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Abstract 12 

Recent studies have identified the first-order representation of microbial decomposition as a 13 

major source of uncertainty in simulations and projections of the terrestrial carbon balance. 14 

Here, we use a reduced complexity model representative of current state-of-the-art models of 15 

soil organic carbon decomposition. We undertake a systematic sensitivity analysis to 16 

disentangle the effect of the time-invariant baseline residence time (k) and the sensitvity of 17 

microbial decomposition to temperature (Q10) on soil carbon dynamics at regional and global 18 

scales. Our simulations produce a range in total soil carbon at equilibrium of ~592 to 2745 Pg 19 

C which is similar to the ~561 to 2938 Pg C range in pre-industrial soil carbon in models 20 

used in the fifth phase of the Coupled Model Intercomparison Project. This range depends 21 

primarily on the value of k, although the impact of Q10 is not trivial at regional scales. As 22 

climate changes through the historical period, and into the future, k is primarily responsible 23 

for the magnitude of the response in soil carbon, whereas Q10 determines whether the soil 24 

remains a sink, or becomes a source in the future mostly by its effect on mid-latitudes carbon 25 

balance. If we restrict our simulations to those simulating total soil carbon stocks consistent 26 

with observations of current stocks, the projected range in total soil carbon change is reduced 27 

by 42% for the historical simulations and 45% for the future projections. However, while this 28 

observation-based selection dismisses outliers it does not increase confidence in the future 29 
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sign of the soil carbon feedback. We conclude that despite this result, future estimates of soil 30 

carbon, and how soil carbon responds to climate change should be constrained by available 31 

observational data sets.  32 

 33 

1 Introduction 34 

There is a 6-fold range in the amount of carbon stored in the soil in simulations conducted as 35 

part of the fifth phase of the Coupled Model Intercomparison Project (CMIP5; Taylor et al., 36 

2012). This 6-fold range, identified by Todd-Brown et al. (2013), is consistent with results 37 

from the recent model intercomparison projects such as the Coupled Climate-Carbon Cycle 38 

Model Intercomparison Project (C
4
MIP; Friedlingstein et al., 2006). The analysis of carbon 39 

stores in both C
4
MIP and CMIP5 have focused on the prediction of terrestrial and soil carbon 40 

through time. In addition to demonstrating the large differences in carbon stocks (Todd-41 

Brown et al., 2013), they have also highlighted large inter-model differences in global and 42 

regional land-atmosphere carbon (C) fluxes (e.g. Friedlingstein et al., 2006, 2014). This lack 43 

of agreement between simulations exists in fully coupled models (e.g. C
4
MIP and CMIP-5) 44 

but can also be found if sources of uncertainty are narrowed by relying on one weather 45 

dataset to drive multiple land models (Friend et al., 2013; Nishina et al., 2014), or by using 46 

one land model driven by multiple climate projections (Ahlström et al., 2013).  47 

In these previous studies, critical uncertainties have been identified in the microbial 48 

decomposition of soil organic C and the associated release of CO2 via heterotrophic 49 

respiration (Rh). This is despite all the current state-of-the-art global soil C models relying on 50 

a similar representation of decomposition as a first-order process (see Exbrayat et al., 2013b; 51 

Nishina et al., 2014; Todd-Brown et al., 2013). This conceptualization describes 52 

decomposition and Rh as proportional to the availability of organic matter. The decay rate (or 53 

Rh per unit of soil C) is modified based on an environmental scalar that intends to mimic the 54 

dynamical response of microbial biomass to soil moisture and soil temperature.  55 

This simple model structure has recently received some criticism because of its lack of 56 

explicit representation of microbial physiology (Allison et al., 2010; Todd-Brown et al., 57 

2012; Wieder et al., 2013; Xenakis and Williams, 2014). However, it can successfully explain 58 

some complex dynamic processes including the acclimation of decomposers to warming (Luo 59 
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et al., 2001) as a result of the quick depletion of labile pools by enhanced microbial biomass 60 

(Kirschbaum, 2004; Knorr et al., 2005).  61 

We previously identified (Exbrayat et al., 2013b, 2014) some further implications of the first-62 

order representation of microbial decomposition. First, in climate change experiments, model 63 

pools are usually initialised using a spin-up procedure with fixed pre-industrial atmospheric 64 

