

1 **Diagnosing CO₂ fluxes in the upwelling system off the Oregon-California coast**

2 Zhimian Cao^{1†}, Minhan Dai^{1*}, Wiley Evans^{2,3}, Jianping Gan⁴, Richard Feely²

3 ¹State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China

4 ²Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration,
5 Seattle, Washington, USA

6 ³Ocean Acidification Research Center, School of Fisheries and Ocean Sciences, University of
7 Alaska Fairbanks, Fairbanks, Alaska, USA

8 ⁴Division of Environment and Department of Mathematics, Hong Kong University of Science
9 and Technology, Kowloon, Hong Kong, China

10 [†]Present address: GEOMAR | Helmholtz Center for Ocean Research Kiel, Kiel, Germany

11

12 *Corresponding author:

13 Dr. Minhan Dai

14 State Key Laboratory of Marine Environmental Science

15 Xiamen University

16 Xiang'an District

17 Xiamen 361102, China

18 Phone: +86-592-2182132

19 Fax: +86-592-2184101

20 E-mail: mdai@xmu.edu.cn

21 **Abstract**

22 It is generally known that the interplay between the carbon and nutrients supplied from
23 subsurface waters via biological metabolism determines the CO₂ fluxes in upwelling systems.
24 However, quantificational assessment of such interplay is difficult because of the dynamic nature
25 of both upwelling circulation and the associated biogeochemistry. We recently proposed a new
26 framework, the Ocean-dominated Margin (OceMar), for semi-quantitatively diagnosing the CO₂
27 source/sink nature of an ocean margin, highlighting that the relative consumption between
28 carbon and nutrients determines if carbon is in excess (i.e., CO₂ source) or in deficit (i.e., CO₂
29 sink) in the upper waters of ocean margins relative to their off-site inputs from the adjacent open
30 ocean. In the present study, such a diagnostic approach based upon both couplings of physics-
31 biogeochemistry and carbon-nutrients was applied to resolve the CO₂ fluxes in the well-known
32 upwelling system in the US west coast off Oregon and northern California, using data collected
33 along three cross-shelf transects from the inner shelf to the open basin in spring/early summer
34 2007. Through examining the biological consumption on top of the water mass mixing revealed
35 by the total alkalinity-salinity relationship, we successfully predicted and semi-analytically
36 resolved the CO₂ fluxes showing strong uptake from the atmosphere beyond the nearshore
37 regions. This CO₂ sink nature primarily resulted from the higher utilization of nutrients relative
38 to dissolved inorganic carbon (DIC) based on their concurrent inputs from the depth. On the
39 other hand, the biological responses to intensified upwelling were minor in nearshore waters off
40 the Oregon-California coast, where significant CO₂ outgassing was observed and resolving CO₂
41 fluxes could be simplified without considering DIC/nutrient consumption, i.e., decoupling
42 between upwelling and biological consumption. We reasoned that coupling physics and

43 biogeochemistry in the OceMar model would assume a steady state with balanced DIC and
44 nutrients via both physical transport and biological alterations in comparable timescales.

