Dear Dr. Brovkin,

We appreciate your comments and have made minor revisions to address your concerns. We are also glad to
know that our previous revisions have satisfactorily address the reviewers' concerns. We look forward to
acceptance and publication of this manuscript upon your approval of these changes. Our specific responses are
included below, followed by a highlighted manuscript indicating changes to the text.

Figure 1 now shows only the terrestrial feedbacks as implemented in this study, and the caption has been edited
to reflect this change.

We encountered similar unintentional changes in land cover due to land conversion assumptions when we were
trying to reproduce the historical period to generate a 2005 starting state. Not only did these changes have a
large effect on the carbon cycle, but they dramatically changed the land cover trajectory. We resolved these
problems by carefully mimicking the land conversion assumptions and reference land cover distributions as
used by CESM in CMIP5. Luckily, we were dealing with just the land use change and not the dynamic
vegetation, or else it might have been more difficult. It is important, however, to understand how both bioclimate
and human land use interact to produce the spatial and temporal distribution of land cover. While we are not
immediately tackling the challenge of integrating dynamic vegetation and land use in CESM/iESM, we do intend
to explore effects on carbon and climate associated with land conversion assumptions such as preferential
removal of forest when cropland or pasture are increased.

Figure 8 now includes a unit label for the color bar.
Line 420 has been corrected to read 'million km”2.'

As of yet there is no official word on the acceptance of LUMIP by the WGCM/WCRP. George expects to hear
something soon, however.

Sincerely,
Alan (on behalf of the co-authors)
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Abstract

Climate projections depend on scenarios of fossil fuel emissions and land use change, and the
IPCC ARS parallel process assumes consistent climate scenarios across Integrated Assessment
and Earth System Models (IAMs and ESMs). The CMIPS5 project used a novel “land use
harmonization” based on the Global Land use Model (GLM) to provide ESMs with consistent
1500-2100 land use trajectories generated by historical data and four [AMs. A direct coupling of
the Global Change Assessment Model (GCAM), GLM, and the Community ESM (CESM) has
allowed us to characterize and partially address a major gap in the CMIP5 land coupling design:
the lack of a corresponding land cover harmonization. For RCP4.5, CESM global afforestation is
only 22% of GCAM’s 2005 to 2100 afforestation. Likewise, only 17% of GCAM’s 2040
afforestation, and zero pasture loss, were transmitted to CESM within the directly coupled
model. This is a problem because GCAM relied on afforestation to achieve RCP4.5 climate
stabilization. GLM modifications and sharing forest area between GCAM and GLM within the
directly coupled model did not increase CESM afforestation. Modifying the land use translator in
addition to GLM, however, enabled CESM to include 66% of GCAM’s afforestation in 2040,
and 94% of GCAM’s pasture loss as grassland and shrubland losses. This additional afforestation
increases CESM vegetation carbon gain by 19 PgC and decreases atmospheric CO, gain by 8
ppmv from 2005 to 2040, which demonstrates that CESM without additional afforestation
simulates a different RCP4.5 scenario than prescribed by GCAM. Similar land cover
inconsistencies exist in other CMIP5 model results, primarily because land cover information is
not shared between models. Further work to harmonize land cover among models will be
required to increase fidelity between IAM scenarios and ESM simulations and realize the full

potential of scenario-based earth system simulations.
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1. Introduction

Land use plays a major role in determining terrestrial-atmosphere mass and energy
exchange (Adegoke et al., 2007; Raddatz, 2007), which in turn influences local to global climate
(Brovkin et al., 2013; Jones et al., 2013a; Pitman et al., 2009). Despite much recent progress, we
still have a limited understanding of how historical land use has affected, and continues to affect,
climate (Brovkin et al., 2013; Jones et al., 2013a; Pitman et al., 2009) and carbon (Anav et al.,
2013; Arora and Boer, 2010; Houghton, 2010; Houghton et al., 2012; Hurtt et al., 2006; Jain et
al., 2013; Jain and Yang, 2005; Jones et al., 2013b; Smith and Rothwell, 2013), and high
uncertainty as to how land use might evolve in the future (Hurtt et al., 2011; van Vuuren et al.,
2011a; Wise et al., 2009). Part of the uncertainty in future land use trajectories is due to inherent
unpredictability of human actions, and part to the high diversity of potential climate mitigation
and adaptation scenarios. Several energy and land strategies have been proposed to mitigate
climate change (Rose et al., 2012;Smith et al., 2013a), and while these strategies have similar
overall goals, some strategies will likely compete for land and other resources if implemented
simultaneously. For example, afforestation and bioenergy production both aim to reduce
atmospheric CO; concentrations, but both activities require land area, and both strategies would
impact crop production and markets through effects on crop area (Reilly et al., 2012).

Reflecting this limited understanding of land use effects on climate and carbon, Global
Climate Models (GCMs), and also next generation Earth System Models (ESMs) that include
fully coupled atmosphere-land-ocean carbon cycles, implement a wide range of land use/cover
approaches with varying degrees of detail and limited inclusion of managed ecosystems and land
use practices (Brovkin et al., 2013; Pitman et al., 2009). The Land Use and Climate,

IDentification of robust impacts (LUCID) activity employed seven GCMs to determine whether
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land use change has significant regional climate impacts and farther-reaching teleconnections
due to biophysical changes in land surface. The results for 1972-2002 revealed significant but
inconsistent changes in temperature, precipitation, and latent heat in some areas where land use
change had occurred. The authors concluded that the model disagreement was due mainly to
differences in land use and land cover change implementations and corresponding land cover
distributions, with contributions from methodological differences in crop phenology, albedo, and
evapotranspiration (Pitman et al., 2009). The environmental factors addressed by LUCID are
also key factors for determining carbon uptake by vegetation, and thus it is not surprising that the
Coupled Climate-Carbon Cycle Model Intercomparison Project (C*MIP) activity generated ESM
projections that range from the land being a carbon source to a large carbon sink by 2100
(Friedlingstein et al., 2006).

To advance the scientific understanding of the effects of land use change on climate,
phase 5 of the Coupled Model Intercomparison Project (CMIP5) (Taylor et al., 2012) applied a
novel “land use harmonization” approach to produce the required land use change information
for all participating GCMs and ESMs. The Global Land use Model (GLM) was used for this land
use harmonization to generate the first set of continuous, spatially gridded land use change
scenarios for the years 1500-2100 (Hurtt et al., 2011). GLM computes land use states and
transitions annually at half-degree, fractional spatial resolution, including secondary land age,
area, and biomass, and the spatial patterns of shifting cultivation and wood harvesting (Hurtt et
al., 2006). Land use products from GLM have successfully been used as inputs to both regional
and global dynamic land models (Baidya Roy et al., 2003; Hurtt et al., 2002; Shevliakova et al.,

2009) and fully coupled ESMs (Jones et al., 2011; Shevliakova et al., 2013). The land use
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harmonization process ensures a continuous transition from the historical reconstructions to the
future projections made by Integrated Assessment Models (IAMs).