CO2 concentrations until C pool trends are removed (Xia et al., 2012). Due to the interaction 65 

with substrate availability, the decay rate simulated by the model in response to steady 66 

boundary conditions determines the size of soil C pools reached at equilibrium. Because spin-67 

up is a long computational process, the magnitude of pool sizes is conserved during 68 

subsequent shorter simulations of climate change and, as a result, equilibrated stocks strongly 69 

explain final stocks (e.g. CMIP5 models as shown in supplementary Figure S1 after Exbrayat 70 

et al., 2014). Second, the microbial sensitivity to changing environmental conditions affects 71 

the response of the system under transient climate simulations (Falloon et al., 2011; Exbrayat 72 

et al., 2013a,b). However, because substrate availability also controls the amount of respired 73 

carbon, there is a “memory” control imposed by the initial conditions of this transient 74 

simulation (Exbrayat et al., 2013b and 2014) that also affects the response to perturbation in 75 

boundary conditions. The relative contribution of these two factors on soil C projections 76 

remains to be explored in detail especially since last generation models disagree on the 77 

carbon balance projected in the future (Friedlingstein et al., 2014; Nishina et al., 2014), 78 

making it challenging to elaborate any land-based offsetting strategy.  79 

Here, we use a reduced complexity model representative of current state-of-the-art models of 80 

soil organic C decomposition. A systematic sensitivity analysis is performed to disentangle 81 

the effect of the time-invariant baseline residence time and the formulation of the dynamic 82 

response of microbial decomposition to climatic change on soil C dynamics at regional and 83 

global scale. Using these experiments, we seek to investigate the relative contribution of 84 

these two inter-related components that drive the absolute and relative change in soil C 85 

through time. This is a step towards understanding the origin of the disagreement between 86 

CMIP5 models’ simulation of soil C and can help in reducing the uncertainty in future model 87 

intercomparisons. We also use available estimates of total soil C to assess the added value of 88 

observational data to inform the modelling procedure. We attempt to constrain the system’s 89 

response to climate change by identifying model versions that simulate amounts of soil C 90 

mobilized in the active cycle that are outside the confidence intervals estimated for the 91 
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observations. We argue that, due to the first-order parameterization, such model versions are 92 

unlikely to provide reliable projections of the response of soil C pools as they would do it for 93 

the wrong reasons. We believe that our results will be helpful for the community in the frame 94 

of designing future intercomparisons studies such as CMIP6. 95 

 96 

2 Materials and methods 97 

2.1 Reduced complexity model 98 

It is not possible to re-run each CMIP5 model or isolate the representation of soil carbon 99 

processes from each model. We therefore use a reduced complexity model that simulates the 100 

monthly evolution of a single soil organic carbon pool, Cs, in response to input derived from 101 

Net Primary Productivity (NPP, g C m
-2

 mth
-1

) and output by heterotrophic respiration (Rh, g 102 

C m
-2

 mth
-1

). For each monthly time step, the soil carbon balance can be described as:  103 

h

s
RNPP

t

C





          (1) 104 

where NPP is a prescribed boundary condition in our model and Rh is simulated as a first-105 

order process dependent on the availability of substrate Cs such as:  106 

sWTh
CffkR 

1

         (2) 107 

where k is the baseline residence time at 15°C (Xia et al., 2013) adjusted at each time step by 108 

fT which is a function of soil temperature Ts (°C). The soil moisture (θs) modification 109 

function, fW, is usually expressed as a fraction of soil moisture saturation (Moyano et al., 110 

2012). We implement a classical formulation of the soil temperature sensitivity function fT: 111 

 

10
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            (3) 112 

where Q10 is a constant factor that describes the relative increase in microbial activity for a 113 

warming of 10°C, and Tref is the reference temperature (°C) for which fT(Ts) = 1 (Lloyd and 114 

Taylor, 1994; Bauer et al., 2012). The chosen Tref is the commonly used 15°C (Todd-Brown 115 

et al., 2013) so that the decomposition rate equals k
-1

 when moisture is non-limiting and 116 

temperature is approximately equal to the global average. We use the same formulation of fW 117 

as in the CASA-CNP model (Wang et al., 2010): 118 
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which is a bell-shaped function that is equal to 1 for θs = 0.55. 120 

This first-order representation of microbial decomposition with a specified decay rate 121 

adjusted by environmental scalars is used in all 11 CMIP5 models that simulate soil carbon 122 

(Todd-Brown et al., 2013) and all 7 Dynamic Global Vegetation Models used in the ISI-MIP 123 

project (Friend et al., 2013; Nishina et al., 2014). Typically, these models rely on a multi-pool 124 

architecture to represent the diversity in organic matter. Each pool has its own residence time 125 

that corresponds to a degree of resistance to decomposition (Davidson and Janssen, 2006). 126 

