
Dear Dr. Brovkin,

We appreciate your comments and have made minor revisions to address your concerns. We are also glad to 
know that our previous revisions have satisfactorily address the reviewers' concerns. We look forward to 
acceptance and publication of this manuscript upon your approval of these changes. Our specific responses are 
included below, followed by a highlighted manuscript indicating changes to the text.

Figure 1 now shows only the terrestrial feedbacks as implemented in this study, and the caption has been edited 
to reflect this change.

We encountered similar unintentional changes in land cover due to land conversion assumptions when we were 
trying to reproduce the historical period to generate a 2005 starting state. Not only did these changes have a 
large effect on the carbon cycle, but they dramatically changed the land cover trajectory. We resolved these 
problems by carefully mimicking the land conversion assumptions and reference land cover distributions as 
used by CESM in CMIP5. Luckily, we were dealing with just the land use change and not the dynamic 
vegetation, or else it might have been more difficult. It is important, however, to understand how both bioclimate 
and human land use interact to produce the spatial and temporal distribution of land cover. While we are not 
immediately tackling the challenge of integrating dynamic vegetation and land use in CESM/iESM, we do intend 
to explore effects on carbon and climate associated with land conversion assumptions such as preferential 
removal of forest when cropland or pasture are increased.

Figure 8 now includes a unit label for the color bar.

Line 420 has been corrected to read 'million km^2.'

As of yet there is no official word on the acceptance of LUMIP by the WGCM/WCRP. George expects to hear 
something soon, however.

Sincerely,
Alan (on behalf of the co-authors)
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Abstract 21	
  

Climate projections depend on scenarios of fossil fuel emissions and land use change, and the 22	
  

IPCC AR5 parallel process assumes consistent climate scenarios across Integrated Assessment 23	
  

and Earth System Models (IAMs and ESMs). The CMIP5 project used a novel “land use 24	
  

harmonization” based on the Global Land use Model (GLM) to provide ESMs with consistent 25	
  

1500-2100 land use trajectories generated by historical data and four IAMs. A direct coupling of 26	
  

the Global Change Assessment Model (GCAM), GLM, and the Community ESM (CESM) has 27	
  

allowed us to characterize and partially address a major gap in the CMIP5 land coupling design: 28	
  

the lack of a corresponding land cover harmonization. For RCP4.5, CESM global afforestation is 29	
  

only 22% of GCAM’s 2005 to 2100 afforestation. Likewise, only 17% of GCAM’s 2040 30	
  

afforestation, and zero pasture loss, were transmitted to CESM within the directly coupled 31	
  

model. This is a problem because GCAM relied on afforestation to achieve RCP4.5 climate 32	
  

stabilization. GLM modifications and sharing forest area between GCAM and GLM within the 33	
  

directly coupled model did not increase CESM afforestation. Modifying the land use translator in 34	
  

addition to GLM, however, enabled CESM to include 66% of GCAM’s afforestation in 2040, 35	
  

and 94% of GCAM’s pasture loss as grassland and shrubland losses. This additional afforestation 36	
  

increases CESM vegetation carbon gain by 19 PgC and decreases atmospheric CO2 gain by 8 37	
  

ppmv from 2005 to 2040, which demonstrates that CESM without additional afforestation 38	
  

simulates a different RCP4.5 scenario than prescribed by GCAM. Similar land cover 39	
  

inconsistencies exist in other CMIP5 model results, primarily because land cover information is 40	
  

not shared between models. Further work to harmonize land cover among models will be 41	
  

required to increase fidelity between IAM scenarios and ESM simulations and realize the full 42	
  

potential of scenario-based earth system simulations. 43	
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1. Introduction 44	
  

Land use plays a major role in determining terrestrial-atmosphere mass and energy 45	
  

exchange (Adegoke et al., 2007; Raddatz, 2007), which in turn influences local to global climate 46	
  

(Brovkin et al., 2013; Jones et al., 2013a; Pitman et al., 2009). Despite much recent progress, we 47	
  

still have a limited understanding of how historical land use has affected, and continues to affect, 48	
  

climate (Brovkin et al., 2013; Jones et al., 2013a; Pitman et al., 2009) and carbon (Anav et al., 49	
  

2013; Arora and Boer, 2010; Houghton, 2010; Houghton et al., 2012; Hurtt et al., 2006; Jain et 50	
  

al., 2013; Jain and Yang, 2005; Jones et al., 2013b; Smith and Rothwell, 2013), and high 51	
  

uncertainty as to how land use might evolve in the future (Hurtt et al., 2011; van Vuuren et al., 52	
  

2011a; Wise et al., 2009). Part of the uncertainty in future land use trajectories is due to inherent 53	
  

unpredictability of human actions, and part to the high diversity of potential climate mitigation 54	
  

and adaptation scenarios. Several energy and land strategies have been proposed to mitigate 55	
  

climate change (Rose et al., 2012;Smith et al., 2013a), and while these strategies have similar 56	
  

overall goals, some strategies will likely compete for land and other resources if implemented 57	
  

simultaneously. For example, afforestation and bioenergy production both aim to reduce 58	
  

atmospheric CO2 concentrations, but both activities require land area, and both strategies would 59	
  

impact crop production and markets through effects on crop area (Reilly et al., 2012). 60	
  

Reflecting this limited understanding of land use effects on climate and carbon, Global 61	
  

Climate Models (GCMs), and also next generation Earth System Models (ESMs) that include 62	
  

fully coupled atmosphere-land-ocean carbon cycles, implement a wide range of land use/cover 63	
  

approaches with varying degrees of detail and limited inclusion of managed ecosystems and land 64	
  

use practices (Brovkin et al., 2013; Pitman et al., 2009). The Land Use and Climate, 65	
  

IDentification of robust impacts (LUCID) activity employed seven GCMs to determine whether 66	
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land use change has significant regional climate impacts and farther-reaching teleconnections 67	
  

due to biophysical changes in land surface. The results for 1972-2002 revealed significant but 68	
  

inconsistent changes in temperature, precipitation, and latent heat in some areas where land use 69	
  

change had occurred. The authors concluded that the model disagreement was due mainly to 70	
  

differences in land use and land cover change implementations and corresponding land cover 71	
  

distributions, with contributions from methodological differences in crop phenology, albedo, and 72	
  

evapotranspiration (Pitman et al., 2009). The environmental factors addressed by LUCID are 73	
  

also key factors for determining carbon uptake by vegetation, and thus it is not surprising that the 74	
  

Coupled Climate-Carbon Cycle Model Intercomparison Project (C4MIP) activity generated ESM 75	
  

projections that range from the land being a carbon source to a large carbon sink by 2100 76	
  

(Friedlingstein et al., 2006). 77	
  

To advance the scientific understanding of the effects of land use change on climate, 78	
  

phase 5 of the Coupled Model Intercomparison Project (CMIP5) (Taylor et al., 2012) applied a 79	
  

novel “land use harmonization” approach to produce the required land use change information 80	
  

for all participating GCMs and ESMs. The Global Land use Model (GLM) was used for this land 81	
  

use harmonization to generate the first set of continuous, spatially gridded land use change 82	
  

scenarios for the years 1500-2100 (Hurtt et al., 2011). GLM computes land use states and 83	
  

transitions annually at half-degree, fractional spatial resolution, including secondary land age, 84	
  

area, and biomass, and the spatial patterns of shifting cultivation and wood harvesting (Hurtt et 85	
  

al., 2006). Land use products from GLM have successfully been used as inputs to both regional 86	
  

and global dynamic land models (Baidya Roy et al., 2003; Hurtt et al., 2002; Shevliakova et al., 87	
  

2009) and fully coupled ESMs (Jones et al., 2011; Shevliakova et al., 2013). The land use 88	
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harmonization process ensures a continuous transition from the historical reconstructions to the 89	
  

future projections made by Integrated Assessment Models (IAMs). 90	
  

The land use harmonization methodology was designed to satisfy the demands of a broad 91	
  

range of models and to provide a consistent set of land use inputs for GCMs and ESMs. The 92	
  

historical period of the land use harmonization (1500-2005) was based on version 3.1 of the 93	
  

Historical Database of the Environment (HYDE; Klein Goldewijk et al., 2011) and Food and 94	
  

Agriculture Organization (FAO) wood harvest data. For the future period (2005-2100), the land 95	
  

use harmonization process utilized land use data from the four Representative Concentration 96	
  