45 **1 Introduction**

46 The contemporary coastal ocean, characterized by high primary productivity due primarily to
47 the abundant nutrient inputs from both river plumes and coastal upwelling, is generally seen as a
48 significant CO₂ sink at the global scale (Borges et al., 2005; Cai et al., 2006; Chen and Borges,
49 2009; Laruelle et al., 2010; Borges, 2011; Cai, 2011; Dai et al., 2013). However, mechanistic
50 understanding of the coastal ocean carbon cycle remains limited, leading to the unanswered
51 question of why some coastal systems are sources while others are sinks of atmospheric CO₂ in a
52 given time scale. We recently proposed a new framework, the Ocean-dominated Margin
53 (OceMar), for better shaping the concept of a coastal ocean carbon study (Dai et al., 2013). This
54 framework highlights the importance of the boundary process between the open ocean and the
55 ocean margin, and proposes a semi-analytical diagnostic approach to resolve sea-air CO₂ fluxes.
56 The approach invokes an establishment of the water mass mixing scheme in order to define the
57 physical transport, or the conservative portion of carbon and nutrients from the adjacent open
58 ocean; and the constraint of the biogeochemical alteration of these non-local inputs in the upper
59 waters of ocean margins. The water mass mixing scheme is typically revealed using conservative
60 chemical tracers such as total alkalinity (TALK) and/or dissolved calcium ions (Ca²⁺) to bypass
61 the identification of end-members associated with individual water masses that often possess
62 high complexity in any given oceanic regime. The constraint of the biogeochemical alteration
63 can then be estimated as the difference between the predicted values based on conservative
64 mixing between end-members and the field measured values. The relative consumption between
65 dissolved inorganic carbon (DIC) and nutrients determines if DIC is in excess or in deficit
66 relative to the off-site input. Such excess DIC will eventually be released to the atmosphere
67 through air-sea CO₂ exchange. Using two large marginal seas, the South China Sea (SCS) and

68 the Caribbean Sea (CS) as examples, we have successfully predicted, via evaluating DIC and
69 nutrient mass balance, the CO₂ outgassing that is consistent with field observations (Dai et al.,
70 2013). However, the OceMar concept and the diagnostic approach have not been verified on
71 upwelling systems that can be either sources (e.g., Friederich et al., 2002; Torres et al., 2003;
72 Fransson et al., 2006) or sinks (e.g., Borges et al., 2002; Santana-Casiano et al., 2009; Evans et
73 al., 2012) of atmospheric CO₂. While it is generally known that the interplay between the
74 nutrients and DIC supplied from subsurface waters via biological metabolism would determine
75 the CO₂ fluxes in upwelling systems, quantificational assessment of such interplay is difficult
76 because of the dynamic nature of both upwelling circulation and the associated biogeochemistry.

77 Our study therefore chose the upwelling system in the US west coast off Oregon and northern
78 California, to examine the CO₂ flux dynamics through our proposed mass balance approach
79 associated with carbon/nutrient coupling. The system under study is part of the eastern boundary
80 current in the North Pacific (Fig. 1). While strong equatorward winds in spring/summer drive
81 offshore Ekman transport at the surface over the coastal waters, the carbon and nutrient-rich deep
82 water is transported shoreward and upward over the shelf to compensate for the offshore
83 transport in the surface layer (Huyer, 1983; Kosro et al., 1991; Allen et al., 1995; Federiuk and
84 Allen, 1995; Gan and Allen, 2002). Outcrops of waters from depths of 150-200 m are frequently
85 observed in the nearshore on the Oregon-California shelf, where the surface partial pressure of
86 CO₂ ($p\text{CO}_2$) can reach levels near 1000 μatm . This water is then transported seaward and
87 southward while the $p\text{CO}_2$ is drawn down by biological productivity, and can be down to levels
88 of \sim 200 μatm , far below the atmospheric $p\text{CO}_2$ value (Hales et al., 2005, 2012; Feely et al., 2008;
89 Evans et al., 2011). Such a dramatic decrease in seawater $p\text{CO}_2$ may be due to the fact that the
90 complete utilization of the preformed nutrients in upwelled waters exceeds their corresponding

91 net DIC consumption, leading to the area off Oregon and northern California acting as a net sink
92 of atmospheric CO₂ during the upwelling season (Hales et al., 2005, 2012). On the other hand,
93 Evans et al. (2011) suggest that the spring/early summer undersaturated *p*CO₂ conditions in some
94 offshore areas result from non-local productivity associated with the Columbia River (CR)
95 plume, which transports ~77% of the total runoff from the western North America to the Pacific
96 Ocean (Hickey, 1989).

