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Abstract: 105 

Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the 106 

global carbon budget and to facilitate effective emissions mitigation strategies such as 107 

REDD+. Though broad scale mapping is based primarily on remote sensing data, the 108 

accuracy of resulting forest carbon stock estimates depends critically on the quality of field 109 

measurements and calibration procedures. The mismatch in spatial scales between field 110 

inventory plots and larger pixels of current and planned remote sensing products for forest 111 

biomass mapping is of particular concern, as it has the potential to introduce errors, especially 112 

if forest biomass shows strong local spatial variation. Here, we used 30 large (8-50 ha) 113 

globally distributed permanent forest plots to quantify the spatial variability in aboveground 114 

biomass density (AGBD in Mg ha
-1

) at spatial scales ranging from 5 to 250 m (0.025-6.25 ha), 115 

and to evaluate the implications of this variability for calibrating remote sensing products 116 

using simulated remote sensing footprints. We found that local spatial variability in AGBD is 117 

large for standard plot sizes, averaging 46.3% for replicate 0.1 ha subplots within a single 118 

large plot, and 16.6% for 1 ha subplots. AGBD showed weak spatial autocorrelation at 119 

distances of 20-400 m, with autocorrelation higher in sites with higher topographic variability 120 

and statistically significant in half of the sites. We further show that when field calibration 121 

plots are smaller than the remote sensing pixels, the high local spatial variability in AGBD 122 

leads to a substantial “dilution” bias in calibration parameters, a bias that cannot be removed 123 

with standard statistical methods. Our results suggest that topography should be explicitly 124 

accounted for in future sampling strategies and that much care must be taken in designing 125 

calibration schemes if remote sensing of forest carbon is to achieve its promise.126 
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1 Introduction 127 

Forests represent the largest aboveground carbon stock in the terrestrial biosphere, and 128 

deforestation, forest degradation, and regrowth are globally important carbon fluxes (Pan et 129 

al., 2011). Our ability to predict future atmospheric CO2 concentrations or to implement 130 

effective carbon emission mitigation strategies (e.g. REDD+; Agrawal et al., 2011) is limited 131 

by the accuracy of forest carbon stock estimates. The global monitoring of forest carbon 132 

stocks has thus come to the fore of the research agenda, with important implications in 133 

economics, policy and conservation (Gibbs et al., 2007). 134 

Aboveground carbon stock estimates based on field inventories and on remote sensing 135 

approaches have led to substantial progress in mapping broad-scale forest carbon stocks 136 

(Asner et al., 2010; Baccini et al., 2012; Malhi et al., 2006; Saatchi et al., 2011). However, 137 

such carbon maps have substantial uncertainties (Mitchard et al., 2014). The most common 138 

approach to quantifying forest carbon stocks at regional and national scales is to first stratify 139 

the area of interest, and then to assign to each stratum a mean carbon density value estimated 140 

from ground measurements. This approach inherently overlooks extensive spatial variation in 141 

carbon density within strata, including variation related to forest degradation and regrowth, 142 

both crucial components of forest carbon fluxes (Harris et al., 2012; Lewis et al., 2009). Thus, 143 

recent studies have moved from classification approaches involving a discrete number of 144 

forest types toward approaches encompassing continuous spatial variation in forest structure 145 

and carbon density, often utilizing space-based and airborne sensing of vegetation (Asner et 146 

al., 2010, 2013; Goetz and Dubayah, 2011; Wulder et al., 2012). 147 

Active remote sensing tools such as Light Detection and Ranging (LiDAR) and 148 

synthetic aperture radar (SAR) are currently the best candidates for forest carbon mapping at 149 

broad spatial scales. One forthcoming spaceborne mission is of particularly interest: the P-150 

band radar BIOMASS mission (scheduled for launch in 2020; Le Toan et al., 2011), as it will 151 
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provide estimates of above-ground carbon and its annual changes in the world’s forests. The 152 

products from this instrument will have a relatively coarse resolution (200 m) and will rely on 153 

ground data to train their inversion models and to evaluate the results. Hence, the quality of 154 

the resulting BIOMASS forest carbon map will depend crucially on the accuracy and 155 

suitability of the field data used. 156 

The quality of a field-based model calibration and resulting products depends 157 

fundamentally on how well forest biomass density in pixels is represented by the field data. In 158 

space-based remote sensing of forest biomass, sensor footprints are often many times larger 159 

than field plots (Baccini et al., 2007). If forest biomass is uniform within pixel-sized areas, 160 

this mismatch in sample area will have little impact on calibration; however, if there is 161 

substantial local spatial variability in biomass, then small calibration plots will have large 162 

sampling errors. In general, as the sampling area decreases, the variability associated with any 163 

field biomass estimate increases, as does associated sampling error. In addition, the remote 164 

sensing field of view often differs from the field-based view as a result of geolocalisation 165 

errors, the conversion of a circular or ellipsoidal footprint into a square pixel, and the 166 

mismatch between the forest components measured in-situ and observed by the sensors. Side-167 

looking radar observation is a typical example of such spatial mismatch with field-based tree 168 

stem measurements (Villard and Le Toan, in press) and remote sensing of canopy structure 169 

versus field-based tree stem measurements is a common source of spatial mismatch in high-170 