Pathways (RCPs), each provided by a different IAM. The RCP scenarios were designed to each 97	
  

meet a different radiative forcing target (2.6, 4.5, 6.0, and 8.5 W m-2), and due to differences 98	
  

among the IAMs these scenarios spanned a range of approaches in all sectors, including land use, 99	
  

for meeting the targets (van Vuuren et al., 2011a). As a result, forest cover change varied widely 100	
  

from deforestation to afforestation across the scenarios. Once the land use data were passed 101	
  

through the land use harmonization, each GCM/ESM utilized a unique subset of the harmonized 102	
  

outputs, based on model capabilities, and applied it to a unique set of land use and land cover 103	
  

types (e.g. Lawrence et al., 2012). Although this process was largely successful in enabling the 104	
  

first spatially explicit land use driven climate change experiments, it introduced considerable 105	
  

uncertainty into the climate response for a given RCP in part because of model-specific 106	
  

translation requirements between harmonized land use outputs and GCM/ESM simulated land 107	
  

cover. This uncertainty due to inconsistent land cover distributions among models precluded 108	
  

robust intercomparison of land-atmosphere processes (e.g., carbon uptake, evapotranspiration) 109	
  

because differences among models were dominated by the differences among simulated land 110	
  

cover distributions (Brovkin et al., 2013). As land use and land cover are interdependent, a more 111	
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detailed specification of the relationship between land use and land cover may reduce uncertainty 112	
  

in earth system simulations such that experiments can focus on land-atmosphere process 113	
  

uncertainty rather than be confounded by inconsistent land use/cover distributions. 114	
  

Recent analyses of CMIP5 results using prescribed CO2 concentrations have also showed 115	
  

the land ranging from a carbon source to a sink in 2100 for a given scenario (Brovkin et al., 116	
  

2013; Jones et al., 2013b). The LUCID activity was repeated for five CMIP5 ESMs and the 117	
  

results demonstrated that large inter-model spreads of key regional land surface variables 118	
  

(temperature, precipitation, albedo, latent heat, and available energy) were still due mainly to 119	
  

differences in land use and land cover change implementations and corresponding land cover 120	
  

distributions. Inter-model spreads of CO2 emissions, however, were attributed mainly to 121	
  

differences in land carbon cycle process parameterizations. As a result, different land cover 122	
  

distributions among the models gave significantly different regional changes in climate 123	
  

associated with land use change, but with insignificant effects on global mean temperature. 124	
  

Furthermore, the range of net cumulative land use change emissions from 2006 to 2100 for 125	
  

RCP8.5 was 34 to 205 PgC, with the high estimate likely due to the combination of relatively 126	
  

high levels of land carbon and the inclusion of all land use transitions rather than just net land 127	
  

use change (Brovkin et al., 2013). Additionally, not all of the models used the GLM wood 128	
  

harvest data, further contributing to the spread of model results. For comparison, estimates of net 129	
  

cumulative carbon emissions during 1700-2000 (1850-2000) range from 138-250 PgC (110-210 130	
  

PgC) (Table 3 in Smith and Rothwell, 2013). The differences in land use and land cover 131	
  

implementations are also a main factor in the large spread of 21st century land carbon uptake and 132	
  

of compatible fossil fuel emissions allowable for a given RCP. In fact, the inter-model spreads in 133	
  

land carbon uptake for individual scenarios are greater than the inter-scenario spreads for 134	
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individual models (Jones et al., 2013b). It is apparent that further work is needed to resolve 135	
  

inconsistencies among land use and land cover approaches to reduce climate uncertainty, 136	
  

especially for regional impact assessment. 137	
  

Additional sources of climate uncertainty related to land use are the RCP radiative 138	
  

forcing targets, which include only emissions of GreenHouse Gases (GHGs) and some aerosols 139	
  

and reactive gases (van Vuuren et al., 2011a). These targets do not include radiative forcing from 140	
  

albedo change or other direct climate effects associated with land use change. In a recent 141	
  

modeling experiment, two different carbon tax policies with dramatically different land use 142	
  

scenarios met the same radiative forcing target (4.5 W m-2) in the IAM used for RCP4.5 but had 143	
  

significantly different radiative forcing in an ESM (difference of 1 W m-2) due to albedo 144	
  

differences between the land use scenarios (Jones et al., 2013a). Likewise, the Shared 145	
  

Socioeconomic Pathways (SSPs) for mitigation, adaptation, and impact studies in the 146	
  

Intergovernmental Panel on Climate Change (IPCC) fifth Assessment Report (AR5) are likely to 147	
  

produce different land use scenarios that meet the same RCP target, but have different radiative 148	
  

forcing in the ESMs due to the direct effects of land use and land cover change on climate. 149	
  

However, one of the goals of the RCP process was to provide a set of radiative forcing targets for 150	
  

ESMs that remains consistent with respect to the diversity of SSPs associated with each RCP 151	
  

target (Moss, et al., 2010). As a result of the wide range of land use and land cover related 152	
  

uncertainties in climate projections, an increased emphasis on land use and land cover dynamics 153	
  

is a high priority for CMIP6 (Meehl et al., 2014). 154	
  

A more consistent and complete land use and land cover coupling between IAMs and 155	
  

ESMs will facilitate more accurate projections of global change scenarios and more robust multi-156	
  

model intercomparisons of climate and carbon cycle interactions with anthropogenic drivers such 157	
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as fossil fuel emissions and land use change. These expected outcomes are in line with a primary 158	
  

goal of a scenario-based approach, such as the RCPs, which is “to better understand uncertainties 159	
  

in order to reach decisions that are robust under a wide range of possible futures” (Moss et al., 160	
  

2010; p. 747). The RCPs were designed to better understand uncertainties in global climate 161	
  

projections by providing distinct scenarios of atmospheric radiative forcing and land use change. 162	
  

Intra-scenario comparison of ESM simulations offers insights to uncertainties in ESM processes, 163	
  

while inter-scenario comparison of ESM simulations offers insights to uncertainties due to a 164	
  

range of possible futures. However, the efficacy of this approach depends on the fidelity of the 165	
  

ESM simulations to the RCP scenarios. Without this fidelity, intra-scenario comparison is not 166	
  

possible, because the ESMs are not simulating the same scenario, and inter-scenario comparison 167	
  

might include futures outside the prescribed range of possibility. 168	
  

The IAMs projected a complete terrestrial surface (along with ice, rock, and urban) for 169	
  

each given scenario because land use and land cover are interdependent. For example, carbon 170	
  

stocks in various ecosystems might be valued under a carbon price policy, so land cover would 171	
  

need to be determined along with land use. Or a land policy might restrict certain land cover 172	
  

conversions. Within	
  the	
  CMIP5	
  coupling	
  process,	
  however,	
  GCMs	
  and	
  ESMs	
  determine	
  their	
  173	
  

own	
  land	
  cover	
  while	
  remaining	
  consistent	
  with	
  the	
  land	
  use	
  harmonization	
  data,	
  thus	
  174	
  

potentially	
  reducing	
  the	
  fidelity	
  of	
  the	
  full	
  climate	
  simulations	
  to	
  the	
  RCP	
  scenarios.	
  This 175	
  

was a practical design that obviated the redesign of GCM/ESM land use and land cover 176	
  

implementations, but also precluded analysis of the climate impacts of different land cover 177	
  

responses to land use change because such analysis is robust only within a single model where 178	
  

everything but land cover response remains consistent. Another challenge posed by the 179	
  

interdependence of land use and land cover is the implementation of geographic shifts in land 180	
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cover due to bioclimatic changes. While these shifts are often implemented within ESMs, such 181	
  

shifts are a second-order effect that is superposed upon land use change and might be better 182	
  

implemented as a feedback from ESMs to IAMs to inform land use and land cover projection. 183	
  

Incorporating both land use and land cover into the coupling between IAMs and ESMs is a 184	
  

fundamental step toward realizing the full potential of the scenario-based RCP process. 185	
  

Our approach to addressing inconsistencies between IAMs and ESMs is to integrate an 186	
  

IAM and an ESM into the first fully coupled model that directly simulates human-environment 187	
  

feedbacks. The resulting integrated ESM (iESM) includes climate feedbacks on vegetation 188	
  

productivity and ecosystem carbon from the Community ESM (CESM) to the Global Change 189	
  

Assessment Model (GCAM) to facilitate land use projection at five-year intervals. The iESM 190	
  

uses GLM as in the CMIP5 land use harmonization, along with the CESM Land Use Translator 191	
  

