébastien Husse, Cornel Stutz, Rafael Gago, Rita Lopez and Andreas Kundela for help with the ¹⁸O sampling and processing and running the field experiment. We thank Matthias Suter for his help with statistical analysis.

References

5

- Asbjornsen, H., Mora, G., and Helmers, M. J.: Variation in water uptake dynamics among con-20 trasting agricultural and native plant communities in the Midwestern US, Agr. Ecosyst. Environ., 121, 343-356, 2007.
 - Asbjornsen, H., Shepherd, G., Helmers, M., and Mora, G.: Seasonal patterns in depth of water uptake under contrasting annual and perennial systems in the Corn Belt Region of the Midwestern US, Plant Soil, 308, 69-92, 2008.
- 25

- Berendse, F.: Competition between plant-populations with different rooting depths, 3. Field experiments, Oecologia, 53, 50–55, 1982.
- Black, A., Laidlaw, A., Moot, D., and O'Kiely, P.: Comparative growth and management of white and red clovers, Irish J. Agr. Food Res., 149–166, 2009.
- ⁵ Brunel, J.-P., Walker, G. R., and Kennett-Smith, A. K.: Field validation of isotopic procedures for determining sources of water used by plants in a semi-arid environment, J. Hydrol., 167, 351–368, 1995.
 - Caldwell, M. M. and Richards, J.: Competing root systems: morphology and models of absorption, in: On the Economy of Plant Form and Function, Cambridge University Press, Cambridge, 251, 271, 1986.
- Chaves, M. M., Maroco, J. P., and Pereira, J. S.: Understanding plant responses to drought from genes to the whole plant, Funct. Plant Biol., 30, 239–264, 2003.

10

Coelho, E. F. and Or, D.: Root distribution and water uptake patterns of corn under surface and subsurface drip irrigation, Plant Soil, 206, 123–136, 1999.

- ¹⁵ Colwell, R. K. and Futuyma, D. J.: On the measurement of niche breadth and overlap, Ecology, 52, 567–576, 1971.
 - Dawson, T. E. and Ehleringer, J. R.: Isotopic enrichment of water in the "woody" tissues of plants: Implications for plant water source, water uptake, and other studies which use the stable isotopic composition of cellulose, Geochim. Cosmochim. Ac., 57, 3487–3492, 1993.
- Dawson, T. E., Mambelli, S., Plamboeck, A. H., Templer, P. H., and Tu, K. P.: Stable isotopes in plant ecology, Annu. Rev. Ecol. Evol. Syst., 33, 507–559, 2002.
 - De Boeck, H. J. and Verbeeck, H.: Drought-associated changes in climate and their relevance for ecosystem experiments and models, Biogeosciences, 8, 1121–1130, doi:10.5194/bg-8-1121-2011, 2011.
- De Boeck, H. J., Lemmens, C. M. H. M., Zavalloni, C., Gielen, B., Malchair, S., Carnol, M., Merckx, R., Van den Berge, J., Ceulemans, R., and Nijs, I.: Biomass production in experimental grasslands of different species richness during three years of climate warming, Biogeosciences, 5, 585–594, doi:10.5194/bg-5-585-2008, 2008.

Durand, J. L., Bariac, T., Ghesquière, M., Biron, P., Richard, P., Humphreys, M., and Zwierzykovski, Z.: Ranking of the depth of water extraction by individual grass plants, us-

- ³⁰ Zwierzykovski, Z.: Ranking of the depth of water extraction by individual grass plants, ing natural ¹⁸O isotope abundance, Environ. Exp. Bot., 60, 137–144, 2007.
 - Durand, J.-L., Bariac, T., Rothfuss, Y., Richard, P., Biron, P., and Gastal, F.: Investigating the competition for water and the depth of water extraction in multispecies grasslands using ¹⁸O

cussion Paper

Discussion Paper

Discussion Paper

Discussion Pape

natural abundance, in: Sustainable Use of Genetic Diversity in Forage and Turf Breeding, edited by: Huyghe, C., Springer, the Netherlands, 205–209, 2010.