The land use harmonization methodology was designed to satisfy the demands of a broad
range of models and to provide a consistent set of land use inputs for GCMs and ESMs. The
historical period of the land use harmonization (1500-2005) was based on version 3.1 of the
Historical Database of the Environment (HYDE; Klein Goldewijk et al., 2011) and Food and
Agriculture Organization (FAO) wood harvest data. For the future period (2005-2100), the land
use harmonization process utilized land use data from the four Representative Concentration
Pathways (RCPs), each provided by a different IAM. The RCP scenarios were designed to each
meet a different radiative forcing target (2.6, 4.5, 6.0, and 8.5 W m™), and due to differences
among the IAMs these scenarios spanned a range of approaches in all sectors, including land use,
for meeting the targets (van Vuuren et al., 2011a). As a result, forest cover change varied widely
from deforestation to afforestation across the scenarios. Once the land use data were passed
through the land use harmonization, each GCM/ESM utilized a unique subset of the harmonized
outputs, based on model capabilities, and applied it to a unique set of land use and land cover
types (e.g. Lawrence et al., 2012). Although this process was largely successful in enabling the
first spatially explicit land use driven climate change experiments, it introduced considerable
uncertainty into the climate response for a given RCP in part because of model-specific
translation requirements between harmonized land use outputs and GCM/ESM simulated land
cover. This uncertainty due to inconsistent land cover distributions among models precluded
robust intercomparison of land-atmosphere processes (e.g., carbon uptake, evapotranspiration)
because differences among models were dominated by the differences among simulated land

cover distributions (Brovkin et al., 2013). As land use and land cover are interdependent, a more
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detailed specification of the relationship between land use and land cover may reduce uncertainty
in earth system simulations such that experiments can focus on land-atmosphere process
uncertainty rather than be confounded by inconsistent land use/cover distributions.

Recent analyses of CMIPS5 results using prescribed CO, concentrations have also showed
the land ranging from a carbon source to a sink in 2100 for a given scenario (Brovkin et al.,
2013; Jones et al., 2013b). The LUCID activity was repeated for five CMIP5 ESMs and the
results demonstrated that large inter-model spreads of key regional land surface variables
(temperature, precipitation, albedo, latent heat, and available energy) were still due mainly to
differences in land use and land cover change implementations and corresponding land cover
distributions. Inter-model spreads of CO, emissions, however, were attributed mainly to
differences in land carbon cycle process parameterizations. As a result, different land cover
distributions among the models gave significantly different regional changes in climate
associated with land use change, but with insignificant effects on global mean temperature.
Furthermore, the range of net cumulative land use change emissions from 2006 to 2100 for
RCPS8.5 was 34 to 205 PgC, with the high estimate likely due to the combination of relatively
high levels of land carbon and the inclusion of all land use transitions rather than just net land
use change (Brovkin et al., 2013). Additionally, not all of the models used the GLM wood
harvest data, further contributing to the spread of model results. For comparison, estimates of net
cumulative carbon emissions during 1700-2000 (1850-2000) range from 138-250 PgC (110-210
PgC) (Table 3 in Smith and Rothwell, 2013). The differences in land use and land cover
implementations are also a main factor in the large spread of 21* century land carbon uptake and
of compatible fossil fuel emissions allowable for a given RCP. In fact, the inter-model spreads in

land carbon uptake for individual scenarios are greater than the inter-scenario spreads for
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individual models (Jones et al., 2013b). It is apparent that further work is needed to resolve
inconsistencies among land use and land cover approaches to reduce climate uncertainty,
especially for regional impact assessment.

Additional sources of climate uncertainty related to land use are the RCP radiative
forcing targets, which include only emissions of GreenHouse Gases (GHGs) and some aerosols
and reactive gases (van Vuuren et al., 2011a). These targets do not include radiative forcing from
albedo change or other direct climate effects associated with land use change. In a recent
modeling experiment, two different carbon tax policies with dramatically different land use
scenarios met the same radiative forcing target (4.5 W m™) in the IAM used for RCP4.5 but had
significantly different radiative forcing in an ESM (difference of 1 W m™) due to albedo
differences between the land use scenarios (Jones et al., 2013a). Likewise, the Shared
Socioeconomic Pathways (SSPs) for mitigation, adaptation, and impact studies in the
Intergovernmental Panel on Climate Change (IPCC) fifth Assessment Report (ARS) are likely to
produce different land use scenarios that meet the same RCP target, but have different radiative
forcing in the ESMs due to the direct effects of land use and land cover change on climate.
However, one of the goals of the RCP process was to provide a set of radiative forcing targets for
ESMs that remains consistent with respect to the diversity of SSPs associated with each RCP
target (Moss, et al., 2010). As a result of the wide range of land use and land cover related
uncertainties in climate projections, an increased emphasis on land use and land cover dynamics
is a high priority for CMIP6 (Meehl et al., 2014).

A more consistent and complete land use and land cover coupling between IAMs and
ESMs will facilitate more accurate projections of global change scenarios and more robust multi-

model intercomparisons of climate and carbon cycle interactions with anthropogenic drivers such
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as fossil fuel emissions and land use change. These expected outcomes are in line with a primary
goal of a scenario-based approach, such as the RCPs, which is “to better understand uncertainties
in order to reach decisions that are robust under a wide range of possible futures” (Moss et al.,
2010; p. 747). The RCPs were designed to better understand uncertainties in global climate
projections by providing distinct scenarios of atmospheric radiative forcing and land use change.
Intra-scenario comparison of ESM simulations offers insights to uncertainties in ESM processes,
while inter-scenario comparison of ESM simulations offers insights to uncertainties due to a
range of possible futures. However, the efficacy of this approach depends on the fidelity of the
ESM simulations to the RCP scenarios. Without this fidelity, intra-scenario comparison is not
possible, because the ESMs are not simulating the same scenario, and inter-scenario comparison
might include futures outside the prescribed range of possibility.

The IAMs projected a complete terrestrial surface (along with ice, rock, and urban) for
each given scenario because land use and land cover are interdependent. For example, carbon
stocks in various ecosystems might be valued under a carbon price policy, so land cover would
need to be determined along with land use. Or a land policy might restrict certain land cover
conversions. Within the CMIP5 coupling process, however, GCMs and ESMs determine their
own land cover while remaining consistent with the land use harmonization data, thus
potentially reducing the fidelity of the full climate simulations to the RCP scenarios. This
was a practical design that obviated the redesign of GCM/ESM land use and land cover
implementations, but also precluded analysis of the climate impacts of different land cover
responses to land use change because such analysis is robust only within a single model where
everything but land cover response remains consistent. Another challenge posed by the

interdependence of land use and land cover is the implementation of geographic shifts in land
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cover due to bioclimatic changes. While these shifts are often implemented within ESMs, such
shifts are a second-order effect that is superposed upon land use change and might be better
implemented as a feedback from ESMs to IAMs to inform land use and land cover projection.
Incorporating both land use and land cover into the coupling between IAMs and ESMs is a
fundamental step toward realizing the full potential of the scenario-based RCP process.

