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Abstract 12 

Recent studies have identified the first-order representation of microbial decomposition as a 13 

major source of uncertainty in simulations and projections of the terrestrial carbon balance. 14 

Here, we use a reduced complexity model representative of current state-of-the-art models of 15 

soil organic carbon decomposition. We undertake a systematic sensitivity analysis to 16 

disentangle the effect of the time-invariant baseline residence time (k) and the sensitvity of 17 

microbial decomposition to temperature (Q10) on soil carbon dynamics at regional and global 18 

scales. Our simulations produce a range in total soil carbon at equilibrium of ~592 to 2745 Pg 19 

C which is similar to the ~561 to 2938 Pg C range in pre-industrial soil carbon in models 20 

used in the fifth phase of the Coupled Model Intercomparison Project. This range depends 21 

primarily on the value of k, although the impact of Q10 is not trivial at regional scales. As 22 

climate changes through the historical period, and into the future, k is primarily responsible 23 

for the magnitude of the response in soil carbon, whereas Q10 determines whether the soil 24 

remains a sink, or becomes a source in the future mostly by its effect on mid-latitudes carbon 25 

balance. If we restrict our simulations to those simulating total soil carbon stocks consistent 26 

with observations of current stocks, the projected range in total soil carbon change is reduced 27 

by 42% for the historical simulations and 45% for the future projections. However, while this 28 

observation-based selection dismisses outliers, it does not increase confidence in the future 29 
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sign of the soil carbon feedback. We conclude that despite this result, future estimates of soil 30 

carbon and how soil carbon responds to climate change should be constrained by available 31 

observational data sets.  32 

 33 

1 Introduction 34 

There is a 6-fold range in the amount of carbon stored in the soil in simulations conducted as 35 

part of the fifth phase of the Coupled Model Intercomparison Project (CMIP5; Taylor et al., 36 

2012). This 6-fold range, identified by Todd-Brown et al. (2013), is consistent with results 37 

from model intercomparison projects such as the Coupled Climate-Carbon Cycle Model 38 

Intercomparison Project (C4MIP; Friedlingstein et al., 2006). The analysis of carbon stores in 39 

both C4MIP and CMIP5 have focused on the prediction of terrestrial and soil carbon through 40 

time. In addition to demonstrating the large differences in carbon stocks (Todd-Brown et al., 41 

2013), they have also highlighted large inter-model differences in global and regional land-42 

atmosphere carbon (C) fluxes (e.g. Friedlingstein et al., 2006, 2014). This lack of agreement 43 

between simulations exists in fully coupled models (e.g. C4MIP and CMIP-5) but can also be 44 

found if sources of uncertainty are narrowed by relying on one weather dataset to drive 45 

multiple land models (Friend et al., 2013; Nishina et al., 2014), or by using one land model 46 

driven by multiple climate projections (Ahlström et al., 2013).  47 

In these previous studies, critical uncertainties have been identified in the microbial 48 

decomposition of soil organic C and the associated release of CO2 via heterotrophic 49 

respiration (Rh). This is despite all the current state-of-the-art global soil C models relying on 50 

a similar representation of decomposition as a first-order process (see Exbrayat et al., 2013b; 51 

Nishina et al., 2014; Todd-Brown et al., 2013). This conceptualization describes 52 

decomposition and Rh as proportional to the availability of organic matter. The decay rate (or 53 

Rh per unit of soil C) is modified based on an environmental scalar that intends to mimic the 54 

dynamical response of microbial biomass to soil moisture and soil temperature.  55 

This simple model structure has recently received some criticism because it lacks explicit 56 

representation of microbial physiology (Allison et al., 2010; Todd-Brown et al., 2012; Wieder 57 

et al., 2013; Xenakis and Williams, 2014). Furthermore, the formulation of the environmental 58 

scalar is held constant in time which is not consistent with recently identified enhancing or 59 

compensatory responses of microbial communities to changes in boundary conditions (Karhu 60 
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et al., 2014). Therefore, it can only explain the acclimation of decomposers to warming (Luo 61 

et al., 2001) as a result of the quick depletion of labile pools by enhanced microbial biomass 62 

(Kirschbaum, 2004; Knorr et al., 2005). 63 

We previously identified (Exbrayat et al., 2013b, 2014) some further implications of the first-64 

order representation of microbial decomposition. First, in climate change experiments, model 65 

pools are usually initialised using a spin-up procedure with fixed pre-industrial atmospheric 66 