- Ehleringer, J. and Osmond, C.: Stable isotopes, in: Plant Physiological Ecology: Field Methods and Instrumentation, edited by: Pearcy, R., Ehleringer, J., Mooney, H., and Rundel, P., Chapman and Hall Ltd, 381–300, 1989.
- ⁵ Chapman and Hall Ltd, 381–300, 1989.
 Finn, J. A., Kirwan, L., Connolly, J., Sebastià, M. T., Helgadottir, A., Baadshaug, O. H., Bélanger, G., Black, A., Brophy, C., Collins, R. P., Čop, J., Dalmannsdóttir, S., Delgado, I., Elgersma, A., Fothergill, M., Frankow-Lindberg, B. E., Ghesquiere, A., Golinska, B., Golinski, P., Grieu, P., Gustavsson, A.-M., Höglind, M., Huguenin-Elie, O., Jørgensen, M., Kadziuliene, Z.,
- ¹⁰ Kurki, P., Llurba, R., Lunnan, T., Porqueddu, C., Suter, M., Thumm, U., and Lüscher, A.: Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: a 3-year continental-scale field experiment, J. Appl. Ecol., 50, 365–375, 2013.

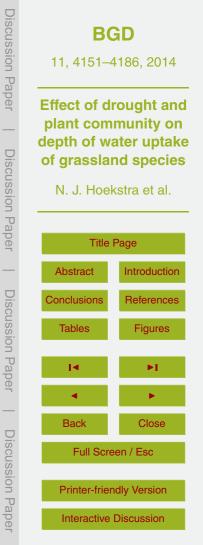
Garwood, E. A. and Sinclair, J.: Use of water by six grass species, 2. Root distribution and use of soil water, J. Agr. Sci., 93, 25–35, 1979.

15

- Gat, J. R.: Oxygen and hydrogen isotopes in the hydrologic cycle, Annu. Rev. Earth Pl. Sc., 24, 225–262, 1996.
- Gilgen, A. K. and Buchmann, N.: Response of temperate grasslands at different altitudes to simulated summer drought differed but scaled with annual precipitation, Biogeosciences, 6, 2525–2539, doi:10.5194/bg-6-2525-2009, 2009.
- 2525–2539, doi:10.5194/bg-6-2525-2009, 2009.
 Grieu, P., Lucero, D., Ardiani, R., and Ehleringer, J.: The mean depth of soil water uptake by two temperate grassland species over time subjected to mild soil water deficit and competitive association, Plant Soil, 230, 197–209, 2001.

Grime, J. P., Brown, V. K., Thompson, K., Masters, G. J., Hillier, S. H., Clarke, I. P., Askew, A. P.,

- ²⁵ Corker, D., and Kielty, J. P.: The response of two contrasting limestone grasslands to simulated climate change, Science, 289, 762–765, 2000.
 - Hector, A., Schmid, B., Beierkuhnlein, C., Caldeira, M. C., Diemer, M., Dimitrakopoulos, P. G., Finn, J. A., Freitas, H., Giller, P. S., Good, J., Harris, R., Hoegberg, P., Huss-Danell, K., Joshi, J., Jumpponen, A., Koerner, C., Leadley, P. W., Loreau, M., Minns, A., Mulder, C. P. H.,
- O'Donovan, G., Otway, S. J., Pereira, J. S., Prinz, A., Read, D. J., Scherer-Lorenzen, M., Schulze, E.-D., Siamantziouras, A. S. D., Spehn, E. M., Terry, A. C., Troumbis, A. Y., Woodward, F. I., Yachi, S., and Lawton, J. H.: Plant diversity and productivity experiments in European grasslands, Science, 286, 1123–1127, 1999.



- Hofer, D., Suter, M., Hoekstra, N., Buchmann, N., and Lüscher, A.: N₂ fixing legumes in intensively managed grassland are less affected by drought than non-fixing species, Plants in a Changing Climate – Plant Science Centre Symposium 2013, Zurich, 2013.
- IPCC: Climate Change 2007: Synthesis report Intergovernmental Panel on Climate Change, 2007.