(LUT) that converts land use harmonization outputs to CESM land cover and wood harvest area. 192	
  

Our initial iESM simulations showed that time varying factors based on CESM simulated Net 193	
  

Primary Production (NPP) and Heterotrophic Respiration (HR) were successfully used by 194	
  

GCAM for land use projection. However, these simulations also demonstrated that the large 195	
  

RCP4.5 afforestation signal was not being passed through from GCAM to CESM. GCAM 196	
  

simulated afforestation as a carbon-sequestering strategy to help meet the RCP4.5 target, but this 197	
  

additional forest area was not included in the land use harmonization. As a result, most of this 198	
  

forest area was not included in CESM simulations, both for CMIP5 and in an early version of 199	
  

iESM. 200	
  

Here we test the feasibility of restoring the lost afforestation signal by using the iESM as 201	
  

a test bed to explore alternative coupling strategies. We focus on modifications to the CESM 202	
  

LUT because initial modifications to GLM did not restore CESM afforestation. One advantage 203	
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of focusing on a post-land use harmonization approach is that it could be applied to other ESMs 204	
  

independently without changing the land use harmonization product. Section 2 includes model 205	
  

description and experimental design, Section 3 presents results and demonstrates that this 206	
  

problem exists in CMIP5, and Section 4 discusses the limitations of our current approach and the 207	
  

implications for the CMIP5 archive with respect to land use and climate. We conclude with 208	
  

suggestions for improving IAM to ESM land coupling for future model inter-comparisons. 209	
  

 210	
  

2. Methods 211	
  

2.1. iESM Description 212	
  

The iESM integrates GCAM, GLM, and CESM to evaluate the effects of human-213	
  

environment feedbacks on the earth system (Figure 1). We have completed the first coupling 214	
  

stage that allows GCAM to project land use distribution in five-year increments based on the 215	
  

previous five years of CESM vegetation productivity. Here we give an overview of how the three 216	
  

main components interact. A more detailed description of iESM development will be presented 217	
  

in a forthcoming paper (Collins et al., in prep). 218	
  

GCAM v3.0 ((Calvin et al., 2011); henceforth referred to as GCAM) is a tightly coupled 219	
  

IAM of human and biogeophysical processes associated with climate change. GCAM’s human 220	
  

system components simulate global economic activity within energy, agriculture, and forest 221	
  

product markets with respect to 14 geopolitical regions. A previous version of GCAM projected 222	
  

land use and land cover distributions for each of the 14 geopolitical regions (Wise et al., 2009) 223	
  

and was used to generate the CMIP5 RCP4.5 scenario (Thomson et al., 2011). Currently, GCAM 224	
  

incorporates a range of improvements to the Agriculture and Land Use (AgLU) module, 225	
  

including the capacity to operate on 151 geographical land units to generate a more detailed and 226	
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accurate spatial distribution of land use. There are three land cover types that remain constant 227	
  

over time (urban, tundra, and rock/ice/desert) and 24 land use and land cover types available for 228	
  

redistribution, including 12 food and feed crops, five bioenergy crops, and seven managed and 229	
  

unmanaged ecosystems (Kyle et al., 2011; Wise and Calvin, 2011). The “geographical land 230	
  

units” are defined by intersecting 18 global agro-ecological zones (Lee et al., 2005) with the 14 231	
  

geopolitical regions. In the iESM, GCAM projects land use and land cover distributions within 232	
  

each of these land units at five-year intervals. These distributions are based on profit shares 233	
  

calculated from agricultural costs, prices, yields, and the application of a carbon price to 234	
  

vegetation and soil carbon densities. 235	
  

In a second and intermediate step, GLM uses GCAM’s cropland, pasture, and forest areas 236	
  

(and wood carbon harvest) to compute all annual, fractional land use states and transitions. As 237	
  

part of this process it disaggregates GCAM’s geographical land unit data to a half-degree global 238	
  

grid by computing spatial patterns and also ensures consistency with the historical land use 239	
  

reconstructions (Hurtt et al., 2011; Hurtt et al., 2006). GLM has been slightly modified from its 240	
  

CMIP5 implementation to better facilitate forest area change matching with GCAM (Section 241	
  

2.3.2). This modification enables GLM to use forest area output from GCAM that was not 242	
  

incorporated into the CMIP5 land use harmonization. Nonetheless, iESM still follows the CMIP5 243	
  

implementation for CESM in using these GLM land use harmonization outputs: cropland, 244	
  

pasture, primary, and secondary land area, as well as wood harvest areas on primary and 245	
  

secondary forested and non-forested land. 246	
  

CESM (Bitz et al., 2011; Gent et al., 2011) has fully coupled atmosphere, ocean, land, 247	
  

and sea ice components. Within CESM, the Community Land Model v4.0 (CLM; Lawrence et 248	
  

al., 2011) receives the selected GLM outputs via a translator that converts these outputs to 16 249	
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CLM Plant Functional Types (PFTs; eight forest, three grass, three shrub, one bare soil, and one 250	
  

crop) (Lawrence et al., 2012). The CLM dynamic vegetation module, which estimates 251	
  

bioclimate-driven geographical shifts in CLM PFTs, cannot run at the same time as the land use 252	
  

change module presented here; only one of these modules can change CLM PFT areas per 253	
  

simulation. While the iESM does not directly estimate bioclimatic shifts in land cover, the NPP 254	
  

and HR feedbacks to GCAM do incorporate bioclimatic effects on ecosystems into GCAM’s 255	
  

land use cover projections. The version of iESM used in this study was based on CESM 256	
  

v1.0beta9, which is a pre-release version of the model used for the CMIP5 simulations. 257	
  

The iESM climate feedbacks on vegetation and carbon were implemented by passing 258	
  

annual climate scaling factors from CESM to GCAM based on NPP and HR. These factors were 259	
  

used to scale GCAM crop yields and vegetation and soil carbon densities every five years. To 260	
  

calculate the scaling factors, the per-pixel, PFT-specific CESM 5-year annual average NPP and 261	
  

HR values for a given GCAM time step were divided by base-period average annual values 262	
  

(1990-2004). These NPP and HR ratios were then filtered to exclude outliers based on a median 263	
  

absolute deviation method, and finally aggregated to GCAM’s geographical land units and land 264	
  

use and land cover types (for details see Bond-Lamberty et al., in review). Crop yields and 265	
  

vegetation carbon densities for GCAM’s next land use projection were scaled by the NPP ratio, 266	
  

while soil carbon densities were scaled by a combination of the NPP and HR ratios ((NPPratio + 267	
  

(1 – (HRratio – 1))) / 2). 268	
  

 269	
  

 270	
  

 271	
  

 272	
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2.2. Simulations 273	
  

Our iESM simulations cover 2005 to 2040 with fully coupled CESM components and 274	
  

prescribed RCP4.5 emissions and carbon price path. These simulations use the land use change 275	
  

module, a dynamic ocean (Smith et al., 2013b), Community Atmosphere Model v4 physics 276	
  

(Gent et al., 2011), carbon-nitrogen biogeochemistry (Thornton et al., 2007), and active land-277	
  

atmosphere-ocean carbon dynamics, at approximately 1° resolution (0.9375°x1.25°). The iESM 278	
  

initial conditions are the culmination of a CESM spinup run followed by a CESM 1850-2005 279	
  

transient historical run with land use change. GCAM initial conditions are calibrated to 2005 280	
  

wood harvest, land use area, and energy and agriculture costs and production, as reported by 281	
  

individual countries and processed and archived by international organizations (e.g. FAO, 282	
  

International Energy Agency). The GCAM RCP4.5 scenario was described fully by Thomson et 283	
  

al. (2011). 284	
  

We performed two fully integrated simulations to compare two iESM cases: 1) original 285	
  

CESM land use translator (OLDLUT) and 2) modified CESM land use translator (NEWLUT) 286	
  

