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Abstract

Ferrihydrite is a widespread poorly crystalline Fe oxide which becomes easily coated by
natural organic matter in the environment. This mineral-bound organic matter entirely
changes the mineral surface properties and therefore the reactivity of the original mineral.
Here, we investigated 2-line ferrihydrite, ferrihydrite with adsorbed organic matter, and
ferrihydrite co-precipitated with organic matter for microbial and abiotic reduction of Fe(lll).
Ferrihydrite-organic matter associations with different organic matter-loadings were reduced
either by Geobacter bremensis or abiotically by Na-dithionite. Both types of experiments
showed decreasing initial Fe reduction rates and decreasing degrees of reduction with
increasing amounts of mineral-bound organic matter. At similar organic matter-loadings,
coprecipitated ferrinydrites were more reactive than ferrihydrites with adsorbed organic
matter. The difference can be explained by the smaller crystal size and poor crystallinity of
such coprecipitates. At small organic matter loadings the poor crystallinity of coprecipitates
led to even faster Fe reduction rates than found for pure ferrihydrite. The amount of mineral-

bound organic matter also affected the formation of secondary minerals: goethite was only
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found after reduction of organic matter-free ferrihydrite and siderite was only detected when
ferrihydrites with relatively low amounts of mineral-bound organic matter were reduced. We
conclude that direct contact of G. bremensis to the Fe oxide mineral surface was inhibited by
attached organic matter. Consequently, mineral-bound organic matter shall be taken into

account as a factor in slowing down reductive dissolution.

1 Introduction

Natural Fe oxides are typically nanoparticles and contribute significantly to the total surface
area and reactivity of a soil (Karltun et al., 2000; van der Zee et al., 2003; Eusterhues et al.,
2005; Regelink et al., 2013). Due to their high reactivity towards dissolved organic matter
(Torn et al., 1997; Kaiser and Zech 2000) Fe oxides are partially or completely covered by
organic matter in natural environments. Organic coverage may result in surfaces properties
strongly different from those of the original oxides, with consequences for aggregation,

mobility, and solubility.

One of the most common Fe oxides is poorly crystalline ferrihydrite, usually forming
aggregates of nanometer-sized individual crystals (Jambor and Dutrizac, 1998; Bigham et al.,
2002; Cornell and Schwertmann, 2003). In contrast to adsorption of organic matter on pre-
existing ferrihydrite surfaces, coprecipitation leads to adsorption and occlusion (physical
entrapment) of organic molecules in the interstices between the ferrihydrite crystals.
Additionally, the presence of dissolved organic matter inhibits ferrihydrite growth
(Schwertmann et al., 2005; Mikutta et al., 2008; Eusterhues et al., 2008; Cismasu et al., 2011),
and so coprecipitated ferrihydrites tend to develop smaller crystal sizes and more
crystallographic defects. Likewise, the aggregation behavior of ferrihydrites may be affected.
Since ferrihydrite is often formed in organic matter-rich solutions, e.g., in sediments and soils,
we assume that coprecipitation is a common process in nature. As coprecipitated ferrihydrites
differ in many properties from pure ferrihydrites, we suppose that the accessibility and
solubility of ferrihydrite surfaces as well as the accessibility of the adsorbed/occluded organic
matter to microorganisms, extracellular enzymes, redox active shuttling compounds or

reducing agents may differ from ferrihydrites with purely adsorbed organic matter.

In the past, dissolved humic acids from alkaline extracts have been added to microbial
experiments to test their influence on ferric iron reduction. It was suggested that they may
enhance Fe(lll) reduction by electron shuttling (Lovley et al., 1996; Hansel et al., 2004; Jiang
and Kappler, 2008; Roden et al., 2010), complexation of Fe(ll) (Royer et al., 2002) or
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complexation and dissolution of Fe(l11) (Jones et al., 2009). Amstaetter et al. (2012) and Jiang
and Kappler (2008) observed that the concentration of humic acid or the mineral/humic acid
ratio may control whether humic acids increase reduction or not. At high Fh concentrations in
solution (30mM), Amstaetter et al. (2012) even observed a decrease in Fe(lll) reduction due
to humic acid addition. The decrease was explained by an increased aggregation and a
therefore reduced accessibility of the Fe oxide surface for bacteria. The influence of mineral-
bound organic matter on reduction and mineral transformation is less well investigated. We
are aware of only three articles: Henneberry et al. (2012) coprecipitated ferrinhydrite with
dissolved organic matter from an agricultural drain and exposed the products to S(-11) and
Fe(Il). Neither a release of the mineral-associated organic matter nor a mineral transformation
was observed during reduction. Pédrot et al. (2011) produced nanometer-sized lepidocrocite
and Fe-humic acid coprecipitates and compared its reduction by Shewanella putrefaciens.
They found the reduction of the coprecipitates to be about eight times faster than that of pure
lepidocrocite. Shimizu et al. (2013) studied the influence of coprecipitated humic acid on
ferrinydrite reduction by Shewanella putrefaciens strain CN32. Low C/Fe ratios were reported
to decrease the reduction of the ferrihydrite-humic acid associations, whereas an increased
reactivity was found at high C/Fe ratios. In addition, the mineral-bound humic acid changed
the mineral transformation during reduction. The formation of goethite was inhibited, the
formation of magnetite decreased and the formation of a green rust-like phase stimulated
(Shimizu et al., 2013). Such changes in the mineral assemblage will strongly affect the

cycling of Fe.

