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S1. Selection of input variables 

Variables were sorted into groups of dependent variables and represented in a dendrogram, 

where the vertical axis represents the degree of similarity (σ) between variables based on 

their correlation coefficient (Fig. S1). The 'y' axis values (σ) of the dendrogram were 

calculated as below: 

 

σ (i , j) = 1 – C(i,j) 

 

where i and j are the variables grouped in the lowest branches of the dendrogram, C(i,j) is 

the correlation coefficient between them and σ (i,j) is the correspondent 'σ' value for each 

two connecting variables. 

 

For higher hierarchies, σ is obtained as follow: 

σ (i,j,h) = ((1-C(i,h))+(1-C(j,h)))/2 

 

Where i and j are the two variables from the first cluster, and h is a new variable that can be 

added to this set at a higher level. 

 

 

S2. Swapping dependent variables  

To estimate the effect of the choice of representatives from the two groups of dependent 

variables on the classification output (Fig. 2, section 2.3), several sensitivity tests were run 
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where we exchanged one or more of the input variables with another representative from 

the same group (i.e. variable with high degree of correlation; Table S1). The output of each 

experiment (i.e. different maps of ecoregions) was then compared with the final 

classification vector. The agreement between the two classification outputs was quantify 

using the Kappa index of agreement. Kappa is a chance-adjusted measure of the relative 

percentage of similarity between the two classification results that considers the location 

and value of each two correspondent pixels (Gregr and Bodtker, 2007). Possible values of 

Kappa range from -1 to 1, with 1 indicating perfect agreement and -1 representing worse 

than random agreement (Sim and Wright, 2005).  

The Kappa score, ranged from 0.6 to 0.8 (Table S1), indicated a substantial agreement 

between the results of the experimental and the reference maps (Landis and Koch, 1977). It 

suggested that little variation occurs in the classification output when the dependent 

variables were swapped. However, the percentage of agreement differed depending on 

which variables had been swapped. The variation in the Kappa index was a direct function of 

degree of correlation between the exchanged dependent variables in most cases.     

 

 

S3. Number of neurons 

In order to define the optimal number of neurons, a series of SOM training runs were 

performed with different number of neurons. The corresponding quality of each SOM 

experiment (goodness of the map) was assessed on the basis of average quantization and 

topological errors (Uriarte and Martin, 2005). Quantization error (QE) is the average 

distance between each observation vector and its best matching unit (BMU) on neuron map 

while topological error (TE) measures topology preservation of the SOM (Kohonen, 2000). 

Increasing the number of neurons decreased the quantization error and increased the 

topological error (Uriarte and Martin, 2005). Total error was calculated by summing up 

normalized quantization and topological errors (Table S2). A 20×20 map size provided the 

lowest number of neurons after which increase in the number of neurons would not lead to 

a significant decrease in total error anymore (Fig. S2). Hence, we chose a 20×20 neuron map 

as our standard map. 
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S4. Number of classes  

A 10-fold cross validation approach was conducted to determine the optimum of number of 

classes (De' ath and Fabricius, 2000). The data were divided into two unequal parts of 90% 

(the training set) and 10% (the validation set). The training data set was reduced to 400 

classes (20×20 neurons) using SOM. Theses 400 prototypes were further agglomerated 

using the HAC algorithm. The clustering of the validation data set was performed using the 

following procedure: 

1) Each observation from the validation set was compared to the 400 neurons. 

2) The closest neuron on the map (using the Euclidean distance), also called best matching 

unit (BMU), was identified. 

3) The class of the BMU was attributed to the observation. 

 

For each cross validation experiment (k = 1,…,10), the optimal classification was the one that 

minimizes the average distance of the validation observations to the center (average) of 

their respective classes (Ek):  

 

௞(௞ୀଵ:ଵ଴)ܧ =  ଵ
଺

 ∑ ( ଵ
௡௩
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௝ୀଵ                                           (1) 

 

where vijk is the validation observation associated with variable j and cross validation 

experiment k, tijk the average of the corresponding class in training data set assuming a 

number of class i (i=2:15) and where nv is the number of points in the validation set.  

  

Data were normalized in advance to solve the problem of the inconsistency of the variables 

units. The final cross validation error was computed based on the errors for all the 10 given 

cross validation folds (Table S3): 

 

ܧ = ଵ
ଵ଴

 ∑ ௞ଵ଴ܧ
௞ୀଵ                                                                      (2) 

   

Fig. S4 shows the amount of final cross validation error plotted against the number of 

classes. The error decreased monotonically with increasing the number of classes. Hence, 

the lowest number of classes after which the increase in the number of classes no longer led 



4 
 

to a substantial reduction in the error was considered as the optimal number of class in this 

study. This gained saturated at a number of 11 classes, and we chose the point where less 

than 5% of the first decrease was gained by the addition of further classes as our cut-off. 