5

- Jupp, A. P. and Newman, E. I.: Morphological and anatomical effects of severe drought on the roots of *Lolium perenne* L., New Phytol., 105, 393–402, 1987.
- Kahmen, A., Perner, J., and Buchmann, N.: Diversity-dependent productivity in semi-natural grasslands following climate perturbations, Funct. Ecol., 19, 594–601, 2005.
- Kahmen, A., Renker, C., Unsicker, S. B., and Buchmann, N.: Niche complementarity for nitrogen: An explanation for the biodiversity and ecosystem functioning relationship?, Ecology, 87, 1244–1255, 2006.
 - Kennedy, T. A., Naeem, S., Howe, K. M., Knops, J. M. H., Tilman, D., and Reich, P.: Biodiversity as a barrier to ecological invasion, Nature, 417, 636–638, 2002.
- ¹⁵ Kirwan, L., Lüscher, A., Sebastia, M. T., Finn, J. A., Collins, R. P., Porqueddu, C., Helgadottir, A., Baadshaug, O. H., Brophy, C., Coran, C., Dalmannsdottir, S., Delgado, I., Elgersma, A., Fothergill, M., Frankow-Lindberg, B. E., Golinski, P., Grieu, P., Gustavsson, A. M., Hoeglind, M., Huguenin-Elie, O., Iliadis, C., Jorgensen, M., Kadziuliene, Z., Karyotis, T., Lunnan, T., Malengier, M., Maltoni, S., Meyer, V., Nyfeler, D., Nykanen-Kurki, P., Parente, J.,
- ²⁰ Smit, H. J., Thumm, U., and Connolly, J.: Evenness drives consistent diversity effects in intensive grassland systems across 28 European sites, J. Ecol., 95, 530–539, 2007.
 - Kulmatiski, A. and Beard, K. H.: Root niche partitioning among grasses, saplings, and trees measured using a tracer technique, Oecologia, 171, 25–37, 2013.
 - Mommer, L., Wagemaker, C., De Kroon, H., and Ouborg, N.: Unravelling below-ground plant distributions: a real-time polymerase chain reaction method for guantifying species propor-
- distributions: a real-time polymerase chain reaction method for quantifying species propolitions in mixed root samples, Mol. Ecol. Resour., 8, 947–953, 2008.
 - Mommer, L., Van Ruijven, J., De Caluwe, H., Smit-Tiekstra, A. E., Wagemaker, C. A. M., Joop Ouborg, N., Bögemann, G. M., Van Der Weerden, G. M., Berendse, F., and De Kroon, H.: Unveiling below-ground species abundance in a biodiversity experiment: a test of vertical
- niche differentiation among grassland species, J. Ecol., 98, 1117–1127, 2010.
 Nippert, J. and Knapp, A.: Linking water uptake with rooting patterns in grassland species, Oecologia, 153, 261–272, 2007a.

- Nippert, J. B. and Knapp, A. K.: Soil water partitioning contributes to species coexistence in tallgrass prairie, Oikos, 116, 1017–1029, 2007b.
- Nyfeler, D., Huguenin-Elie, O., Suter, M., Frossard, E., Connolly, J., and Lüscher, A.: Strong mixture effects among four species in fertilized agricultural grassland led to persistent and consistent transgressive overyielding, J. Appl. Ecol., 46, 683–691, 2009.
- consistent transgressive overyielding, J. Appl. Ecol., 46, 683–691, 2009.
 Nyfeler, D., Huguenin-Elie, O., Suter, M., Frossard, E., and Lüscher, A.: Grass-legume mixtures can yield more nitrogen than legume pure stands due to mutual stimulation of nitrogen uptake from symbiotic and non-symbiotic sources, Agr. Ecosyst. Environ., 140, 155–163, 2011.
 - Phillips, D. and Gregg, J.: Source partitioning using stable isotopes: coping with too many sources, Oecologia, 136, 261–269, 2003.