Our study aims to enlighten changes in microbial and abiotic Fe(lll) reduction caused by
mineral-bound organic matter. A water extract of a Podzol forest floor was used as organic
matter and served to represent dissolved soil organic matter. We produced ferrihydrites with
different organic matter loadings by adsorption and coprecipitation, which were then exposed
to microbial reduction by Geobacter bremensis and chemical reduction by Na-dithionite.
Geobacter bremensis is common in soil and serves as a well investigated model organism for
dissimilatory Fe(lll) reduction. Main objectives were to find out whether mineral-bound
organic matter increases or decreases ferrihydrite reactivity and whether coprecipitates differ
in reactivity from ferrihydrites with adsorbed organic matter. The formation of secondary

minerals was followed by XRD.

2 Methods
2.1 Materials
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All chemicals used in this study were reagent grade. For preparation of stock solution and
media, 18 MQ doubly deionized water was used. Geobacter bremensis (DSM 12179; Straub
& Buchholz-Cleven, 2001) was obtained from the German Resource Centre for Biological
Material (DSMZ, Braunschweig).

2.2 Extraction of soil organic matter

A forest floor extract was obtained from the Oa and Oe layers of a Podzol under spruce close
to Freising, Germany. These layers represent the fermented and humified organic horizons
below the fresh plant litter, but above the mineral soil. The Forest floor samples were air-dried
and passed through a 2-mm sieve to remove coarse plant remnants. Aliquots of 150 g soil and
700 ml deionized H>O were shaken end-over-end for 16 hours at room temperature and then
centrifuged. The supernatant was pressure-filtered through polyvinylidene fluoride (Durapore;
0.45 um pore width) membranes, concentrated in low temperature rotary evaporators and
freeze-dried. The C and N concentration of the forest floor extract was measured using a CN
analyzer (Vario EL, Elementar Analysensysteme, Hanau, Germany). A transmission FTIR
spectrum was collected using the Nicolet iS10 (Thermo Fisher Scientific, Dreieich, Germany;
see below). A solid-state 3C NMR spectrum was acquired with a Bruker DSX-200 NMR
spectrometer (Bruker BioSpin, Karlsruhe, Germany), applying cross polarization with magic
angle spinning (CP MAS) at a spinning frequency of 6.8 kHz and a contact time of 1 ms. A
ramped H pulse was used during contact time to circumvent spin modulation of Hartmann-
Hahn conditions. Pulse delays between 200 and 2000 ms were chosen.

2.3 Synthesis of ferrihydrite and ferrihydrite-organic matter associations

Two-line ferrihydrite was produced by titrating a 0.01 M Fe(NO3)3 solution with 0.1 M NaOH
to pH 5 under vigorous stirring. A series of ferrihydrites with different amounts of adsorbed
organic matter were produced by mixing forest floor extract solutions of different C
concentrations with suspensions of freshly precipitated 2-line ferrihydrite at pH 5. The molar
C/Fe ratio of the initial solutions was AFhA 0.4, AFhB 1.3, and AFhD 4.2. Coprecipitated
ferrinydrites were obtained by dissolving Fe(NOs)s in forest floor extract solutions of
different concentrations and adding 0.1 M NaOH under vigorous stirring until a pH of 5 was
reached. The molar C/Fe ratio of these initial solutions was CFhA 0.4, CFhB 1.3, and CFhD
4.2. The solid/solution (g/L) ratio varied between 0.3 and 1.6 for all syntheses. The solid
products were separated by centrifugation, washed twice with deionized H.O and freeze-

dried. The C concentration of these samples was analyzed with the CN analyzer (Vario EL,
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Elementar Analysensysteme, Hanau, Germany). Transmission FTIR spectra were taken
(Nicolet 1S10, Thermo Fisher Scientific, Dreieich, Germany) on pellets of 2 mg sample
diluted with 200 mg KBr between 4000 and 400 cm™, accumulating 32 scans at a resolution
of 4 cm™. The spectra were baseline corrected by subtracting a straight line running between
the two minima of each spectrum and normalized by dividing each data point by the
spectrums maximum. The second derivative was calculated using the Savitzky-Golay
algorithm over 19-23 points. The specific surface area of the pure ferrihydrite was measured
by N2> gas adsorption (Autosorbl, Quantachrome, Odelzhausen, Germany) and calculated
according to the BET- equation from 11 data points in the relative pressure range of 0.05 to
0.3. Prior to the measurements the sample was outgassed for at least 16 hours at 343 K in
vacuum to remove adsorbed water from the sample surfaces. X-ray photoelectron spectra
(XPS) were recorded using a Quantum 2000 (PHI Co., Chanhassen, MN, USA) instrument
with a focused monochromatic Alk. source (1486.7 eV) for excitation. For the high resolution
spectra, the pass energy was set to 58.70 eV. After subtracting a Shirley-type background,
P2p and N1s spectra were evaluated by fitting single pseudo-Voigt profiles (Lorentz portion =
0.2) to the measured data. Fe2p spectra were fitted by a pre-peak, a surface peak, and four
multiplet peaks of decreasing intensity as proposed by Mcintyre and Zetaruk (1977) and
Grosvenor et al. (2004) for high spin Fe(l1l) compounds. Distances between multiplets were
constrained to 1 eV, the FWHM was set to 1.4 eV and the Lorentz portion of the pseudo-
Voigt curves was 0.2. The C1s peak was fitted using four pseudo-Voigt profiles with a fixed
FWHM of 1.9 and a Lorentz portion of 0.2. The distances between the peaks were fixed to
1.6, 1.6, and 1.1 eV from lower to higher binding energies to distinguish the C1s binding
states C-C, C-H, C-O, C-N, C=0, N-C=0 and O-C=0.