CO2 concentrations until C pool trends are removed (Xia et al., 2012). Due to the interaction 67 

with substrate availability, the decay rate simulated by the model in response to steady 68 

boundary conditions determines the size of soil C pools reached at equilibrium. Because spin-69 

up is a long computational process, the magnitude of pool sizes is conserved during 70 

subsequent shorter simulations of climate change and, as a result, equilibrated stocks strongly 71 

explain final stocks (e.g. CMIP5 models as shown in supplementary Figure S1 after Exbrayat 72 

et al., 2014). Second, the microbial sensitivity to changing environmental conditions affects 73 

the response of the system under transient climate simulations (Falloon et al., 2011; Exbrayat 74 

et al., 2013a,b). However, because substrate availability also controls the amount of respired 75 

carbon, there is a “memory” control imposed by the initial conditions of this transient 76 

simulation (Exbrayat et al., 2013b and 2014) that also affects the response to perturbation in 77 

boundary conditions. The relative contribution of these two factors on soil C projections 78 

remains to be explored in detail especially since last generation models disagree on the 79 

carbon balance projected in the future (Friedlingstein et al., 2014; Nishina et al., 2014), 80 

making it challenging to elaborate any land-based offsetting strategy.  81 

Here, we use a reduced complexity model representative of current state-of-the-art models of 82 

soil organic C decomposition. A systematic sensitivity analysis is performed to disentangle 83 

the effect of the time-invariant baseline residence time and the formulation of the dynamic 84 

response of microbial decomposition to climatic change on soil C dynamics at regional and 85 

global scale. Using these experiments, we seek to investigate the relative contribution of 86 

these two inter-related components that drive the absolute and relative change in soil C 87 

through time. This is a step towards understanding the origin of the disagreement between 88 

CMIP5 models’ simulation of soil C and can help in reducing the uncertainty in future model 89 

intercomparisons. We also use available estimates of total soil C to assess the added value of 90 

observational data to inform the modelling procedure. We attempt to constrain the system’s 91 

response to climate change by identifying model versions that simulate amounts of soil C 92 
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mobilized in the active cycle that are outside the confidence intervals estimated for the 93 

observations. We argue that, due to the first-order parameterization, such model versions are 94 

unlikely to provide reliable projections of the response of soil C pools as they would do it for 95 

the wrong reasons. We do not aim to provide new estimates of SOC response to climate 96 

change with our reduced complexity model. Instead, we suggest that our results will help the 97 

CMIP6 community to improve the design of future intercomparisons by highlighting the need 98 

and benefits of confronting models with existing data to reduce the uncertainty.  99 

 100 

2 Materials and methods 101 

2.1 Reduced complexity model 102 

It is not possible to re-run each CMIP5 model or isolate the representation of soil carbon 103 

processes from each model. This would be extraordinarily computationally expensive and the 104 

associated feedbacks would make the analysis of the results problematic. A far simpler 105 

approach is required which led Todd-Brown et al., (2013, 2014) to develop and demonstrate 106 

that the CMIP5 SOC dynamics can be successfully reproduced using a simplified model 107 

structure. In this paper we develop and then use a reduced complexity model that simulates 108 

the monthly evolution of a single soil organic carbon pool, Cs, in response to input derived 109 

from Net Primary Productivity (NPP, g C m-2 mth-1) and output by heterotrophic respiration 110 

(Rh, g C m-2 mth-1). For each monthly time step, the soil carbon balance can be described as:  111 

h
s RNPP

t

C
−=

∂

∂
          (1) 112 

where NPP is a prescribed boundary condition in our model and Rh is simulated as a first-113 

order process dependent on the availability of substrate Cs such as:  114 

sWTh CffkR ×××= −1
         (2) 115 

where k is the baseline residence time at 15°C (Xia et al., 2013) adjusted at each time step by 116 

fT which is a function of soil temperature Ts (°C). The soil moisture (θs) modification 117 

function, fW, is usually expressed as a fraction of soil moisture saturation (Moyano et al., 118 

2012). We implement a classical formulation of the soil temperature sensitivity function fT: 119 

( )
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where Q10 is a constant factor that describes the relative increase in microbial activity for a 121 

warming of 10°C, and Tref is the reference temperature (°C) for which fT(Ts) = 1 (Lloyd and 122 

Taylor, 1994; Bauer et al., 2012). The chosen Tref is the commonly used 15°C (Todd-Brown 123 

et al., 2013) so that the decomposition rate equals k
-1 when moisture is non-limiting and 124 

temperature is approximately equal to the global average. We use the same formulation of fW 125 

as in the CASA-CNP model (Wang et al., 2010): 126 
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which is a bell-shaped function that is equal to 1 for θs = 0.55. 128 

This first-order representation of microbial decomposition with a specified decay rate 129 

adjusted by environmental scalars is used in all 11 CMIP5 models that simulate soil carbon 130 

(Todd-Brown et al., 2013) and all 7 Dynamic Global Vegetation Models used in the ISI-MIP 131 

project (Friend et al., 2013; Nishina et al., 2014). Typically, these models rely on a multi-pool 132 

architecture to represent the diversity in organic matter. Each pool has its own residence time 133 

that corresponds to a degree of resistance to decomposition (Davidson and Janssen, 2006). 134 