Usually, part of the decomposition occurring in one pool is routed to one or several other 127 

pools while the rest is emitted via Rh. At the ecosystem scale, however, the same 128 

environmental scalar is applied despite the multi-pool architecture, and the heterotrophic 129 

respiration flux is proportional to the amount of substrate available. Therefore, our simplified 130 

model is broadly representative of the current paradigm and provides a useful framework to 131 

undertake the sensitivity analysis described hereafter. 132 

Soil moisture also has an influence on microbial decomposition (Falloon et al., 2011, Moyano 133 

et al., 2012, 2013; Exbrayat et al., 2013a,b). However, Todd-Brown et al. (2013) recently 134 

demonstrated that a one pool reduced complexity model could reproduce both total soil 135 

carbon content and its spatial distribution for most of the CMIP5 models without considering 136 

decomposition response to variations in soil moisture. We also recently showed that global 137 

features in the distribution and evolution of Cs were much more related to uncertainties in fT 138 

than uncertainties in the formulation of fW (Exbrayat et al., 2013b). Therefore, in order to 139 

keep the analyses as simple as possible and isolate the effect of fT but still account for the 140 

effect of soil moisture on Rh, we keep the formulation of fW constant in the experiments that 141 

follow.  142 

We are aware of that our reduced complexity model relies on questionable assumptions such 143 

as the use of a single soil carbon pool and global values of k, Q10 and Tref. However, while we 144 

agree that a multiple pool structure would provide diverging results, single pool soil carbon 145 

carbon models similar to our design are used in 3 of the 11 CMIP5 models described by 146 

Todd-Brown et al. (2013) and 2 of the 7 ISI-MIP models described by Nishina et al. (2014). 147 

Further, using global parameter values of k, Q10 and Tref is consistent with these state-of-the-148 



6 

 

art models (Todd-Brown et al., 2013; Nishina et al., 2014). Of course, this does not allow 149 

representing processes such as the remobilization of carbon in the active cycle following 150 

permafrost thaw (Koven et al., 2011) or the probably different behaviour of biological 151 

systems in frozen conditions but these are not routinely implemented in the land component 152 

of Earth system models and therefore fall beyond the scope of this paper. In summary, we 153 

wish to reiterate that this study investigates the sensitivity of the first-order parameterization 154 

of microbial decomposition and Rh processes used in current ecosystem models to its 155 

uncertain parameters (Todd-Brown et al., 2013; Nishina et al., 2014). We do not intend to 156 

provide improved results of the response of soil carbon to climate change but rather illustrate 157 

and better understand the implications of the current ubiquitous approach to parameterization 158 

and initial value prescription described in Section 2.2. 159 

2.2 Model setup and experiments 160 

We configure the reduced complexity model in a spatially explicit way to represent global 161 

variations, implemented as a surrogate for the CASA-CNP biogeochemical module (Wang et 162 

al., 2010) of the CABLE land surface model (Wang et al., 2011). A previous simulation by 163 

CABLE coupled to the coarse-resolution CSIRO Mk3L climate model (3.2° latitude × 5.6° 164 

longitude; Phipps et al., 2011) and driven by CMIP5 atmospheric CO2 data provides monthly 165 

NPP, Ts and θs to the reduced complexity model. We use both historical simulations 166 

(Exbrayat et al., 2013b) and 21
st
 century projections using the Representative Concentration 167 

Pathway 8.5 (RCP 8.5) atmospheric concentration scenario.  168 

We perform a sensitivity analysis by running the simple model with various combinations of 169 

a Q10 value and a baseline residence time k. We use 11 equally-spaced values of Q10 ranging 170 

from 1.5 to 2.5 (i.e. intervals of 0.1), and 31 equally-spaced values of k ranging from 120 171 

months to 480 months (i.e. intervals of 12 months). These values are based on the range of 172 

results previously obtained by Todd-Brown et al. (2013) with their own reduced complexity 173 

model. Each value of Q10 is applied with each value of k for a total of 341 simulations. Model 174 

versions are initialised via a classical spin-up procedure (Xia et al., 2012) using input data 175 

from 1850 to 1859 for 10,000 years to ensure all soil carbon pools reach a steady-state. We 176 

then continue simulations with NPP, Ts and θs data from 1850 to 2005, and continue with 177 

RCP 8.5 projections to 2100. We note that these drivers do not include the representation of 178 

land-use and land cover change and their effect on NPP, Ts and θs. Therefore, SOC input are 179 
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likely to be higher than in reality. However, as stated earlier we are using the reduced 180 

complexity framework to understand the behaviour of the SOC model in response to 181 

variations in its parameters and we do not aim to provide improved estimates of global scale 182 

terrestrial carbon sinks. In each model version, both k and the sensitivity of Rh to temperature 183 

(represented by Q10) are constant globally, in accordance with observations (Mahecha et al., 184 