2.4 Microbial reduction experiments

Differences in reducibility of ferrihydrite and ferrihydrite-organic matter associations and
secondary mineralization were studied in liquid cultures inoculated with G. bremensis. A
defined freshwater medium based on the Geobacter medium ATCC 1957, containing 1.5 g L™
NH4Cl and 0.1 g L™* KCI was used. After autoclaving and cooling under an N2/CO2 (80/20
v/v) atmosphere, 30 ml L of 1 M NaHCOj3 (autoclaved, CO7), 10 ml L Wolfe’s vitamin
solution (ATCC 1957), 10 ml L modified Wolfe’s minerals (ATCC 1957) and sodium-
acetate (7 mM) as carbon source were added. Unless stated otherwise, added solutions were
prepared under anoxic (N2) conditions and filter sterilized (0.2 um, PVDF). NaH2PO4 from

the original recipe was not added to avoid interaction of PO4* with ferrihydrite. The final
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medium had a pH of 6.8. The pH was chosen because recommended for optimum growth of
Geobacter, by both the DSMZ (Medium 579, pH 6.7 to 7.0) as well as the ATCC (Medium
1957, pH 6.8). Adsorption and coprecipitation experiments were performed at pH 5, i.e. under
pH conditions where most coprecipitates form in the presence of dissolved organic matter
(Eusterhues et al., 2011). However, the higher pH during reduction experiments may have

caused desorption of some of the mineral-bound organic matter.

The medium (10 ml) was dispensed under an N2 gas stream into pre-sterilized (6 h 180 °C) 21
ml-culture tubes that contained pre-weighed ferrinydrite and ferrihydrite-organic matter
associations (40 mM per tube). After tubes were closed with butyl rubber stoppers and capped
with aluminium rings, they were flushed again with sterile N2/CO> (80/20 v/v), applying an
overpressure of ~100 mbar. Pressure was monitored with a needle tensiometer (TensioCheck
TC1066, Tensiotechnik). Inoculation of ferrihydrite and ferrihydrite-organic matter
associations was performed with 4.8% (v/v; initial cell density ~108 mL™) G. bremensis pre-
culture grown on phosphate-free medium with sodium-fumarate (50 mM) as electron acceptor
and sodium-acetate (20 mM) as electron donor and carbon source. Triplicate samples of all

treatments were incubated horizontally (30 °C) in the dark and shaken periodically.

For Fe(ll) determination, 0.2 ml subsamples were taken anoxically from well shaken culture
tubes with a syringe and transferred into 0.5 M HCI for extraction (1 h in the dark). Fe(ll) of
the extraction solutions was determined using the phenanthroline assay (Tamura et al., 1974).
Fe(total) was analyzed via ICP-OES (Spectroflame, Spectro, Kleve, Germany). Solid
remnants of the incubation experiments were freeze dried and stored under N2 until XRD
measurements (D8 Advance DaVinci diffractometer by Bruker AXS, Karlsruhe, Germany)
were performed using Cu Ka radiation at 40 kV and 40 mA.

2.5 Abiotic reduction experiments with Na-dithionite

Chemical reducibility of ferrihydrite and ferrihydrite-organic matter associations was
evaluated in abiotic reduction experiments performed after Houben (2003). In short,
ferrinydrite and ferrihydrite-organic matter associations (ca. 0.1 mmol Fe in ferrihydrite) were
added to 0.5 L of anoxic (N2) 0.01 M Na-dithionite solution buffered with ca. 0.015 M
NaHCOz in a 1L screw cap bottle. Bottles were closed immediately with a rubber stopper and
a metal screw cab, shaken thoroughly and afterwards stirred constantly at room temperature.
The solution pH was adjusted to ~7 before ferrihydrite addition by shortly purging with CO-
and was stable during the experiment. Periodically, samples of 0.5 ml were taken with N>

flushed syringes and filtered through 0.2 um membranes (PVDF) into cuvettes filled with 0.5
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ml acetate (to quench the reduction) and ddH20 (for dilution). The dissolved Fe(ll) was
measured using the phenantroline method (Tamura et al., 1974).

2.6 Evaluation of reduction rates:

Fe(ll) formation kinetics were used as analogues for Fe(lll) reduction. Apparent initial
reaction rates were estimated by fitting linear regression lines to Fe(ll)/Fe(total) versus time
for the first data points acquired in microbial and abiotic reduction experiments. The slope of
the line represents the initial reaction rate. The degree of dissolution was determined at day 17
for microbial experiments and after 75 min for abiotic experiments. Day 17 for microbial
experiments was chosen, because the Fe(ll)/Fe(total) of the ferrihydrite control at day 52 is
much lower than at day 17 and therefore probably wrong. We assume that this is due to
unintentional oxidation at the end of the experiment in this sample. The data were fit also to a
model proposed first by Christoffersen and Christoffersen (1976) and used successfully by
e.g. Postma (1993), Larsen and Postma (2001), Houben (2003), and Roden (2004):

m, /m, =[-k@-y ) +1)/a

where mg is the initial concentration of Fe(lll), m: the concentration of Fe(ll) at time t, k the
rate constant, and y a constant describing the Fe mineral reactivity as controlled by crystal
size, morphology, structure and available reactive surface sites (Postma, 1993; Roden, 2004).
While we were successful in fitting the abiotic variants, the model failed to reconstruct the
biotic dissolution variants (data not shown). This may point to other processes involved in the
biotic dissolution, e.g., a preferential selection of a size fraction of the ferrihydrite-organic
matter-associations. However, the comparably poor data quality of the biotic variants does not

allow for an in-depth interpretation of this finding.