Usually, part of the decomposition occurring in one pool is routed to one or several other 135 

pools while the rest is emitted via Rh. At the ecosystem scale, however, the same 136 

environmental scalar is applied despite the multi-pool architecture, and the heterotrophic 137 

respiration flux is proportional to the amount of substrate available. Therefore, our simplified 138 

model is broadly representative of the current paradigm and provides a useful framework to 139 

undertake the sensitivity analysis described hereafter.  140 

Soil moisture also has an influence on microbial decomposition (Falloon et al., 2011, Moyano 141 

et al., 2012, 2013; Exbrayat et al., 2013a,b). However, Todd-Brown et al. (2013, 2014) 142 

recently demonstrated that a one pool reduced complexity model could reproduce both total 143 

soil carbon content and its spatial distribution for most of the CMIP5 models without 144 

considering decomposition response to variations in soil moisture. We also recently showed 145 

that global features in the distribution and evolution of Cs were much more related to 146 

uncertainties in fT than uncertainties in the formulation of fW (Exbrayat et al., 2013b). 147 

Therefore, in order to keep the analyses as simple as possible and isolate the effect of fT but 148 

still account for the effect of soil moisture on Rh, we keep the formulation of fW constant in 149 

the experiments that follow.  150 
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We are aware that our reduced complexity model relies on simplifications such as the use of a 151 

single soil carbon pool and global values of k, Q10 and Tref. While a multiple pool structure 152 

would provide diverging results, single pool soil carbon carbon models similar to our design 153 

are used in 3 of the 11 CMIP5 models described by Todd-Brown et al. (2013) and 2 of the 7 154 

ISI-MIP models described by Nishina et al. (2014). Further, using global parameter values of 155 

k, Q10 and Tref is consistent with these state-of-the-art models (Todd-Brown et al., 2013; 156 

Nishina et al., 2014). Of course, this does not allow representing processes such as the 157 

remobilization of carbon in the active cycle following permafrost thaw (Koven et al., 2011) 158 

or the probably different behaviour of biological systems in frozen conditions but these are 159 

not implemented in the land component of CMIP5 Earth system models and therefore fall 160 

beyond the scope of this paper. In summary, we fully appreciate that our reduced complexity 161 

model is a simplification of the processes that operate in various regions of the Earth System. 162 

However, we note that our study investigates the sensitivity of the first-order 163 

parameterization of microbial decomposition and Rh processes used in current ecosystem 164 

models to its uncertain parameters (Todd-Brown et al., 2013; Nishina et al., 2014). Our 165 

approach is therefore analysing how current models behave and why current models simulate 166 

a large range in SOC. Our purpose is not to provide improved results of the response of soil 167 

carbon to climate change but rather to better understand the implications of existing 168 

approaches, using in CMIP5, to parameterization and initial value prescription described in 169 

Section 2.2. 170 

2.2 Model setup and experiments 171 

We configure the reduced complexity model in a spatially explicit way to represent global 172 

variations, implemented as a surrogate for the CASA-CNP biogeochemical module (Wang et 173 

al., 2010) of the CABLE land surface model (Wang et al., 2011). A previous simulation by 174 

CABLE coupled to the coarse-resolution CSIRO Mk3L climate model (3.2° latitude × 5.6° 175 

longitude; Phipps et al., 2011) and driven by CMIP5 atmospheric CO2 data provides monthly 176 

NPP, Ts and θs to the reduced complexity model. We use both historical simulations 177 

(Exbrayat et al., 2013b) and 21st century projections using the Representative Concentration 178 

Pathway 8.5 (RCP 8.5) atmospheric concentration scenario.  179 

We perform a sensitivity analysis by running the simple model with various combinations of 180 

a Q10 value and a baseline residence time k. We use 11 equally-spaced values of Q10 ranging 181 
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from 1.5 to 2.5 (i.e. intervals of 0.1), and 31 equally-spaced values of k ranging from 120 182 

months to 480 months (i.e. intervals of 12 months). These values are based on the range of 183 

results previously obtained by Todd-Brown et al. (2013) with their own reduced complexity 184 

model. Each value of Q10 is applied with each value of k for a total of 341 simulations. Model 185 

versions are initialised via a classical spin-up procedure (Xia et al., 2012) using input data 186 

from 1850 to 1859 for 10,000 years to ensure all soil carbon pools reach a steady-state. We 187 

then continue simulations with NPP, Ts and θs data from 1850 to 2005, and continue with 188 

RCP 8.5 projections to 2100. We note that these drivers do not include the representation of 189 

land-use and land cover change and their effect on NPP, Ts and θs. Therefore, SOC input are 190 

likely to be higher than in reality. However, as stated earlier we are using the reduced 191 

complexity framework to understand the behaviour of the SOC model in response to 192 

variations in its parameters and we do not aim to provide improved estimates of global scale 193 

terrestrial carbon sinks. In each model version, both k and the sensitivity of Rh to temperature 194 