Our approach to addressing inconsistencies between IAMs and ESMs is to integrate an
IAM and an ESM into the first fully coupled model that directly simulates human-environment
feedbacks. The resulting integrated ESM (iIESM) includes climate feedbacks on vegetation
productivity and ecosystem carbon from the Community ESM (CESM) to the Global Change
Assessment Model (GCAM) to facilitate land use projection at five-year intervals. The iIESM
uses GLM as in the CMIPS5 land use harmonization, along with the CESM Land Use Translator
(LUT) that converts land use harmonization outputs to CESM land cover and wood harvest area.
Our initial iIESM simulations showed that time varying factors based on CESM simulated Net
Primary Production (NPP) and Heterotrophic Respiration (HR) were successfully used by
GCAM for land use projection. However, these simulations also demonstrated that the large
RCP4.5 afforestation signal was not being passed through from GCAM to CESM. GCAM
simulated afforestation as a carbon-sequestering strategy to help meet the RCP4.5 target, but this
additional forest area was not included in the land use harmonization. As a result, most of this
forest area was not included in CESM simulations, both for CMIPS5 and in an early version of
iESM.

Here we test the feasibility of restoring the lost afforestation signal by using the iESM as
a test bed to explore alternative coupling strategies. We focus on modifications to the CESM

LUT because initial modifications to GLM did not restore CESM afforestation. One advantage
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of focusing on a post-land use harmonization approach is that it could be applied to other ESMs
independently without changing the land use harmonization product. Section 2 includes model
description and experimental design, Section 3 presents results and demonstrates that this
problem exists in CMIP5, and Section 4 discusses the limitations of our current approach and the
implications for the CMIPS5 archive with respect to land use and climate. We conclude with

suggestions for improving IAM to ESM land coupling for future model inter-comparisons.

2. Methods
2.1.  iESM Description

The iESM integrates GCAM, GLM, and CESM to evaluate the effects of human-
environment feedbacks on the earth system (Figure 1). We have completed the first coupling
stage that allows GCAM to project land use distribution in five-year increments based on the
previous five years of CESM vegetation productivity. Here we give an overview of how the three
main components interact. A more detailed description of iIESM development will be presented
in a forthcoming paper (Collins et al., in prep).

GCAM v3.0 ((Calvin et al., 2011); henceforth referred to as GCAM) is a tightly coupled
IAM of human and biogeophysical processes associated with climate change. GCAM’s human
system components simulate global economic activity within energy, agriculture, and forest
product markets with respect to 14 geopolitical regions. A previous version of GCAM projected
land use and land cover distributions for each of the 14 geopolitical regions (Wise et al., 2009)
and was used to generate the CMIPS5 RCP4.5 scenario (Thomson et al., 2011). Currently, GCAM
incorporates a range of improvements to the Agriculture and Land Use (AgLU) module,

including the capacity to operate on 151 geographical land units to generate a more detailed and
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accurate spatial distribution of land use. There are three land cover types that remain constant
over time (urban, tundra, and rock/ice/desert) and 24 land use and land cover types available for
redistribution, including 12 food and feed crops, five bioenergy crops, and seven managed and
unmanaged ecosystems (Kyle et al., 2011; Wise and Calvin, 2011). The “geographical land
units” are defined by intersecting 18 global agro-ecological zones (Lee et al., 2005) with the 14
geopolitical regions. In the iIESM, GCAM projects land use and land cover distributions within
each of these land units at five-year intervals. These distributions are based on profit shares
calculated from agricultural costs, prices, yields, and the application of a carbon price to
vegetation and soil carbon densities.

In a second and intermediate step, GLM uses GCAM’s cropland, pasture, and forest areas
(and wood carbon harvest) to compute all annual, fractional land use states and transitions. As
part of this process it disaggregates GCAM’s geographical land unit data to a half-degree global
grid by computing spatial patterns and also ensures consistency with the historical land use
reconstructions (Hurtt et al., 2011; Hurtt et al., 2006). GLM has been slightly modified from its
CMIP5 implementation to better facilitate forest area change matching with GCAM (Section
2.3.2). This modification enables GLM to use forest area output from GCAM that was not
incorporated into the CMIP5 land use harmonization. Nonetheless, iESM still follows the CMIP5
implementation for CESM in using these GLM land use harmonization outputs: cropland,
pasture, primary, and secondary land area, as well as wood harvest areas on primary and
secondary forested and non-forested land.

CESM (Bitz et al., 2011; Gent et al., 2011) has fully coupled atmosphere, ocean, land,
and sea ice components. Within CESM, the Community Land Model v4.0 (CLM; Lawrence et

al., 2011) receives the selected GLM outputs via a translator that converts these outputs to 16
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CLM Plant Functional Types (PFTs; eight forest, three grass, three shrub, one bare soil, and one
crop) (Lawrence et al., 2012). The CLM dynamic vegetation module, which estimates
bioclimate-driven geographical shifts in CLM PFTs, cannot run at the same time as the land use
change module presented here; only one of these modules can change CLM PFT areas per
simulation. While the iIESM does not directly estimate bioclimatic shifts in land cover, the NPP
and HR feedbacks to GCAM do incorporate bioclimatic effects on ecosystems into GCAM’s
land use cover projections. The version of iIESM used in this study was based on CESM
v1.0beta9, which is a pre-release version of the model used for the CMIPS5 simulations.

The iESM climate feedbacks on vegetation and carbon were implemented by passing
annual climate scaling factors from CESM to GCAM based on NPP and HR. These factors were
used to scale GCAM crop yields and vegetation and soil carbon densities every five years. To
calculate the scaling factors, the per-pixel, PFT-specific CESM 5-year annual average NPP and
HR values for a given GCAM time step were divided by base-period average annual values
(1990-2004). These NPP and HR ratios were then filtered to exclude outliers based on a median
absolute deviation method, and finally aggregated to GCAM’s geographical land units and land
use and land cover types (for details see Bond-Lamberty et al., in review). Crop yields and
vegetation carbon densities for GCAM’s next land use projection were scaled by the NPP ratio,
while soil carbon densities were scaled by a combination of the NPP and HR ratios ((NPP,a +

(1 - (HRratio - 1))) / 2)
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2.2.  Simulations

Our iESM simulations cover 2005 to 2040 with fully coupled CESM components and
prescribed RCP4.5 emissions and carbon price path. These simulations use the land use change
module, a dynamic ocean (Smith et al., 2013b), Community Atmosphere Model v4 physics
(Gent et al., 2011), carbon-nitrogen biogeochemistry (Thornton et al., 2007), and active land-
atmosphere-ocean carbon dynamics, at approximately 1° resolution (0.9375°x1.25°). The iESM
initial conditions are the culmination of a CESM spinup run followed by a CESM 1850-2005
transient historical run with land use change. GCAM initial conditions are calibrated to 2005
wood harvest, land use area, and energy and agriculture costs and production, as reported by
individual countries and processed and archived by international organizations (e.g. FAO,
International Energy Agency). The GCAM RCP4.5 scenario was described fully by Thomson et
al. (2011).