resolution remote sensing products (Mascaro et al., 2011). Such spatial mismatches may 171 

considerably increase errors during the model training and evaluation steps. There is thus a 172 

need to quantify these errors and test strategies to address them. 173 

Here, we analyzed spatially explicit forest census data from a global network of 30 174 

large permanent plots (8 to 50 ha) in natural forests (Condit, 1998; Losos and Leigh, 2004) to 175 
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quantify local variation in aboveground biomass density (AGBD) and explore its 176 

consequences for calibrating large-footprint remote sensing products (≥0.5 ha) with field data 177 

for smaller plots (Fig. 1; Supplement, Table S1). Using these very large plots, we address 178 

three questions: (1) What is the local variability in aboveground biomass density (AGBD) for 179 

the most commonly used plot sizes, how does this variability scale with the area sampled, and 180 

how does it differ among sites, forest types, and continents? (2) Does local AGBD variability 181 

exhibit significant spatial structure (e.g., aggregation), and if so, what is that structure 182 

(strength, spatial scales)? (3) What are the implications of the observed AGBD variability for 183 

the accuracy of remote sensing calibration equations when calibration plots are smaller than 184 

sensor footprints, and for different statistical procedures?  185 

2 Material and methods 186 

2.1 Field data 187 

We used measurements in 30 large forest plots across three continents (8–50 ha each, Fig. 1 188 

and Table S1). In 28 of the plots, all free-standing trees ≥ 1 cm dbh (diameter measured at 130 189 

cm above the ground or 50 cm above buttresses) were mapped, tagged, and identified 190 

taxonomically (Condit, 1998). In two additional plots, only trees ≥ 10 cm in dbh were 191 

included (Table S1). Trees < 10 cm dbh generally contribute less than 5% of the total 192 

aboveground biomass (AGB) in mature tropical forests
 
(Chave et al., 2003). AGB of each 193 

individual stem was estimated using regression models based on the measured individual 194 

diameter and the wood specific gravity assigned to that species and site, or site-specific 195 

allometric equations (details in Table S1). We only used data for free-standing woody stems, 196 

and excluded lianas from our analyses for the few sites where these were censused. Lianas 197 

usually represent less than 5% of the total AGB (e.g. Schnitzer et al., 2012). 198 
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Elevation ranges were computed for each site based on 5 to 20 m elevation maps 199 

generated from either field survey measurements (Condit 1998) or high-resolution airborne 200 

LiDAR (in Paracou, Nouragues and Haliburton). Among 19 forest plots where elevation maps 201 

were available, the elevation range showed a strong and significant correlation with the mean 202 

of the standard deviation of elevation within 1-ha subplots (Fig. S1). We therefore used the 203 

elevation range, a metric available over all sites, as an indicator of topographic variability.  204 

2.2 Local spatial variability in AGBD 205 

Each plot was gridded into subplots at spatial resolutions ranging from 5 to 250 m, to the 206 

extent feasible given the plot dimensions. Within each subplot, AGBD (Mg ha
-1

) was 207 

calculated by summing AGB estimates for all trees whose stems were located within the 208 

subplot and expressing this on a per ha basis. We quantified the local spatial variability in 209 

AGBD for subplots of area s (in ha) using the coefficient of variation of AGBD among 210 

subplots within sites, calculated as 211 

          
    

 
  (1) 212 

where   is the mean AGBD in the plot,      is the standard deviation in AGBD computed 213 

from subplots of area s, and       is the coefficient of variation for plot area s in percent. A 214 

higher    value indicates a higher relative spatial variability of AGBD (relative to the mean), 215 

and therefore greater random sampling error relative to the mean estimate when small 216 

subplots are used as samples to represent the full plot area. 217 

 We focused on the CV at the 1-ha scale, denoted CV(1) in our examination of 218 

variation among sites. We evaluated whether CV(1) increased with AGBD among sites, and 219 

whether it increased with topographic variability as represented by the elevation range, in 220 

both cases using nonparametric Spearman rank correlations. We also tested whether CV(1) 221 
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varied significantly among continents or forest types using nonparametric Kruskal-Wallis 222 

tests. 223 

We examined the spatial scaling of variability with area both graphically and 224 

quantitatively with fitted functions. Specifically, we graphed CV(s) vs. plot area (s) on log 225 

scales, and fitted power functions to the relationship between the two. In the absence of 226 

spatial autocorrelation (i.e. given independence of each grid cell), the logarithm of       227 

should decrease linearly with       , with a slope of -½, just as the standard error of the mean 228 

decreases with increasing sample size (that is,       
     

  
, thus            229 

                     ). Positive spatial autocorrelation will lead to a slower rate of decline 230 

in the CV with increasing sample size over relevant spatial scales, and negative spatial 231 

autocorrelation to a more rapid decline. We fitted power functions for the relationship of 232 

CV(s) to s through linear regression on the log-transformed variables, and tested whether 95% 233 

confidence intervals of the fitted exponents (slopes) included the value -0.5 expected in the 234 

absence of autocorrelation. The confidence limits were calculated from the estimated standard 235 

error of the slope and the Student’s t distribution. 236 

2.3 Local spatial structure in AGBD 237 

We used empirical variograms to assess the spatial autocorrelation in AGBD for 20 × 20 m 238 