3 Results and Discussion
3.1 Characterization of forest floor extract, control ferrihydrite and ferrihydrite-

organic matter associations

The forest floor extract for the production of ferrihydrite-organic matter associations was
characterized by its C/N ratio, solid state 3C NMR (Figure 1) and FTIR (Figure 2). The
concentrations of C and N were found to be 35.1% and 4.3%. Organic C in the respective
chemical shift regions of the NMR spectrum was quantified to 13% of TOC alkyl C (0-45
ppm), 51% of TOC O-alkyl C (45-110 ppm), 24% of TOC aryl C (110-160 ppm), and 13% of

TOC carbonyl C (160-220 ppm). In comparison to the material used for previous adsorption



230
231
232
233
234
235
236
237
238
239
240
241

242
243
244
245
246
247
248
249

250
251
252
253
254
255
256
257
258
259
260

261
262

and coprecipitation studies (Eusterhues et al., 2008; Eusterhues et al., 2011; Eusterhues et al.,
2014) this material had a higher content in aromatic groups and carbonyl C (ester, carboxyl or
amide groups), and less carbohydrates. The FTIR spectrum (Figure 2; band assignment
according to Abdulla et al., 2010) shows strong peaks at 1722 cm™ (C=0 of COOH), 1622
cm™ (complexed COO") and at 1148, 1089, and 1041 cm™ (C-O in carbohydrates). Very sharp
signals at 1384 and 825 cm™ are caused by NOs, and show that only part of the N can belong
to amides. Additional smaller signals can be identified using the second derivative of the
spectrum: the signal at 1783 cm™ points to the C=0 stretching of y-lactones, signals at 1547
and 1268 cm™ can be explained by amide 1l and amide 111, signals at 1512 and 1218 cm™ are
in accordance with the C=C stretching of aromatic rings and with the asymmetric C-O
stretching of aromatic OH. The signal at 965 cm™ belongs to the O-H out of plane bending of
carboxylic acids and the band at 660 cm™ to the O-H out of plane bending of carbohydrates.

The control ferrihydrite as well as the ferrihydrites in coprecipitates and adsorption complexes
displayed XRD patterns of a typical 2-line ferrinydrite (Cornell and Schwertmann, 2003). The
specific surface area of the control ferrihydrite was 197 m? g as determined by N, gas
adsorption and the concentrations of C and N were found to be 0.2% and 1.3%. The FTIR
spectrum (Figure 2) showed that this high N concentration is due to nitrate, which has not
been fully removed during ferrihydrite synthesis from Fe(NO3)3-9 H20. [We assume that the
nitrate contamination does not affect our microbial reduction experiments, because Geobacter
bremensis is not able to reduce nitrate (Straub et al., 1998; Straub et al., 2001).]

The adsorption isotherm (Figure 3) can be described by a BET model (Ebadi et al., 2009) with
a monolayer adsorption capacity of qn=0.52 mg m2, an equilibrium constant of adsorption for
the first layer of Ks= 0.9 L mg?, and an equilibrium constant of adsorption for further layers
of K.=0.0045 L mg™. The obtained monolayer loading is in accordance with other adsorption
studies involving natural organic matter adsorption and ferrihydrite (Tipping et al., 1981;
Kaiser et al. 2007; Eusterhues et al., 2005). Coprecipitation, in contrast, produced
considerably larger organic matter-loadings of ~1.1 mg m. This can be explained either by a
larger surface area of coprecipitated ferrihydrites or by the presence of occluded organic
matter in addition to adsorbed organic matter in coprecipitates. Such a behavior was
previously reported for the coprecipitation of lignin, but not for a forest floor extract
(Eusterhues et al., 2011).

Three samples of each adsorption and the coprecipitation series were selected for the

reduction experiments (Table 1).
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FTIR-spectra of adsorbed and coprecipitated organic matter differ from the original forest
floor extract. The peak assigned to C=0 in protonated carboxyl groups (1723 cm™) is reduced
to merely a shoulder (seen only in the 2" derivative of AFhD and CFhD at 1716 and 1712
cm™), while the signal related to deprotonated carboxyl groups (1622 cm™ in FFE) is
increased and shifted to higher wavenumbers (1632, 1631 cm™). This pattern is explained by
the formation of inner-sphere surface complexes between carboxylic acids and Fe oxides
surfaces or dissolved metals (Kang et al., 2008; Persson and Axe, 2005). The peak at 1148
cm™? (C-O in carbohydrates) in the forest floor extract is not visible in the adsorbed or
coprecipitated organic matter and the peak at 1089 cm™ is slightly shifted to lower
wavenumbers (1082, 1079 cm™). Both changes point to a fractionation of carbohydrates
during adsorption or coprecipitation. The absence of the sharp peaks at 1384 and 825 cm
shows that coprecipitates and adsorption complexes are free of nitrate. We assume, the
adsorption of organic matter has removed the surface bound nitrate, which could not be
removed from ferrihydrite through washing (Fh in Figure 2), and the natural nitrate from the
forest floor extract did not react with the Fe oxides (FFE in Figure 2).

FTIR spectra and their second derivatives of adsorbed and coprecipitated organic matter are
remarkably similar. Small differences however exists for the main carbohydrate peak and its
shoulders, but seem mainly related to the amount of mineral-bound organic matter: While
carbohydrates are represented by peaks at ~1125 and ~1080 and ~1040 cm™ in samples with
small C concentrations (AFhA; CFhA), samples with large C concentration show a strong
peak at ~1080 cm™ and a shoulder at ~1040 cm™ (AFhD, AFhB, CFhD).