(represented by Q10) are constant globally, in accordance with observations (Mahecha et al., 195 

2010) and state-of-the-art models (Todd-Brown et al., 2013; Nishina et al., 2014). However, 196 

the actual value of the environmental scalar fT will of course vary spatially and temporally as 197 

a function of Ts. As we keep the same formulation of fW between model versions, we can 198 

attribute differences in results to the values of Q10 or k. 199 

 200 

2.3 Harmonized World Soil Database 201 

The Harmonized World Soil Database (HWSD; FAO, 2012) combines several national 202 

inventories and provides a number of chemical and physical soil properties at a 30 arc second 203 

resolution globally. However, despite the availability of this dataset, CMIP5 models exhibit a 204 

six-fold range in their total soil carbon content (Todd-Brown et al., 2013) including values 205 

well outside the uncertainty boundaries of observational data. We previously showed that 206 

simply using the global amount of SOC from the HWSD dataset to discriminate between 207 

acceptable and unacceptable simulations resulted in a non-negligible reduction of the 208 

uncertainty in historical net carbon uptake (Exbrayat et al., 2013b). While we do not aim to 209 

provide CMIP5-like projections of the soil carbon balance with our reduced complexity 210 

model, we investigate the value of using the HWSD to discriminate between plausible and 211 

implausible simulations.  212 
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We follow the method described by Todd-Brown et al. (2013) to derive an estimate of current 213 

total soil carbon from the latest version of the Harmonized World Soil Database (HWSD). 214 

First, we re-grid the original 30 arc seconds raster to a 0.5° × 0.5° resolution. Within each 215 

half-degree cell we select the dominant soil type. For each soil type, the database provides 216 

bulk density and organic carbon content for a top layer (0 – 30 cm depth) and a bottom layer 217 

(30 – 100 cm depth). This allows us to calculate soil C density (in kg C m-2) in each cell. We 218 

then multiply each grid cell by its area and sum to obtain a global estimate of ~1170 Pg C. 219 

Similarly to Todd-Brown et al. (2013) we also consider the uncertainty associated to our re-220 

gridding process as well as analytical measurements of soil properties. We therefore obtain a 221 

95% confidence interval (CI95) of 29% below the mean to 32% above the mean, or ~830 – 222 

1550 Pg C. We provide these gridded data as supplementary material. Due to the 6-fold range 223 

of SOC simulated by CMIP5 models (Todd-Brown et al., 2013), we believe that global SOC 224 

stocks from the HWSD can already represent a strong constraint to discriminate between 225 

different simulations. 226 

 227 

3 Results 228 

3.1 Total soil carbon and global balance 229 

Figure 1 presents snapshots of total soil carbon for all 341 model versions for three periods: 230 

at equilibrium (in 1850, Figure 1a), at the end of historical transient simulations (in 2005, 231 

Figure 1b), and at the end of the projections with forcing corresponding to RCP 8.5 (in 2100, 232 

Figure 1c). Figure 1a shows that the spin-up procedure causes different model versions to 233 

equilibrate at widely varying levels of total soil carbon despite the use of the same boundary 234 

conditions of NPP and Ts. Differences in residence time k contribute most of the ~592 to 235 

2745 Pg C range, with larger values of k resulting in larger pools (Figure 1a). Variations in 236 

the Q10 parameter of fT have a smaller influence on total soil carbon but lower values do result 237 

in lower total soil carbon. For the same value of k, simulations with Q10 = 1.5 equilibrate with 238 

total soil carbon equal to 86% ± 0.005% (mean ± 1 standard deviation) of the amount with 239 

Q10 = 2.5. Figure 1b shows that the distribution of total soil carbon between model versions 240 

does not vary much during historical simulations (1850-2005). Models with large total soil 241 

carbon pools over this period remain versions with long residence time k and higher values of 242 

Q10. Note, however, that the range of total soil carbon in 2005 grows to ~709 to 2943 Pg C. 243 
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Dashed contours on Figure 1b indicate the limits of the CI95 of the HWSD for current total 244 

soil carbon. Here, 115 simulations with values of k ranging approximately from 150 to 250 245 

months all fall within this range for 2005, regardless of the Q10 value used. Finally, Figure 1c 246 

continues to indicate a strong control of k on the total soil carbon in 2100. The projected 247 

range narrows to ~684 to 2825 Pg C throughout the 21st century. However, we note there is 248 

an inversion in the influence of Q10 on simulated total soil carbon with lower values of Q10 249 

resulting in larger pools especially for longer baseline residence times k. Nevertheless, this is 250 

still minor compared to the influence of k on Cs. 251 

Although the range in simulated soil carbon remains similar through time, non-negligible 252 

changes occur. This is highlighted in Figure 2 which shows ∆Cs, the change in total soil 253 

carbon as a function of model parameters k and Q10 for the historical simulations (1850 – 254 