(0.04 ha), 50 × 50 m (0.25 ha) and 100× 100 m (1 ha) subplots, with subplots created by 239 

gridding each plot as above. We calculated variograms with the following formula: 240 

      
 

  
                  

   (2) 241 

where        is the AGBD observed at location xi, d is a class of spatial distance between 242 

two locations and N is the number of pairs of observations, as implemented in the R package 243 
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geoR (Ribeiro Jr and Diggle, 2001). Distances between two subplots were based on the 244 

coordinates of the center of each subplot. To make the variograms comparable among plots, 245 

we transformed the variance       to a coefficient of variation with           246 

        , where   is the mean AGBD of the plot. 247 

To further investigate the spatial structure of AGBD within field plots, we used 248 

wavelet functions (Percival, 1995). Wavelet analysis decomposes the variance of a process on 249 

a scale-by-scale basis, thus it is very useful for study of a variable influenced by multiple 250 

processes operating simultaneously at different spatial scales (Detto and Muller-Landau, 251 

2013). A plot of wavelet variance versus scale indicates which scales are important 252 

contributors to the total process variance. For example, global spatial variation in temperature 253 

could be decomposed into the sum of large-scale variation due to latitude and smaller-scale 254 

variation due to topography. In the absence of any spatial structure, the normalized wavelet 255 

variance (the wavelet variance divided by the variance computed from the values of the 256 

quadrats) is one at all scales. A value greater than one at scale s indicates that the variance of 257 

the process at that specific scale is higher than expected under complete spatial randomness 258 

(spatial independence between observations), i.e., the scale-specific variation is spatially 259 

structured independent of the spatial variation occurring at larger and smaller scales. In 260 

contrast, a normalized wavelet variance less than one indicates that the scale-specific variation 261 

is lower than would be expected under complete spatial randomness. Details of the methods 262 

for calculating the wavelet variances are given in Appendix S1.  263 

For each spatial scale, we then tested whether the scale-specific variation in AGBD 264 

among sites is explained by elevation range using Spearman’s rho correlation tests between 265 

the normalized wavelet variance and the elevation range. 266 
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2.4 Implications of local variability in AGBD for large-footprint remote sensing 267 

calibration  268 

To assess the implications of local spatial variability in AGBD for remote sensing calibration, 269 

we explored the joint influence of field plot size and of footprint size of a hypothetical remote 270 

sensing observation on the sampling error associated with an AGBD estimate. We simulated 271 

different plot sizes and footprint sizes under the best-case scenario in which the remote 272 

sensing instrument was able to retrieve the exact value of AGBD as measured in field plots. 273 

Because the remote sensing field of view often differs from the field-based one, we simulated 274 

a spatial mismatch between the plot and footprint shape; for simplicity, we modeled the 275 

remote sensing pixels as circles and the calibration plots as squares. More precise 276 

quantification of such spatial mismatch could be obtained using sensor-specific and 3D 277 

simulation approaches. We simulated field plots of 0.04, 0.1, 0.25, 0.5, 1, 2 and 4 ha centered 278 

in remote-sensing circular footprints of 0.5, 1, 2 and 4 ha (Fig. 2). We then estimated the error 279 

associated with using the field plot to estimate AGBD in the footprint, henceforth referred to 280 

as sampling error. Note that this approach more generally attempts to assess the errors 281 

generated when sample measurements are extrapolated to a larger scale. Specifically, we 282 

calculated ErrCV as the ratio between the root mean square error (RMSE) and the mean 283 

AGBD within footprints (MAGBD) for each combination of areas in which the field plot area 284 

is less than or equal to the footprint area:  285 

       

 
                               

  
     (3) 286 

 287 
       

 
                

 
     (4) 288 

 289 
                    (5) 290 

 291 

where N is the number of simulations (1000 per combination), AGBDfootprint,i is the AGBD 292 

within the remote-sensing footprint (i.e. the circle) for the ith simulation, and AGBDsubplot,i is 293 
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the AGBD within the field subplot for that simulation. Five of our plots (the Haliburton plot 294 

and the four Ituri plots) were too small to accommodate a circular 4-ha footprint and were 295 

thus not included in the calculation of ErrCV at this scale. 296 

 To illustrate how this sampling error propagates into AGBD maps, we then fitted 297 

calibration equations from the combination of simulated remote sensing pixels and field 298 

calibration plots. For this exercise, we simulated square remote sensing pixels of 4 ha, thus 299 

mimicking the expected resolution of the BIOMASS mission’s future products (Le Toan et 300 

al., 2011). Given the size of our field plots, we were able to simulate 60 such pixels (i.e. two 301 

pixels per plot for 30 plots). Within each simulated pixel, we assumed that a single randomly 302 

located field plot was available for calibration, of area 0.01, 0.04, 0.25, 0.5, 1 or 2 ha (i.e. 60 303 

calibration plots, one per 4-ha pixel). For each field plot scale we calculated the coefficients 304 

of an ordinary least squares (OLS) linear regression between the AGBD estimated in the 305 

calibration subplots of a given area and the simulated pixels. We changed the location of the 306 

subplots in each plot a thousand times and averaged the regression coefficients for each 307 

subplot size. 308 

 It is well-established in the statistical literature that random error in the independent 309 

variable, such as that which results from sampling error in field plots, leads to systematic 310 

underestimation of the OLS regression slope, a bias referred to as attenuation or regression 311 

dilution (Fuller, 1987). This phenomenon is easily understood as the OLS slope   is 312 

calculated as                , where         is the covariance of   and   and       313 

is the variance of  . If W is a measure of X with measurement error (that is,        , 314 

then             (Mcardle, 2003). Hence, the estimate of   tends to zero as the 315 

measurement error in   increases to infinity, a phenomenon referred to as the dilution bias. 316 
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 Several methods have been proposed to correct for this bias (Carroll and Ruppert, 317 