97 In this context, the Oregon-California shelf in the upwelling season can be a potential
98 OceMar-type system with the majority of DIC and nutrients in the upper layer originating from
99 the non-local deep waters of the eastern North Pacific (eNP), though riverine inputs might
100 complicate the application of the OceMar framework. On the other hand, the upper waters in
101 offshore areas beyond the upwelling circulation on the Oregon-California shelf would be largely
102 fed by on-site deep waters via vertical mixing, with minor influence of the CR plume.

103 **2 Study area and data source**

104 **2.1 California Current system and upwelling circulation**

105 The upwelling circulation off Oregon and northern California is linked with the eastern
106 boundary current, the California Current (CC) occupying the open basin of the eNP (Barth et al.,
107 2000). The CC is a broad and weak surface current (0-200 m) which carries low-
108 salinity/temperature water equatorward from the subarctic Pacific (Lynn and Simpson, 1987).
109 The deeper-lying California Undercurrent (CUC, 150-300 m), which has relatively high salinity
110 and temperature, originates in the eastern Equatorial Pacific and flows poleward inshore along
111 the west coast of North America (Thomson and Krassovski, 2010). The CC system is
112 characterized by coastal upwelling in spring/summer, during which waters primarily composed

113 of the CC are transported upward from the depths of 150-200 m towards the nearshore surface
114 off the Oregon-California coast (Castro et al., 2001).

115 Both field observations and modeling studies (Oke et al., 2002; Gan and Allen, 2005) show
116 that the upwelling circulation pattern in the study area differs significantly between north and
117 south of Newport (Fig. 1). North of Newport between 45.0 and 45.5°N with a relatively straight
118 coastline and narrow shelf, the along-shore uniform bottom topography generally results in
119 typical upwelling circulation with a southward coastal jet close to shore at Cascade Head (Fig. 1).
120 Over the central Oregon shelf between 43.5 and 45.0°N, the highly variable bottom topography
121 over Heceta Bank (Fig. 1) largely influences the upwelling circulation, leading to a complex
122 three-dimensional flow pattern with offshore shifting of the coastal jet and development of
123 northward flow inshore. At the coast along the southern part of Oregon and northern California
124 between 39.0 and 43.0°N, an enhancement of coastal upwelling, jet separation and eddy
125 formation are observed to be associated with interactions of the wind-forced coastal currents
126 with Cape Blanco (Fig. 1) (Barth et al., 1998; Gan and Allen, 2005, and references therein).

127 **2.2 Data source**

128 Our data sets were based on the online published carbonate system and nutrient data collected
129 along three transects off Oregon and northern California during the first North American Carbon
130 Program (NACP) West Coast Cruise in spring/early summer 2007
131 (http://cdiac.ornl.gov/oceans/Coastal/NACP_West.html; Feely et al., 2008; Feely and Sabine,
132 2011). Transect 4 (stations 25-33 from nearshore to offshore) is located off Newport, Oregon.
133 Transect 5 (stations 41-35 from nearshore to offshore) is located off Crescent City near the
134 Oregon-California border. Transects 6 (stations 42-49 from nearshore to offshore) is located off
135 Cape Mendocino, California. The most offshore stations on all transects were located in the open

136 basin of the eNP (Fig. 1).

137 **3 Results and discussion**

138 The region under study is highly dynamic potentially involving coastal upwelling, the CR
139 plume and pelagic waters mixed by various Pacific water masses (Hill and Wheeler, 2002).

140 Instead of accounting for all of the water masses contributing to the CC system, the mixing
141 scheme in the upper waters along the three transects was examined via the total alkalinity-
142 salinity (TALK-Sal) relationship obtained during the sampling period so as to quantify the
143 conservative portion of DIC and nitrate (NO_3^-). The end-members were therefore identified under
144 this relationship, which might have experienced physical or biological alterations from their
145 original water masses such as the CR and the CC. Subsequently, the biologically consumed DIC
146 and NO_3^- were quantified as the difference between their conservative values predicted from the
147 derived end-member mixing and the corresponding field measurements. Finally, the CO_2
148 source/sink nature of the upper waters off Oregon and northern California was diagnosed via a
149 mass balance approach by estimating the relative consumption between DIC and NO_3^- and a
150 simple sensitivity analysis was performed to test the robustness of the approach.