2005, Figure 2a) and RCP 8.5 projections (2006 – 2100, Figure 2b). First, Figure 2a clearly 255 

shows that all model versions act as a net carbon sink during historical simulations, 256 

accumulating between 81 and 283 Pg C. Model versions with longer residence time k tend to 257 

accumulate more carbon through time. However, models with the largest value of Q10 tend to 258 

accumulate only 69% ± 0.4% (mean ± 1 standard deviation) of the amount that the lowest Q10 259 

models do. By analysing Figure 2b, we see that the influence of Q10 on the total soil carbon 260 

balance grows during RCP 8.5 projections where Q10 now determines whether the soil 261 

remains a sink or becomes a source. This change between a source or a sink for different Q10 262 

values follows a near linear relationship with k (solid line on Figure 2b). Interestingly, the -263 

179 to 168 Pg C range in the change in total soil carbon during RCP 8.5 is mostly a function 264 

of Q10 as both extremes are achieved with the longest residence time used here. In other 265 

words, while Q10 decides of the sign of the change, k, and hence the initial stocks of SOC 266 

after spin-up, drives the magnitude of the response. 267 

If we consider only models that fall within the CI95 of the HWSD for current total soil carbon 268 

(dashed contours on Figure 2a and 2b) the spread in simulated total soil carbon balance is 269 

largely reduced. During the historical simulations, the range of this subset of models shrinks 270 

by 84 Pg C to between 87 and 205 Pg C. It corresponds to a reduction of about 42% of the 271 

initial uncertainty. Similarly, the range in projected soil carbon balance is reduced by 157 Pg 272 

C to -129 to 61 Pg C, a reduction of about 45% of the initial uncertainty. We note, however, 273 

that this restriction does not necessarily increase confidence in sign of the future soil carbon 274 

change under RCP8.5.  275 
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Differences in the behaviour between the full set of models and this subset of observationally 276 

constrained models can be seen in the time series and probability density functions (PDFs) 277 

for the historical period, shown in Figure 3. First, the time series from 1850 shows there is no 278 

noticeable difference between the full set of simulations (in grey) and the subset of 279 

simulations with acceptable current soil carbon (in green) until 1900. During the first half of 280 

the 20th century, stronger sinks are excluded as they lie outside the CI95 range, which 281 

correspond to the upper tail of the distribution of ∆Cs (see PDF inset for 1950). However, the 282 

kurtosis of the distribution, or most probable change from our simulations, changes 283 

negligibly. After ~1960, we observe a step-change in cumulative ∆Cs that follows a strong 284 

response in NPP to the rapid increase in atmospheric CO2 (please refer to Exbrayat et al., 285 

2013b for a more detailed account of this behaviour). The spread between simulations grows 286 

and most of the excluded simulations based on the CI95 range are the strongest sinks (as in 287 

Figure 2a) while a few of the least accumulating simulations are also excluded. This does 288 

have a large impact on the most probable change in storage, reducing it from ~200 PgC to 289 

~140 PgC. 290 

We now examine future simulations and present time series and PDFs of change in total soil 291 

carbon during RCP 8.5 projections in Figure 4. All simulations continue to accumulate 292 

carbon at the beginning of the 21st century and remain net carbon sinks until about 2060. At 293 

the end of the century, some model versions have simulated positive ∆Cs corresponding to a 294 

net carbon sink over the 21st century, while other ends their projections with negative ∆Cs, or 295 

a net carbon loss. However, all simulations show the same overall behaviour with first an 296 

increase in Cs that peaks, and then a decrease in Cs. The timing of the peak, i.e. when soil 297 

carbon starts to deplete, varies between ~2035 and 2075 and is explained by the value of Q10 298 

(R2 = 0.74, data not shown) with higher values leading to an earlier peak. This indicates that, 299 

in all simulations, soil has become a net source of carbon by the end of the 21st century, 300 

regardless how much carbon was accumulated since 2005, and hence since 1850. The PDFs 301 

in 2050 show that selecting only observationally consistent models results in the most heavily 302 

accumulating simulations, i.e. those that would peak later, to be dismissed. However, by 303 