1996; Frost and Thompson, 2000; Smith, 2009). The method of moments estimator (Carroll 318 

and Ruppert, 1996; Fuller, 1987) assumes that a corrected slope,    , could be calculated 319 

from the observed slope,  , using a Reliability Ratio,   , with 320 

    
 

  
      (6)    where           

            

     
     (7) 321 

To estimate       , the variance of the sampling error in  , we generated new estimates of   322 

(here the AGBD of calibration plots) by bootstrapping over 0.01-ha (10 x 10 m) subplots the 323 

calibration plot (i.e. 100 bootstrapped values for each of the 60 calibration plots). The 324 

reliability ratio    was estimated using the intra-class correlation coefficient (ICC), an 325 

accurate proxy for    (Frost and Thompson, 2000), considering the bootstrapped values as 326 

repeated measures grouped by calibration plot units. ICC was estimated through a one-way 327 

analysis of variance of repeated measures considering the calibration plots as factor. This 328 

approach was called “within subplot Rr”. We also carried out a second reliability study based 329 

on additional subplots (i.e. replicates) established randomly inside the 4-ha pixels (Appendix 330 

S2). 331 

 We evaluated two alternatives to OLS that have the potential to produce less bias in 332 

calibration equations. First, the Reduced Major Axis (RMA) regression minimizes the sum of 333 

squared distances both horizontally (accounting for the error in  ) and vertically (accounting 334 

for the error in  ). Second, the nonparametric Theil-Sen estimator, also known as Sen's slope 335 

estimator or the single median method, is the median of all the slopes determined by all pairs 336 

of observations. Both methods have been proposed as preferred alternatives to OLS in remote 337 

sensing studies (Cohen et al., 2003; Fernandes and Leblanc, 2005; Mitchard et al., 2013; Ryan 338 

et al., 2012). 339 
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All analyses were performed using R version 3.0.2 (R Development Core Team, 340 

2013). The R code for the analyses is available on request from the first author. 341 

3 Results 342 

3.1 Local spatial variability in AGBD 343 

The coefficient of variation for AGBD at the 1-ha scale,      , varied among sites (n=30) 344 

from 5.1% (Haliburton, Canada) to 29.9% (Palanan, Philippines), with a mean of 16.6%, and 345 

a median of 15.2% (Table S2). The best predictor of variation in       among plots was 346 

within-plot elevation range, that is, the difference between the highest and lowest elevation 347 

(Spearman’s rho=0.70 and p<10
-4

; Fig. 3a). Thus, topographic variability, represented in the 348 

analyses by elevation range across the plot, explained considerable variation in AGBD 349 

variability among sites at the 1-ha scale. In contrast,       was not significantly correlated 350 

with mean AGBD (Spearman’s correlation test, p=0.15), and did not differ significantly 351 

among forest types (tropical, subtropical and temperate; Kruskal-Wallis test, p=0.47) or 352 

among continents (Kruskal-Wallis test: p=0.18). Asian tropical field plots tended to show 353 

higher biomass variability than other tropical field plots (median CV(1) of 24.4 and 14.3 % 354 

respectively), consistent with their higher average topographical variability (median elevation 355 

range of 90 m for Asian tropical plots and 24 m for tropical non Asian). 356 

 Regressing the logarithm of CV(s) against       , we found that in 15 of 30 sites the 357 

slope was significantly greater (less negative) than -½, suggesting significantly positive 358 

spatial autocorrelation in AGBD at the scales investigated. In contrast, in only two sites, the 359 

Ituri Edoro1 plot in Democratic Republic of Congo and the Paracou plot in French Guiana 360 

(Fig. 3b, Table S2-3), the slope was significantly lower than -½, suggestive of negative spatial 361 

autocorrelation. Sites with greater elevation range showed shallower fitted slopes (Spearman’s 362 
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rho= 0.47 and p=0.01). Such positive spatial autocorrelation means that extrapolation from 1 363 

ha values under the assumption of no spatial autocorrelation will lead to a slight but 364 

systematic overestimation of       for areas (s) smaller than 1 ha, and underestimation for 365 

areas larger than 1 ha (Fig. S3). 366 

3.2 Local spatial structure in AGBD  367 

Variograms revealed only weak spatial autocorrelation of AGBD at 20, 50 and 100-m 368 

resolution over distances of 20-400 m (Fig. 4, Fig. S5). The average coefficient of variation 369 

for AGBD was only slightly higher between distant subplots than between neighboring ones. 370 