The highly surface-sensitive XPS technique provides the chemical composition of typically
less than 10 nm of the sample surface (Seah and Dench, 1979). ). High resolution XPS spectra
of the Cls, N1s, Fe2p, and P2p lines are given in Figure 4. Weak S2p signals (data not
shown) above the detection limit were found for the forest floor extract and for coprecipitates
and adsorption complexes with low C concentrations (< 115 mg/g). The absence of S in
complexes with higher organic matter contents may imply that adsorption of the forest floor
organic material outcompetes adsorption of sulfate. The N1s and the P2p peaks show
considerable noise (Figure 4), which leads to large scatter for C/N and C/P ratios (Figure 5).
Nevertheless, the data show that the C/N ratio and the C/P ratio of coprecipitates and
adsorption complexes are clearly higher than that of the original forest floor extract. While
C/P-ratios for the coprecipitated organic matter are very similar to that of the adsorbed

organic matter, a slightly, but significantly higher mean C/N-ratio (40) for the adsorbed
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organic matter is observed in comparison to a C/N of 35 for coprecipitated organic matter (a
= 0.05; T-test). The C1s peak can be deconvoluted into four peaks as shown exemplary for the
forest floor extract (Figure 4) and assigned to 285.0 eV: C-C and C-H; 286.6 eV: C-O and C-
N; 288.2 eV: C=0 and N-C=0, and 289.3 eV: O-C=0 (Arnarson and Keil, 2001). The
adsorbed and coprecipitated organic matter was found enriched in aliphatic C (C-C, C-H) and
carboxylic C (O-C=0), but compositional differences between adsorbed and coprecipitated

cannot be seen (data not shown).

To find out whether the exposed ferrihydrite surface differs between coprecipitated
ferrihydrites and ferrihydrites with adsorbed organic matter, we determined the C/Fe-ratio
(Figure 5A). Although coprecipitated ferrihydrites might have occluded a major part of the
associated organic matter inside their aggregates, the XPS C/Fe-ratio was found to be similar
for samples with the same C concentration. We therefore assume that the accessibility of the
ferrihydrite surface for reducing agents or microbial cells is not systematically different in
coprecipitates and in ferrihydrites with adsorbed organic matter.

3.2 Microbial Fe(lll) reduction by Geobacter bremensis

Incubation of ferrihydrite-organic matter associations with G. bremensis (Figure 6) revealed
that reaction rates and degree of reduction varied with the amount of mineral associated
organic matter: Increasing organic matter-loadings on ferrihydrite led to decreasing initial
reaction rates and a decreasing degree of reduction for ferrihydrites with coprecipitated as
well as adsorbed organic matter (Table 1). Also, samples of the coprecipitation series were
more reactive than samples of the adsorption series, when comparing samples with similar
organic matter contents. In case of AFhA, the sample with the smallest amount of adsorbed
organic matter (44 mg g* C), the initial reaction rate was smaller (0.0017 min) than that of
the organic matter-free control ferrihydrite Fh (0.0020 mint) while the degree of dissolution
at day 17 was similar (64%) to that of the control ferrihydrite (63%). In case of CFhA, the
ferrihydrite sample with the smallest amount of coprecipitated organic matter (44 mg g* C),
initial reaction rate (0.0021 min) and degree of dissolution (82%) were even larger than for

the control ferrihydrite Fh.

We conclude that the mineral-bound organic matter results in a surface passivation of the
ferrihydrite surface. The fact that coprecipitates were more easily reduced than ferrihydrites
with adsorbed organic matter may be explained by smaller and more defective individual
ferrinydrite crystals in coprecipitates (Eusterhues et al., 2008) and a therefore larger specific
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surface area. A possibly larger accessible outer ferrihydrite surface in coprecipitates compared
to ferrihydrite with the same amount of adsorbed organic matter can be ruled out based on
XPS results (Figure 5A). We assume that these effects dominate over the surface passivation
effect due to associated organic matter in case of the fast and extensive reduction of CFhA. A
systematically different aggregate structure between ferrihydrite with adsorbed organic matter
and coprecipitated ferrihydrites may also have influenced the availability of the mineral
surface (Pédrot et al., 2011). A possibly different composition of the mineral-bound organic
matter in coprecipitates compared to adsorption complexes is a further aspect, which has to be
taken into account. Although FTIR spectra and XPS spectra were very similar, we cannot
exclude differences between adsorbed and coprecipitated material. In a previous experiment
with a distinct forest floor extract (Eusterhues et al., 2011) FTIR spectra had also been very
similar, whereas **C NMR analyses of the non-reacted fraction had shown that the adsorbed
organic matter was enriched in O-alkyl C (carbohydrates), but depleted in carbonyl C and
alkyl C relative to the coprecipitated material. (It was not possible to obtain NMR spectra of
reasonable quality of the material used in this study. Formation of soluble Fe complexes in the
supernatant might be an explanation.) However, this knowledge does not help us to judge the
possibly different efficiency with which the possibly different fractions may inhibit
ferrinydrite reduction. The ability of molecules to form bi- or multinuclear inner-sphere bonds
was recognized to make strong inhibitors with respect to mineral dissolution (Stumm, 1997),
while the presence of electron accepting and electron donating groups in the organic material
controls its ability to act as an electron shuttle and promote reduction. Quinones and
condensed aromatic groups have been shown to be redox active in humic acids and chars
(Dunnivant et al., 1992; Scott et al., 1998; Klipfel et al., 2014). While we do not expect any
condensed aromatics, we cannot quantify quinones or multinuclear inner-sphere bonds in the

mineral-bound organic matter.

Our microbial reduction results are surprisingly different from experiments performed by
Shimizu et al., (2013), who coprecipitated ferrihydrite with standard humic acids and
monitored reduction by Shewanella putrefaciens strain CN-32. They found that increasing
amounts of coprecipitated humic acid led to elevated microbial reduction. At high humic acid
loadings (C/Fe = 4.3) reduction rates based on dissolved Fe(ll) were faster than that of pure
ferrihydrite, whereas lower humic acid loadings (C/Fe < 1.8) resulted in slower reduction
rates. Pure ferrihydrite was reduced at medium reduction rates. The experiments of Shimizu et
al., (2013) are in accordance with the overall assumption that the coprecipitated humic acid

are used by Shewanella to transfer electrons from the cell to the Fe oxide and advance its
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electron shuttling process. A threshold amount of mineral-associated humic acid was assumed
to be necessary before electron shuttling accelerates ferrihydrite dissolution (Shimizu et al.,
2013).