(Table 1). In fact, OLDLUT was our initial fully integrated simulation with iESM and, as 287	
  

reported below, it revealed inconsistencies within iESM that needed to be addressed prior to 288	
  

scientific experimentation. OLDLUT also showed that the updated GLM did not increase CESM 289	
  

afforestation with respect to a previous simulation performed by manually passing data between 290	
  

the respective iESM models. The NEWLUT case was used to test our hypothesis that the lost 291	
  

afforestation signal could be recovered by modifying only the CESM component of iESM. These 292	
  

fully integrated runs included climate feedbacks on vegetation productivity and ecosystem 293	
  

carbon in GCAM’s land use projections, which occurred at five-year intervals. Analysis of the 294	
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effects of introducing these feedbacks on land use, carbon, and climate will be presented in a 295	
  

forthcoming paper (Thornton et al, in prep). 296	
  

 297	
  

2.3. Land use coupling 298	
  

2.3.1. OLDLUT land use coupling within iESM 299	
  

The OLDLUT iESM land use coupling followed the CMIP5 land use harmonization 300	
  

algorithm (Figure 2), but with a slightly modified version of GLM (see Section 2.3.2). The 301	
  

coupling was designed to match GCAM and CESM changes in absolute cropland and pasture 302	
  

area. For CMIP5, GLM received only crop and pasture areas from GCAM, but for the iESM 303	
  

GLM also receives forest area from GCAM to better facilitate forest area change matching (see 304	
  

Section 2.3.2). GLM also receives wood products demand from GCAM (in tons of carbon), 305	
  

which is spatially distributed to determine the extent of harvested area in each of five wood 306	
  

harvest types (primary forest harvest, primary non-forest harvest, secondary mature forest 307	
  

harvest, secondary immature forest harvest, and secondary non-forest harvest). The OLDLUT 308	
  

(Figure 3) uses only the cropland and pasture area outputs from GLM to update CESM PFT 309	
  

areas in conjunction with maps of potential vegetation (the vegetion most likely to be present if 310	
  

no land use change had occurred; Ramankutty and Foley, 1999).  Non-crop PFT area reductions 311	
  

are made in proportion to their respective existing grid-cell fractions, while additions are made in 312	
  

proportion to their respective potential vegetation grid cell fractions. The OLDLUT does not use 313	
  

the primary and secondary land area information for updating PFT areas because CESM does not 314	
  

keep track of these land use designations. The OLDLUT does, however, use the primary and 315	
  

secondary land area to calculate the harvested fraction of GLM harvestable area (sum of the five 316	
  

wood harvest type areas divided by the total area of primary and secondary land). Wood is 317	
  



	
   15	
  

harvested from only forest in CESM, and so the GLM harvested fraction is applied to forest area 318	
  

to determine the harvested area in CESM (Lawrence et al., 2012). 319	
  

The OLDLUT makes specific assumptions about pasture area change because CESM 320	
  

does not keep track of pasture area (Figure 3). Changes in GLM cropland result directly in 321	
  

CESM changes in crop PFT area, but changes in pasture area are constrained by forest PFT area 322	
  

and reflected in changes in grass and shrub PFT area. More specifically, pasture addition is 323	
  

limited to replacement of existing forest PFT area with grass PFT area, and pasture removal is 324	
  

limited to the replacement of grass and shrub PFT area by potential forest PFT area. This means 325	
  

that grass and shrub PFT area changes associated with pasture area change can be only as large 326	
  

as the available existing or potential forest area.  327	
  

 328	
  

2.3.2. Modifying the GLM spatial distribution algorithm 329	
  

For the iESM, GLM was modified to better facilitate forest area change matching with 330	
  

GCAM in an effort to increase the forest area simulated by CESM. These modifications included 331	
  

operating on GCAM’s 151 geographical land units (rather than the 14 regions used for CMIP5) 332	
  

in addition to using GCAM’s forest area output, which was not previously shared between the 333	
  

models. For CMIP5, GLM applied the cropland and pasture area changes to the 2005 half-degree 334	
  

map of cropland and pasture while preserving the total cropland and pasture area changes within 335	
  

GCAM regions. Spatial allocation of cropland and pasture areas to the half-degree grids was 336	
  

done with a preference for expanding agricultural area onto non-forested land and reducing 337	
  

agricultural area where GLM would expect a forest to grow, while also preserving 2005 spatial 338	
  

patterns of land use by allocating new cropland and pasture near to existing agricultural areas 339	
  

(Hurtt et al., 2011). 340	
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The new GLM algorithm uses GCAM forest area from each geographical land unit at 341	
  

each time step and attempts to preserve the forest area changes within each geographical land 342	
  

unit in addition to preserving the cropland and pasture area changes. GLM has previously 343	
  

defined "forest" as natural vegetation that is growing on land where the potential biomass 344	
  

density, based on an internal potential vegetation growth model, is greater than 2 kgC m-2. Using 345	
  

this definition the potential forestland within GLM is fixed and, as a result, the GLM algorithm 346	
  

cannot grow forest outside of this forestland. In the new algorithm, GLM matches GCAM forest 347	
  

area changes by moving cropland and pasture around within each geographical land unit to 348	
  

"expose" enough potential forestland for regrowth to meet the GCAM forest area changes (see 349	
  

the following steps a-c). In addition, to meet GCAM’s land requirements for afforestation, 350	
  

GLM uses a different definition of "forest" (potential biomass density greater than 1 kgC m-2, 351	
  

rather than 2 kgC m-2) than the definition used elsewhere in the GLM code (e.g. for computing 352	
  

the spatial pattern of wood harvesting). The new GLM algorithm operates in three main steps: 353	
  

a) Decreases in cropland and pasture occur first on the highest potential biomass land and 354	
  

increases in cropland and pasture occur first on the lowest potential biomass land. 355	
  

b) If the forest area change within a geographical land unit is not met, a redistribution of 356	
  

cropland and pasture within that geographical land unit occurs such that, when possible, 357	
  

existing cropland and pasture is moved from high biomass density land to low biomass 358	
  

density land. 359	
  

c) If the forest area change within a geographical land unit is still not met, the algorithm 360	
  

attempts to allocate any "unmet" forest area change within another land unit (or across 361	
  

multiple land units) within the same region, using a similar method to (b) above. 362	
  

 363	
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2.3.3. Modifying the CESM land use translation algorithm 364	
  

To test our hypothesis that the lost afforestation signal could be recovered solely by the 365	
  

ESM component, we focused on modifying the LUT (NEWLUT; Figure 4) to capture GCAM 366	
  

afforestation via changes in agricultural land. This approach is more expedient than redesigning 367	
  

the coupling code and LUT to receive forest area changes directly from GLM because such 368	
  

redesign would logically require implementation of a single, consistent land surface and carbon 369	
  

cycle among all iESM components. Specifically, the NEWLUT adds tree PFTs when cropland 370	
  

and pasture are removed. Furthermore, the NEWLUT preferentially removes tree PFTs when 371	
  

cropland and pasture are added. Forest area information is still not shared between GLM and the 372	
  

NEWLUT (other than forest harvest). The NEWLUT also includes proper grid cell fraction 373	
  

matching between GLM and CESM, which primarily affects crop, grass, and shrub PFTs. 374	
  

 375	
  

2.3.3. CMIP5 RCP4.5 land use and land cover distributions among GCAM, GLM, and CESM  376	
  

The OLDLUT iESM land use coupling was also used in CMIP5, albeit with 14 regions 377	
  

rather than 151 geographical land units and without the GLM modifications and climate 378	
  

feedbacks described above, and so we explored the extent to which the afforestation signal was 379	
  

lost in the CMIP5 simulations. We compared the RCP4.5 pre-land use harmonization forest and 380	
  

pasture area outputs from GCAM with the GLM land use harmonization values and also with the 381	
  

corresponding PFT area inputs for the CESM1.0-BGC simulations submitted to the CMIP5 382	
  

archive. CESM1.0-BGC served as the base code for iESM and thus contains the same versions 383	
  

of the model components. 384	
  

 385	
  

 386	
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3. Results 387	
  

3.1. CMIP5 RCP4.5 land use and land cover area inconsistencies 388	
  

The	
  GCAM	
  afforestation	
  signal	
  was	
  dramatically	
  decreased	
  in	
  the	
  CESM	
  simulations,	
  389	
  

and	
  the	
  total	
  area	
  covered	
  by	
  CESM	
  herbaceous	
  (grass and shrub)	
  PFTs	
  increased	
  while	
  390	
  

