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Abstract

1 Introduction

Dynamic Global Vegetation Models (DGVMs) are now central elements in Earth system models
and our ability to understand past and anticipate future changes in the Earth system is intimately
linked to the quality of DGVMs (Prentice et al., 2007). There are many ways in which DGVMs
need improvement and there are many exciting initiatives under way. In a recent manuscript
Verheijen et al. (2013) describe one pathway. To provide context for their work they compare
their approach to other initiatives. In this contribution we wish to point out ways in which Ver-
heijen and colleagues misrepresented the aDGVM2 (which they incorrectly call the aDGVM,
which is in fact a different model published by Scheiter and Higgins, 2009) as presented in
Scheiter et al. (2013). While the aim of this piece is primarily to set the record straight, we addi-
tionally point out similarities and differences between the approach described by Verheijen et al.
(2013) and that described by Scheiter et al. (2013).

Verheijen et al. (2013) motivate their study by stating in reference to JeDi-DGVM
(Pavlick et al., 2013) and aDGVM2 (Scheiter et al., 2013) that “none of the approaches so far
tried to maximally include trait variation based on observational trait data and capture multiple
sources of this variation by relating trait data to environmental variables”. Although we ap-
preciate that this statement was designed to illustrate the uniqueness of Verheijen et al. (2013)
and the statistical approach they adopt, it does have the side-effect of suggesting that these two
papers ignored variation in traits and the relationships between traits and the environment. We
would like to point out that Fig. 5 of our paper plots the positions of modelled individuals in
multivariate trait space and relates the axes of this trait space to environmental variables.

In the same paragraph the authors go on to suggest that DGVM modellers need to apply
assembly theory to better understand and model relationships between traits and the environ-
ment when they state “ Such relationships between environmental conditions and traits can
potentially be understood via ecological assembly theory”. This is exactly what we propose in
Scheiter et al. (2013) where the introduction explicitly proposes that DGVM modelling could
benefit from two branches of community ecology, namely coexistence theory and community
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assembly theory. Moreover the title of Scheiter et al. (2013) includes the words “learning from
community ecology”. Our impression from reading Pavlick et al. (2013) is that the traits that
JeDi-DGVM predicts at a site are, as is the case with aDGVM2, a function of how environmen-
tal attributes select for trait combinations. This is an interpretation that Verheijen et al. (2013)
appear, in apparent contradiction to their statement we cite above, to share in their discussion
when they state that “some DGVMs also implement the concept of environmental filtering, like
the JeDi-DGVM Pavlick et al. (2013)”.

In the discussion, JeDi-DGVM (Pavlick et al., 2013) is further criticised because its traits
are “not-measurable”. While we cannot assess what is measurable, we like to point out that
invitingly measurable traits are not inherently more useful than traits that can be inferred using
inverse statistical methods (see Hartig et al., 2012 for an overview of using inverse methods in
the context of DGVMs).

At a prominent point in the discussion Verheijen state that the “aDGVM has not been vali-
dated with observational data”. This dismissive statement serves as invitation to the reader to
ignore the aDGVM2. This is a curious criticism of our work, because we never claimed the
aDGVM2 to be validated; the paper in question was explicitly a methods and concept paper
and we did not make any forecasts. Furthermore, we are sure that most authors of DGVMs
would not claim to have authored validated models. At best a DGVM can claim to have passed
some benchmarks, to provide a better benchmark score than competitor models. Furthermore,
should an author pronounce a model “validated”, this pronouncement is not universal, but re-
stricted to the domain of that study. This criticism is even more curious considering that the
authors themselves at the conclusion of the introduction state that their study is not aiming to
produce “realistic results” and that their focus lies in “evaluating the importance of incorporat-
ing climate-driven trait variation”. This disclaimer seems ad hoc given that considerable space
in the manuscript is devoted to benchmarking the model and explaining why the benchmarks
used might undervalue the performance of their modelling approach (e.g. “Our simulations with
7 vegetation classes performed less well, but this might partly depend on the chosen vegetation
map” and “This implies that the estimates of GPP by Beer et al. (2010) might be too low”);
space, that could have been used “evaluating the importance of incorporating climate-driven
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trait variation”. Perhaps the disclaimer was added because the new parameterisation method de-
veloped in the Verheijen paper yielded substantially poorer benchmark scores than the existing
parameterisation method. The different performances of the parameterisation methods supports
our contention (Scheiter et al., 2013) that hidden calibration in DGVMs inflates their capacity to
match benchmarks and hides model misspecification; something that objective parameterisation
schemes will reveal. The Verheijen manuscript which essentially compares a hidden calibration
parameterisation method, with two objective parameterisation methods nicely illustrates this
point.