 

 

S5. Species composition data 

The Dice coefficient (DC) is defined as two times the volume of overlap between two sets 

belonging to different groups (A and B) divided by the sum of volumes of the two groups, 

given by 

 

ܥܦ =  ଶ|஺∩஻|
|஺|ା|஻|

        

 

 

S6. (Dis) Similarity between ecoregions  

In order to establish the degree of dissimilarity of the resulting clusters, we employed the 

annual mean climatologies of the physical input variables and visualized the relationships 

between the six-dimensional observational points within/between ecoregions using the 

Non-metric Multidimensional Scaling (NMDS) method (Clarke, 1993). NMDS is a data 

reduction technique that projects n-dimensional data onto a space of lower dimensionality 

based on a distance matrix between data points (Quinn and Keough, 2002). We performed 

NMDS on a similarity matrix obtained using pair-wise Euclidean distances between 11760 

observations of the six standardized input variables (SST, DSSS, Depth, TSM, DTSM and ICE; 

Reich et al., 1999; Quinn and Keough, 2002).  

The Non-metric Multidimensional Scaling of the environmental conditions in the different 

ecoregions reveals that the 10 ecoregions tend to group into two clusters: one cluster 

groups the ecoregions of the NCB (Fig. S6; NCB-UF, NCB-WS, NCB-ES and NCB-RO, red circle) 

while the other groups those of the MCB and SCB (Fig. S6; MCB-OS, SCB-OS, MDB-C and 

SCB-C, green circle). The two sub-clusters are separated by NCB-T and MCB-T, which act as a 

“transition zone”. Points in MCB-T (red circles) are more similar to the group from the MCB 

and SCB and those of NCB-T (pink circles) are more similar to the group from the NCB. NCB-

ES was most different from the other ecoregions in terms of environmental conditions (Fig. 
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S6; light orange circles, upper right). The larger spread between points in ecoregions in the 

NCB suggested a smaller degree of bio-geophysical homogeneity within the NCB. In the SCB 

and MCB, SCB-OS (dark blue circles) and MCB-OS (light blue circles) were more similar to 

one another than the other ecoregions in this area (Fig. S6; lower points on the left). The 

degree of similarity was reflected in the hierarchical sequence in which ecoregions were 

formed (Fig. S7).  
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Supplementary Tables 

 

Table S1. Kappa Index of Agreement (0-1) for comparisons of 

the classification outputs after swapping dependent input 

variables and the final classification output used in this study 

as the reference.     
 

Input variables 
Kappa Index of 

Agreement 

SST, ICE, DSSS, Depth, TSM, DTSM 1.0000 

SST, SSS, DSSS, Depth, TSM, DTSM 0.6535 

SST, PAR, DSSS, Depth, TSM, DTSM 0.6018 

SST, DSST, DSSS, Depth, TSM, DTSM 0.6350 

Windsp3, ICE, DSSS, Depth, TSM, DTSM 0.8010 

DPAR, ICE, DSSS, Depth, TSM, DTSM 0.6332 

Windsp3, SSS, DSSS, Depth, TSM, DTSM 0.7386 

 

 

Table S2. Quantization and topological errors with different 

number of neurons 
 

Number of 

neurons 

 

Quantization 

error 

 

Topological 

error 

 

Total  

error 

5×5 0.94 0.06 1 

10×10 0.55 0.15 1.5 

15×15 0.41 0.14 1.28 

20×20 0.3 0.11 0.73 

25×25 0.25 0.11 0.67 

30×30 0.21 0.11 0.68 

35×35 0.19 0.11 0.6 

40×40 0.16 0.1 0.49 
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Table S3. Final cross validation error for different number of classes (×10-3)  

number 

of 

classes 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 

error 16 14 12 11 9 8 7 7 6 6 5.9 6 5.5 5.4 

 

 

Table S4. Mean ± std for annual mean of each physical input variable in each ecoregion. 

Higher std is seen for Depth in the MCB and SCB while for TSM and its seasonal amplitude 

(DTSM) higher std is seen in NCB and shallow continental shelf of SCB (SCB-C).  