We performed two fully integrated simulations to compare two iESM cases: 1) original
CESM land use translator (OLDLUT) and 2) modified CESM land use translator (NEWLUT)
(Table 1). In fact, OLDLUT was our initial fully integrated simulation with iESM and, as
reported below, it revealed inconsistencies within iESM that needed to be addressed prior to
scientific experimentation. OLDLUT also showed that the updated GLM did not increase CESM
afforestation with respect to a previous simulation performed by manually passing data between
the respective iESM models. The NEWLUT case was used to test our hypothesis that the lost
afforestation signal could be recovered by modifying only the CESM component of iESM. These
fully integrated runs included climate feedbacks on vegetation productivity and ecosystem

carbon in GCAM’s land use projections, which occurred at five-year intervals. Analysis of the
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295  effects of introducing these feedbacks on land use, carbon, and climate will be presented in a
296  forthcoming paper (Thornton et al, in prep).

297

298 2.3. Land use coupling

299 2.3.1. OLDLUT land use coupling within iESM

300 The OLDLUT iESM land use coupling followed the CMIP5 land use harmonization
301 algorithm (Figure 2), but with a slightly modified version of GLM (see Section 2.3.2). The

302  coupling was designed to match GCAM and CESM changes in absolute cropland and pasture
303 area. For CMIP5, GLM received only crop and pasture areas from GCAM, but for the iIESM
304 GLM also receives forest area from GCAM to better facilitate forest area change matching (see
305  Section 2.3.2). GLM also receives wood products demand from GCAM (in tons of carbon),

306  which is spatially distributed to determine the extent of harvested area in each of five wood

307  harvest types (primary forest harvest, primary non-forest harvest, secondary mature forest

308 harvest, secondary immature forest harvest, and secondary non-forest harvest). The OLDLUT
309  (Figure 3) uses only the cropland and pasture area outputs from GLM to update CESM PFT
310 areas in conjunction with maps of potential vegetation (the vegetion most likely to be present if
311 no land use change had occurred; Ramankutty and Foley, 1999). Non-crop PFT area reductions
312  are made in proportion to their respective existing grid-cell fractions, while additions are made in
313  proportion to their respective potential vegetation grid cell fractions. The OLDLUT does not use
314  the primary and secondary land area information for updating PFT areas because CESM does not
315  keep track of these land use designations. The OLDLUT does, however, use the primary and
316  secondary land area to calculate the harvested fraction of GLM harvestable area (sum of the five

317  wood harvest type areas divided by the total area of primary and secondary land). Wood is
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harvested from only forest in CESM, and so the GLM harvested fraction is applied to forest area
to determine the harvested area in CESM (Lawrence et al., 2012).

The OLDLUT makes specific assumptions about pasture area change because CESM
does not keep track of pasture area (Figure 3). Changes in GLM cropland result directly in
CESM changes in crop PFT area, but changes in pasture area are constrained by forest PFT area
and reflected in changes in grass and shrub PFT area. More specifically, pasture addition is
limited to replacement of existing forest PFT area with grass PFT area, and pasture removal is
limited to the replacement of grass and shrub PFT area by potential forest PFT area. This means
that grass and shrub PFT area changes associated with pasture area change can be only as large

as the available existing or potential forest area.

2.3.2. Modifying the GLM spatial distribution algorithm

For the iIESM, GLM was modified to better facilitate forest area change matching with
GCAM in an effort to increase the forest area simulated by CESM. These modifications included
operating on GCAM’s 151 geographical land units (rather than the 14 regions used for CMIP5)
in addition to using GCAM’s forest area output, which was not previously shared between the
models. For CMIP5, GLM applied the cropland and pasture area changes to the 2005 half-degree
map of cropland and pasture while preserving the total cropland and pasture area changes within
GCAM regions. Spatial allocation of cropland and pasture areas to the half-degree grids was
done with a preference for expanding agricultural area onto non-forested land and reducing
agricultural area where GLM would expect a forest to grow, while also preserving 2005 spatial
patterns of land use by allocating new cropland and pasture near to existing agricultural areas

(Hurtt et al., 2011).
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The new GLM algorithm uses GCAM forest area from each geographical land unit at
each time step and attempts to preserve the forest area changes within each geographical land
unit in addition to preserving the cropland and pasture area changes. GLM has previously
defined "forest" as natural vegetation that is growing on land where the potential biomass
density, based on an internal potential vegetation growth model, is greater than 2 kgC m™. Using
this definition the potential forestland within GLM is fixed and, as a result, the GLM algorithm
cannot grow forest outside of this forestland. In the new algorithm, GLM matches GCAM forest
area changes by moving cropland and pasture around within each geographical land unit to
"expose" enough potential forestland for regrowth to meet the GCAM forest area changes (see
the following steps a-c). In addition, to meet GCAM’s land requirements for afforestation,
GLM uses a different definition of "forest" (potential biomass density greater than 1 kgC m™,
rather than 2 kgC m™) than the definition used elsewhere in the GLM code (e.g. for computing
the spatial pattern of wood harvesting). The new GLM algorithm operates in three main steps:

a) Decreases in cropland and pasture occur first on the highest potential biomass land and

increases in cropland and pasture occur first on the lowest potential biomass land.

b) If the forest area change within a geographical land unit is not met, a redistribution of

cropland and pasture within that geographical land unit occurs such that, when possible,

existing cropland and pasture is moved from high biomass density land to low biomass
density land.

c) If the forest area change within a geographical land unit is still not met, the algorithm

attempts to allocate any "unmet" forest area change within another land unit (or across

multiple land units) within the same region, using a similar method to (b) above.
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2.3.3. Modifying the CESM land use translation algorithm

To test our hypothesis that the lost afforestation signal could be recovered solely by the
ESM component, we focused on modifying the LUT (NEWLUT; Figure 4) to capture GCAM
afforestation via changes in agricultural land. This approach is more expedient than redesigning
the coupling code and LUT to receive forest area changes directly from GLM because such
redesign would logically require implementation of a single, consistent land surface and carbon
cycle among all iIESM components. Specifically, the NEWLUT adds tree PFTs when cropland
and pasture are removed. Furthermore, the NEWLUT preferentially removes tree PFTs when
cropland and pasture are added. Forest area information is still not shared between GLM and the
NEWLUT (other than forest harvest). The NEWLUT also includes proper grid cell fraction

matching between GLM and CESM, which primarily affects crop, grass, and shrub PFTs.

