### Supporting Information to accompany:

Structural, physiognomic and aboveground biomass variation in savannaforest transition zones on three continents. How different are co-occurring savanna and forest formations?

by Elmar Veenendaal et al.

### **Contents:**

Appendix A: Site Descriptions Appendix B: Tree Distributions Appendix C: Allometric Equations Appendix D: Additional Figures.

# Appendix A: Site Descriptions:

| Plot                   | Latitude      | e Long. | V                         | $E_{\rm V}({\rm m})$ | $T_{\rm A}$ (°C) | $P_{\rm A}$ (m) | WRB Soil Classification                              |  |
|------------------------|---------------|---------|---------------------------|----------------------|------------------|-----------------|------------------------------------------------------|--|
| AFRICA: Cameroon       |               |         |                           |                      |                  |                 |                                                      |  |
| MDJ-01                 | 6.168N        | 12.825E | Tall forest               | 773                  | 23.8             | 1.61            | Haplic Lixisol (Humic, Chromic)                      |  |
| MDJ-02                 | 6.163N        | 12.824E | Long-grass savanna        | 867                  | 23.4             | 1.62            | Pisolithic Plinthosol (Humic)                        |  |
| MDJ-03                 | 5.984N        | 12.869E | Stunted shrub-rich forest | 761                  | 23.9             | 1.59            | Pisolithic Plinthosol (Dystric)                      |  |
| MDJ-04                 | 5.999N        | 12.868E | Long-grass savanna        | 755                  | 23.9             | 1.59            | Haplic Ferralsol (Dystric)                           |  |
| MDJ-05                 | 5.980N        | 12.868E | Stunted shrub-rich forest | 768                  | 23.9             | 1.59            | Pisolithic Plinthosol (Dystric)                      |  |
| MDJ-06                 | 6.003N        | 12.891E | Long-grass savanna        | 755                  | 23.9             | 1.59            | Pisolithic Plinthosol (Humic, Clavic)                |  |
| MDJ-07                 | 6.007N        | 12.886E | Tall forest               | 755                  | 23.9             | 1.59            | Pisolithic Plinthosol (Ferric, Dystric)              |  |
| MDJ-08                 | 6.213N        | 12.749E | Long-grass savanna        | 772                  | 23.8             | 1.62            | Haplic Lixisol (Humic, Endoskeletic)                 |  |
| MDJ-09                 | 6.009N        | 12.889E | Long-grass savanna        | 778                  | 23.8             | 1.59            | Hyperskeletic Leptosol (Dystric)                     |  |
| MDJ-10                 | 5.997N        | 12.894E | Tall closed woodland      | 766                  | 23.8             | 1.59            | Pisolithic Plinthosol (Humic, Dystric)               |  |
| AFRICA: Ghana          |               |         |                           |                      |                  |                 |                                                      |  |
| ASU-01                 | 7.136N        | 2.447W  | Tall forest               | 263                  | 26.0             | 1.21            | Endofluvic Cambisol (Dystric)                        |  |
| BFI-01                 | 7.714N        | 1.694W  | Tall closed woodland      | 358                  | 25.4             | 1.29            | Haplic Alisol( Arenic, Hyperdystric, Rhodic)         |  |
| BFI-02                 | 7.715N        | 1.692W  | Tall savanna woodland     | 358                  | 25.4             | 1.29            | Brunic Arenosol (Alumic, Hyperdystric)               |  |
| BFI-03                 | 7.705N        | 1.696W  | Tall savanna woodland     | 350                  | 25.4             | 1.29            | Brunic Arenosol (Alumic, Hyperdystric)               |  |
| BFI-04                 | 7.707N        | 1.698W  | Tall forest               | 350                  | 25.4             | 1.29            | Haplic Nitosol (Dystric)                             |  |
| KOG-01                 | 7.302N        | 1.180W  | Tall savanna woodland     | 201                  | 26.3             | 1.25            | Haplic Arenosol (Dystric)                            |  |
| MLE-01                 | 9.304N        | 1.857W  | Savanna woodland          | 134                  | 27.9             | 1.03            | Brunic Arenosol (Dystric)                            |  |
| AFRICA: Burking        | <u>a Faso</u> |         |                           |                      |                  |                 |                                                      |  |