2100, both the lower and upper tails of the initial distribution are clipped, reducing the 304 

simulated range from -178 to 168 Pg C (all simulations) to -129 to 61 Pg C. In both cases, 305 

differences in the kurtosis of both distributions remains very small which indicates that our 306 
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selection scheme dismisses outliers. We note that the lower bound of ∆Cs for both sets of 307 

models is the same until late in the projections (~2085). 308 

 309 

3.2 Regional differences 310 

Although Figure 1 indicates that the range in k can explain most of the variability in total soil 311 

carbon content at equilibrium and hence through transient simulations, Q10 is likely to 312 

influence the local response of fT. Figure 5 shows the relative value of fT for different 313 

temperatures and values of Q10. Since the chosen Tref =15°C, all Q10 values lead fT to be equal 314 

at this particular temperature. However, the more difference there is between the actual 315 

temperature and Tref, the more sensitive fT becomes to values of Q10. As our simulations are 316 

spatially-explicit, this may introduce non-negligible regional differences in C pools at 317 

equilibrium and their response to transient changes in Ts and NPP. 318 

To investigate this more in detail, we present the zonal averages of soil C density for different 319 

values of Q10 with k set to 180 months (Figure 6). We choose this particular residence time as 320 

example because all corresponding simulations are within the CI95 of the HWSD for 2005 321 

regardless the value of Q10. Figure 6a shows that Q10 values do introduce non-negligible 322 

differences in local equilibrated soil C density. Steady-state pools at low latitudes (30°S to 323 

30°N) are larger with low values of Q10 (blue in Figure 6). Conversely, high latitude pools are 324 

larger with high values of Q10 (red in Figure 6). Overall, the range in the value of zonally 325 

averaged soil C density at equilibrium is up to three-fold depending on the chosen value of 326 

Q10. This is particularly obvious in regions with high NPP including low-latitude tropical 327 

rainforests or northern taigas. As was the case with total Cs, the zonal distribution soil C 328 

density and the relative position of simulations with different Q10 do not vary much between 329 

1850 and 2005 (Figure 6b) although there is a slight shift towards uniformly higher densities 330 

as all model versions are net global carbon sinks (Figure 2a and 3). The pattern of zonal soil 331 

carbon remains essentially the same at the end of RCP 8.5 projections. However, models with 332 

lower values of Q10 now have more carbon than those with high values of Q10 over a broader 333 

zone (40°S – 50°N). 334 

Figure 7 shows the zonal change in soil C density for the same simulations as in Figure 6. 335 

Figure 7a indicates that all simulations simulate a net sink almost everywhere during 336 

historical simulations, except at latitudes > 70°N. However, the strength of this sink is 337 
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strongly dependent upon the value of Q10, especially in low latitudes. There is an 338 

approximately two-fold difference between the high accumulation of low Q10 models, and the 339 

low accumulation of high Q10 models. Differences between Q10 values are negligible at 340 

higher latitudes. Figure 7b shows the same information for RCP 8.5 projections. Simulations 341 

with lower values of Q10 almost always accumulate more C (except between 0° and 10°N). 342 

While all model versions with k = 180 months lose carbon at low latitudes (20°S – 20°N), 343 

and gain carbon at high latitudes in the northern hemisphere (> 50°N), the value of Q10, and 344 

hence the environmental scalar fT, decides of the sign of the local soil C balance in the 21st 345 

century at mid-latitudes. Within the mid-latitudes, high values of Q10 are more likely to 346 

simulate a net loss of soil carbon. We can therefore narrow down the dependence of the 347 

global ∆Cs on Q10 to its affect at mid-latitudes. 348 

 349 

4 Discussion 350 

4.1 Effect of k and Q10 on soil carbon  351 

In our simulations, the range in total soil carbon at equilibrium (~592 to 2745 Pg C) depends 352 

on which value of Q10 and especially k is used (Figure 1a). This range captures the ~561 to 353 

2938 Pg C range in soil carbon in CMIP-5 in 1860 (see Supplementary Figure S1). We note 354 

of course that CMIP5 models not only vary in their soil C component, but simulate different 355 

NPP and Ts and also integrate a range of soil moisture limitations (Todd-Brown et al., 2013). 356 

The range achieved here at the end of the historical simulations (~709 to 2943 Pg C) is, for 357 

example, larger than the 1090 to 2646 Pg C range in 2000 from 7 DGVMs in the ISI-MIP 358 

project (Nishina et al., 2014) which were driven by a harmonised weather dataset. 359 

We can attribute this range to the first-order representation of decomposition and its response 360 

to the initialisation procedure used in most CMIP-5 simulations. By spinning-up the model, 361 

the goal is to stabilise pools so that total NPP is exactly compensated by total Rh over the 362 

selected period of time (here 10 years). In Equation (2), a longer residence time k results in a 363 

lower decay rate (i.e. Rh per unit of Cs). Therefore, model versions that have a slower 364 

turnover will require more substrate to simulate the same Rh needed to compensate NPP. As 365 

the baseline residence time k is applied globally, it drives the global pool size (Figure 1) 366 

much more than changing Q10 affects fT. However, as seen in Figure 6, when considered 367 

regionally, Q10 plays a non-negligible role for the local response of decomposition and the 368 
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definition of equilibrium soil C density. High values of Q10 lead fT to trigger strong decay 369 

rates in warm regions (Figure 5) that require less substrate (see low latitudes in Figure 6a) to 370 

compensate the same NPP. Conversely, high Q10 lead to low values of fT in cold regions. 371 