2010) and state-of-the-art models (Todd-Brown et al., 2013; Nishina et al., 2014). However, 185 

the actual value of the environmental scalar fT will of course vary spatially and temporally as 186 

a function of Ts. As we keep the same formulation of fW between model versions, we can 187 

attribute differences in results to the values of Q10 or k. 188 

 189 

2.3 Harmonized World Soil Database 190 

The Harmonized World Soil Database (HWSD; FAO, 2012) combines several national 191 

inventories and provides a number of chemical and physical soil properties at a 30 arc second 192 

resolution globally. However, despite the availability of this dataset, CMIP5 models exhibit a 193 

six-fold range in their total soil carbon content (Todd-Brown et al., 2013) including values 194 

well outside the uncertainty boundaries of observational data. We showed previously that 195 

using this dataset to discriminate between acceptable and unacceptable simulations resulted 196 

in a non-negligible reduction of the uncertainty in historical net carbon uptake (Exbrayat et 197 

al., 2013b). While we do not aim to provide CMIP5-like projections of the soil carbon 198 

balance with our reduced complexity model, we investigate the value of using the HWSD to 199 

discriminate between plausible and implausible simulations.  200 

We follow the method described by Todd-Brown et al. (2013) to derive an estimate of current 201 

total soil carbon from the latest version of the Harmonized World Soil Database (HWSD). 202 

First, we re-grid the original 30 arc seconds raster to a 0.5° × 0.5° resolution. Within each 203 

half-degree cell we select the dominant soil type. For each soil type, the database provides 204 

bulk density and organic carbon content for a top layer (0 – 30 cm depth) and a bottom layer 205 

(30 – 100 cm depth). This allows us to calculate soil C density (in kg C m
-2

) in each cell. We 206 

then multiply each grid cell by its area and sum to obtain a global estimate of ~1170 Pg C. 207 

Similarly to Todd-Brown et al. (2013) we also consider the uncertainty associated to our re-208 

gridding process as well as analytical measurements of soil properties. We therefore obtain a 209 
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95% confidence interval (CI95) of 29% below the mean to 32% above the mean, or ~830 – 210 

1550 Pg C. We provide these gridded data as supplementary material.  211 

 212 

3 Results 213 

3.1 Total soil carbon and global balance 214 

Figure 1 presents snapshots of total soil carbon for all 341 model versions for three periods: 215 

at equilibrium (in 1850, Figure 1a), at the end of historical transient simulations (in 2005, 216 

Figure 1b), and at the end of the projections with forcing corresponding to RCP 8.5 (in 2100, 217 

Figure 1c). Figure 1a shows that the spin-up procedure causes different model versions to 218 

equilibrate at widely varying levels of total soil carbon despite the use of the same boundary 219 

conditions of NPP and Ts. Differences in residence time k contribute most of the ~592 to 220 

2745 Pg C range, with larger values of k resulting in larger pools (Figure 1a). Variations in 221 

the Q10 parameter of fT have a smaller influence on total soil carbon but lower values do result 222 

in lower total soil carbon. For the same value of k, simulations with Q10 = 1.5 equilibrate with 223 

total soil carbon equal to 86% ± 0.005% (mean ± 1 standard deviation) of the amount with 224 

Q10 = 2.5. Figure 1b shows that the distribution of total soil carbon between model versions 225 

does not vary much during historical simulations (1850-2005). Models with large total soil 226 

carbon pools over this period remain versions with long residence time k and higher values of 227 

Q10. Note, however, that the range of total soil carbon in 2005 grows to ~709 to 2943 Pg C. 228 

Dashed contours on Figure 1b indicate the limits of the CI95 of the HWSD for current total 229 

soil carbon. Here, 115 simulations with values of k ranging approximately from 150 to 250 230 

months all fall within this range for 2005, regardless of the Q10 value used. Finally, Figure 1c 231 

continues to indicate a strong control of k on the total soil carbon in 2100. The projected 232 

range narrows to ~684 to 2825 Pg C throughout the 21
st
 century. However, we note there is 233 

an inversion in the influence of Q10 on simulated total soil carbon with lower values of Q10 234 

resulting in larger pools especially for longer baseline residence times k. Nevertheless, this is 235 

still minor compared to the influence of k on Cs. 236 

Although the range in simulated soil carbon remains similar through time, non-negligible 237 

changes occur. This is highlighted in Figure 2 which shows ΔCs, the change in total soil 238 

carbon as a function of model parameters k and Q10 for the historical simulations (1850 – 239 