| BBI-01                 | 12.731N       | 1.165W  | Savanna woodland          | 275                  | 28.3             | 0.69            | Haplic Luvisol (Epidystric, Endosiltic)              |  |
| BBI-02                 | 12.733N       | 1.164W  | Savanna woodland          | 275                  | 28.3             | 0.69            | Pisolithic Plinthosol (Eutric)                       |  |
|                        |               |         | Shrub-rich savanna        |                      |                  |                 |                                                      |  |
| BDA-01                 | 10.940N       | 3.150W  | woodland                  | 264                  | 27.8             | 0.98            | Acric Plinthosol (Magniferric, Dystric, Siltic)      |  |
|                        |               |         | Shrub-rich savanna        |                      |                  |                 |                                                      |  |
| BDA-02                 | 10.940N       | 3.154W  | woodland                  | 258                  | 27.9             | 0.98            | Pisolithic Plinthosol (Magniferric, Dystric, Siltic) |  |
| BDA-03                 | 10.865N       | 3.073W  | Grassland                 | 295                  | 27.6             | 0.98            | Gleyic Leptosol                                      |  |
| AFRICA: Mali           |               |         |                           |                      |                  |                 |                                                      |  |
| HOM-01                 | 15.344N       | 1.468W  | Savanna grassland         | 306                  | 29.9             | 0.35            | Rubic Arenosol (Dystric, Aridic)                     |  |
| HOM-02                 | 15.335N       | 1.547W  | Savanna grassland         | 310                  | 30.0             | 0.35            | Rubic Arenosol (Dystric, Aridic)                     |  |
| SOUTH AMERICA: Bolivia |               |         |                           |                      |                  |                 |                                                      |  |
| ACU-01                 | 15.251S       | 61.245W | Tall forest               | 271                  | 24.1             | 1.27            | Nitic Acrisol (Epieutric, Chromic)                   |  |
| LFB-01                 | 14.579S       | 60.831W | Tall forest               | 238                  | 23.9             | 1.45            | Geric Acric Ferralsol (Dystric)                      |  |
| LFB-02                 | 14.577S       | 60.832W | Tall forest               | 238                  | 23.9             | 1.45            | Geric Acric Ferralsol (Dystric)                      |  |
|                        |               |         | Shrub-rich savanna        |                      |                  |                 |                                                      |  |
| LFB-03                 | 14.600S       | 60.849W | woodland                  | 215                  | 24.0             | 1.44            | Geric Acric Gibbsic Ferralsol (Dystric)              |  |
| OTT-01                 | 16.391S       | 61.212W | Tall closed woodland      | 455                  | 23.2             | 1.15            | Plinthic Acrisol (Epieutric, Epiarenic)              |  |
| OTT-02                 | 16.414S       | 61.189W | Savanna woodland          | 437                  | 23.3             | 1.15            | Haplic Ferralsol (Dystric, Xanthic)                  |  |
| OTT-03                 | 16.416S       | 61.191W | Tall savanna woodland     | 437                  | 23.3             | 1.15            | Umbric Ferralsol (Dystric)                           |  |
| OTT-04                 | 16.399S       | 61.196W | Grassland                 | 442                  | 23.2             | 1.15            | Umbric Planosol (Ferric, Albic, Dystric)             |  |
| TUC-01                 | 18.524S       | 60.812W | Stunted forest            | 312                  | 24.8             | 0.82            | Haplic Cambisol (Hypereutric, Greyic, Siltic)        |  |
| TUC-02                 | 18.533S       | 60.634W | Shrub-rich woodland       | 319                  | 24.8             | 0.85            | Acric Ferralsol (Dystric, Arenic)                    |  |
| TUC-03                 | 18.183S       | 60.859W | Savanna woodland          | 302                  | 24.7             | 0.89            | Ferallic Cambisol (Hypereutric)                      |  |
| SOUTH AMERICA:Brazil   |               |         |                           |                      |                  |                 |                                                      |  |
| ALC-01                 | 2.5287S       | 54.909W | Savanna woodland          | 29                   | 25.9             | 2.02            | Hyperalbic Arenosol (Alumic, Hyperdystric)           |  |