2.3.3. CMIP5 RCP4.5 land use and land cover distributions among GCAM, GLM, and CESM
The OLDLUT iESM land use coupling was also used in CMIP5, albeit with 14 regions
rather than 151 geographical land units and without the GLM modifications and climate
feedbacks described above, and so we explored the extent to which the afforestation signal was
lost in the CMIPS5 simulations. We compared the RCP4.5 pre-land use harmonization forest and
pasture area outputs from GCAM with the GLM land use harmonization values and also with the
corresponding PFT area inputs for the CESM1.0-BGC simulations submitted to the CMIP5
archive. CESM1.0-BGC served as the base code for iESM and thus contains the same versions

of the model components.
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3. Results
3.1.  CMIPS5 RCP4.5 land use and land cover area inconsistencies

The GCAM afforestation signal was dramatically decreased in the CESM simulations,
and the total area covered by CESM herbaceous (grass and shrub) PFTs increased while
GCAM pasture decreased (Figure 5). CESM forest area increased by 23% of the 4.82 million
km? of afforestation between 2005 and 2020, and by 22% of the 10.98 million km? of
afforestation, by 2100. GLM captured 64% and 56% of the afforestation in 2020 and 2100,
respectively. GCAM and GLM pasture decreased by 4.69 million km? from 2005 to 2100
while CESM herbaceous PFTs increased by 1.11 million km? over the same period. The
changes in global cropland area were faithfully transmitted (CESM decreases were only 7%
less than GCAM decreases), but absolute CESM cropland area was approximately 1.5
million km? less than GCAM cropland area throughout the simulation (data not shown).
Changes in GLM pasture and cropland areas were essentially identical to GCAM changes,
and GLM absolute area values were slightly higher and lower, respectively, than GCAM

pasture and cropland areas (cropland data not shown).

3.2.  Restored afforestation in iESM

The OLDLUT simulation revealed that only changes in crop area were being faithfully
transmitted from GCAM to CESM (Figure 6; changes in global area). In contrast, CESM forest
area increased by only 17% of GCAM’s 5.40 million km?” of afforestation between 2015 and
2020, and by only 17% of the 7.73 million km? of afforestation between 2015 and 2040. Changes
in GLM forest area, on the other hand, reflected changes in GCAM forest area quite well (Figure

6), but at the cost of dramatically overestimating absolute forest area within GLM due to a low
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biomass threshold for defining forest (Figure 7; absolute values of global area). Within GLM, the
new algorithm captured 93% of afforestation between 2015 and 2020 and 84% between 2015
and 2040, as compared to the original GLM algorithm that captured only 14% and 20% over the
respective periods in a previous simulation performed by manually passing data between the
respective iIESM models (data not shown). Changes in GCAM pasture were not reflected by
changes in CESM herbaceous PFTs, but were faithfully output by GLM (Figure 6).

The NEWLUT simulation shows improved forest and cropland area changes in CESM
with a corresponding change in CESM herbaceous PFT area. The main improvement is that
CESM forest area increases by 64% of GCAM’s 2015-2020 afforestation and by 66% of the 7.71
million km?” of afforestation from 2015-2040 (Figure 6). This additional forest area in NEWLUT
reduces total area covered by CESM herbaceous PETs by 94% of the 4.36 million km* of GCAM
pasture loss by 2040. Figure 8 shows the spatial tradeoff between forest and herbaceous PFTs
that achieves this level of afforestation, and Figure 9 demonstrates a sustained increase in
average annual land carbon uptake after 2020 due to additional afforestation. In comparison to
OLDLUT, the NEWLUT increase in land carbon uptake results in a 19 PgC increase in
vegetation carbon gain and an 8 ppmv decrease in atmospheric CO, gain between 2005 to 2040
(Figure 10). NEWLUT also improves the CESM absolute cropland area (Figure 7) through
proper matching of GLM and CESM grid cell fractions. The effect of this proper matching is
apparent in the cropland and pasture area changes from 2005 to 2006 (Figures 6 and 7). GLM
NEWLUT outputs follow the GCAM NEWLUT outputs with relationships between GLM and

GCAM similar to those for OLDLUT (data not shown).
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4. Discussion

The iIESM and CMIP5 land cover area discrepancies (Figures 5-7) result from a gap in
the original CMIP5 land coupling design that allows inconsistent forest area and land cover type
definitions across models (Figure 2), along with different underlying carbon cycles. The land use
harmonization was, however, ambitious and largely successful in developing consistent land use
definitions and data without requiring extensive redevelopment of land use and land cover
components of all participant models (Hurtt et al., 2011). As our study attests, such
redevelopment is challenging and model-specific, but might be required for ESMs to adequately
simulate the TAM-prescribed anthropogenic drivers and their corresponding effects on carbon
and climate. Thus, while this is a specific case, the lost iESM afforestation signal is instructive of
the shortcomings of the CMIPS5 design and the restoration of this signal offers insights into
improving land use and land cover coupling for model inter-comparisons.

A primary challenge for improving the CMIP5 land coupling is to increase the amount of
specific land cover information being shared between IAM (and historical) scenarios and ESMs.
For CMIPS5, the land use harmonization was designed to harmonize land use data between
models, and as such GLM did not receive forest area or any other land cover information from
any of the [AMs (Masui et al., 2011; Riahi et al., 2011; Thomson et al., 2011; van Vuuren et al.,
2011b). Thus, at the first coupling step, scenario-prescribed land cover associated with any [AM
policy that valued carbon within unmanaged ecosystems (e.g., grassland, wetland, forest) was
lost. While GLM does, however, keep track internally of forested and non-forested land
(according to its own definition of forest, which likely differs from those within TAMs and
ESMs), the output land use harmonization product includes only cropland, pasture, primary, and

secondary land areas and transitions, and the age and biomass density of secondary land (and
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harvest areas, carbon amounts, and transitions, which we do not address here). As each ESM
characterizes the land surface by its own suite of vegetation and management types (Brovkin et
al., 2013), additional land use and land cover information could be lost in the second coupling
step between GLM and the ESMs. For example, some ESMs were able to use the primary,
secondary, and transition information, but they might have been applying this information to
different land covers than those used by GLM, thus introducing a second shift away from the
original IAM scenario. Our specific case demonstrates an even greater inconsistency due to the
use of only cropland and pasture information. GCAM has 19 crop types (the CMIPS5 version had
10) and seven managed and unmanaged land cover types while CESM has 16 PFTs, only one of
which is a crop type. The LUT algorithm uses only the GLM cropland and pasture area
information to adjust PFTs because CLM does not keep track of primary versus secondary land.
The resulting spatial pattern of non-crop PFTs is determined by the existing PFT distribution and
CESM’s internal representation of potential vegetation cover (Lawrence et al., 2012;
Ramankutty and Foley, 1999). An additional source of error that we did not investigate here is
the relationship between individual PFTs and land cover types that may comprise several PFTs
(e.g. forest land may consist of 60% trees and 40% grass).