2005, Figure 2a) and RCP 8.5 projections (2006 – 2100, Figure 2b). First, Figure 2a clearly 240 
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shows that all model versions act as a net carbon sink during historical simulations, 241 

accumulating between 81 and 283 Pg C. Model versions with longer residence time k tend to 242 

accumulate more carbon through time. However, models with the largest value of Q10 tend to 243 

accumulate only 69% ± 0.4% (mean ± 1 standard deviation) of the amount that the lowest Q10 244 

models do. By analysing Figure 2b, we see that the influence of Q10 on the total soil carbon 245 

balance grows during RCP 8.5 projections where Q10 now determines whether the soil 246 

remains a sink or becomes a source. This change between a source or a sink for different Q10 247 

values follows a near linear relationship with k (solid line on Figure 2b). Interestingly, the -248 

179 to 168 Pg C range in the change in total soil carbon during RCP 8.5 is mostly a function 249 

of Q10 as both extremes are achieved with the longest residence time used here. In other 250 

words, while Q10 decides of the sign of the change, k, and hence the initial stocks of SOC 251 

after spin-up, drives the magnitude of the response. 252 

If we consider only models that fall within the CI95 of the HWSD for current total soil carbon 253 

(dashed contours on Figure 2a and 2b) the spread in simulated total soil carbon balance is 254 

largely reduced. During the historical simulations, the range of this subset of models shrinks 255 

by 84 Pg C to between 87 and 205 Pg C. It corresponds to a reduction of about 42% of the 256 

initial uncertainty. Similarly, the range in projected soil carbon balance is reduced by 157 Pg 257 

C to -129 to 61 Pg C, a reduction of about 45% of the initial uncertainty. We note, however, 258 

that this restriction does not necessarily increase confidence in sign of the future soil carbon 259 

change under RCP8.5.  260 

Differences in the behaviour between the full set of models and this subset of observationally 261 

constrained models can be seen in the time series and probability density functions (PDFs) 262 

for the historical period, shown in Figure 3. First, the time series from 1850 shows there is no 263 

noticeable difference between the full set of simulations (in grey) and the subset of 264 

simulations with acceptable current soil carbon (in green) until 1900. During the first half of 265 

the 20
th

 century, stronger sinks are excluded as they lie outside the CI95 range, which 266 

correspond to the upper tail of the distribution of ΔCs (see PDF inset for 1950). However, the 267 

kurtosis of the distribution, or most probable change from our simulations, changes 268 

negligibly. After ~1960, we observe a step-change in cumulative ΔCs that follows a strong 269 

response in NPP to the rapid increase in atmospheric CO2 (please refer to Exbrayat et al., 270 

2013b for a more detailed account of this behaviour). The spread between simulations grows 271 

and most of the excluded simulations based on the CI95 range are the strongest sinks (as in 272 
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Figure 2a) while a few of the least accumulating simulations are also excluded. This does 273 

have a large impact on the most probable change in storage, reducing it from ~200 PgC to 274 

~140 PgC. 275 

We now examine future simulations and present time series and PDFs of change in total soil 276 

carbon during RCP 8.5 projections in Figure 4. All simulations continue to accumulate 277 

carbon at the beginning of the 21
st
 century and remain net carbon sinks until about 2060. At 278 

the end of the century, some model versions have simulated positive ΔCs corresponding to a 279 

net carbon sink over the 21
st
 century, while other ends their projections with negative ΔCs, or 280 

a net carbon loss. However, all simulations show the same overall behaviour with first an 281 

increase in Cs that peaks, and then a decrease in Cs. The timing of the peak, i.e. when soil 282 

carbon starts to deplete, varies between ~2035 and 2075 and is explained by the value of Q10 283 

(R
2
 = 0.74, data not shown) with higher values leading to an earlier peak. This indicates that, 284 

in all simulations, soil has become a net source of carbon by the end of the 21
st
 century, 285 

regardless how much carbon was accumulated since 2005, and hence since 1850. The PDFs 286 

in 2050 show that selecting only observationally consistent models results in the most heavily 287 

accumulating simulations, i.e. those that would peak later, to be dismissed. However, by 288 

2100, both the lower and upper tails of the initial distribution are clipped, reducing the 289 

simulated range from -178 to 168 Pg C (all simulations) to -129 to 61 Pg C. In both cases, 290 

differences in the kurtosis of both distributions remains very small which indicates that our 291 

selection scheme dismisses outliers. We note that the lower bound of ΔCs for both sets of 292 

models is the same until late in the projections (~2085). 293 

 294 

3.2 Regional differences 295 

Although Figure 1 indicates that the range in k can explain most of the variability in total soil 296 

carbon content at equilibrium and hence through transient simulations, Q10 is likely to 297 

influence the local response of fT. Figure 5 shows the relative value of fT for different 298 

temperatures and values of Q10. Since the chosen Tref =15°C, all Q10 values lead fT to be equal 299 

at this particular temperature. However, the more difference there is between the actual 300 

temperature and Tref, the more sensitive fT becomes to values of Q10. As our simulations are 301 

spatially-explicit, this may introduce non-negligible regional differences in C pools at 302 

equilibrium and their response to transient changes in Ts and NPP. 303 
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To investigate this more in detail, we present the zonal averages of soil C density for different 304 

values of Q10 with k set to 180 months (Figure 6). We choose this particular residence time as 305 

example because all corresponding simulations are within the CI95 of the HWSD for 2005 306 

regardless the value of Q10. Figure 6a shows that Q10 values do introduce non-negligible 307 

differences in local equilibrated soil C density. Steady-state pools at low latitudes (30°S to 308 