| Plot             | Latitud | e Long.  | V                         | $E_{\rm V}({\rm m})$ | $T_{\rm A}$ (°C) | $P_{\rm A}$ (m) | WRB Soil Classification                                     |  |
|------------------|---------|----------|---------------------------|----------------------|------------------|-----------------|-------------------------------------------------------------|--|
| ALC-02           | 2.49058 | 54.960W  | Savanna woodland          | 30                   | 26.0             | 1.97            | Hyperalbic Arenosol (Alumic, Hyperdystric)                  |  |
| ALF-01           | 9.5983S | 55.937W  | Tall forest               | 264                  | 25.5             | 2.35            | Vetic Acrisol (Hyperdystric)                                |  |
| ALF-02           | 9.5784S | 55.918W  | Tall forest               | 253                  | 25.6             | 2.35            | Haplic Regosol (Hypereutric, Epiarenic)                     |  |
| FLO-01           | 12.812S | 51.854W  | Forest                    | 377                  | 25.5             | 1.61            | Geric Ferralsol (Alumic, Hyperdystric, Epiarenic, Rhodic)   |  |
|                  |         |          |                           |                      |                  |                 | Posic Geric Ferralsol (Humic, Alumic, Hyperdystric,         |  |
| IBG-01           | 15.950S | 47.871W  | Scrub savanna             | 1126                 | 20.6             | 1.61            | Epiclayic, Rhodic)                                          |  |
|                  |         |          |                           |                      |                  |                 | Posic Geric Ferralsol (Humic, Alumic, Hyperdystric,         |  |
| IBG-02           | 15.952S | 47.872W  | Scrub savanna             | 1144                 | 20.5             | 1.59            | Epiclayic, Rhodic)                                          |  |
|                  |         |          |                           |                      |                  |                 | Posic Geric Ferralsol (Humic, Alumic, Hyperdystric,         |  |
| IBG-03           | 15.930S | 47.873W  | Scrub savanna             | 1154                 | 20.5             | 1.61            | Clayic, Rhodic)                                             |  |
|                  |         |          |                           |                      |                  |                 | Posic Geric Ferralsol (Humic, Alumic, Hyperdystric,         |  |
| IBG-04           | 15.9458 | 47.861W  | Savanna woodland          | 1140                 | 20.6             | 1.60            | Clayic, Rhodic)                                             |  |
|                  |         |          |                           |                      |                  |                 | Vetic Acric Ferralsol (Alumic, Hyperdystric, Arenic,        |  |
| NXV-01           | 14.708S | 52.352W  | Savanna woodland          | 318                  | 24.9             | 1.51            | Xanthic)                                                    |  |
| NXV-02           | 14.700S | 52.351W  | Tall closed woodland      | 318                  | 24.9             | 1.51            | Vetic Acric Ferralsol (Alumic, Hyperdystric, Epiarenic)     |  |
| SMT-01           | 12.819S | 51.770W  | Savanna woodland          | 332                  | 25.8             | 1.60            | Hypoluvic Ferralic Arenosol (Hyperdystric)                  |  |
| SMT-02           | 12.825S | 51.769W  | Savanna woodland          | 332                  | 25.8             | 1.60            | Hypoluvic Ferralic Arenosol (Hyperdystric)                  |  |
| SMT-03           | 12.835S | 51.766W  | Savanna woodland          | 319                  | 25.9             | 1.60            | Hypoluvic Ferralic Arenosol (Hyperdystric)                  |  |
| TAN-04           | 12.921S | 52.373W  | Forest                    | 386                  | 25.0             | 1.66            | Geric Ferralsol (Humic, Alumic, Hyperdystric, Clayic)       |  |
| VCR-01           | 14.831S | 52.160W  | Tall forest               | 301                  | 25.2             | 1.52            | Geric Ferralsol (Alumic, Hyperdystric, Clayic, Rhodic)      |  |
|                  |         |          |                           |                      |                  |                 | Geric Plinthic Ferralsol (Alumic, Hyperdystric, Endoclayic, |  |
| VCR-02           | 14.832S | 52.169W  | Forest                    | 289                  | 25.2             | 1.51            | Rhodic)                                                     |  |
| <u>AUSTRALIA</u> |         |          |                           |                      |                  |                 |                                                             |  |
|                  |         |          | Shrub-rich savanna        |                      |                  |                 |                                                             |  |
| FMS-01           | 18.092S | 144.840E | woodland                  | 234                  | 21.1             | 0.73            | Pisolithic Plinthosol (Dystric)                             |  |
| FMS-02           | 18.108S | 144.823E | Stunted shrub-rich forest | 759                  | 21.5             | 0.69            | Haplic Leptosol (Dystric)                                   |  |
| RSC-01           | 20.156S | 146.536E | Stunted forest            | 274                  | 23.2             | 0.67            | Haplic Regosol (Arenic, Skeletic)                           |  |
| EKP-01           | 18.068S | 145.993E | Tall savanna woodland     | 8                    | 24               | 2.59            | Endogleyic Umbrisol (Hyperdystric, Arenic)                  |  |
| KBL-01           | 17.764S | 145.544E | Tall forest               | 761                  | 20.5             | 1.75            | Haplic Regosol (Siltic, Hyperdystric)                       |  |
| KBL-02           | 17.849S | 145.532E | Tall savanna woodland     | 860                  | 20.1             | 1.43            | Geric Acrisol (Hyperdystric, Rhodic)                        |  |
| KBL-03           | 17.685S | 145.535E | Tall forest               | 1055                 | 19.1             | 1.34            | Haplic Nitisol (Hyperdystric, Rhodic)                       |  |
| DCR-01           | 17.026S | 145.597E | Tall savanna woodland     | 683                  | 21.2             | 1.45            | Haplic Cambisol (Orthodystric, Alumic)                      |  |
| DCR-02           | 17.021S | 145.584E | Tall savanna woodland     | 653                  | 21.3             | 1.46            | Arenic Cambisol (Epieutric)                                 |  |
| KCR-01           | 17.107S | 145.604E | Tall forest               | 813                  | 20.5             | 1.96            | Haplic Cambisol (Dystric, Alumic)                           |  |
| CTC-01           | 16.103S | 145.447E | Tall forest               | 90                   | 25.2             | 3.20            | Haplic Cambisol (Hyperdystric, Alumic, Skeletic)            |  |