GCAM	
  pasture	
  decreased	
  (Figure	
  5).	
  CESM	
  forest	
  area	
  increased	
  by	
  23%	
  of	
  the	
  4.82	
  million	
  391	
  

km2	
  of	
  afforestation	
  between	
  2005	
  and	
  2020,	
  and	
  by	
  22%	
  of	
  the	
  10.98	
  million	
  km2	
  of	
  392	
  

afforestation,	
  by	
  2100.	
  GLM	
  captured	
  64%	
  and	
  56%	
  of	
  the	
  afforestation	
  in	
  2020	
  and	
  2100,	
  393	
  

respectively.	
  GCAM	
  and	
  GLM	
  pasture	
  decreased	
  by	
  4.69	
  million	
  km2	
  from	
  2005	
  to	
  2100	
  394	
  

while	
  CESM	
  herbaceous	
  PFTs	
  increased	
  by	
  1.11	
  million	
  km2	
  over	
  the	
  same	
  period.	
  The	
  395	
  

changes	
  in	
  global	
  cropland	
  area	
  were	
  faithfully	
  transmitted	
  (CESM	
  decreases	
  were	
  only	
  7%	
  396	
  

less	
  than	
  GCAM	
  decreases),	
  but	
  absolute	
  CESM	
  cropland	
  area	
  was	
  approximately	
  1.5	
  397	
  

million	
  km2	
  less	
  than	
  GCAM	
  cropland	
  area	
  throughout	
  the	
  simulation	
  (data	
  not	
  shown).	
  398	
  

Changes	
  in	
  GLM	
  pasture	
  and	
  cropland	
  areas	
  were	
  essentially	
  identical	
  to	
  GCAM	
  changes,	
  399	
  

and	
  GLM	
  absolute	
  area	
  values	
  were	
  slightly	
  higher	
  and	
  lower,	
  respectively,	
  than	
  GCAM	
  400	
  

pasture	
  and	
  cropland	
  areas	
  (cropland	
  data	
  not	
  shown).	
  401	
  

	
  402	
  

3.2. Restored afforestation in iESM 403	
  

The OLDLUT simulation revealed that only changes in crop area were being faithfully 404	
  

transmitted from GCAM to CESM (Figure 6; changes in global area). In contrast, CESM forest 405	
  

area increased by only 17% of GCAM’s 5.40 million km2 of afforestation between 2015 and 406	
  

2020, and by only 17% of the 7.73 million km2 of afforestation between 2015 and 2040. Changes 407	
  

in GLM forest area, on the other hand, reflected changes in GCAM forest area quite well (Figure 408	
  

6), but at the cost of dramatically overestimating absolute forest area within GLM due to a low 409	
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biomass threshold for defining forest (Figure 7; absolute values of global area). Within GLM, the 410	
  

new algorithm captured 93% of afforestation between 2015 and 2020 and 84% between 2015 411	
  

and 2040, as compared to the original GLM algorithm that captured only 14% and 20% over the 412	
  

respective periods in a previous simulation performed by manually passing data between the 413	
  

respective iESM models (data not shown). Changes in GCAM pasture were not reflected by 414	
  

changes in CESM herbaceous PFTs, but were faithfully output by GLM (Figure 6). 415	
  

The NEWLUT simulation shows improved forest and cropland area changes in CESM 416	
  

with a corresponding change in CESM herbaceous PFT area. The main improvement is that 417	
  

CESM forest area increases by 64% of GCAM’s 2015-2020 afforestation and by 66% of the 7.71 418	
  

million km2 of afforestation from 2015-2040 (Figure 6). This additional forest area in NEWLUT 419	
  

reduces total area covered by CESM herbaceous PFTs by 94% of the 4.36 million km2 of GCAM 420	
  

pasture loss by 2040. Figure 8 shows the spatial tradeoff between forest and herbaceous PFTs 421	
  

that achieves this level of afforestation, and Figure 9 demonstrates a sustained increase in 422	
  

average annual land carbon uptake after 2020 due to additional afforestation. In comparison to 423	
  

OLDLUT, the NEWLUT increase in land carbon uptake results in a 19 PgC increase in 424	
  

vegetation carbon gain and an 8 ppmv decrease in atmospheric CO2 gain between 2005 to 2040 425	
  

(Figure 10). NEWLUT also improves the CESM  absolute cropland area (Figure 7) through 426	
  

proper matching of GLM and CESM grid cell fractions. The effect of this proper matching is 427	
  

apparent in the cropland and pasture area changes from 2005 to 2006 (Figures 6 and 7).  GLM 428	
  

NEWLUT outputs follow the GCAM NEWLUT outputs with relationships between GLM and 429	
  

GCAM similar to those for OLDLUT (data not shown). 430	
  

 431	
  

 432	
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4. Discussion 433	
  

The iESM and CMIP5 land cover area discrepancies (Figures 5-7) result from a gap in 434	
  

the original CMIP5 land coupling design that allows inconsistent forest area and land cover type 435	
  

definitions across models (Figure 2), along with different underlying carbon cycles. The land use 436	
  

harmonization was, however, ambitious and largely successful in developing consistent land use 437	
  

definitions and data without requiring extensive redevelopment of land use and land cover 438	
  

components of all participant models (Hurtt et al., 2011). As our study attests, such 439	
  

redevelopment is challenging and model-specific, but might be required for ESMs to adequately 440	
  

simulate the IAM-prescribed anthropogenic drivers and their corresponding effects on carbon 441	
  

and climate. Thus, while this is a specific case, the lost iESM afforestation signal is instructive of 442	
  

the shortcomings of the CMIP5 design and the restoration of this signal offers insights into 443	
  

improving land use and land cover coupling for model inter-comparisons. 444	
  

A primary challenge for improving the CMIP5 land coupling is to increase the amount of 445	
  

specific land cover information being shared between IAM (and historical) scenarios and ESMs. 446	
  

For CMIP5, the land use harmonization was designed to harmonize land use data between 447	
  

models, and as such GLM did not receive forest area or any other land cover information from 448	
  

any of the IAMs (Masui et al., 2011; Riahi et al., 2011; Thomson et al., 2011; van Vuuren et al., 449	
  

2011b). Thus, at the first coupling step, scenario-prescribed land cover associated with any IAM 450	
  

policy that valued carbon within unmanaged ecosystems (e.g., grassland, wetland, forest) was 451	
  

lost. While GLM does, however, keep track internally of forested and non-forested land 452	
  

(according to its own definition of forest, which likely differs from those within IAMs and 453	
  

ESMs), the output land use harmonization product includes only cropland, pasture, primary, and 454	
  

secondary land areas and transitions, and the age and biomass density of secondary land (and 455	
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harvest areas, carbon amounts, and transitions, which we do not address here). As each ESM 456	
  

characterizes the land surface by its own suite of vegetation and management types (Brovkin et 457	
  

al., 2013), additional land use and land cover information could be lost in the second coupling 458	
  

step between GLM and the ESMs. For example, some ESMs were able to use the primary, 459	
  

secondary, and transition information, but they might have been applying this information to 460	
  

different land covers than those used by GLM, thus introducing a second shift away from the 461	
  

original IAM scenario. Our specific case demonstrates an even greater inconsistency due to the 462	
  

use of only cropland and pasture information. GCAM has 19 crop types (the CMIP5 version had 463	
  

10) and seven managed and unmanaged land cover types while CESM has 16 PFTs, only one of 464	
  

which is a crop type. The LUT algorithm uses only the GLM cropland and pasture area 465	
  

information to adjust PFTs because CLM does not keep track of primary versus secondary land. 466	
  

The resulting spatial pattern of non-crop PFTs is determined by the existing PFT distribution and 467	
  

CESM’s internal representation of potential vegetation cover (Lawrence et al., 2012; 468	
  

Ramankutty and Foley, 1999). An additional source of error that we did not investigate here is 469	
  

the relationship between individual PFTs and land cover types that may comprise several PFTs 470	
  

(e.g. forest land may consist of 60% trees and 40% grass). 471	
  

Due to the lack of a prescribed land cover input associated with the land use input, forest 472	
  

area changes in CESM (and iESM) are effectively residual changes that are only indirectly 473	
  

linked to GCAM forest area through changes in cropland and pasture areas. The LUT calculates 474	
  

cropland area changes first and pasture area changes second (Figures 3 and 4). In CMIP5 CESM 475	
  

simulations, cropland area changes cause non-crop PFTs to be added or removed in proportion to 476	
  

their potential or existing grid-cell fractions, respectively. Pasture is more complicated because it 477	
  

is not tracked as such: pasture is not a single PFT and its changes are represented as changes in 478	
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herbaceous and tree PFTs. Specifically, tree PFTs are removed when pasture is added, and non-479	
  

crop PFTs are added in proportion to their potential vegetation grid-cell fractions when pasture is 480	
  

removed (Lawrence et al., 2012). This residual PFT determination, combined with independent 481	
  

and unique forest definitions across GCAM, GLM, and CESM, causes the bulk of prescribed 482	
  

afforestation to not appear in the CESM land surface. As a direct consequence, CESM grass area 483	
  