30°N) are larger with low values of Q10 (blue in Figure 6). Conversely, high latitude pools are 309 

larger with high values of Q10 (red in Figure 6). Overall, the range in the value of zonally 310 

averaged soil C density at equilibrium is up to three-fold depending on the chosen value of 311 

Q10. This is particularly obvious in regions with high NPP including low-latitude tropical 312 

rainforests or northern taigas. As was the case with total Cs, the zonal distribution soil C 313 

density and the relative position of simulations with different Q10 do not vary much between 314 

1850 and 2005 (Figure 6b) although there is a slight shift towards uniformly higher densities 315 

as all model versions are net global carbon sinks (Figure 2a and 3). The pattern of zonal soil 316 

carbon remains essentially the same at the end of RCP 8.5 projections. However, models with 317 

lower values of Q10 now have more carbon than those with high values of Q10 over a broader 318 

zone (40°S – 50°N). 319 

Figure 7 shows the zonal change in soil C density for the same simulations as in Figure 6. 320 

Figure 7a indicates that all simulations simulate a net sink almost everywhere during 321 

historical simulations, except at latitudes > 70°N. However, the strength of this sink is 322 

strongly dependent upon the value of Q10, especially in low latitudes. There is an 323 

approximately two-fold difference between the high accumulation of low Q10 models, and the 324 

low accumulation of high Q10 models. Differences between Q10 values are negligible at 325 

higher latitudes. Figure 7b shows the same information for RCP 8.5 projections. Simulations 326 

with lower values of Q10 almost always accumulate more C (except between 0° and 10°N). 327 

While all model versions with k = 180 months lose carbon at low latitudes (20°S – 20°N), 328 

and gain carbon at high latitudes in the northern hemisphere (> 50°N), the value of Q10, and 329 

hence the environmental scalar fT, decides of the sign of the local soil C balance in the 21
st
 330 

century at mid-latitudes. Within the mid-latitudes, high values of Q10 are more likely to 331 

simulate a net loss of soil carbon. We can therefore narrow down the dependence of the 332 

global ΔCs on Q10 to its affect at mid-latitudes. 333 

 334 
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4 Discussion 335 

4.1 Effect of k and Q10 on soil carbon  336 

In our simulations, the range in total soil carbon at equilibrium (~592 to 2745 Pg C) depends 337 

on which value of Q10 and especially k is used (Figure 1a). This range captures the ~561 to 338 

2938 Pg C range in soil carbon in CMIP-5 in 1860 (see Supplementary Figure S1). We note 339 

of course that CMIP5 models not only vary in their soil C component, but simulate different 340 

NPP and Ts and also integrate a range of soil moisture limitations (Todd-Brown et al., 2013). 341 

The range achieved here at the end of the historical simulations (~709 to 2943 Pg C) is, for 342 

example, larger than the 1090 to 2646 Pg C range in 2000 from 7 DGVMs in the ISI-MIP 343 

project (Nishina et al., 2014) which were driven by a harmonised weather dataset. 344 

We can attribute this range to the first-order representation of decomposition and its response 345 

to the initialisation procedure used in most CMIP-5 simulations. By spinning-up the model, 346 

the goal is to stabilise pools so that total NPP is exactly compensated by total Rh over the 347 

selected period of time (here 10 years). In Equation (2), a longer residence time k results in a 348 

lower decay rate (i.e. Rh per unit of Cs). Therefore, model versions that have a slower 349 

turnover will require more substrate to simulate the same Rh needed to compensate NPP. As 350 

the baseline residence time k is applied globally, it drives the global pool size (Figure 1) 351 

much more than changing Q10 affects fT. However, as seen in Figure 6, when considered 352 

regionally, Q10 plays a non-negligible role for the local response of decomposition and the 353 

definition of equilibrium soil C density. High values of Q10 lead fT to trigger strong decay 354 

rates in warm regions (Figure 5) that require less substrate (see low latitudes in Figure 6a) to 355 

compensate the same NPP. Conversely, high Q10 lead to low values of fT in cold regions. 356 