10

25

- Phillips, D., Newsome, S., and Gregg, J.: Combining sources in stable isotope mixing models: alternative methods, Oecologia, 144, 520–527, 2005.
- Pinheiro, J. C. and Bates, D. M.: Mixed-effects Models in S and S-Plus, 2nd edn., Springer, New York, 2009.
- ¹⁵ Pirhofer-Walzl, K., Eriksen, J., Rasmussen, J., Høgh-Jensen, H., and Søegaard, K.: Effect of four plant species on soil ¹⁵N-access and herbage yield in temporary agricultural grasslands, Plant Soil, 371, 313–325, 2013.
 - Prechsl, U. E.: Using stable oxygen and hydrogen isotopes to assess plant water relations in grasslands exposed to drought, Ph.D. thesis, ETH Zürich, Zürich, 2013.
- Sharp, R. and Davies, W.: Root growth and water uptake by maize plants in drying soil, J. Exp. Bot., 36, 1441–1456, 1985.
 - Skinner, R. H.: Yield, root growth, and soil water content in drought-stressed pasture mixtures containing chicory, Crop Sci., 48, 380–388, 2008.
 - Socki, R., Karlsson, H., and Gibson, E.: Extraction technique for the determination of oxygen-18 in water using preevacuated glass vials, Anal. Chem., 64, 829–831, 1992.
- Tilman, D., Wedin, D., and Knops, J.: Productivity and sustainability influenced by biodiversity in grassland ecosystems, Nature, 379, 718–720, 1996.
 - Tilman, D., Knops, J., Wedin, D., and Reich, P.: Plant diversity and composition: effects on productivity and nutrient dynamics of experimental grasslands, in: Biodiversity and Ecosystem
- ³⁰ Functioning, Synthesis and Perpectives, edited by: Loreau, M., Naeem, S., and Inchausti, P., Oxford University Press, 21–35, 2002.

Vicca, S., Gilgen, A., Camino Serrano, M., Dreesen, F., Dukes, J., Estiarte, M., Gray, S., Guidolotti, G., Hoeppner, S., and Leakey, A.: Urgent need for a common metric to make precipitation manipulation experiments comparable, New Phytol., 195, 518–522, 2012.

Vogel, A., Scherer-Lorenzen, M., and Weigelt, A.: Grassland resistance and resilience after drought depends on management intensity and species richness, Plos One, 7, e36992,

doi:10.1371/journal.pone.0036992, 2012.

5

von Felten, S. and Schmid, B.: Complementarity among species in horizontal versus vertical rooting space, J. Plant Ecol.-UK, 1, 33–41, 2008.

von Felten, S., Hector, A., Buchmann, N., Niklaus, P. A., Schmid, B., and Scherer-Lorenzen, M.:

- ¹⁰ Belowground nitrogen partitioning in experimental grassland plant communities of varying species richness, Ecology, 90, 1389–1399, 2009.
 - von Felten, S., Niklaus, P. A., Scherer-Lorenzen, M., Hector, A., and Buchmann, N.: Do grassland plant communities profit from N partitioning by soil depth?, Ecology, 93, 2386–2396, 2012.

		Tänikon 20)11	Reckenholz 2012				
Sowing date		August, 20	10	August 2011				
Start drought period		16 Jun 20	11	6 Jul 2012				
Duration drought period (weeks)		10		9				
Rain excluded during drought (mm)		306		247				
Rain exclusion		33 %		21 %				
(% of annual rainfall)								
	Control	Drought	% change	Control	Drought	% change		
Relative humidity	0.79	0.77	-3	0.87	0.86	-1		
Mean air tempera- ture (°C)	20.3	21.1	4	15.6	16.0	3		
Maximum air temperature (°C)	27.7	29.4	6	20.5	21.7	6		
Mean soil temp. at 5 cm depth (°C)	19.1	19.7	3	16.3	18.6	14		

Table 1. Overview of dates and micrometeorological conditions under drought and control treatment during the final week of the drought period in Tänikon 2011 and Reckenholz 2012.