Due to the lack of a prescribed land cover input associated with the land use input, forest
area changes in CESM (and iESM) are effectively residual changes that are only indirectly
linked to GCAM forest area through changes in cropland and pasture areas. The LUT calculates
cropland area changes first and pasture area changes second (Figures 3 and 4). In CMIP5 CESM
simulations, cropland area changes cause non-crop PFTs to be added or removed in proportion to
their potential or existing grid-cell fractions, respectively. Pasture is more complicated because it

is not tracked as such: pasture is not a single PFT and its changes are represented as changes in
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herbaceous and tree PFTs. Specifically, tree PFTs are removed when pasture is added, and non-
crop PFTs are added in proportion to their potential vegetation grid-cell fractions when pasture is
removed (Lawrence et al., 2012). This residual PFT determination, combined with independent
and unique forest definitions across GCAM, GLM, and CESM, causes the bulk of prescribed
afforestation to not appear in the CESM land surface. As a direct consequence, CESM grass area
(and shrub area to a lesser extent) increases while GCAM pasture decreases dramatically (Figure
5). CESM has this same limitation for all four RCP scenarios, and the other CMIP5 ESMs
implement similar inconsistencies to varying degrees due to the lack of specific vegetation types
in the land coupling between IAMs and ESMs. For example, Davies-Barnard et al. (2014)
recently reported that the HadGEM2-ES RCP4.5 forest area increased 11% from 2005-2100,
while the GCAM forest area increased by 24%. Additionally, the GCAM 2005 forest area was
41.1 Mkm?, the GLM 2005 forest area was 39.9 km?, but the MPI-ESM 2005 forest area was
about 24 M km®. As a result, the 35% increase in MPI-ESM RCP4.5 forest area by 2100
(Wilkenskjeld et al., in review) was still only 77% of GCAM’s afforestation. It is apparent from
these inconsistencies that interdependent land use and land cover need to be faithfully
transmitted from IAMs to ESMs to robustly simulate the effects of prescribed scenarios on the
earth system.

Even partial restoration of the lost afforestation signal in iESM demonstrates the
potentially dramatic effect on global carbon and climate of using IAM land cover and land use
information in ESMs. As soon as 25 years after the initial increase in forest area, and with only
64% of GCAM’s afforestation area, the NEWLUT has a significant impact on global carbon
balance (Figure 9). The assumption that forest exclusively replaces abandoned cropland and

pasture in GCAM’s land use projection (Figures 6-8) sets the upper limit for CESM because
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there is no other information to constrain forest area, and may be applicable only to the RCP4.5
scenario. Although this limits NEWLUT to including only two-thirds of the total afforestation,
adding more forest area to CESM would be arbitrary without additional land cover information.
Nonetheless, the increased afforestation in NEWLUT results in an increase in net land carbon
uptake over the OLDLUT case due to a sustained increase in average annual land carbon uptake
after 2020 (Figure 9). As a result, the NEWLUT simulation increases vegetation carbon gain by
19 PgC and decreases atmospheric CO; gain by 7.7 ppmv from 2005 to 2040 in comparison to
OLDLUT (Figure 10). The NEWLUT simulation also decreases soil carbon gain by about 1.5
PgC over this period (data not shown).

Simple linear extrapolation of the iIESM vegetation carbon gain and atmospheric CO,
gain from 2005 to 2100 increases these changes to approximately 52 PgC and 21 ppmv, and
extending CESM forest area to match GCAM total afforestation could potentially increase these
changes to 88 PgC and 36 ppmv in 2100. These are rough estimates that use 2005 as a starting
point to reduce the high slope associated with the initial increase from 2015-2020, and also
assume that additional forest area continues to gain carbon for 60-80 years after it is established.
Regardless of the absolute accuracy of these extrapolations, the potential gain in vegetation
carbon alone for CESM with full afforestation is on the order of estimates of net cumulative land
use change emissions during 1850-2000, which range from 110-210 PgC (Table 3 in Smith and
Rothwell, 2013). For comparison, the range of CMIPS5 vegetation carbon stock gains for RCP4.5
is about 50 to 300 PgC from 2005 to 2100, with most gains being less than 150 PgC and
relatively linear (Figure 2 in Jones et al., 2013b). An increase in gain of 88 PgC would
dramatically shift CESM vegetation carbon dynamics in relation to the other ESMs. The

corresponding 36 ppmv decrease in atmospheric CO, is nearly one-third of the difference
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525  Dbetween the prescribed 2100 concentrations of the RCP4.5 (~540 ppmv) and RCP2.6 (~420
526  ppmv) scenarios (Figure 1 in Jones et al., 2013b). More importantly for CESM’s ability to

527  robustly simulate the effects of the RCP scenarios on the earth system, the prognostic CESM
528 atmospheric CO, concentration in 2100 for RCP4.5 is 610 ppmv (Keppel-Aleks et al., 2013), and
529  adecrease from 610 to 574 ppmv has an approximate decrease in radiative forcing of 0.33 W m”
530 2, which is non-trivial with respect to the 4.5 W m™ target. While these carbon cycle changes in
531 the CESM component of iESM may have a significant effect on climate, it is important to note
532  that the carbon cycle effects of afforestation in CESM are not identical to those in GCAM or
533  GLM because these three models have different biogeochemistry and vegetation models. These
534  differences in carbon cycles, however, do not obviate the need for making both land cover and
535 land use consistent between IAMs and ESMs in order to best match the prescribed radiative
536  forcing scenario.

537 Different implementations of land cover and land use among IAMs and ESMs also

538  reduce the fidelity between RCP scenarios and their associated effects on the earth system.

539  Figure 8 shows that most of the additional forest area in NEWLUT occurs on grassland and
540  shrubland, and that these lands generally coincide with areas of limited potential forest. The
541 OLDLUT could not add forest area where no potential forest area exists, and the rate of forest
542  carbon accumulation is constrained by environmental conditions. GLM also limits forest area
543  and growth based on potential forest and environmental conditions, but with a different growth
544  model and map of potential forest area than used by CESM. On the other hand, GCAM

545  afforestation is a strategy to expand forest area for carbon sequestration, and assumes that it is
546  cost effective to use agricultural inputs (e.g., water, fertilizer) to achieve the expected forest

547  growth. This disagreement among the three models hampers communication of forest area
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changes and contributes to the differences in forest area among the models, both in CMIP5
(Figure 5) and in the iESM (Figures 6 and 7). Nonetheless, sharing forest area between GCAM
and GLM does improve the fidelity between GCAM and GLM’s forest area changes (Figures 5
and 6). GLM and CESM do not simulate agricultural inputs for forests, but the NEWLUT can
simulate most, but not all, of the prescribed afforestation (Figures 6 and 7) by adding forest area
based on GCAM’s cropland and pasture changes, rather than on potential forest area. The
additional forest might not grow as well in CESM as in GCAM, but the CESM forest
productivity is fed back to GCAM for subsequent land use projections, so environmental
restrictions on forest growth will influence future land use and land cover. This feedback does
not, however, fully compensate for the lack of bioclimatic or agricultural input availability
constraints on GCAM’s land use projection, which might contribute to an overly optimistic
afforestation projection. More generally, this feedback mechanism opens a path for more
robustly simulating interdependent land use and land cover through incorporation of potential,
bioclimate-driven geographic shifts in land cover. ESMs could estimate bioclimatic drivers or
geographic shifts for given land use/cover scenarios, and then feed this information back to the
IAMS for incorporation into land use/cover projection. Implementing such a feedback for
scenario-based simulations would consolidate land use/cover determination into internally
consistent modules within the IAMs, thereby increasing fidelity between the scenario-prescribed
land surface and the one used by the ESMs.