However, the enhancement of electron shuttling might have been especially strong for the
experimental conditions chosen by Shimizu et al. (2013), because the content of aromatic
groups and quinones is usually much larger in humic acid than in forest floor extracts as used
in this study. Accordingly, Piepenbrock et al. (2014) could show that the electron accepting
capacity, i.e. the concentration of redox-active functional groups, of a natural forest floor

extract was only half as high as that of the Pahokee Peat Humic Acid.

By comparing the two studies, the question arises if differences in electron transfer
mechanisms applied by the 5-Proteobacteria Geobacter and the y-Proteobacteria Shewanella
can explain whether mineral-bound organic matter increases or decreases the reducibility of
Fe oxides. In general, the following electron transfer strategies have been discussed in the
literature: 1) direct electron transfer (DET) by either membrane-bound redox-enzymes (Nevin
and Lovley, 2000) or bacterial nanowires (Reguera, et al., 2005; Gorby et al., 2006;
Malvankar et al., 2011) and ii) mediated electron transfer (MET) using either chelators (Nevin
and Lovley, 2002; Kraemer, 2004) or redox shuttling compounds that are produced by the cell
itself (Marsili et al., 2008) or are abundant in the extracellular environment (Lovley et al.,
1996). Geobacter has been found to require direct contact to the mineral surface, but is also
discussed to use nanowires for electron transfer (Malvankar et al., 2012; Boesen and Nielsen,
2013). Geobacter species can conserve energy from the transfer of electrons to a variety of
extracellular electron acceptors including metals like Mn(IV) and U(V1), but also electrodes
and humic acid. Shewanella is long known to not rely on direct contact (Arnold et al., 1990;
Caccavo et al., 1997; Lies et al., 2005) and to produce chelating compounds like flavins (von
Canstein, 2008). A study of Kotloski and Gralnick (2013) recently showed that flavin electron
shuttling but not direct electron transfer or nanowires is the primary mechanism of

extracellular electron transfer by Shewanella oneidensis.

For Geobacter increasing amounts of mineral-bound organic matter decreased reduction rates
and degree of reduction, probably because reactive surface sites of the mineral are blocked by
adsorbed organic matter molecules. Additionally, increasing amounts of organic matter will
increase the negative charge of the particle surface, which may also impede their accessibility
for negatively charged microbial cells (Shimizu et al., 2013 and ref. therein). For Shewanella

species, which use chelating agents and electron shuttles, smaller amounts of adsorbed
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organic matter hinder reduction by passivation of reactive surface sites, whereas large
amounts of mineral-bound organic matter can be used to enhance electron shuttling or
chelating of Fe. Interestingly, we did not observe such an increase in reduction rates at very
large organic matter loadings, although also Geobacter species are able to reduce extracellular
organic matter. This can either be explained by the lower concentration of redox active groups
in natural dissolved organic matter compared to humic acid (Piepenbrock et al., 2014) or by
species-dependent different capabilities.

Partial reduction of Fe oxides during microbial reduction is explained by surface passivation
through adsorption of Fe(Il) (Roden and Urrutia, 1999, Liu et al., 2001). Similar to Shimizu et
al. (2013) our study shows that mineral-bound organic matter has to be taken into account as
an additional control of Fe(lll) reduction. Because dissolved organic matter is present in
almost all natural environments such as lakes, wetlands and soils, the occurrence of mineral-
bound organic matter on Fe oxides is more likely than that of pure Fe oxides surfaces. Since
the precipitation of ferrihydrite usually takes place from organic matter-containing solutions,
the occurrence of coprecipitates is also more likely than that of ferrihydrite with only
adsorbed organic matter. For these coprecipitates, a smaller crystal size and a more defective
structure must be considered to result in faster reaction rates than compared to ferrihydrites

with similar amounts of adsorbed organic matter.

Geobacteraceae have been studied intensively and are thought to contribute significantly to
Fe(l1)-reduction in most soils and sediments (Lovley, 2011 and ref. therein). Therefore we
believe the findings of this study might contribute to a better understanding of processes

occurring in a wide variety of environments.

3.3 Mineral transformation during microbial reduction

Investigating the solid remnants after 52 days of microbial reduction revealed that the
formation of secondary minerals has been affected by the presence of mineral-bound organic
matter (Table 2). Besides salts, such as halite, sal ammoniac and nahcolite, originating from
the medium, we detected the neo-formation of goethite (FeEOOH) and siderite (FeCOs).
Siderite was found after reduction of pure ferrinydrite (Fh) and in samples with rather low
amounts of organic matter (AFhA, CFhA, CFhB), goethite was only found after reduction of
the pure ferrihydrite. Thus, the formation of siderite was limited to experiments with high
reduction rates and high degrees of reduction, where the solubility product of siderite was
likely exceeded. The formation of goethite only took place in the absence of organic matter.
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This is in accordance with the general observation that goethite formation is hindered by
organic matter (Schwertmann, 1966; Schwertmann, 1970) and with the experiments by
Henneberry et al. (2012), who reduced ferrihydrite-organic matter coprecipitates by S(-11) and
Fe(Il) and observed no mineral transformation as well. Shimizu et al. (2013) also found
goethite only in the control experiments with pure ferrihydrite, whereas the reduction of

ferrihydrite-organic matter association favored the formation of green rust and magnetite.

Goethite formation during reduction is assumed to be catalyzed by Fe(l1) ions which adsorb to
the Fe oxide surface (Hansel et al., 2003; Thompson et al., 2006; Yee et al., 2006). We
expected a competition of Fe(ll) with organic matter and therefore a decreased amount of
goethite formation in our experiments. However, this does not explain that no goethite was
formed during the reduction of ferrihydrite in presence of only a small amount of mineral-
bound organic matter. Possible explanations could be the detection limit of XRD (~5%) and a
full coverage of Fe(ll)-reactive sites on ferrihydrite (Shimizu et al., 2013). Furthermore, a
preferential reaction of Fe(ll) with the mineral-bound organic matter instead of the Fe oxide
surface could be considered.