**Table S1.** Study plot coordinates, Torello-Raventos et al. (2013) vegetation classification (), elevation above sea level  $(E_v)$ , mean annual temperature  $(T_A)$ , mean annual precipitation  $(P_A)$  and Wold Reference Base (WRB) soil classification.

#### BDA-01 FMS-02 $G_{abs}(r)$ $G_{max}(r)$ $G_{n}(r)$ $G_{n}(r)$ indr. 80 0.8 $G_{t}(t)$ $G_{t}(t)$ 80 9.0 G(r)G(;) 40 3 63 64 00 8 2.0 0.0 1.0 1.5 25 3.0 3.5 0.5 distance, r (m) distance, r(m)IBG-01 TUC-03 10 $G_{sim}(r)$ $G_{mer}(r)$ 80 80 $G_{0}(t)$ $G_{0}(t)$ 80 99 G(r)G(r)0.4 0.4 $G_{obs}(t)$ $G_{they}(r)$ $G_{ry}(r)$ $G_{yy}(r)$ 65 3 8 00 distance, r(m)10 15 distance, r(m)BBI-01 KBL-02 Gana(r) G<sub>ana</sub>(r) 80 G<sub>mm</sub>(r) 80 Gundt $G_{u}(r)$ $G_{u}(r)$ $G_{\mu}(r)$ $G_{\mu}(r)$ 90 80 G(j) G(r) 40 20 00 20 8 00 2 2 distance, r(m)distance, r (m)