Therefore, more substrate is required to bring the pool to equilibrium as seen in high latitudes 372 

in Figure 6a. Low values of Q10 show an opposite regional behaviour. Regional differences 373 

compensate each other and therefore fT with different Q10 values can only explain a small 374 

fraction of the range in equilibrated total soil carbon. Of course, if another Tref was used, the 375 

relative differences between fT with different Q10 would be altered and the influence of Q10 376 

and its effect on fT on total and local Cs would vary. Furthermore, the difference between fT 377 

with different Q10 grows with the absolute value of the difference Ts-Tref. Therefore, using a 378 

value of Tref that is outside the range of actual temperatures would lead fT with different Q10 to 379 

keep the same relative position globally. It would introduce larger relative differences 380 

between these functions.  381 

Comparing Figures 1a, 1b and 1c suggests that the range in total Cs at equilibrium is a good 382 

predictor of the current and future range in total soil carbon. Despite differences in the 383 

magnitude of the change in Cs through time (Friedlingstein et al., 2014), equilibrium 384 

conditions achieved under pre-industrial conditions largely define current and future pool 385 

sizes as observed in CMIP5 models (Exbrayat et al., 2014). Examining Figure 6 confirms that 386 

this global effect can also be seen regionally, especially in low (20°S to 20°N) and high 387 

(>50°N) latitudes, where carbon pools are largest. This is of concern as substrate availability 388 

also influences Rh and hence its response to changes. 389 

Changes in Cs through time are nevertheless non-negligible, and it is important to quantify 390 

the response of the system to perturbations. Our results show increasing atmospheric CO2 391 

concentrations enhances NPP more than the simultaneous warming enhances Rh during 392 

historical simulations. This historical net carbon sink that is driven by the response of 393 

vegetation to increasing atmospheric CO2 (and hence SOCin) is in accordance with previous 394 

studies (Friedlingstein et al., 2006; Sarmiento et al., 2010; Zhang et al., 2011; Wania et al., 395 

2012; Anav et al., 2013; Exbrayat et al., 2013b). Therefore, all model versions with longer 396 

residence time accumulate more Cs over the same time period as a result of a slower turnover 397 

of carbon in soils, and this mirrors the state of the equilibrium stores. However, despite the 398 

dominance of the increased NPP on ∆Cs, the historical warming signal is influential. 399 

Specifically, those model versions more sensitive to changes in temperature (i.e. with high 400 
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values of Q10) accumulate less soil carbon during the 20th century even though they initially 401 

equilibrated with larger global pools. This is also true of local soil C density where high Q10 402 

values are less accumulating regardless of the initial soil C density. We however note that the 403 

value Tref used in our experiments is well within the range of actual temperatures. Therefore, 404 

the historical warming does not induce large changes in the values of fT with different Q10. 405 

Projections under the strong-forcing RCP 8.5 scenario also see an increase in the influence of 406 

the value of Q10 on ∆Cs. Figure 2b clearly shows that the capacity of soils to become carbon 407 

sources or remain sinks depends almost entirely on the Q10 parameter, and both states can be 408 

achieved for any value of k used while remaining within range of previous studies 409 

(Friedlingstein et al., 2014; Nishina et al., 2014). Figure 7b indicates that this is clearly a 410 

result of differences in the local response of model versions in the mid-latitudes as a function 411 

of Q10. Such regional discrepancies leading to a change in the sign of global ∆Cs models have 412 

also been highlighted through a recent inter-comparison project that used a harmonised 413 

weather dataset to drive 7 biome models (Nishina et al., 2014). However, contrary to this 414 

previous study, none of our model versions accumulates soil carbon in the inter-tropical 415 

region during the 21st century. This is probably due to the fact that we use the same boundary 416 

conditions of NPP and Ts for all our model versions, while models used by Nishina et al. 417 

(2013) used a prescribed weather dataset but were left free to simulate their own NPP.  418 

Overall, the globally applied model parameter k drives the steady-state response of our 419 

reduced complexity system. However, the more conditions are changing (i.e. steady-state to 420 

historical to RCP 8.5 projections), the more the dynamic transition of the system towards a 421 

new equilibrium depends on the environmental scalar fT and the specific value of Q10. 422 

Although the same formulation of fT is applied globally, differences in its response to local Ts 423 

sum up to determine the sign of total soil carbon balance. We also note that model versions 424 

that equilibrate as a result of longer baseline residence time k have a tendency to produce a 425 

larger absolute response of total soil carbon balance. Therefore, the size of pools to which the 426 

change is applied seems to dominate the response even when higher values of k imply a 427 

smaller relative change in the decay rate k
-1

 × fT × fW used in equation 2. This control of 428 

initial conditions obtained by spin-up on the response of the system is a critical aspect that 429 

needs to be better resolved, especially since recent inter-comparison experiments all exhibit 430 

huge discrepancies in equilibrium conditions of participating models (Anav et al., 2013; 431 