3.4 Abiotic Reduction by Na-Dithionite

During abiotic reduction with Na-dithionite (Figure 7, Table 1) we observed highest initial
reduction rates for the pure ferrihydrite and systematically decreasing reduction rates with
increasing amounts of mineral-bound organic matter. Likewise, the degree of reduction after
75 min was generally decreasing with increasing organic matter. An exception is sample
CFhA, for which the dissolved Fe(ll) was estimated to be larger than the total Fe, which is not
possible. Therefore we did not calculate reduction rate and degree of reduction for this
sample. Reduction rates and the degree of reduction again tend to be larger for coprecipitated
ferrihydrite. Thus, abiotic reduction experiments displayed the same overall picture of the
reactivity of the ferrihydrite-organic matter associations as the microbial reduction
experiments with G. bremensis. However, reduction rates for Na-dithionite are two to three

orders of magnitude larger.

The data for abiotic reduction could be well represented by the model by Christoffersen and
Christoffersen (1976; Table 1). It is interesting to note that y the parameter describing particle
shape, particle size, reactive site density and particle heterogeneity in this model is increasing
with increasing amounts of mineral-bound organic matter from 1.3 to 2.6 for coprecipitates

and from 2.9 to 7.4 for ferrihydrites with adsorbed organic matter (Table 1). Reduction of
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pure ferrihydrite gave a y of 2.4. The theoretical value for ideally dissolving isotropic particles
is 2/3. Houben (2003) found a y of 1.5 for reduction of ferrihydrite with Na-dithionite; Larsen
et al. (2006) reported values between 1 and 2.2 for reduction of aquifer material by ascorbic
acid. Roden (2004) observed a y of 0.7 for synthetic ferrihydrite reduced by ascorbic acid and
values between 0.8 and 1.8 for natural Fe oxides. Reducing the same material microbially by
Shewanella led to much higher values of y of 5.8 to 11.8. Likewise he observed lower degrees
of reduction for microbial reduction than for reduction by ascorbic acid. He concluded that the
low degrees of reduction as well as the high values for y during microbial reduction reflect
“the inhibitory effect of Fe(II) accumulation on enzymatic electron transfer” (Roden, 2004).
However, because we observed high y values for abiotic reduction (Table 1), we propose that
surface passivation by organic matter leads to a high y, also.

3.5 Summary and environmental implications

In the present study mineral-bound soil organic matter has been shown to decrease microbial
reduction by G. bremensis and abiotic reduction by Na-dithionite of ferrihydrite. The
reactivity of ferrihydrites with adsorbed organic matter differed from ferrihydrites
coprecipitated with organic matter: at similar organic matter contents higher initial reaction
rates and higher degrees of reduction were observed for coprecipitated ferrihydrites. Their
higher reactivity can be explained by the smaller crystal size and higher number of crystal
defects due to poisoning of crystal growth in the presence of organic matter during
coprecipitation. However, other aspects such as a different composition of the associated
organic matter and/or a different aggregate structure may also influence reduction kinetics. At
low concentrations of coprecipitated organic matter these effects may be stronger than the
surface passivation by the mineral-bound organic matter and lead to an even faster reduction
of coprecipitates than of pure ferrihydrite. We therefore propose that, in addition to the
accumulation of Fe(ll), the organic matter coverage of Fe oxide surfaces is discussed as a

further widespread mechanism to slow down or cease enzymatic reduction.

The secondary formation of Fe minerals resulting from microbial reduction was also
influenced by the amount of mineral-bound organic matter. Goethite was only found after
reduction of the organic matter-free ferrihydrite and siderite was only detected when
ferrinydrites with relatively low amounts of mineral-bound organic matter were reduced. For
e.g. soils, where we assume that an organic matter covered Fe oxide surface is rather the rule
than the exception, we conclude that goethite and siderite formation is less likely than in

typical microbial reduction experiments. Growth of new minerals will influence the cycling of
15
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Fe as well as of the usually associated nutrients and contaminants, because both goethite and
siderite represent thermodynamically more stable sinks for the fixation of Fe(lll) and Fe(ll)
than ferrihydrite and have different mineral surfaces.

Comparison to the studies of Pédrot et al. (2011) and Shimizu et al. (2013) let us assume that
the electron transfer mechanism of a microorganism controls whether or not mineral-bound
organic matter decreases or increases microbial reduction. Whereas Shewanella may use own
redox-active products to enhance electron shuttling, direct contact requiring Geobacter may
not be able to reach the oxide surface when blocked by organic matter. If this hypothesis
holds true, in natural environments, the likely presence of mineral-bound organic matter on Fe
oxide surfaces may increase or decrease Fe reduction, depending on the dominating types of
microorganisms. On the other hand, the composition or activity of the Fe reducing microbial
community might be regulated by the mean coverage of the Fe oxide surfaces. Systems with
low dissolved organic matter concentrations and low organic matter loadings on Fe oxides
might be favored by microorganisms requiring direct contact for reduction such as Geobacter,
whereas systems with high dissolved organic matter concentrations might be ideal for electron

shuttle or ligand driven microbial reduction.

4 Conclusions

Fe oxides are recognized as very important mineral phases, which stabilize their mineral-
bound organic matter against microbial degradation in the long-term. In redoximorphic soils,
it will depend on the type of reducing microorganism whether the presence of mineral-bound
organic matter will inhibit dissolution of the carrier mineral and support organic matter
storage at the same time. When direct electron transfer is the main mechanism for microbial
Fe(Ill) reduction, the organic matter coverage will protect the underlying Fe mineral and
promote its own preservation, whereas the opposite must be assumed for soils dominated by

microorganisms using electron shuttles or ligands for Fe(ll1) reduction.
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Table 1. Carbon concentration and C/Fe ratios of ferrihydrite-organic matter associations and

results of microbial and abiotic reduction experiments. See text for abbreviations.