To be more constructive we would like to point out important differences between our ap-
proach and that adopted by Verheijen et al. (2013). We explicitly chose not to follow the ap-
proach used by Verheijen et al. (2013) which was to use direct statistical inference to parame-
terise plant trait diversity. The pragmatic but inherent problem with this approach is that there
is no 1 : 1 match between the parameters in trait databases and the parameters DGVMs use. In
fact it appears, on evidence of the Verheijen manuscript, that only three JSBACH (the DGVM
used in the Verheijen study) traits matched traits in TRY (Kattge et al., 2011) and other trait
databases used in Verheijen et al. (2013). Our approach attempts to side-step the parameter in-
congruence problem by instead focusing on defining trade-offs between traits. Verheijen et al.
(2013) correctly point out in their discussion that model architecture constrains how trade-offs
are represented and they identify cases where JSBACH is, in this regard, limited. Verheijen et al.
(2013) then state that “aDGVM has not been validated with observational data nor does it in-
clude trait trade-offs”. This second strongly dismissive statement is perplexing given that the
central tenet of the aDGVM2 is to focus not so much on the traits but on the trade-offs between
traits. In Scheiter et al. (2013), a paper cited by the authors, we identified trade-offs and their
representation in DGVMs as the central challenge for next generation DGVMs. We discuss at
some length how to implement such trade-offs in DGVMs and we used the aDGVM2 to illus-
trate some of these ideas. Some trade-offs in the aDGVM2 are empirically defined, but others
are emergent consequences of conservation of mass principles and mechanical constraints im-
plemented in the model (Scheiter et al., 2013). Once trade-offs are defined, the actual trait val-
ues a plant may adopt in an aDGVM2 simulation are the outcome of trait filtering. We use the
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term “trait filtering” as shorthand for how the ecological processes implemented in the model
define the trait combinations that persist in a simulation (Figs. 2 and 4 in Scheiter et al., 2013).
A constructive criticism of Scheiter et al. (2013) would involve pointing out whether important
trade-offs are missing from the aDGVM2 or if trade-offs included are mis-specified.

A further difference is that Verheijen use statistical smoothing methods to estimate how the
three traits that are congruent between the JSBACH model and the trait databases vary in envi-
ronmental space and then use the resulting functions as a lookup table to reparameterise every
simulation year, for each grid cell, the traits of each plant functional type. In this context they
criticise aDGVM2, stating that in the aDGVM2 “environmental filtering only acts on trait val-
ues through the next generation”. This is not entirely correct. The aDGVM2 allows thousands
of individual plants, each with their own potentially unique set of traits, to exist in a simulated
vegetation patch. These individuals can die at any modelled time-step as influenced by dis-
turbance, competition and resource availability. In addition, other individuals with potentially
novel trait combinations can germinate each year. As a consequence of these birth and death
processes the community trait matrix will change every modelled time step. Furthermore, in
the aDGVM2 we make a distinction between traits (inherited attributes) and phenotypes (the
outcome of interactions between an organisms’ traits and its environment). Traits of a modelled
individual cannot vary in the lifetime of that individual, but a modelled individual’s phenotype
can change as it grows and is subjected to disturbance. In summary, the phenotypes of individ-
uals are modelled to change each simulation time step and the community trait matrix changes
every time an individual is born and every time and individual dies. It follows that the criticism
that the aDGVM2 approach is flawed because it does not allow “traits” to vary between years
is distracting and without substance.

A related problem with using statistical methods to parameterise functional diversity in
DGVMs is that the dimensionality of the parameterisation task is high. The Verheijen et al.
(2013) approach essentially requires a different parameterisation for each time step, for each
geographic location, for each plant functional type. Even though using correlations between en-
vironmental factors and traits is used to reduce the dimensionality of the task, many parameters
are needed. A side-effect of this large number of parameters is that it provides the modeller
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with the flexibility to tune the model to a benchmark. As we discuss in Scheiter et al. (2013),
one advantage of our method of combing trade-offs and trait filtering is that the dimensionality
of the functional diversity parameterisation does not change with the number of functional types
or with the number of geographical locations simulated.