BGD 11, 4151-4186, 2014 Effect of drought and plant community on depth of water uptake of grassland species N. J. Hoekstra et al. **Title Page** Abstract Introduction Conclusions References Tables Figures 14 Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion

Discussion Paper

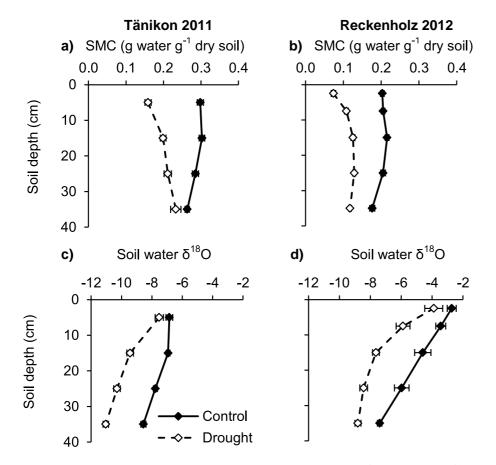
Discussion Paper

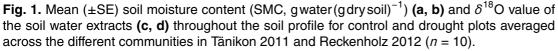
Discussion Paper

Discussion Paper

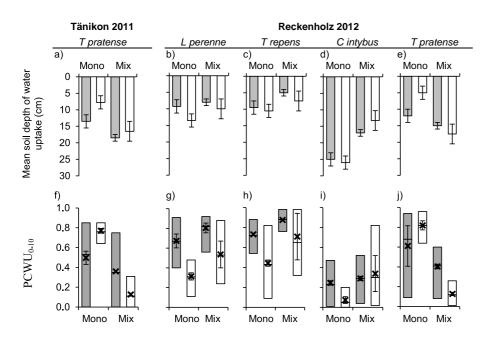
Table 2. Average aboveground dry matter yield (kgha⁻¹, SE in parenthesis, n = 3) of the plant communities and the proportion of dry matter yield of the sown species in the mixture under control and drought conditions during the final cut of the drought period in Tänikon 2011 and Reckenholz 2012 (see Tables A2 and A3 for statistical significance of treatment effects).

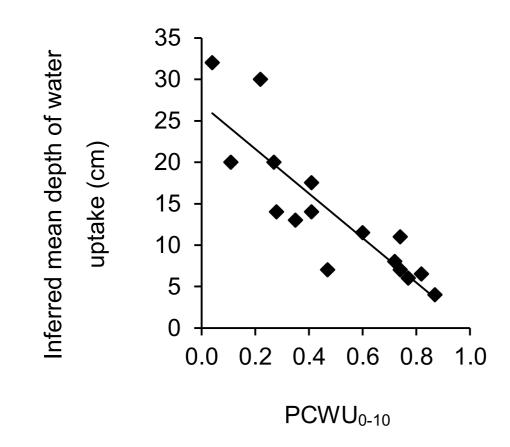
	Dry matter yield (kgha ⁻¹)										
	Tänikon, 2011						Reckenholz, 2012				
Community	Control		Drought		% change ^a	Co	Control		ought	% change	
Monocultures											
L. perenne	1355	(98.4)	479	(186.7)	-65 %	682	(78.2)	166	(46.7)	-76 %	
T. repens	1763	(34.5)	1523	(74.4)	-14%	1197	(128.9)	789	(80.0)	-34 %	
C. intybus	1477	(179.8)	935	(78.3)	-37 %	2062	(143.3)	787	(40.2)	-62 %	
T. pratense	2841	(103.2)	2791	(149.5)	-2%	3232	(193.2)	2551	(358.8)	-21 %	
Predicted	2076	(109.1)	1462	(98.0)	-30 %	1999	(183.3)	1396	(270.0)	-30 %	
mixture ^b											
Mixture	2113	(363.8)	2110	(378.4)	0%	2955	(187.4)	1665	(262.0)	-44 %	
			Prop	ortion of d	ry matter yield o	of sown s	pecies in t	he mixt	ure		
	Tänikon, 2011					Reckenholz, 2012					
Species ^c	Control		Dr	ought		Co	Control		ought		
L. perenne	0.26	(0.04)	0.24	(0.01)		0.19	(0.09)	0.10	(0.03)		
T. repens	0.07	(0.02)	0.21	(0.06)		0.04	(0.02)	0.02	(0.01)		
C. intybus	0.13	(0.05)	0.06	(0.03)		0.06	(0.02)	0.08	(0.01)		
T. pratense	0.52	(0.03)	0.43	(0.04)		0.59	(0.23)	0.67	(0.16)		
Dead	0.02	(0.01)	0.06	(0.02)		0.12	(0.10)	0.13	(0.12)		