(and shrub area to a lesser extent) increases while GCAM pasture decreases dramatically (Figure 484	
  

5). CESM has this same limitation for all four RCP scenarios, and the other CMIP5 ESMs 485	
  

implement similar inconsistencies to varying degrees due to the lack of specific vegetation types 486	
  

in the land coupling between IAMs and ESMs. For example, Davies-Barnard et al. (2014) 487	
  

recently reported that the HadGEM2-ES RCP4.5 forest area increased 11% from 2005-2100, 488	
  

while the GCAM forest area increased by 24%. Additionally, the GCAM 2005 forest area was 489	
  

41.1 Mkm2, the GLM 2005 forest area was 39.9 km2, but the MPI-ESM 2005 forest area was 490	
  

about 24 M km2. As a result, the 35% increase in MPI-ESM RCP4.5 forest area by 2100 491	
  

(Wilkenskjeld et al., in review) was still only 77% of GCAM’s afforestation. It is apparent from 492	
  

these inconsistencies that interdependent land use and land cover need to be faithfully 493	
  

transmitted from IAMs to ESMs to robustly simulate the effects of prescribed scenarios on the 494	
  

earth system. 495	
  

Even partial restoration of the lost afforestation signal in iESM demonstrates the 496	
  

potentially dramatic effect on global carbon and climate of using IAM land cover and land use 497	
  

information in ESMs. As soon as 25 years after the initial increase in forest area, and with only 498	
  

64% of GCAM’s afforestation area, the NEWLUT has a significant impact on global carbon 499	
  

balance (Figure 9). The assumption that forest exclusively replaces abandoned cropland and 500	
  

pasture in GCAM’s land use projection (Figures 6-8) sets the upper limit for CESM because 501	
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there is no other information to constrain forest area, and may be applicable only to the RCP4.5 502	
  

scenario. Although this limits NEWLUT to including only two-thirds of the total afforestation, 503	
  

adding more forest area to CESM would be arbitrary without additional land cover information. 504	
  

Nonetheless, the increased afforestation in NEWLUT results in an increase in net land carbon 505	
  

uptake over the OLDLUT case due to a sustained increase in average annual land carbon uptake 506	
  

after 2020 (Figure 9). As a result, the NEWLUT simulation increases vegetation carbon gain by 507	
  

19 PgC and decreases atmospheric CO2 gain by 7.7 ppmv from 2005 to 2040 in comparison to 508	
  

OLDLUT (Figure 10). The NEWLUT simulation also decreases soil carbon gain by about 1.5 509	
  

PgC over this period (data not shown). 510	
  

Simple linear extrapolation of the iESM vegetation carbon gain and atmospheric CO2 511	
  

gain from 2005 to 2100 increases these changes to approximately 52 PgC and 21 ppmv, and 512	
  

extending CESM forest area to match GCAM total afforestation could potentially increase these 513	
  

changes to 88 PgC and 36 ppmv in 2100. These are rough estimates that use 2005 as a starting 514	
  

point to reduce the high slope associated with the initial increase from 2015-2020, and also 515	
  

assume that additional forest area continues to gain carbon for 60-80 years after it is established. 516	
  

Regardless of the absolute accuracy of these extrapolations, the potential gain in vegetation 517	
  

carbon alone for CESM with full afforestation is on the order of estimates of net cumulative land 518	
  

use change emissions during 1850-2000, which range from 110-210 PgC (Table 3 in Smith and 519	
  

Rothwell, 2013). For comparison, the range of CMIP5 vegetation carbon stock gains for RCP4.5 520	
  

is about 50 to 300 PgC from 2005 to 2100, with most gains being less than 150 PgC and 521	
  

relatively linear (Figure 2 in Jones et al., 2013b). An increase in gain of 88 PgC would 522	
  

dramatically shift CESM vegetation carbon dynamics in relation to the other ESMs. The 523	
  

corresponding 36 ppmv decrease in atmospheric CO2 is nearly one-third of the difference 524	
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between the prescribed 2100 concentrations of the RCP4.5 (~540 ppmv) and RCP2.6 (~420 525	
  

ppmv) scenarios (Figure 1 in Jones et al., 2013b). More importantly for CESM’s ability to 526	
  

robustly simulate the effects of the RCP scenarios on the earth system, the prognostic CESM 527	
  

atmospheric CO2 concentration in 2100 for RCP4.5 is 610 ppmv (Keppel-Aleks et al., 2013), and 528	
  

a decrease from 610 to 574 ppmv has an approximate decrease in radiative forcing of 0.33 W m-529	
  

2, which is non-trivial with respect to the 4.5 W m-2 target. While these carbon cycle changes in 530	
  

the CESM component of iESM may have a significant effect on climate, it is important to note 531	
  

that the carbon cycle effects of afforestation in CESM are not identical to those in GCAM or 532	
  

GLM because these three models have different biogeochemistry and vegetation models. These 533	
  

differences in carbon cycles, however, do not obviate the need for making both land cover and 534	
  

land use consistent between IAMs and ESMs in order to best match the prescribed radiative 535	
  

forcing scenario. 536	
  

Different implementations of land cover and land use among IAMs and ESMs also 537	
  

reduce the fidelity between RCP scenarios and their associated effects on the earth system. 538	
  

Figure 8 shows that most of the additional forest area in NEWLUT occurs on grassland and 539	
  

shrubland, and that these lands generally coincide with areas of limited potential forest. The 540	
  

OLDLUT could not add forest area where no potential forest area exists, and the rate of forest 541	
  

carbon accumulation is constrained by environmental conditions. GLM also limits forest area  542	
  

and growth based on potential forest and environmental conditions, but with a different growth 543	
  

model and map of potential forest area than used by CESM. On the other hand, GCAM 544	
  

afforestation is a strategy to expand forest area for carbon sequestration, and assumes that it is 545	
  

cost effective to use agricultural inputs (e.g., water, fertilizer) to achieve the expected forest 546	
  

growth. This disagreement among the three models hampers communication of forest area 547	
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changes and contributes to the differences in forest area among the models, both in CMIP5 548	
  

(Figure 5) and in the iESM (Figures 6 and 7). Nonetheless, sharing forest area between GCAM 549	
  

and GLM does improve the fidelity between GCAM and GLM’s forest area changes (Figures 5 550	
  

and 6). GLM and CESM do not simulate agricultural inputs for forests, but the NEWLUT can 551	
  

simulate most, but not all, of the prescribed afforestation (Figures 6 and 7) by adding forest area 552	
  

based on GCAM’s cropland and pasture changes, rather than on potential forest area. The 553	
  

additional forest might not grow as well in CESM as in GCAM, but the CESM forest 554	
  

productivity is fed back to GCAM for subsequent land use projections, so environmental 555	
  

restrictions on forest growth will influence future land use and land cover. This feedback does 556	
  

not, however, fully compensate for the lack of bioclimatic or agricultural input availability 557	
  

constraints on GCAM’s land use projection, which might contribute to an overly optimistic 558	
  

afforestation projection. More generally, this feedback mechanism opens a path for more 559	
  

robustly simulating interdependent land use and land cover through incorporation of potential, 560	
  

bioclimate-driven geographic shifts in land cover. ESMs could estimate bioclimatic drivers or 561	
  

geographic shifts for given land use/cover scenarios, and then feed this information back to the 562	
  

IAMS for incorporation into land use/cover projection. Implementing such a feedback for 563	
  

scenario-based simulations would consolidate land use/cover determination into internally 564	
  

consistent modules within the IAMs, thereby increasing fidelity between the scenario-prescribed 565	
  

land surface and the one used by the ESMs. 566	
  

We have focused on understanding the effects of mismatched land cover areas on global 567	
  

simulations, rather than on mismatched carbon cycles, because the spatial distribution of land 568	
  

cover and land use is a scenario-determined boundary condition for ecosystem-specific processes 569	
  

such as biogeochemical dynamics. For global simulations this boundary condition is generally 570	
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provided by historical data and IAMs, and, as we have shown, a mismatch in this boundary 571	
  

condition causes CESM to simulate non-scenario effects on carbon and climate (due to a non-572	
  

scenario land surface), rather than the scenario-driven effects of the land surface prescribed for 573	
  

meeting the RCP4.5 target. Mismatched carbon cycles among IAMs and ESMs, on the other 574	
  

hand, along with differences in atmospheric radiation code, will preclude exact matches in 575	
  

radiative forcing for a given RCP scenario, but should not cause significant deviations among 576	
  

models in the carbon and climate effects of a given scenario. While we plan to completely 577	
  

reconcile land use and land cover inconsistencies within the iESM by implementing a single 578	
  

carbon cycle with consistent land surface characterization among the components, it is not 579	
  

desirable, nor feasible, for all IAMs and ESMs to have the same biogeochemistry and vegetation 580	
  

growth components. For example, a diversity of terrestrial models can help characterize 581	
  

uncertainty in global simulations. This uncertainty, however, is most useful if these models 582	
  

simulate the same spatial distribution of land cover and land use change. Therefore, iESM 583	
  

redevelopment that ensures land use and land cover consistency between GCAM and CESM 584	
  

could provide a template for improving the fidelity between IAM scenarios and ESM simulations 585	
  

in the next CMIP. In fact, land cover information is currently planned to be included in the 586	
  