Ecoregion SST (C˚) DSSS (ppt) Depth (m) TSM (g/m3) DTSM (g/m3) ICE (%) 

NCB-RO 13.16±1.92 -2.21±0.78 13.63±5.46 12.49±3.51 -8.4±5.43 21.43±5.32 

NCB-WS 12.63±0.67 -1.8±0.65 9.25±4.9 12.89±5.74 0.2±4.06 20.99±5.13 

NCB-UF 12.1±0.28 -0.52±0.23 4.83±1.38 3.85±2.5 0.37±1.78 22.6±3 

NCB-ES 11.68±0.69 -0.72±0.21 9.16±6.81 29.61±11.35 10.17±10.97 28.33±1.84 

NCB-T 13.58±0.5 -1.61±0.38 8.81±4.57 3.27±2.56 -1.4±1.32 7.82±5.42 

MCB-T 14.34±0.92 -0.69±0.29 24.67±15.72 2.19±2.53 -1.47±2.02 2.17±4.08 

MCB-C 15.56±1.05 0.06±0.24 60.93±36.72 1.03±0.6 -1.01±0.49 0 

MCB-OS 14.84±0.32 0.1±0.18 388.11±191.25 0.77±0.15 -0.82±0.16 0 

SCB-C 18.68±1.04 0.12±0.12 42.86±52.35 1.66±1.83 -0.08±1.05 0 

SCB-OS 18.09±0.82 0.1±0.12 542.13±207.8 0.82±0.11 -0.7±0.19 0 

Absolute values of Depth (m) have been shown rather than its logarithm 
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Table S5. Monthly mean climatologies and descriptive statistics on annual mean 

climatologies of Chl-a concentration (2003-2010) (mg/m3) in ecoregions. Due to a non-

normal distribution of Chl-a in marine environments median of monthly mean climatologies 

in each ecoregion is shown instead of mean (Nezlin, 2005). 

 Ecoregion 
 NCB-

RO 
NCB-
WS 

NCB-
UF 

NCB-
ES 

NCB-T MCB-T MCB-C MCB-
OS 

SCB-C SCB-
OS 

month           
1 4.9 4.18 1.33 2.05 1.78 1.1 1.15 0.94 1.29 1.23 
2 5.46 6.1 1.56 2.23 2.1 1.14 1.15 0.91 0.98 0.96 
3 5.3 5.3 1.1 1.38 1.6 1.03 1.1 1.19 0.77 0.98 
4 4.5 4.93 0.83 1.12 1.34 0.74 0.8 0.98 0.71 0.96 
5 5.75 6.67 1.14 1.47 1.94 0.65 0.69 0.77 0.55 0.96 
6 5.84 5.92 1.72 1.91 2.81 1.03 0.61 0.76 0.48 0.89 
7 7.7 6.74 2.33 2.17 3.61 1.24 0.83 0.92 1.45 1.31 
8 7.1 6.16 2.18 2.43 3.31 1.33 1.17 1.1 1.82 1.66 
9 6.5 5.63 2.06 2.41 3.41 1.59 1.36 1.5 1.38 1.57 

10 6.38 6.13 1.88 1.88 2.66 2.01 1.77 1.78 1.56 1.82 
11 6.96 6.68 2.16 1.98 2.19 1.84 1.68 1.52 1.71 1.77 
12 4.19 4.42 1.9 2.09 1.78 1.59 1.77 1.45 1.61 1.45 

annual           
median 5.88 5.29 1.68 2.41 2.48 1.2 1.11 1.14 1.18 1.32 
mean 5.79 5.14 1.77 2.72 3.04 2.01 1.28 1.16 1.27 1.34 

std 0.98 1.66 0.3 1.02 1.66 1.46 0.32 0.11 0.34  0.14 
Lower std in open ocean and higher std in NCB except for the Ural Furrow in NCB-UF. 
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Table S6. Presence information on the 27 marine species in ecoregions. '1' represents 

presence '-' represents lack of observation of species in the given ecoregion. Points located 

near/on the boundaries of ecoregions were also assigned '-' (Source: CEP, 2002). 