We have focused on understanding the effects of mismatched land cover areas on global
simulations, rather than on mismatched carbon cycles, because the spatial distribution of land
cover and land use is a scenario-determined boundary condition for ecosystem-specific processes

such as biogeochemical dynamics. For global simulations this boundary condition is generally
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provided by historical data and IAMs, and, as we have shown, a mismatch in this boundary
condition causes CESM to simulate non-scenario effects on carbon and climate (due to a non-
scenario land surface), rather than the scenario-driven effects of the land surface prescribed for
meeting the RCP4.5 target. Mismatched carbon cycles among IAMs and ESMs, on the other
hand, along with differences in atmospheric radiation code, will preclude exact matches in
radiative forcing for a given RCP scenario, but should not cause significant deviations among
models in the carbon and climate effects of a given scenario. While we plan to completely
reconcile land use and land cover inconsistencies within the iESM by implementing a single
carbon cycle with consistent land surface characterization among the components, it is not
desirable, nor feasible, for all IAMs and ESMs to have the same biogeochemistry and vegetation
growth components. For example, a diversity of terrestrial models can help characterize
uncertainty in global simulations. This uncertainty, however, is most useful if these models
simulate the same spatial distribution of land cover and land use change. Therefore, iESM
redevelopment that ensures land use and land cover consistency between GCAM and CESM
could provide a template for improving the fidelity between IAM scenarios and ESM simulations
in the next CMIP. In fact, land cover information is currently planned to be included in the
CMIP6 land coupling, along with a more extensive land use model intercomparison project

(Meehl et al., 2014).

5. Conclusion
We have identified the lack of specific land cover type information being shared among
GCAM, GLM, and CESM in the iESM as the primary cause of CESM having very little

afforestation and effectively no change in herbaceous PFT area in contrast to GCAM’s large
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RCP4.5 afforestation and corresponding pasture reduction. Initial efforts to fix this problem
through GLM modifications and the sharing of forest area between GCAM and GLM improved
only the fidelity of forest area changes between GCAM and GLM. We then focused on
modifying the algorithm that translates GLM land use harmonization outputs to CESM PFTs.
While these land use translator modifications have been successful at capturing two-thirds of
GCAM’s RCP4.5 afforestation signal and corresponding reductions in herbaceous PFT area,
they are not sufficient to completely overcome the limitations imposed by not passing specific
land cover types from GCAM through to CESM. These modifications are also specific to the
GCAM RCP4.5 scenario, and might need to be altered for the other RCP scenarios. Furthermore,
we have not addressed the lack of constraints on GCAM forest area expansion, nor mismatches
between land cover and PFT definitions. Nonetheless, this partial restoration of afforestation has
a significant impact on iESM’s global carbon cycle through increased vegetation carbon and
decreased atmospheric CO, concentration.

The iESM framework follows the CMIP5 land coupling design, and as such we have
characterized a major gap in this design that precludes accurate translation of projected IAM land
surface scenarios to ESMs by focusing only on land use such as cropland and pasture (albeit
successfully), and not including specific land cover types such as forest, grassland, and
shrubland. The relationship between land use and land cover is handled uniquely by individual
ESMs, which means that the effects of scenario mismatch will be model-specific and more
relevant for some RCPs than others. The resulting land cover discrepancies are likely most
pronounced for the large RCP4.5 afforestation signal, which was greatly reduced in the CMIP5
CESM and HadGEM2-ES (see Davies-Barnard et al., 2014) simulations, but could also arise for

other large land cover changes such as the extensive deforestation of RCP8.5. As total land area
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is conservative, errors in the distribution of one land cover are complemented by errors in the
distributions of other land covers. In GCAM’s RCP4.5 scenario, pasture decreases over the 21
century, but the CMIP5 CESM runs have increasing grass and shrub areas over the same period.
It is very important that the land use and land cover changes (which determine land use change
emissions and the total capacity for vegetation carbon assimilation) match between the IAMs and
ESMs because the CMIP5 experimental design is predicated on the fidelity between IAM
scenarios and ESM simulations such that they have similar, specific radiative forcings for a
given scenario, including CO; emissions from land use change (Moss et al., 2010). Furthermore,
future radiative climate targets are likely to include the biogeophysical forcings of land use
change because it has been shown that the modeled climate system is sensitive to changes in
these forcings due to the spatial distribution of land use and land cover change (Brovkin et al.,
2013; Jones et al., 2013a; Pitman et al., 2009), making it imperative that TAM and ESM land use
and land cover distributions match as closely as possible. Maintaining the diversity of global
biogeochemical and vegetation models also calls for GCMs and ESMs to match historical and
projected land cover and land use distributions as closely as possible, so as to isolate carbon
cycle contributions to uncertainty from contributions due to differences in land use and land
cover. Fortunately, our results indicate that it might be possible to adjust land cover in other
CMIPS5 models to better match RCP4.5 afforestation and the corresponding climate scenario,
while still using the standard land use harmonization data.

We conclude that the land coupling between IAMs and ESMs for future model
intercomparisons needs to ensure greater consistency in land cover and land use among the
models in order to realize the full potential of scenario-based earth system simulations. In short,

the models need to agree on the actual land area and the annual spatial distribution of major
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(non-) vegetation land covers and land uses. In other words, the ESMs need to simulate the same

basic land surface as prescribed by the [AM-generated RCP scenarios. To achieve the required

consistency, we suggest that the next CMIP land coupling design provides land cover and land

use information, and a standard mapping between land cover and plant functional types.

Fortunately, this is an emerging priority for the CMIP6 Land Use Model Intercomparison Project

(LUMIP, http://www.wcrp-climate.org/index.php/modelling-wgcm-mip-catalogue/modelling-

wgem-mips/318-modelling-wgem-catalogue-lumip , http://www.wcrp-

climate.org/wgem/WGCM17/LUMIP_proposal v4.pdf). The following gridded data with

fractional shares within grid cells are specifically recommended:

1)

2)

3)

4)

Annual land cover states with complete, contiguous spatial coverage within grid cells.
Land cover needs to include at least the basic categories of cropland, grassland,
shrubland, woodland, forest, and other (bare/sparse, ice, urban, water). This will allow
consistency in major (non-) vegetation types for model intercomparison (with the “other”
category having fixed area). The “other” categories could also be separated out for
models that can use them, and in preparation for changing their areas also.

Annual land use states including primary and secondary land, wood harvest, and pasture
(cropland should coincide with the land cover state). These uses should be provided with
respect to the land cover categories. Wood harvest and pasture should include both area
and amount of biomass/carbon harvested or removed by grazing.

A standard present-day land area data set to be used by all models. Land area includes all
land cover and land use categories as described above.