A further reason why we would not advocate Verheijen et al.’s (2013) statistical route to de-
scribing trait variation is that it is well known that within a plant functional type at a site there is
a large range of trait states, simply because species with differing trait values are more likely to
coexist (Macarthur and Levins, 1967). Cody’s (1986) delightful example of the divergent leaf
traits of coexisting species of Proteaceae shrubs nicely illustrates this point. It follows that ad-
ditional information and assumptions regarding limitations on the similarity of species need to
be made when developing statistical models of community assembly (Laughlin and Laughlin,
2013). Future community assembly will be conditional on each localities community trait ma-
trix and the community matrix is in turn defined, in part, by history. That is, while a statistical
approach seems pragmatic, it is not clear whether identifiable statistical models and appropri-
ate data that describe all the important sources of variation can be defined. By aggregating the
effects of “different temporal and spatial scales, including acclimation, adaptation of species
and species replacement” in statistical models (with a median R2 value of 0.36) Verheijen et al.
(2013) actually smooth away substantial components of the variation they themselves recognise
as being essential for next generation DGVMs.
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We readily concede that the aDGVM2 as published in Scheiter et al. (2013) is a starting
point, an illustration of the promise of one approach, a vehicle for encouraging a more intimate
interaction between trait data and DGVMs. We are disappointed that Verheijen and colleagues
felt it necessary to dismiss our contribution. To criticise a concept model because it is “not-
validated” misses the point of a concept model. To criticise a published work for not “relating
trait data to environmental variables” or for “not including trade-offs” when that work quite
transparently does both is a questionable way to make progress in science.

We hope that this comment has made some of the differences between the two approaches
more apparent to both developers and users of DGVMs. In summary the important difference
is that Verheijen et al. (2013) use a direct statistical method to parameterise plant functional di-
versity, whereas Scheiter et al. (2013) and Pavlick et al. (2013) define trade-offs between plant
functional traits, which allow functional diversity to emerge as a by-product of model dynamics.
The approach followed by Scheiter et al. (2013) and Pavlick et al. (2013) is reliant on the speci-
fication of trade-offs between functional traits, how they together with modelled and forced en-
vironmental factors influence birth, death and growth rates in the models. While this may sound
simple in principle Scheiter et al. (2013) outline some of the non-trivial challenges involved in
developing such models to the stage where they can approach the reliability of existing DGVMs.
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References

Cody, M. L.: Structural niches in plant communities, in: Community Ecology, edited by: Diamond, J. M.,
Harper & Row, New York, NY, 381–405, 1986.

Hartig, F., Dyke, J., Hickler, T., Higgins, S. I., O’Hara, R. B., Scheiter, S., and Huth, A.: Con-
necting dynamic vegetation models to data – an inverse perspective, J. Biogeogr., 39, 2240–2252,
doi:10.1111/j.1365-2699.2012.02745.x, 2012.

Kattge, J., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Bönisch, G., Garnier, E., Westoby, M., Re-
ich, P. B., Wright, I. J., Cornelissen, J. H. C., Violle, C., Harrison, S. P., Van Bodegom, P. M., Reich-
stein, M., Enquist, B. J., Soudzilovskaia, N. A., Ackerly, D. D., Anand, M., Atkin, O., Bahn, M.,