CMIP6 land coupling, along with a more extensive land use model intercomparison project 587	
  

(Meehl et al., 2014). 588	
  

 589	
  

5. Conclusion 590	
  

We have identified the lack of specific land cover type information being shared among 591	
  

GCAM, GLM, and CESM in the iESM as the primary cause of CESM having very little 592	
  

afforestation and effectively no change in herbaceous PFT area in contrast to GCAM’s large 593	
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RCP4.5 afforestation and corresponding pasture reduction. Initial efforts to fix this problem 594	
  

through GLM modifications and the sharing of forest area between GCAM and GLM improved 595	
  

only the fidelity of forest area changes between GCAM and GLM. We then focused on 596	
  

modifying the algorithm that translates GLM land use harmonization outputs to CESM PFTs. 597	
  

While these land use translator modifications have been successful at capturing two-thirds of 598	
  

GCAM’s RCP4.5 afforestation signal and corresponding reductions in herbaceous PFT area, 599	
  

they are not sufficient to completely overcome the limitations imposed by not passing specific 600	
  

land cover types from GCAM through to CESM. These modifications are also specific to the 601	
  

GCAM RCP4.5 scenario, and might need to be altered for the other RCP scenarios. Furthermore, 602	
  

we have not addressed the lack of constraints on GCAM forest area expansion, nor mismatches 603	
  

between land cover and PFT definitions. Nonetheless, this partial restoration of afforestation has 604	
  

a significant impact on iESM’s global carbon cycle through increased vegetation carbon and 605	
  

decreased atmospheric CO2 concentration. 606	
  

The iESM framework follows the CMIP5 land coupling design, and as such we have 607	
  

characterized a major gap in this design that precludes accurate translation of projected IAM land 608	
  

surface scenarios to ESMs by focusing only on land use such as cropland and pasture (albeit 609	
  

successfully), and not including specific land cover types such as forest, grassland, and 610	
  

shrubland. The relationship between land use and land cover is handled uniquely by individual 611	
  

ESMs, which means that the effects of scenario mismatch will be model-specific and more 612	
  

relevant for some RCPs than others. The resulting land cover discrepancies are likely most 613	
  

pronounced for the large RCP4.5 afforestation signal, which was greatly reduced in the CMIP5 614	
  

CESM and HadGEM2-ES (see Davies-Barnard et al., 2014) simulations, but could also arise for 615	
  

other large land cover changes such as the extensive deforestation of RCP8.5. As total land area 616	
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is conservative, errors in the distribution of one land cover are complemented by errors in the 617	
  

distributions of other land covers. In GCAM’s RCP4.5 scenario, pasture decreases over the 21st 618	
  

century, but the CMIP5 CESM runs have increasing grass and shrub areas over the same period. 619	
  

It is very important that the land use and land cover changes (which determine land use change 620	
  

emissions and the total capacity for vegetation carbon assimilation) match between the IAMs and 621	
  

ESMs because the CMIP5 experimental design is predicated on the fidelity between IAM 622	
  

scenarios and ESM simulations such that they have similar, specific radiative forcings for a 623	
  

given scenario, including CO2 emissions from land use change (Moss et al., 2010). Furthermore, 624	
  

future radiative climate targets are likely to include the biogeophysical forcings of land use 625	
  

change because it has been shown that the modeled climate system is sensitive to changes in 626	
  

these forcings due to the spatial distribution of land use and land cover change (Brovkin et al., 627	
  

2013; Jones et al., 2013a; Pitman et al., 2009), making it imperative that IAM and ESM land use 628	
  

and land cover distributions match as closely as possible. Maintaining the diversity of global 629	
  

biogeochemical and vegetation models also calls for GCMs and ESMs to match historical and 630	
  

projected land cover and land use distributions as closely as possible, so as to isolate carbon 631	
  

cycle contributions to uncertainty from contributions due to differences in land use and land 632	
  

cover. Fortunately, our results indicate that it might be possible to adjust land cover in other 633	
  

CMIP5 models to better match RCP4.5 afforestation and the corresponding climate scenario, 634	
  

while still using the standard land use harmonization data. 635	
  

We conclude that the land coupling between IAMs and ESMs for future model 636	
  

intercomparisons needs to ensure greater consistency in land cover and land use among the 637	
  

models in order to realize the full potential of scenario-based earth system simulations. In short, 638	
  

the models need to agree on the actual land area and the annual spatial distribution of major 639	
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(non-) vegetation land covers and land uses. In other words, the ESMs need to simulate the same 640	
  

basic land surface as prescribed by the IAM-generated RCP scenarios. To achieve the required 641	
  

consistency, we suggest that the next CMIP land coupling design provides land cover and land 642	
  

use information, and a standard mapping between land cover and plant functional types. 643	
  

Fortunately, this is an emerging priority for the CMIP6 Land Use Model Intercomparison Project 644	
  

(LUMIP, http://www.wcrp-climate.org/index.php/modelling-wgcm-mip-catalogue/modelling-645	
  

wgcm-mips/318-modelling-wgcm-catalogue-lumip , http://www.wcrp-646	
  

climate.org/wgcm/WGCM17/LUMIP_proposal_v4.pdf). The following gridded data with 647	
  

fractional shares within grid cells are specifically recommended: 648	
  

1) Annual land cover states with complete, contiguous spatial coverage within grid cells. 649	
  

Land cover needs to include at least the basic categories of cropland, grassland, 650	
  

shrubland, woodland, forest, and other (bare/sparse, ice, urban, water). This will allow 651	
  

consistency in major (non-) vegetation types for model intercomparison (with the “other” 652	
  

category having fixed area). The “other” categories could also be separated out for 653	
  

models that can use them, and in preparation for changing their areas also. 654	
  

2) Annual land use states including primary and secondary land, wood harvest, and pasture 655	
  

(cropland should coincide with the land cover state). These uses should be provided with 656	
  

respect to the land cover categories. Wood harvest and pasture should include both area 657	
  

and amount of biomass/carbon harvested or removed by grazing. 658	
  

3) A standard present-day land area data set to be used by all models. Land area includes all 659	
  

land cover and land use categories as described above. 660	
  

4) Annual land use and land cover transitions. Land use transitions need to be accompanied 661	
  

by corresponding land cover transitions with complete, contiguous spatial coverage 662	
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within grid cells. Net land use/cover transitions, which should be used for model 663	
  

intercomparison, are annual changes in individual land use and cover states, and may 664	
  

include additional detail about sources of wood harvest and grazed biomass. Gross land 665	
  

use/cover transitions are the transitions among particular land use/covers occurring within 666	
  

a particular year. These transitions sum to the net land use/cover transitions, and should 667	
  

also be provided to characterize shifting cultivation and other gross land conversions. 668	
  

While gross land use/cover transitions are very important and make a significant 669	
  

difference in the carbon cycle, until more models are able to make use of gross transitions 670	
  

they should not be included in model intercomparisons. 671	
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 878	
  
Figure captions 879	
  

 880	
  

Figure 1. Implementation of integrated Earth System Model (iESM) terrestrial feedbacks. The 881	
  

light blue arrows show information flow from GCAM to CESM. The light green arrows show 882	
  

information flow from CESM to GCAM. The dashed gray outline, including the arrow crossed 883	
  

out by green, represents the CMIP5 land coupling. The solid green outline, minus the arrow 884	
  

crossed out by green, depicts the iESM implementation used in this study. GCAM: Global 885	
  

Change Assessment Model. GLM: Global Land use Model. CESM: Community Earth System 886	
  