Though these increases with distance were generally very small, they were statistically 371 

significant in half of the plots at 20 and 50-m resolution (Fig. S6-8), consistent with the 372 

results of the analysis of the slope of spatial variability with plot scale (see above), showing 373 

that even weak spatial aggregation may have an influence on the scaling of variability in 374 

AGBD. 375 

 Wavelet analyses also showed a relative small departure from the complete spatial 376 

randomness (Fig. 5, Fig. S9). The average normalized wavelet variances at scales above ~90 377 

m were greater than one, indicating that a substantial part of the spatial structure of AGBD 378 

occurs at these scales. Interestingly, many sites showed low variability at intermediate scales 379 

(25-75 m). The plots with greater elevation range were characterized by larger wavelet 380 

variances at scales >100 m (Fig. 5, Fig. S9), suggesting that the large scale variations are 381 

driven by topographic effects. 382 

3.3 Implications of local spatial variability in AGBD for large-footprint remote 383 

sensing calibration 384 
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Field-based sampling error depended on both field plot and remote sensing footprint areas. 385 

For very small field subplots (0.1 ha and below), sampling error was due mostly to field 386 

sampling and was relatively insensitive to the footprint size (Fig. 6). For subplots and 387 

footprint size of 0.5 ha and larger, subplot area and footprint area had similar effects on the 388 

sampling error. The error due to the spatial mismatch (circle versus square) was much higher 389 

for small calibration plots: when the field calibration plot area was equal to the footprint area 390 

(i.e. a ratio of one; Fig. S10). 391 

Field-based sampling error resulted in systematic underestimation of calibration 392 

slopes, which could not be corrected through any currently available statistical approaches. 393 

The OLS regression slope was underestimated by an average of 54% with 0.1-ha subplots and 394 

by 37% with 0.25-ha subplots (Fig. 7a, see examples of fits on Fig. S11). The large sampling 395 

errors associated with small field plots caused large dilution biases (i.e. slope 396 

underestimation). Such dilution biases result in an underestimation of the variance in AGBD; 397 

in particular, application of the resulting calibration equations would produce systematic 398 

underestimation of AGBD in high AGB areas, and systematic overestimation in low AGBD 399 

areas. Alternatives to OLS models, such as Reduced major axis (RMA) regression and the 400 

Theil-Sen estimator, corrected for at best half of this bias (Fig. 7b). Our bias correction 401 

approach, based on bootstrapping over spatial variability within subplots, outperformed the 402 

RMA and the Theil-Sen estimator for plots ≥ 0.25 ha, but remained too conservative (“Within 403 

subplot Rr” in Fig. 7b). The alternative reliability study approach involving replicate subplots 404 

did somewhat better, but requires greatly increased ground sampling effort (Appendix S2, 405 

Figure S2). 406 

4 Discussion 407 
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Given the pressing need to monitor global forest carbon stocks, ecologists and remote sensing 408 

experts need to pay careful attention to quantifying the errors associated with forest carbon 409 

estimates. Our results quantify large spatial variability in mean AGBD for plot sizes smaller 410 

than 0.25 ha (the mean CV was of 26 % at the 0.25-ha resolution; table S2). This large local 411 

spatial variability in AGBD results in substantial sampling errors when small plots are used to 412 

estimate AGBD within larger areas, which in turn bias calibration equations based on such 413 

estimates. Many forest inventory plots are much smaller than 0.25 ha and are regularly used 414 

for calibrating coarser resolution remote sensing products. Our findings suggest that using 415 

such small field plots to calibrate coarser resolution remote sensing products is likely to cause 416 

strong systematic biases in carbon maps. 417 

4.1 Local spatial variability and spatial structure of AGBD 418 

We found that the coefficient of variation in AGBD averages ~16.6% at 1 ha, and scales 419 

roughly with s
-1/2

 where s is the plot area. This present study confirms the findings of previous 420 

studies of individual sites or forest types (Baraloto et al., 2013; Chave et al., 2003; Holdaway 421 

et al., 2014; Keller et al., 2001; Wagner et al., 2010) and generalizes the results to many sites 422 

that encompass a wide range of forest types and topographical variation. We found that spatial 423 

variability of AGBD tended to be greater in hilly terrain, confirming that topography is a 424 

major driver of AGBD variability (e.g. de Castilho et al., 2006; Detto et al., 2013). This is an 425 

important finding given that 23% of the world’s forests are on hilly terrain (Table S4). This 426 

result suggests that forest biomass maps in hilly areas have larger uncertainties, and that forest 427 

plot sampling designs should take topography into account (see below).  428 

We found no other systematic differences in AGBD variability among continents, 429 

among forest types or with mean AGBD. The higher AGBD variability found in our tropical 430 

Asian study sites compared with other tropical sites was probably due to their larger 431 
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topographic variability. This finding is no accident of our study locations; remaining old-432 

growth tropical forests in Asia are disproportionately located in topographically complex 433 

terrain, more so than on other continents (Table S4), probably because these areas have 434 

disproportionately escaped human disturbance. 435 

Approximately half of the sites individually exhibited statistically significant spatial 436 

autocorrelation in AGBD. Decomposition of the variance in AGBD at different spatial scales 437 

using wavelet analyses confirmed spatial aggregation at scales >100 m, and the role of 438 

topography in explaining aggregation at these scales (Fig. 5b). These results suggest that the 439 

weak spatial autocorrelation found in many plots is due to broad-scale topographic 440 

differences. In a previous scale-wise analysis of a 5000 ha area of moist tropical forest, Detto 441 

et al. (2013) likewise found strong wavelet coherence between canopy height (a proxy for 442 