^a (Drought – Control)/Control.


^b The predicted mixture yield is calculated based on the monoculture yields multiplied by the species' relative abundances (each species' proportional contribution to aboveground biomass) in the previous harvest.

^c The proportion of unsown species in community dry matter yield was less than 0.0025.





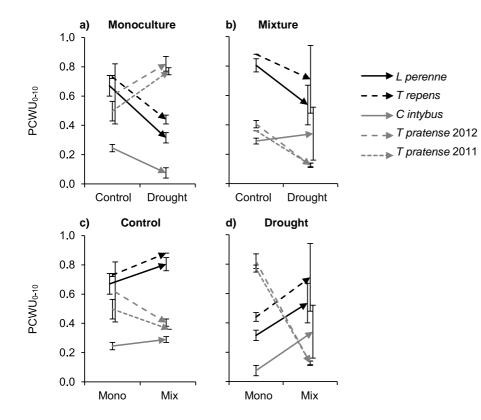

Fig. 2. The mean soil depth of water uptake (cm, **a**–**e**) and the proportional contribution to plant water uptake of the 0–10 cm soil depth interval (PCWU₀₋₁₀) (**f**–**j**) of the two shallow-rooting (*L. perenne* and *T. repens*) and deep-rooting (*C. intybus* and *T. pratense*) species grown in monoculture (Mono) or mixture (Mix) under control or drought conditions in Tänikon, 2011 (*T. pratense* only) and Reckenholz, 2012. The mean soil depth of water uptake is based on the direct inference approach (see Fig. S1). The proportional contribution to plant water uptake (**f**–**j**) is based on the frequency distribution output from the IsoSource model and lower, middle and upper boundaries of the bars represent the 1st percentile, 50th percentile and 99th percentile of the proportional contribution, respectively (see Fig. S2 for all soil depth intervals). The mean (×) and SE of the mean proportional contribution are also included (*n* = 2 in all cases except for Tänikon-*T. pratense*-control-mixture and Reckenholz-*T. repens*-control-mixture, where *n* = 1).

Fig. 3. Correlation between the proportional contribution to water uptake of the 0–10 cm soil depth interval (PCWU₀₋₁₀) with the inferred mean depth of water uptake (r = 0.86).



Fig. 4. The shift in proportional contribution to plant water uptake from the 0–10 cm soil depth interval (PCWU₀₋₁₀) of shallow-rooting species (*L. perenne* and *T. repens*) and deep-rooting species (*C. intybus* and *T. pratense* 2011, 2012) as a result of water supply (**a**, **b**: control and drought) and diversity (**c**, **d**: monoculture and mixture). These graphs are based on the mean values presented in Fig. 2f–j, error bars represent one SE, n = 2 (for exceptions see Fig. 2).

Fig. 5. The proportional similarity (Eq. 1) of the proportional water uptake from the different soil depth intervals of shallow-rooting (*L. perenne–T. repens*), mixed-rooting (mean of *L. perenne–C. intybus*, *L. perenne–T. pratense*; *T. repens–C. intybus*; *T. repens–T. pratense*) and deeprooting (*C. intybus–T. pratense*) species pairs grown in monoculture (Mono) or mixture (Mix) under (a) control and (b) drought conditions in Reckenholz, 2012.

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