#### **Appendix B: Tree Distributions:**

**Fig. S1.** Estimation of the nearest neighbour distance distribution function (also called the "*event-to-event*" or "*inter-event*" distribution). Here the actual cumulative distribution function G of the distance (*r* in metres) from a typical randomly selected tree to the next nearest tree (black line) is compared with that expected for a totally spatially random distribution (red dotted line) with the grey shaded area indicating 0.95 quantile confidence intervals. Results are shown for six representative savanna/dry forest sites (taken from all three continents and across a range of tree densities), none of which show any significant indications of tree clustering.

## Appendix C: Allometric equations:

|     | Equation                                                                     | Applied to                              | Source                    | Units                         |
|-----|------------------------------------------------------------------------------|-----------------------------------------|---------------------------|-------------------------------|
| S1  | $\hat{B} = \exp[-2.187 + 0.916 \ln(\rho D^2 H)]$                             | all forest trees ( $D \ge 25$ mm)       | Chave et al. (2005)       | kg, cm, m, g cm <sup>-3</sup> |
| S2  | $\hat{B} = \exp[-2.77 + 1.33\ln(A_{\rm B})]$                                 | all forest shrubs ( $D < 25$ mm )       | this study                | kg, cm <sup>2</sup>           |
| S3  | $\hat{B} = \exp[-2.85 + 2.69\ln(D_{\rm C})]$                                 | all forest shrubs ( $D \ge 25$ mm )     | this study                | kg, cm                        |
| S4  | $\hat{B} = \exp[-1.484 + 2.657 \ln(D)]$                                      | all lianas ( $D \ge 25$ mm)             | Schnitzer et al. (2006)   | kg, cm                        |
| S5  | $\hat{B} = 0.6 \exp[-1.754 + 2.665 \ln(D)]$                                  | all palms ( $D \ge 25$ mm)              | De Castilho et al. (2006) | kg, cm                        |
| S6  | $\hat{B} = \exp[0.06 + 2.012\ln(D) + 0.710\ln(H)]$                           | African savanna trees ( $H \ge 10$ m)   | Malimbwi et al. (1994)    | kg, cm, m                     |
| S7  | $\hat{B} = \exp[-3.368 + 2.129\ln(D) + 0.403\ln(H)]$                         | African savanna trees ( $H < 10$ m)     | this study                | kg, cm, m                     |
| S8  | $\hat{B} = \exp[-3.189 + 2.358 \ln(D)]$                                      | African savanna trees (if $H$ unknown)  | this study                | kg, cm                        |
| S9  | $\hat{B} = \exp[-0.510 + 1.426\ln(\mathcal{A}_{c})]$                         | Cochlospermum planchonii (Africa only)  | this study                | kg, m <sup>2</sup>            |
| S10 | $\hat{B} = \exp[1.07 + 1.03 \ln(A_{\rm C})]$                                 | African savanna shrubs (drier sites)    | Skarpe (1990)             | kg, m <sup>2</sup>            |
| S11 | $\hat{B} = \exp[-3.3369 + 2.7635 \ln(D) + 0.4059 \ln(H) + 1.2439 \ln(\rho)]$ | South American savanna ( $D \ge 25$ mm) | Ribeiro et al. (2011)     | kg, cm, m, g cm <sup>-3</sup> |
| S12 | $\hat{B} = \exp\{-2.0596 + 2.1561 \ln(D) + 0.1362 [\ln(H)]^2\}$              | Australian savannas ( $D \ge 25$ mm)    | Williams et al. (2005)    | kg,cm, m                      |
| S13 | $\hat{B} = \exp[-2.26 + 2.4 \log(D)^{0.8}]$                                  | African Sahelian plots                  | Henry et al. (2011)       | kg,cm                         |
| S14 | $\hat{B} = 0.1263 + 0.1006 (A_{\rm B})$                                      | African Sudan savanna                   | Henry et al. (2011)       | kg,cm <sup>2</sup>            |