7



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssion
P
ap

er
|

D
iscu

ssion
P
ap

er
|

D
iscu

ssion
P
ap

er
|

Baker, T. R., Baldocchi, D., Bekker, R., Blanco, C. C., Blonder, B., Bond, W. J., Bradstock, R.,
Bunker, D. E., Casanoves, F., Cavender-Bares, J., Chambers, J. Q., Chapin III, F. S., Chave, J.,
Coomes, D., Cornwell, W. K., Craine, J. M., Dobrin, B. H., Duarte, L., Durka, W., Elser, J.,
Esser, G., Estiarte, M., Fagan, W. F., Fang, J., Fernández-Méndez, F., Fidelis, A., Finegan, B., Flo-
res, O., Ford, H., Frank, D., Freschet, G. T., Fyllas, N. M., Gallagher, R. V., Green, W. A., Gutier-
rez, A. G., Hickler, T., Higgins, S. I., Hodgson, J. G., Jalili, A., Jansen, S., Joly, C. A., Kerkhoff, A. J.,
Kirkup, D., Kitajima, K., Kleyer, M., Klotz, S., Knops, J. M. H., Kramer, K., Kühn, I., Kurokawa, H.,
Laughlin, D., Lee, T. D., Leishman, M., Lens, F., Lenz, T., Lewis, S. L., Lloyd, J., Llusià, J.,
Louault, F., Ma, S., Mahecha, M. D., Manning, P., Massad, T., Medlyn, B. E., Messier, J., Moles, A. T.,
Müller, S. C., Nadrowski, K., Naeem, S., Niinemets, Ã., Nöllert, S., Nüske, A., Ogaya, R., Oleksyn, J.,
Onipchenko, V. G., Onoda, Y., Ordoñez, J., Overbeck, G., Ozinga, W. A., Patiño, S., Paula, S.,
Pausas, J. G., Peñuelas, J., Phillips, O. L., Pillar, V., Poorter, H., Poorter, L., Poschlod, P., Prinz-
ing, A., Proulx, R., Rammig, A., Reinsch, S., Reu, B., Sack, L., Salgado-Negret, B., Sardans, J.,
Shiodera, S., Shipley, B., Siefert, A., Sosinski, E., Soussana, J.-F., Swaine, E., Swenson, N., Thomp-
son, K., Thornton, P., Waldram, M., Weiher, E., White, M., White, S., Wright, S. J., Yguel, B., Za-
ehle, S., Zanne, A. E., and Wirth, C.: TRY – a global database of plant traits, Glob. Change Biol., 17,
2905–2935, doi:10.1111/j.1365-2486.2011.02451.x, 2011.

Laughlin, D. C. and Laughlin, D. E.: Advances in modeling trait-based plant community assembly,
Trends Plant Sci., 18, 584–593, doi:10.1016/j.tplants.2013.04.012, 2013.

Macarthur, R. and Levins, R.: The limiting similarity, convergence, and divergence of coexisting species,
Am. Nat., 101, 377–385, 1967.

Pavlick, R., Drewry, D. T., Bohn, K., Reu, B., and Kleidon, A.: The Jena Diversity-Dynamic
Global Vegetation Model (JeDi-DGVM): a diverse approach to representing terrestrial biogeog-
raphy and biogeochemistry based on plant functional trade-offs, Biogeosciences, 10, 4137–4177,
doi:10.5194/bg-10-4137-2013, 2013.

Prentice, I. C., Bondeau, A., Cramer, W., Harrison, S. P., Hickler, T., Lucht, W., Sitch, S., Smith, B.,
and Sykes, M. T.: Dynamic Global Vegetation Modeling: quantifying terrestrial ecosystem responses
to large-scale environmental change, in: Terrestrial Ecosystems in a Changing World, edited by:
Canadell, J. G., Pataki, D. E., and Pitelka, L. F., Global Change – The IGBP Series, Springer, Berlin
Heidelberg, 175–192, 2007.

Scheiter, S. and Higgins, S. I.: Impacts of climate change on the vegetation of Africa:
an adaptive dynamic vegetation modelling approach, Glob. Change Biol., 15, 2224–2246,
doi:10.1111/j.1365-2486.2008.01838.x, 2009.

8



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssion
P
ap

er
|

D
iscu

ssion
P
ap

er
|

D
iscu

ssion
P
ap

er
|

Scheiter, S., Langan, L., and Higgins, S. I.: Next-generation dynamic global vegetation models: learning
from community ecology, New Phytol., 198, 957–969, doi:10.1111/nph.12210, 2013.

Verheijen, L. M., Brovkin, V., Aerts, R., Bönisch, G., Cornelissen, J. H. C., Kattge, J., Reich, P. B.,
Wright, I. J., and van Bodegom, P. M.: Impacts of trait variation through observed trait–climate re-
lationships on performance of an Earth system model: a conceptual analysis, Biogeosciences, 10,
5497–5515, doi:10.5194/bg-10-5497-2013, 2013.

9