AGBD) and topography at scales of 100-800 m. These scale-specific results are consistent 443 

with prior literature (reviewed in Detto et al., 2013) documenting how forest structure and 444 

biomass vary with topography (de Castilho et al., 2006; McEwan et al., 2011; Valencia et al., 445 

2009). 446 

 In most plots, the wavelet analyses also revealed that spatial variability specific to 447 

scales of 25-75 m was lower (i.e., more uniformly distributed) than expected by chance. We 448 

hypothesize that this pattern may be associated with neighborhood competition and gap-phase 449 

dynamics. That is, the forest can be thought of as a mosaic of patches of different age, 450 

reflecting time since the last disturbance (e.g. major treefall), with patch age strongly 451 

influencing AGBD (Moorcroft et al., 2001). Within such patches, biomass variation is 452 

reduced by the common time since disturbance, and also because local competition may cause 453 

large trees to be more evenly spaced than would be expected by chance (Lutz et al., 2013). 454 
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This local uniformity is overlaid on the larger-scale topographic variation, and is evident only 455 

through scale-wise wavelet analyses that separate the two. 456 

4.2 Field sampling error and remote sensing of carbon stocks 457 

We showed that when field plots were very small (0.1 ha and below), the sampling error was 458 

due mostly to the contribution from field sampling, and was relatively insensitive to footprint 459 

area. Hence, with relatively high resolution pixels such as in the Landsat (30 m) or 460 

ICESat/GLAS (~70 m) products, sampling errors are likely to be very high if smaller plots are 461 

used or if spatial mismatches between the field and the sensor signal occur. This is because 462 

most of the AGBD variability is at the local scale so that a small difference between the areas 463 

sampled in the ground and by the sensor generates a large error. This is well illustrated by our 464 

finding that error was much lower for large calibration plots even when the same ratio of 465 

calibration plot area to footprint area was maintained (Fig. S10). This reflects decreasing 466 

edge-to-area ratios for larger area, which also provide other advantages for larger plots (see 467 

also Mascaro et al., 2011; Zolkos et al., 2013).  468 

 Our analyses show that field-sampling strategy may result in a serious bias in model 469 

calibration of remote sensing products. When this bias is present, inversion models return 470 

AGBD values that are regressed to the mean of the calibration plots (Fig. 7a), and thus 471 

underestimate the true spatial AGBD variance. For instance, in a recent study that used 112 472 

circular 0.13-ha plots to calibrate L-band radar products (Carreiras et al., 2012), the slope of 473 

an OLS regression was found to be underestimated by 86% and the final AGBD map 474 

displayed a much lower variance than the map produced by Saatchi et al. (2011). The dilution 475 

bias is independent of the number of calibration plots; it depends only on the sampling error 476 

associated with these plots, which is determined largely by plot size. Though the mean AGBD 477 

of the calibration plots is inherently correctly predicted (Fig. 7a), the landscape mean AGBD 478 
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and thus the landscape total AGBD will be correctly predicted only if the landscape mean is 479 

identical to the mean of the calibration plots. 480 

 We found that the best way to diminish the dilution bias is to bootstrap over spatial 481 

variability using subplots within plots and to correct the estimated slope using these simulated 482 

“replicates”. Some remote sensing studies have argued that alternative to OLS regression such 483 

as RMA or the Theil-Sen estimator
 
are good alternatives to OLS regression when errors occur 484 

in   (Cohen et al., 2003; Fernandes and Leblanc, 2005; Mitchard et al., 2013; Ryan et al., 485 

2012). Here, we showed that these alternatives do not resolve the dilution bias and still 486 

provide strongly biased products. In theory, the dilution bias could be removed completely 487 

through Deming regression; however, this approach requires information on the ratio of the 488 

error variances in the two variables (Deming, 1944). The results we present here can assist in 489 

the estimation of error variances for field plots of different sizes. However, estimating error 490 

variances for remote sensing products – that is, their error in providing an estimate of the true 491 

value of AGBD – remains a challenge. 492 

4.3 Implications for designing forest inventories and remote sensing calibration 493 

schemes 494 

Our careful quantification of local spatial variability and spatial structure in AGBD should be 495 

useful for the design of national and regional forest inventories, as well as in remote sensing 496 

applications. Weak spatial autocorrelation at scales less than 100 m suggests that there is 497 

generally no gain in representativeness from locating multiple small plots within a small area 498 

or footprint (≤ 100 m) when compared to establishing one larger plot in the same area. That is, 499 

because neighboring small plots are on average almost as different as more distantly located 500 

small plots, thus expanding a single small plot provides similar information as adding another 501 

small plot nearby. A number of forest inventory designs use clusters of very small plots 502 
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(≤0.04 ha); e.g., the US Forest Service Forest Inventory and Analysis program (Bechtold and 503 