Model. 887	
  

	
  888	
  
Figure 2. General integrated Earth System Model (iESM) land use coupling algorithm. Forest 889	
  

area is not passed from the Global Change Assessment Model (GCAM) to the Global Land use 890	
  

Model (GLM) in the CMIP5 land use coupling, but it is passed in the iESM simulations used in 891	
  

this study. NPP: Net Primary Productivity. HR: Heterotrophic Respiration. PFT: Plant Functional 892	
  

Type. 893	
  

	
  894	
  
Figure 3. OLD Land Use Translator (OLDLUT) algorithm for dynamic Plant Functional Type 895	
  

(PFT) coverage. When cropland and pasture decrease, non-crop PFTs are added in proportion to 896	
  

potential vegetation fractions. When cropland and pasture increase, non-crop PFTs are removed 897	
  

in proportion to reference year fractions. 898	
  

	
  899	
  
Figure 4. NEW Land Use Translator (NEWLUT) algorithm for dynamic Plant Functional Type 900	
  

(PFT) coverage. When cropland and pasture decrease, tree PFTs are added in proportion to 901	
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potential vegetation fractions. When cropland and pasture increase, tree PFTs are removed first, 902	
  

then other non-crop PFTs, in proportion to reference year fractions. 903	
  

	
  904	
  
Figure 5. Projected global forest, pasture, grass, and shrub areas for the CMIP5 4.5 W m-2 905	
  

Representative Concentration Pathway (RCP4.5), in million km2. CESM: Community Earth 906	
  

System Model. GLM: Global Land use Model. PFT: Plant Functional Type. 907	
  

	
  908	
  
Figure 6. Integrated Earth System Model (iESM) land use and forest area changes with respect to 909	
  

2015. The GLM-NEWLUT forest and pasture data are nearly identical to the GLM-OLDLUT 910	
  

data and are not shown for clarity. Similarly, the GLM-NEWLUT cropland data are nearly 911	
  

identical to the GCAM-NEWLUT data. CESM: Community Earth System Model. GCAM: 912	
  

Global Change Assessment Model. GLM: Global Land use Model. 913	
  

	
  914	
  
Figure 7. Integrated Earth System Model (iESM) land use and forest area. The GLM-NEWLUT 915	
  

forest and pasture data are nearly identical to the GLM-OLDLUT data and are not shown for 916	
  

clarity. Similarly, the GLM-NEWLUT cropland data track the GCAM-NEWLUT data, but with 917	
  

the same offset as for the GLM-OLDLUT data. CESM: Community Earth System Model. 918	
  

GCAM: Global Change Assessment Model. GLM: Global Land use Model. 919	
  

	
  920	
  
Figure 8. Spatial distributions of iESM increased forest Plant Functional Types (PFTs), 921	
  

decreased grass and shrub PFTs, and potential forest PFTs, as percentages of land area within 922	
  

each grid cell. a) Difference in 2040 forest PFT area (NEWLUT - OLDLUT). b) Difference in 923	
  

2040 grass plus shrub PFT area (NEWLUT - OLDLUT). c) Potential forest PFT area. 924	
  

	
  925	
  
Figure 9. Net Ecosystem Exchange (NEE) comparison between iESM simulations. a) NEE for 926	
  

each simulation. b) NEE difference (NEWLUT minus OLDLUT). These data show more land 927	
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carbon uptake (negative NEE), associated with the additional trees, for the NEWLUT simulation 928	
  

during the afforestation period (2015 forward). 929	
  

	
  930	
  
Figure 10. Comparison between iESM simulations of a-b) vegetation carbon and c-d) 931	
  

atmospheric CO2 concentration. Differences are NEWLUT minus OLDLUT. Due to additional 932	
  

forest area, the NEWLUT simulation significantly increases vegetation carbon gain and 933	
  

decreases atmospheric CO2 gain over the OLDLUT simulation. 934	
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Table 1. Two integrated Earth System Model (iESM) simulations performed for this study. 938	
  

 OLDLUT NEWLUT 

Modified Land Use Translator N Y 

Vegetation productivity 
feedbacks 

Y Y 

Updated Global Land use 
Model 

Y Y 
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Earth System 
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Use Change

This study
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5 yrs of Vegetation Productivity

 942	
  

Figure 1. Implementation of integrated Earth System Model (iESM) terrestrial feedbacks. 943	
  

The light blue arrows show information flow from GCAM to CESM. The light green arrows 944	
  

show information flow from CESM to GCAM. The dashed gray outline, including the arrow 945	
  

crossed out by green, represents the CMIP5 land coupling. The solid green outline, minus the 946	
  

arrow crossed out by green, depicts the iESM implementation used in this study. GCAM: Global 947	
  

Change Assessment Model. GLM: Global Land use Model. CESM: Community Earth System 948	
  

Model. 949	
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Figure 2. General integrated Earth System Model (iESM) land use coupling algorithm. Forest 953	
  

area is not passed from the Global Change Assessment Model (GCAM) to the Global Land use 954	
  

Model (GLM) in the CMIP5 land use coupling, but it is passed in the iESM simulations used in 955	
  

this study. NPP: Net Primary Productivity. HR: Heterotrophic Respiration. PFT: Plant Functional 956	
  

Type.957	
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 958	
  

Figure 3. OLD Land Use Translator (OLDLUT) algorithm for dynamic Plant Functional Type 959	
  

(PFT) coverage. When cropland and pasture decrease, non-crop PFTs are added in proportion to 960	
  

potential vegetation fractions. When cropland and pasture increase, non-crop PFTs are removed 961	
  

in proportion to reference year fractions. 962	
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Figure 4. NEW Land Use Translator (NEWLUT) algorithm for dynamic Plant Functional Type 966	
  

(PFT) coverage. When cropland and pasture decrease, tree PFTs are added in proportion to 967	
  

potential vegetation fractions. When cropland and pasture increase, tree PFTs are removed first, 968	
  

then other non-crop PFTs, in proportion to reference year fractions. 969	
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Figure 5. Projected global forest, pasture, grass, and shrub areas for the CMIP5 4.5 W m-2 973	
  

Representative Concentration Pathway (RCP4.5), in million km2. CESM: Community Earth 974	
  

System Model. GLM: Global Land use Model. PFT: Plant Functional Type. 975	
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 978	
  

Figure 6. Integrated Earth System Model (iESM) land use and forest area changes with respect to 979	
  

2015. The GLM-NEWLUT forest and pasture data are nearly identical to the GLM-OLDLUT 980	
  

data and are not shown for clarity. Similarly, the GLM-NEWLUT cropland data are nearly 981	
  

identical to the GCAM-NEWLUT data. CESM: Community Earth System Model. GCAM: 982	
  

Global Change Assessment Model. GLM: Global Land use Model. 983	
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Figure 7. Integrated Earth System Model (iESM) land use and forest area. The GLM-NEWLUT 987	
  

forest and pasture data are nearly identical to the GLM-OLDLUT data and are not shown for 988	
  

clarity. Similarly, the GLM-NEWLUT cropland data track the GCAM-NEWLUT data, but with 989	
  

the same offset as for the GLM-OLDLUT data. CESM: Community Earth System Model. 990	
  

GCAM: Global Change Assessment Model. GLM: Global Land use Model. 991	
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 994	
  

Figure 8. Spatial distributions of iESM increased forest Plant Functional Types (PFTs), 995	
  

decreased grass and shrub PFTs, and potential forest PFTs, as percentages of land area within 996	
  

each grid cell. a) Difference in 2040 forest PFT area (NEWLUT - OLDLUT). b) Difference in 997	
  

2040 grass plus shrub PFT area (NEWLUT - OLDLUT). c) Potential forest PFT area. 998	
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  1000	
  

Figure 9. Net Ecosystem Exchange (NEE) comparison between iESM simulations. a) NEE for 1001	
  

each simulation. b) NEE difference (NEWLUT minus OLDLUT). These data show more land 1002	
  

carbon uptake (negative NEE), associated with the additional trees, for the NEWLUT simulation 1003	
  

during the afforestation period (2015 forward).1004	
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 1007	
  

Figure 10. Comparison between iESM simulations of a-b) vegetation carbon and c-d) 1008	
  

atmospheric CO2 concentration. Differences are NEWLUT minus OLDLUT. Due to additional 1009	
  

forest area, the NEWLUT simulation significantly increases vegetation carbon gain and 1010	
  

decreases atmospheric CO2 gain over the OLDLUT simulation. 1011	
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