Reduction by Geobacter bremensis

Reduction by Na-dithionite

linear fit linear fit C&C
degree of degree of
c C/Fe k z k z k ¥ 2
/ r dissolution® r dissolution®* ! r
mg/g mol/mol ht % ht % ht
control Fh 2 0.02 0.0020 0.961 63 5.29 0.998 83 5.79 2.4 0.989
AFhA 44 0.39 0.0017 0.955 64 1.59 0.895 62 2.26 2.9 0.990
adsorbed
oM AFhB 105 1.04 0.0011 0.965 42 0.72 0.895 30 1.07 7.2 0.991
AFhD 131 2.46 0.0010 0.933 36 0.67 0.811 24 0.60 74 0.979
CFhA 44 0.41 0.0021 0.950 82 Tt - -
coprecipitated
oM CFhB 98 1.06 0.0016 0.983 68 1.09 0.975 64 1.32 1.8 0.995
CFhD 182 2.83 0.0014 0.948 41 0.18 0.975 20 0.21 26 0.996

* degree of dissolution at day 17
**degree of dissolution at 75 min.
*** please note that for the reduction by Na-dithionite for sample CFhA the dissolved Fe(ll) was estimated to be larger than the total Fe, which is not possible.

Therefore we did not calculate reduction rate and degree of reduction for this sample
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Table 2. Mineral identification by XRD after reduction by G. bremensis. Sal ammoniac
(NH4Cl) is abbreviated by “sal”, nahcolite (NaHCO3) by “nahc”.

halite sal nahc calcite siderite  goethite
control Fh X x X x X x
AFhA kS X
adsorbed OM  AFhBE X (x}*
AFhD X x
CFhA X x X
coprecipitated CFhE
X ® X X
oM
CFhD X ®

*{x) less than 3 peaks identified
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Figure captions

Figure 1. *C Cross polarization magic angle spinning nuclear magnetic resonance spectrum
(*3C CPMAS NMR) of the forest floor extract.

Figure 2. FTIR spectra of the control ferrihydrite (Fh), the original forest floor extract (FFE),
the adsorption complexes (AFhD, AFhB, AFhA), and the coprecipitates (CFhD, CFhB,
CFhA). Second derivatives are given for spectra of the forest floor extract and the two
ferrihydrite-organic matter complexes with the highest C concentration. Refer to text for

abbreviations.

Figure 3. Ferrihydrite-associated C (normalized to the specific surface area of 197 m? g* of
the control ferrihydrite) vs. C in the equilibrium solution. The line represents a BET-isotherm.

Figure 4. Background corrected XPS spectra of the control ferrihydrite (Fe2p, red), the forest
floor extract (C1s, N1s, P2p, blue) and the incubated coprecipitates and adsorption

complexes. Refer to text for abbreviations.

Figure 5. Comparison of chemical surface composition expressed in XPS signal ratios (C/Fe,
C/N, and C/P) and bulk C content of Fh-OM associations. Dashed and dotted lines in (B)

encircle XPS data for adsorption complexes and coprecipitates, respectively, to guide the eye.

Figure 6. Microbial reduction of ferrihydrite and ferrihydrite-organic matter associations in
Geobacter bremensis cultures. The Fe(ll) production was normalized to the total initial
amount of Fe in ferrihydrite. The Fe(ll)/Fe(total) of the ferrihydrite control (red stars) at day
52 was much lower than at day 17 and therefore unexpectedly low, letting us assume that this
was due to unintentional oxidation at the end of the experiment in this sample (further details

see text). Error bars represent standard deviations of triplicate cultures.
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Figure 7. Abiotic reduction with Na-dithionite: Fe(ll) production (normalized to the total

initial Fe in ferrihydrite) versus time. Lines represent the model by Christoffersen and

Christoffersen (1976). Note that the dissolved Fe(Il) was estimated to be larger than the total

Fe for sample CFhA, which is unreasonable.
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Figure 1. 3C Cross polarization magic angle spinning nuclear magnetic resonance spectrum
(13C CPMAS NMR) of the forest floor extract.
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Figure 3. Ferrihydrite-associated C (normalized to the specific surface area of 197 m? g* of

the control ferrihydrite) vs. C in the equilibrium solution. The line represents a BET-isotherm.
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Figure 4. Background corrected XPS spectra of the control ferrihydrite Fh (only Fe2p, red),

the forest floor extract FFE (only C1s, N1s, P2p, blue) and the incubated coprecipitates
(CFhD, CFhB, CFhA) and adsorption complexes (AFhD, AFhB, AFhA). Refer to text for

abbreviations.
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Figure 6. Microbial reduction of ferrihydrite and ferrihydrite-organic matter associations in
Geobacter bremensis cultures. The Fe(ll) production was normalized to the total initial
amount of Fe in ferrihydrite. The Fe(ll)/Fe(total) of the ferrihydrite control (red stars) at day
52 was much lower than at day 17 and therefore unexpectedly low, letting us assume that this
was due to unintentional oxidation at the end of the experiment in this sample (further details

see text). Error bars represent standard deviations of triplicate cultures.
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Figure 7. Abiotic reduction with Na-dithionite: Fe(ll) production (normalized to the total

initial Fe in ferrihydrite) versus time. Lines represent the model by Christoffersen and
Christoffersen (1976). Note that the dissolved Fe(ll) was estimated to be larger than the total

Fe for sample CFhA, which is unreasonable (further details see text).
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