Patterson, 2005). Based upon our results these cluster designs appear to have distinct 504 

disadvantages for calibrating remote sensing products as their small dimensions are below the 505 

resolution of most sensors, and their edge to area ratios are higher than single larger plots for 506 

the same total area. Although small plots may have practical advantages in time needed for 507 

field sampling and reduced equipment costs, these advantages should be carefully weighed 508 

against the disadvantages for biomass measurements. Such small plots may induce strong 509 

biases when used individually for calibrating coarser resolution remote sensing products.  510 

Our results reinforce the importance of topography as a factor that should be taken into 511 

account in designing forest inventories. AGBD variation at scales of >100 m was strongly 512 

associated with topographic variation in our analyses as was also found in previous studies 513 

(Detto et al., 2013). This suggests that sampling should generally be stratified by topographic 514 

position (e.g. ridges, valleys and slopes), especially if landscape AGBD is to be estimated 515 

purely from a field-based approach. In contrast, where the aim of field sampling is to calibrate 516 

coarse resolution remote sensing products, this might suggest that topographically complex 517 

areas should best be avoided to minimize sampling errors associated with local spatial 518 

variability. However, the gain from reducing such sampling errors would have to be weighed 519 

against the potential to bias the calibration sample if forests in topographically complex areas 520 

differ systematically in the relationship between remote sensing signals and AGBD. 521 

The best way to avoid the dilution bias is to use calibration plots covering entire 522 

remote sensing pixels. For remote sensing tools with a resolution on the order of 4 ha, such as 523 

the planned BIOMASS mission, it is realistic to invest in a network of similarly sized field 524 

calibration plots. Though such field sampling is expensive, it would greatly improve the basis 525 

for mapping forest biomass, and its cost would remain small compared with the investment in 526 
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the satellite itself. An alternative is to use a two-step approach in which a coarse-resolution 527 

remote sensing product is calibrated against a higher resolution remote sensing product itself 528 

calibrated with field plots. For instance, airborne LiDAR may retrieve forest carbon stocks 529 

with an error of ca. 10-15% at 1-ha resolution (Mascaro et al., 2011; Zolkos et al., 2013). This 530 

compares favorably with errors from purely field-based estimates for 1-ha and smaller plots 531 

(Fig. 3). Errors in LiDAR-based estimates are expected to be even lower for larger areas, as 532 

random errors average out (Mascaro et al. 2011). Baccini and Asner (2013) found that using 533 

wall-to-wall airborne LiDAR AGBD estimates to calibrate a 500-m resolution MODIS 534 

product led to much less error than using nested AGBD estimates from Geoscience Laser 535 

Altimeter System (GLAS) footprints (60 to 75-m resolution). This shows that even if the 536 

operational cost associated with LiDAR coverage is high, the use of LiDAR technology has 537 

the potential to greatly reduce the errors during the calibration step. In this case, care must be 538 

taken that errors are carefully and appropriately propagated through the two-stage calibration 539 

to the final map (Asner et al., 2013). 540 

Future research should integrate the results of this study with information on other 541 

sources of error in order to assess the relative importance of field sampling errors to forest 542 

carbon estimation and make appropriate recommendations. Other important sources of error 543 

in forest carbon estimates include field measurement errors (Flores and Coomes, 2011; 544 

Larjavaara and Muller-Landau, 2013), biomass allometries (Chave et al., in press, 2004; 545 

Molto et al., 2013), data cleaning procedures (Muller-Landau et al., 2014), and wood carbon 546 

content (Thomas and Martin, 2012). At the scale of forest inventories and calibration 547 

schemes, a major source of error is the uneven and non-random distribution of plots at broad 548 

spatial scales, an outstanding problem in the tropics where, for example, the central Amazon, 549 

the central Congo basin, and swamp forests all remain insufficiently sampled. 550 
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5 Conclusions 551 

Accurate measurements of forest carbon stocks are critical to reduce uncertainties in the 552 

global carbon budget and for the REDD programme. However, uncertainty associated with 553 

forest carbon maps remains poorly quantified (but for notable exceptions see Asner et al., 554 

2013; Gonzalez et al., 2010; Mermoz et al., in press). In this paper, we used a large-scale 555 

global dataset to illustrate that high local spatial variability in AGBD leads to large sampling 556 

errors when plots of standard sizes (e.g., 0.1, 0.25, 1 ha) are used to estimate AGBD over 557 

larger areas (e.g., 4 ha, the expected resolution of BIOMASS products). We also show that 558 

remote sensing estimates of biomass density that rely on field data for calibration may be 559 

highly biased if such field-sampling errors are large. Such biases have previously been 560 

ignored by the remote sensing community and, as we show, can only be partially corrected by 561 

available statistical tools. Overall, our results strongly suggest that calibration of coarse-562 

resolution remote sensing products to estimate forest carbon would benefit greatly from more 563 

investment in large forest plots that are large enough to encompass entire pixels. We hope that 564 

this contribution will stimulate further work on the propagation of field sampling errors to 565 

remote sensing products and that future studies will pay more careful attention to field 566 

sampling and calibration strategies. 567 
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Figures 789 

790 
Figure 1. Geographical distribution of the 30 study sites (red points) included in the present 791 

study, relative to the global distribution of forest (green) from GLOBCOVER2009 (Bontemps 792 

et al., 2011), and the boundaries between temperate and subtropical areas (blue and orange 793 

dashed lines) and between subtropical and tropical areas (orange and green dashed lines) from 794 