 
Species 

Ecological 
taxonomic 

group 

Ecoregion 
 
NCB
-RO 

NCB
-WS 

NCB
-UF 

NCB
-ES 

NCB
-T 

MCB
-T 

MCB
-C 

MCB
-OS 

SCB-
C 

SCB
-OS 

Rhizosolenia fragilissima  Phytoplankton - - - - 1 1 1 1 1 1 
Eurytemora grimii  

Zooplankton 
- - - - 1 1 1 1 1 1 

Mnemiopsis leidyi - - - - 1 1 1 1 1 1 
Stenodus leusichtys  

 
Pelagic fish 

- 1 1 1 1 1 1 - - 1 
Liza aurata - 1 1 1 1 1 1 1 1 1 
Liza saliens - 1 1 1 1 1 1 1 1 1 

Salmo trutta caspius - - - - 1 1 1 1 - 1 
Alosa kessleri kessleri - 1 - - 1 1 1 1 1 1 
Alosa saposchnikowii - 1 1 - 1 1 1 1 1 1 

Atherina boyeri caspia - 1 1 1 1 1 1 1 1 1 
Clupeonella cultriventris 

caspia 
1 1 1 - 1 1 1 - 1 - 

Clupeonella 
engrauliformis 

- - - - 1 1 1 1 - 1 

Rutilus rutilus  
 
 
 
 
 

Demersal fish 
 

1 1 1 - 1 1 1 - 1 1 
Rutilus frisii kutum - 1 - - 1 1 1 - 1 1 

Cyprinus carpio 1 1 1 1 1 1 1 - 1 - 
Abramis brama - 1 1 - 1 1 1 - - - 

Acipenser gueldenstaedtii - 1 1 - 1 1 1 1 1 1 
Acipenser persicus - 1 1 - 1 - 1 1 1 1 

Huso huso  - 1 1 1 1 1 1 1 1 1 
Neogobius melanostomus - 1 1 - 1 1 1 1 1 1 

Benthophilus stellatus 1 1 1 1 1 1 1 1 1 1 
Acipenser stellatus - 1 1 1 1 1 1 1 1 1 

Acipenser nudiventris - - 1 1 - 1 1 1 1 1 
Caspiastacus pachypus  - - - - - 1 1 - 1 - 
Pontastacus eichwaldi Benthic  1 1 1 1 - 1 1 - 1 - 

Abra (Syndesmya) ovata invertebrata - 1 1 - 1 1 1 - 1 - 
Hypanis angusticostata  1 1 1 1 1 1 1 - - - 
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Supplementary Figure Captions 

Fig. S1 Spearman correlation matrix between input variables 

 

Fig. S2 Sum of normalized quantization and topological errors as a function of number of 

neurons 

 

Fig. S3 The SOM component plane indicates the distribution of each variable across the map  

and those neuron "bee hive" plots showing the variability between neurons in the individual 

input variables.  

 

Fig. S4 Cross validation error against the number of classes                     

 

Fig. S5 HAC dendrogram showing the hierarchy of the ecoregions. HAC successively 

agglomerates pairs of classes based on their similarity. The bottom-up clustering procedure. 

starts with each neuron being considered as a single class. The iteration ends when all the 

neurons have been merged into a single class (Frades and Matthiessen, 2010). Dashed red 

line shows the levels of the hierarchy for classifications with 11 number of ecoregions. 

 

Fig. S6 Nonmetric multidimensional scaling (NMDS) ordination plot of the individual 0.1 

degree pixels in the study area. Different colors of the points represent the correspondent 

ecoregion for that point. The distance between points reflects their underlying 

similarity/dissimilarity, i.e. their distance in 6-dimensional environmental variable space. 

Ecoregions in the NCB (red circle on the right) are distant from ecoregions in the MCB and 

SCB (green circle on the left).   

 

Fig. S7 hierarchical sequence (from upper left, levels 1 to 9) of ecoregions formation (2 to 10 

ecoregions).  

 

 

 

 

 



11 
 

Supplementary Figures 

 

SST           

0.83 SSS          

-0.35 -0.54 TSM         

0.92 0.93 -0.43 PAR        

0.53 0.46 -0.65 0.5 Depth       

-0.76 -0.78 0.74 -0.77 -0.68 ICE      

-0.91 -0.73 0.32 -0.85 -0.5 0.68 WNDSP3     

-0.78 -0.86 0.63 -0.85 -0.62 0.77 0.69 DSST    

0.64 0.57 -0.34 0.61 0.5 -0.71 -0.53 -0.58 DSSS   

0.25 0.27 0.07 0.26 -0.06 -0.03 -0.27 0 -0.07 DTSM  

-0.85 -0.68 0.16 -0.81 -0.32 0.6 0.9 0.59 -0.43 -0.27 DPAR 

0.9 0.7 -0.2 0.84 0.42 -0.66 -0.92 -0.56 0.56 0.29 -0.9 

Fig. S1 
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Fig. S2  
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Fig. S3  
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Fig. S4 
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Fig. S5  
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Fig. S6  
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Fig. S7  

 

 

 

 

 

 

 

 

 

 