**Table S2**. Allometric equations used for estimating for estimating forest and savanna above ground biomass in kg per tree ( $\hat{B}$ ). Input variables:  $\rho$  (wood density) ; D (diameter at breast height) ; H (tree or shrub height);  $D_{\rm C}$  (crown diameter)  $A_{\rm C}$  (crown area),  $A_{\rm B}$  (basal area) and  $D_{\rm B}$  (basal diameter).



Fig. S2: Relationship between basal area (cm<sup>2</sup>) and biomass (kg) for forest shrubs ( $D \le 25$ mm) as developed in his study (equation S2).



Fig. S3: Relationship between diameter at breast height D (cm) and biomass, B (kg) for African savanna trees when height was unknown as developed in this study (equation S8).



**Fig. S4:** Relationship between both D (cm) and H (m) and biomass (kg) for African savanna trees when H is known developed in this study (equation S7).



**Fig. S5:** Relationship between crown area  $(m^2)$  and biomass (Kg) for the species *Cochlospermum planchonii* in Africa developed in this study (equation S10).

## **Appendix D: Additional Figures**



Fig. S6. Relationship between axylale fractional cover and its leaf area index (L). Symbols as in the main text.



Fig. S7. Relationship between our canopy area index measurements and the remotely sensed fractional cover of the corresponding grid square (Hansen *et al.* 2003). Symbols as in the main text.

#### **References:**

- Chave, J., C. Andalo, S. Brown, M. A. Cairns, J. Q. Chambers, D. Eamus, H. Fölster, F. Fromard, N. Higuchi, T. Kira, J.-P. Lescure, B. W. Nelson, H. Ogawa, H. Puig, B. Riéra, & T. Yamakura. (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, 87-99.
- de Castilho, C.V., Magnusson, W.E., de Araújo, R.N.O., Luizão, R.C.C., Luizão, F.J., Albertina,
  & P., Higuchi, N. (2006) Variation in aboveground tree live biomass in a central Amazonian forest: effects of soil and topography. *Forest Ecology and Management.* 234, 85-96.
- Hansen, M.C., DeFries, R.S., Townshend, J.R.G., Carroll, M., Dimiceli, C. & Sohlberg, R.A. (2003) Global Percent Tree Cover at a Spatial Resolution of 500 Meters: First Results of the MODIS Vegetation Continuous Fields Algorithm. *Earth Interactions*, 7, 1-15.
- Ribeiro, S.C., Fehrmann, L., Boechat Soares, C.P., Gonçalvez Jacovine, L.A., Kleinn, C. & de Oliveira Gaspar, R. (2011) Above-and below ground biomass in Brazilian Cerrado. *Forest Ecology and Management* 262, 491-499.
- Schnitzer, S.A., DeWalt, & S.J., Chave, J. (2006) Censuring and measuring lianas: A quantitative comparison of the common methods. *Biotropica* 38, 581-591.
- Skarpe, C. (1990).Shrub layer dynamics under different herbivore densities in an arid savanna, Botswana.Journal of Applied Ecology, 27,873-885.
- Williams RJ, Zerihun A, Montagu K, Hoffmann M, Hutley LB, & Chen X. (2005) Allometry for estimating aboveground tree biomass in tropical and subtropical eucalypt woodlands: towards general predictive equations. *Australian Journal of Botany.* 53, 607-619.