Todd-Brown et al., 2013; Nishina et al., 2014).  432 
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 433 

4.2 Discriminating between model versions 434 

Since k clearly influences the total soil carbon content at equilibrium in 1850, it is a good 435 

predictor of the current total soil carbon content. Therefore, k is the key parameter that 436 

decides how much carbon is active in the modelled system, and whether model versions fall 437 

within the CI95 of the HWSD. Here, all simulations with baseline residence time between 150 438 

and 250 months fulfil this requirement regardless of which Q10 is used in fT.  439 

If we isolate these simulations, the range in total soil carbon change shrinks by 42% and 45% 440 

for the historical simulations and RCP 8.5 projections, respectively. However, while this 441 

selection dismisses outliers it does not increase confidence in the sign of the soil carbon 442 

change. This is because regional differences lead to similar values in total soil carbon for 443 

different values of Q10. These regional differences translate into heterogeneous responses 444 

under RCP 8.5 forcing, especially in mid-latitudes. They are sufficient to induce a change of 445 

sign in the global soil carbon balance.  446 

 447 

5 Conclusion 448 

We have used a reduced complexity model, broadly representative of current state-of-the-art 449 

models of soil organic C decomposition used in CMIP5 and ISI-MIP experiments, to explore 450 

the response of microbial decomposition to climate change on soil C dynamics at regional 451 

and global scale. We have shown that key parameters in the first-order representation of 452 

decomposition interact in markedly different ways depending on the nature of forcing and 453 

antecedent conditions. First, the time and space-invariant baseline residence time decides of 454 

the total soil carbon content at equilibrium after spin-up, typically the process used by CMIP5 455 

models to initialise C pools. Next, the more boundary conditions imposed on the system 456 

move away from the equilibrium forcing, the more the environmental scalar describing the 457 

sensitivity of the system gains in importance. However, it is the size of the pool to which the 458 

change is applied that mostly controls the magnitude of the response. 459 

Applying a constraint on total soil carbon that discriminates between acceptable simulations 460 

of total soil carbon leads to a drastic reduction of the range of simulated change. Meanwhile, 461 

most of the remaining uncertainty in 21st century projections of total soil carbon can be 462 
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attributed to zonal differences in the response to change, especially at mid-latitudes. These do 463 

not allow us to confidently project soil as either a global source or sink of carbon for the 21st 464 

century. However, it is clear that under RCP 8.5 tropical soils are not suited for long-term 465 

carbon storage while some more potential exists in high latitudes. 466 

Finally, we suggest that future estimates of terrestrial, and especially soil, carbon responses to 467 

climate change should be more constrained by available datasets of carbon stocks. This is 468 

critical as model structures describe fluxes as a fraction of the substrate pool size. So far, the 469 

process of spin-up has too many degrees of freedom that lead to model-specific amounts of 470 

active soil carbon. 471 

 472 
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 601 

Figure 1. Snapshots of total soil carbon in the reduced complexity model as a function of parameter values. Dashed contours in panel b indicate 602 

the CI95 of the Harmonized World Soil Database in 2005 (830 – 1550 Pg C). 603 

604 



22 

 

 605 

Figure 2. Change in total soil carbon in the reduced complexity model as a function of parameter values for each period as indicated. Dashed 606 

contours in panel b indicate model versions that produced soil stocks within the CI95 of the Harmonized World Soil Database in 2005 (830 – 607 

1550 Pg C). The thick black line represents no change. 608 

 609 
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 610 

Figure 3. Change in total soil carbon through time for historical simulations. Insets represent 611 

the probability density function of the change since 1850 for the period indicated. Grey is for 612 

all simulations while green is used to distinguish simulations for which total soil carbon is 613 

within the CI95 of the Harmonized World Soil Database in 2005. 614 

615 
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 616 

Figure 4. Change in total soil carbon through time for RCP 8.5 projections. Insets represent 617 

the probability density function of the change since 2005 for the indicated year. Grey is for 618 

all simulations while green is used to distinguish simulations for which total soil carbon is 619 

within the CI95 of the Harmonized World Soil Database in 2005. 620 

621 
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 622 

Figure 5. Values of fT as a function of Ts and Q10. For each temperature, the value is 623 

expressed as the proportion of the maximum value achieved for any value of Q10. Areas 624 

outside of the dashed lines represent where fT is less than 50% of the maximum for the same 625 

temperature. 626 
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 628 

Figure 6. Zonal average soil carbon density in the reduced complexity model with k=180 months and various values of Q10 as indicated by the 629 

colour bar.  630 

631 
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 632 

Figure 7. Zonal change in soil C density during historical simulations (a) and RCP8.5 (b) 633 
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