Therefore, more substrate is required to bring the pool to equilibrium as seen in high latitudes 357 

in Figure 6a. Low values of Q10 show an opposite regional behaviour. Regional differences 358 

compensate each other and therefore fT with different Q10 values can only explain a small 359 

fraction of the range in equilibrated total soil carbon. Of course, if another Tref was used, the 360 

relative differences between fT with different Q10 would be altered and the influence of Q10 361 

and its effect on fT on total and local Cs would vary. Furthermore, the difference between fT 362 

with different Q10 grows with the absolute value of the difference Ts-Tref. Therefore, using a 363 

value of Tref that is outside the range of actual temperatures would lead fT with different Q10 to 364 
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keep the same relative position globally. It would introduce larger relative differences 365 

between these functions.  366 

Comparing Figures 1a, 1b and 1c suggests that the range in total Cs at equilibrium is a good 367 

predictor of the current and future range in total soil carbon. Despite differences in the 368 

magnitude of the change in Cs through time (Friedlingstein et al., 2014), equilibrium 369 

conditions achieved under pre-industrial conditions largely define current and future pool 370 

sizes. Examining Figure 6 confirms that this global effect can also be seen regionally, 371 

especially in low (20°S to 20°N) and high (>50°N) latitudes, where carbon pools are largest. 372 

This is of concern as substrate availability also influences Rh and hence its response to 373 

changes. 374 

Changes in Cs through time are nevertheless non-negligible, and it is important to quantify 375 

the response of the system to perturbations. Our results show increasing atmospheric CO2 376 

concentrations enhances NPP more than the simultaneous warming enhances Rh during 377 

historical simulations. This historical net carbon sink that is driven by the response of 378 

vegetation to increasing atmospheric CO2 (and hence SOCin) is in accordance with previous 379 

studies (Friedlingstein et al., 2006; Sarmiento et al., 2010; Zhang et al., 2011; Wania et al., 380 

2012; Anav et al., 2013; Exbrayat et al., 2013b). Therefore, all model versions with longer 381 

residence time accumulate more Cs over the same time period as a result of a slower turnover 382 

of carbon in soils, and this mirrors the state of the equilibrium stores. However, despite the 383 

dominance of the increased NPP on ΔCs, the historical warming signal is influential. 384 

Specifically, those model versions more sensitive to changes in temperature (i.e. with high 385 

values of Q10) accumulate less soil carbon during the 20
th

 century even though they initially 386 

equilibrated with larger global pools. This is also true of local soil C density where high Q10 387 

values are less accumulating regardless of the initial soil C density. We however note that the 388 

value Tref used in our experiments is well within the range of actual temperatures. Therefore, 389 

the historical warming does not induce large changes in the values of fT with different Q10. 390 

Projections under the strong-forcing RCP 8.5 scenario also see an increase in the influence of 391 

the value of Q10 on ΔCs. Figure 2b clearly shows that the capacity of soils to become carbon 392 

sources or remain sinks depends almost entirely on the Q10 parameter, and both states can be 393 

achieved for any value of k used while remaining within range of previous studies 394 

(Friedlingstein et al., 2014; Nishina et al., 2014). Figure 7b indicates that this is clearly a 395 

result of differences in the local response of model versions in the mid-latitudes as a function 396 
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of Q10. Such regional discrepancies leading to a change in the sign of global ΔCs models have 397 

also been highlighted through a recent inter-comparison project that used a harmonised 398 

weather dataset to drive 7 biome models (Nishina et al., 2014). However, contrary to this 399 

previous study, none of our model versions accumulates soil carbon in the inter-tropical 400 

region during the 21
st
 century. This is probably due to the fact that we use the same boundary 401 

conditions of NPP and Ts for all our model versions, while models used by Nishina et al. 402 

(2013) used a prescribed weather dataset but were left free to simulate their own NPP.  403 

Overall, the globally applied model parameter k drives the steady-state response of our 404 

reduced complexity system. However, the more conditions are changing (i.e. steady-state to 405 

historical to RCP 8.5 projections), the more the dynamic transition of the system towards a 406 

new equilibrium depends on the environmental scalar fT and the specific value of Q10. 407 

Although the same formulation of fT is applied globally, differences in its response to local Ts 408 

sum up to determine the sign of total soil carbon balance. We also note that model versions 409 

that equilibrate as a result of longer baseline residence time k have a tendency to produce a 410 

larger absolute response of total soil carbon balance. Therefore, the size of pools to which the 411 

change is applied seems to dominate the response even when higher values of k imply a 412 

smaller relative change in the decay rate k
-1

 × fT × fW used in equation 2. This control of 413 

initial conditions obtained by spin-up on the response of the system is a critical aspect that 414 

needs to be better resolved, especially since recent inter-comparison experiments all exhibit 415 

huge discrepancies in equilibrium conditions of participating models (Anav et al., 2013; 416 