Annual land use and land cover transitions. Land use transitions need to be accompanied

by corresponding land cover transitions with complete, contiguous spatial coverage
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within grid cells. Net land use/cover transitions, which should be used for model
intercomparison, are annual changes in individual land use and cover states, and may
include additional detail about sources of wood harvest and grazed biomass. Gross land
use/cover transitions are the transitions among particular land use/covers occurring within
a particular year. These transitions sum to the net land use/cover transitions, and should
also be provided to characterize shifting cultivation and other gross land conversions.
While gross land use/cover transitions are very important and make a significant
difference in the carbon cycle, until more models are able to make use of gross transitions

they should not be included in model intercomparisons.
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Figure captions

Figure 1. Implementation of integrated Earth System Model (iESM) terrestrial feedbacks. The
light blue arrows show information flow from GCAM to CESM. The light green arrows show
information flow from CESM to GCAM. The dashed gray outline, including the arrow crossed
out by green, represents the CMIPS5 land coupling. The solid green outline, minus the arrow
crossed out by green, depicts the iIESM implementation used in this study. GCAM: Global
Change Assessment Model. GLM: Global Land use Model. CESM: Community Earth System

Model.

Figure 2. General integrated Earth System Model (iESM) land use coupling algorithm. Forest
area is not passed from the Global Change Assessment Model (GCAM) to the Global Land use
Model (GLM) in the CMIPS land use coupling, but it is passed in the iESM simulations used in

this study. NPP: Net Primary Productivity. HR: Heterotrophic Respiration. PFT: Plant Functional

Type.

Figure 3. OLD Land Use Translator (OLDLUT) algorithm for dynamic Plant Functional Type
(PFT) coverage. When cropland and pasture decrease, non-crop PFTs are added in proportion to
potential vegetation fractions. When cropland and pasture increase, non-crop PFTs are removed

in proportion to reference year fractions.

Figure 4. NEW Land Use Translator (NEWLUT) algorithm for dynamic Plant Functional Type

(PFT) coverage. When cropland and pasture decrease, tree PFTs are added in proportion to
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potential vegetation fractions. When cropland and pasture increase, tree PFTs are removed first,

then other non-crop PFTs, in proportion to reference year fractions.

Figure 5. Projected global forest, pasture, grass, and shrub areas for the CMIP5 4.5 W m™
Representative Concentration Pathway (RCP4.5), in million km®. CESM: Community Earth

System Model. GLM: Global Land use Model. PFT: Plant Functional Type.

Figure 6. Integrated Earth System Model (IESM) land use and forest area changes with respect to
2015. The GLM-NEWLUT forest and pasture data are nearly identical to the GLM-OLDLUT
data and are not shown for clarity. Similarly, the GLM-NEWLUT cropland data are nearly
identical to the GCAM-NEWLUT data. CESM: Community Earth System Model. GCAM:

Global Change Assessment Model. GLM: Global Land use Model.

Figure 7. Integrated Earth System Model (iESM) land use and forest area. The GLM-NEWLUT
forest and pasture data are nearly identical to the GLM-OLDLUT data and are not shown for
clarity. Similarly, the GLM-NEWLUT cropland data track the GCAM-NEWLUT data, but with
the same offset as for the GLM-OLDLUT data. CESM: Community Earth System Model.

GCAM: Global Change Assessment Model. GLM: Global Land use Model.

Figure 8. Spatial distributions of iESM increased forest Plant Functional Types (PFTs),
decreased grass and shrub PFTs, and potential forest PFTs, as percentages of land area within
each grid cell. a) Difference in 2040 forest PFT area (NEWLUT - OLDLUT). b) Difference in

2040 grass plus shrub PFT area (NEWLUT - OLDLUT). c) Potential forest PFT area.

Figure 9. Net Ecosystem Exchange (NEE) comparison between iESM simulations. a) NEE for

each simulation. b) NEE difference (NEWLUT minus OLDLUT). These data show more land
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carbon uptake (negative NEE), associated with the additional trees, for the NEWLUT simulation

during the afforestation period (2015 forward).

Figure 10. Comparison between iESM simulations of a-b) vegetation carbon and c-d)
atmospheric CO; concentration. Differences are NEWLUT minus OLDLUT. Due to additional
forest area, the NEWLUT simulation significantly increases vegetation carbon gain and

decreases atmospheric CO, gain over the OLDLUT simulation.
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Table 1. Two integrated Earth System Model (iESM) simulations performed for this study.

OLDLUT NEWLUT
Modified Land Use Translator N Y
Vegetation productivity Y Y
feedbacks
Updated Global Land use Y Y
Model
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Figure 1. Implementation of integrated Earth System Model (iESM) terrestrial feedbacks.

The light blue arrows show information flow from GCAM to CESM. The light green arrows
show information flow from CESM to GCAM. The dashed gray outline, including the arrow
crossed out by green, represents the CMIPS5 land coupling. The solid green outline, minus the

arrow crossed out by green, depicts the iESM implementation used in this study. GCAM: Global

Change Assessment Model. GLM: Global Land use Model. CESM: Community Earth System

Model.
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Figure 4. NEW Land Use Translator (NEWLUT) algorithm for dynamic Plant Functional Type

(PFT) coverage. When cropland and pasture decrease, tree PFTs are added in proportion to
potential vegetation fractions. When cropland and pasture increase, tree PFTs are removed first,

then other non-crop PFTs, in proportion to reference year fractions.
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Figure 6. Integrated Earth System Model (IESM) land use and forest area changes with respect to
2015. The GLM-NEWLUT forest and pasture data are nearly identical to the GLM-OLDLUT
data and are not shown for clarity. Similarly, the GLM-NEWLUT cropland data are nearly
identical to the GCAM-NEWLUT data. CESM: Community Earth System Model. GCAM:

Global Change Assessment Model. GLM: Global Land use Model.
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Figure 7. Integrated Earth System Model (IESM) land use and forest area. The GLM-NEWLUT

forest and pasture data are nearly identical to the GLM-OLDLUT data and are not shown for

clarity. Similarly, the GLM-NEWLUT cropland data track the GCAM-NEWLUT data, but with

the same offset as for the GLM-OLDLUT data. CESM: Community Earth System Model.

GCAM: Global Change Assessment Model. GLM: Global Land use Model.
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995  Figure 8. Spatial distributions of iESM increased forest Plant Functional Types (PFTs),

996  decreased grass and shrub PFTs, and potential forest PFTs, as percentages of land area within
997  each grid cell. a) Difference in 2040 forest PFT area (NEWLUT - OLDLUT). b) Difference in
998 | 2040 grass plus shrub PFT area (NEWLUT - OLDLUT). ¢) Potential forest PFT area.
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Figure 9. Net Ecosystem Exchange (NEE) comparison between iESM simulations. a) NEE for

each simulation. b) NEE difference (NEWLUT minus OLDLUT). These data show more land
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carbon uptake (negative NEE), associated with the additional trees, for the NEWLUT simulation

during the afforestation period (2015 forward).
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1008  Figure 10. Comparison between iESM simulations of a-b) vegetation carbon and c-d)
1009  atmospheric CO, concentration. Differences are NEWLUT minus OLDLUT. Due to additional
1010  forest area, the NEWLUT simulation significantly increases vegetation carbon gain and
1011  decreases atmospheric CO; gain over the OLDLUT simulation.
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