Fischer et al. (2012). The four sites at Ituri (Democratic Republic of Congo) are represented 795 

by a single dot due to their proximity. Note that Fischer et al. (2012) classify the Yosemite 796 

site as subtropical, but we considered it as temperate due to its high elevation. Details on 797 

study sites are provided in Table S1. 798 
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 800 

Figure 2. Schematic representation of the simulations used to assess expected errors when the 801 

calibration/validation plots and the remote sensing footprint differ in shape and size. 1) 802 

Within each large mapped plot, a point is chosen to be the center of both the simulated remote 803 

sensing footprints and the simulated calibration subplots; it is chosen randomly from all 804 

points for which the largest footprints and calibration plots are fully inside the mapped large 805 

plot. 2) AGBDfootprint is calculated within circular areas centered on this point, simulating the 806 

remote sensing footprint, for the listed sizes. 3) AGBDsubplot is calculated within square areas 807 

centered on this point, simulating calibration/validation plots, for the listed sizes. We 808 

replicated this procedure 1000 times and then calculated the root mean squared error of 809 

AGBDsubplot relative to AGBDfootprint for each combination of areas in which the subplot area is 810 

less than or equal to the footprint area, and normalized by the mean AGBDfootprint to obtain a 811 

measure of relative error specific to that combination of scales, ErrCV (see equations 3-5).  812 
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 813 

Figure 3. Local spatial variability in AGBD as a function of topographic variability and of 814 

spatial scale. (a) The variability at the 1-hectare scale,      , was positively correlated with 815 

elevation range among plots (one point per site). (b) The variability declined with increasing 816 

spatial scale within each site (one dashed line per site) and in the cross-site mean (solid black 817 

line) and deviated from the slope of -0.5 (on log-log scales) expected in the absence of spatial 818 

autocorrelation in AGBD. Separate graphs for each individual site are provided in Fig. S3 and 819 

standardised CV measures within 4-ha subplots are shown in Fig. S4. 820 

  821 

a Spatial variability (1 ha) and topography b Spatial scaling of AGBD variability

0 50 100 150 200

5

10

15

20

25

30

Elevation range (m)

C
V

 a
t 
1
 h

a
 (

%
)

Tropical

Subtropical

Temperate

Subplot area (ha)
C

V
 (

%
)

5

10

20

50

100

300

0.0025 0.01 0.05 0.25 1 4



39 
 

 822 

Figure 4. Spatial variograms of AGBD for three different spatial resolutions. Ensemble 823 

average variograms for AGBD in square subplots of size 20 x 20 m, 50 x 50 m and 100 x100 824 

m, with variances transformed into distance-specific coefficients of variation (CV(d)). 825 

Variograms for individual plots at each spatial resolution are shown in Fig. S5. Separate 826 

graphs for each site, with confidence intervals for the null hypothesis of no spatial correlation, 827 

are shown in Fig. S6-8. 828 
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 830 

Figure 5. Scale-wise decomposition of spatial variation in AGBD and its relationship to 831 

elevation range. (a) The normalized wavelet variance of AGBD as a function of spatial scale 832 

for individual plots (colored lines) and for the ensemble average across plots (solid black 833 

line). A wavelet variance at a given scale reflects the spatial structure of AGBD specific to 834 

that scale, with a value of one (solid grey line) indicating no spatial autocorrelation, lower 835 

values indicating negative spatial autocorrelation, and higher values positive spatial 836 

autocorrelation.  Separate graphs for each site, with confidence intervals for the null 837 

hypothesis of no spatial correlation, are shown in Fig. S9. (b) Among-site Spearman’s rho 838 

correlation of the elevation range with the wavelet variance for different spatial scales. P-839 

values of the Spearman’s rho correlation tests are provided within the panel. 840 
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 842 

Figure 6. Expected sampling errors when the calibration/validation plots and the remote 843 

sensing footprint differ in shape and size. The remote sensing footprint is assumed circular, 844 

and subplots are assumed to be square to simulate the spatial mismatch between the remote 845 

sensing signal and the calibration plot (Fig. 2). The mean ErrCV in AGBD estimates across 846 

all sites (n=30) is both given within the figure and illustrated by colors, and the range of 847 

ErrCV across sites is given in parentheses below the mean. 848 
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 850 

Figure 7. Propagation of field sampling error to remote sensing products: the dilution bias. (a) 851 

The mean regression lines obtained from an OLS linear regression between the AGBD 852 

estimated within 4-ha pixels randomly established in large plots (n=60, dependent variable) 853 

and variable-size subplots located within these pixels (independent variable) differ depending 854 

on subplot areas (see key), and are biased with respect to the true slope of one (slope dilution 855 

biases associated with each subplot area are provided in parentheses). All the lines cross at the 856 

mean AGBD over all sites. (b)  Different potential correction methods (see key) result in 857 

improved estimates of the slopes, but still retain considerable bias. The points corresponding 858 

to the lines in panel (a) are shown with matching colors. The true slope of one, i.e. the slope 859 

that would have been obtained without bias, is illustrated by the solid grey line. 860 
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