Todd-Brown et al., 2013; Nishina et al., 2014).  417 

 418 

4.2 Discriminating between model versions 419 

Since k clearly influences the total soil carbon content at equilibrium in 1850, it is a good 420 

predictor of the current total soil carbon content. Therefore, k is the key parameter that 421 

decides how much carbon is active in the modelled system, and whether model versions fall 422 

within the CI95 of the HWSD. Here, all simulations with baseline residence time between 150 423 

and 250 months fulfil this requirement regardless of which Q10 is used in fT.  424 

If we isolate these simulations, the range in total soil carbon change shrinks by 42% and 45% 425 

for the historical simulations and RCP 8.5 projections, respectively. However, while this 426 

selection dismisses outliers it does not increase confidence in the sign of the soil carbon 427 
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change. This is because regional differences lead to similar values in total soil carbon for 428 

different values of Q10. These regional differences translate into heterogeneous responses 429 

under RCP 8.5 forcing, especially in mid-latitudes. They are sufficient to induce a change of 430 

sign in the global soil carbon balance.  431 

 432 

5 Conclusion 433 

We have used a reduced complexity model, broadly representative of current state-of-the-art 434 

models of soil organic C decomposition used in CMIP5 and ISI-MIP experiments, to explore 435 

the response of microbial decomposition to climate change on soil C dynamics at regional 436 

and global scale. We have shown that key parameters in the first-order representation of 437 

decomposition interact in markedly different ways depending on the nature of forcing and 438 

antecedent conditions. First, the time and space-invariant baseline residence time decides of 439 

the total soil carbon content at equilibrium after spin-up, typically the process used by CMIP5 440 

models to initialise C pools. Next, the more boundary conditions imposed on the system 441 

move away from the equilibrium forcing, the more the environmental scalar describing the 442 

sensitivity of the system gains in importance. However, it is the size of the pool to which the 443 

change is applied that mostly controls the magnitude of the response. 444 

Applying a constraint on total soil carbon that discriminates between acceptable simulations -445 

of total soil carbon leads to a drastic reduction of the range of simulated change. Meanwhile, 446 

most of the remaining uncertainty in 21
st
 century projections of total soil carbon can be 447 

attributed to zonal differences in the response to change, especially at mid-latitudes. These do 448 

not allow us to confidently project soil as either a global source or sink of carbon for the 21
st
 449 

century. However, it is clear that under RCP 8.5 tropical soils are not suited for long-term 450 

carbon storage while some more potential exists in high latitudes. 451 

Finally, we suggest that future estimates of terrestrial, and especially soil, carbon responses to 452 

climate change should be more constrained by available datasets of carbon stocks. This is 453 

crticial as model structures describe fluxes as a fraction of the substrate pool size. So far, the 454 

process of spin-up has too many degrees of freedom that lead to model-specific amounts of 455 

active soil carbon. 456 

 457 
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 577 

Figure 1. Snapshots of total soil carbon in the reduced complexity model as a function of parameter values. Dashed contours in panel b indicate 578 

the CI95 of the HWSD in 2005 (830 – 1550 Pg C). 579 

580 
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 581 

Figure 2. Change in total soil carbon in the reduced complexity model as a function of parameter values for each period as indicated. Dashed 582 

contours in panel b indicate model versions that produced soil stocks within the CI95 of the HWSD in 2005 (830 – 1550 Pg C). The thick black 583 

line represents no change. 584 
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 586 

Figure 3. Change in total soil carbon through time for historical simulations. Insets represent 587 

the probability density function of the change since 1850 for the period indicated. Grey is for 588 

all simulations while green is used to distinguish simulations for which total soil carbon is 589 

within the CI95 of the HWSD in 2005. 590 

591 
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 592 

Figure 4. Change in total soil carbon through time for RCP 8.5 projections. Insets represent 593 

the probability density function of the change since 2005 for the indicated year. Grey is for 594 

all simulations while green is used to distinguish simulations for which total soil carbon is 595 

within the CI95 of the HWSD in 2005. 596 

597 
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 598 

Figure 5. Values of fT as a function of Ts and Q10. For each temperature, the value is 599 

expressed as the proportion of the maximum value achieved for any value of Q10. Areas 600 

outside of the dashed lines represent where fT is less than 50% of the maximum for the same 601 

temperature. 602 
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 604 

Figure 6. Zonal average soil carbon density in the reduced complexity model with k=180 months and various values of Q10 as indicated by the 605 

colour bar.  606 
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 608 

Figure 7. Zonal change in soil C density during historical simulations (a) and RCP8.5 (b) 609 
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