151 **3.1 TALK-Sal relationship**

152 **3.1.1 Through the entire water column off Oregon and northern California**

153 Three generally linear relationships between TALK and salinity were observed through the
154 entire water column along Transect 4 (Fig. 2a). The first one was for waters with salinity lower
155 than ~ 32.0 (corresponding to a depth of $\sim 15\text{-}25$ m), which were significantly influenced by the
156 CR plume. The second one was for waters composed primarily of the CC with salinity between
157 ~ 32.0 and ~ 33.9 , including those immediately below the top buoyant layer at stations 26-32 and
158 the surface waters at the outermost station 33 (Fig. 1). The higher-end salinity value of ~ 33.9

159 corresponded to a depth range of ~75-175 m, composed possibly of the upwelled high-salinity
160 CUC waters. At station 27 (water depth ~170 m) for instance, salinity at depths of ~130 m and
161 ~160 m reached ~34.0 with TALK values of ~2260 $\mu\text{mol kg}^{-1}$, which were even higher than those
162 of offshore waters at ~175 m (~2250 $\mu\text{mol kg}^{-1}$). These two data points were thus located on the
163 third linear relationship for waters with salinity higher than ~33.9, the slope of which became
164 much steeper, mainly reflecting the mixing between the approaching CUC and deep waters of
165 the eNP (Fig. 2a).

166 All salinity values, including surface samples on Transects 5 and 6, were higher than 32.0 (Fig.
167 2b and 2c). With minor influence of the CR plume, the TALK-Sal relationship displayed two
168 generally linear phases through the entire water column along both transects, while the
169 TALK/salinity endpoints of each were comparable to those of the latter two observed on Transect
170 4. Note that the turning point with salinity of ~33.9 corresponded to a wider depth range of ~5-
171 175 m (Fig. 2b and 2c), resulting from the most intensive upwelling on Transects 5 and 6
172 bringing deep waters to the nearshore surface (Feely et al., 2008).

173 As suggested by the generally linear TALK-Sal relationships, surface waters beyond the CR
174 plume and waters immediately below the top buoyant layer were directly linked to the
175 underlying waters to the depth of ~175 m. We thus took a closer look at the TALK-Sal
176 relationship in the upper 175 m waters off Oregon and northern California.

177 **3.1.2 In the upper 175 m waters off Oregon and northern California**

178 In the upper 175 m waters along Transect 4, the linear regression for waters with salinity
179 lower than ~32.0 had an intercept of ~1200 $\mu\text{mol kg}^{-1}$. This value agreed well with the observed
180 TALK of ~1000 $\mu\text{mol kg}^{-1}$ in the main stream of the CR (Park et al., 1969b; Evans et al., 2013).
181 The other linear regression for waters with salinity between ~32.0 and ~33.9 had a smaller

182 intercept of $\sim 500 \text{ } \mu\text{mol kg}^{-1}$, implying a smaller contribution from the CR plume (Fig. 3a).
183 Exceptions were observed at the shallowest station 25 (water depth $\sim 50 \text{ m}$) and the deepest
184 station 33 (water depth $\sim 2900 \text{ m}$). The TALK-Sal relationship completely followed the second
185 phase for the upper 175 m waters at station 33 (Fig. 3a), suggesting a small fraction of the CR
186 plume even in the surface waters of this outermost station on Transect 4. On the other hand, data
187 points of the two variables were not well correlated through the entire water column of station 25
188 and fell off both regression lines (Fig. 3a). The water mass mixing at this innermost station was
189 not as straightforward, despite minor freshwater admixture as suggested by the high surface
190 salinity of >32.0 .

191 The TALK-Sal relationship in the upper 175 m waters on Transects 5 and 6 displayed two
192 similar phases. One was the linear regression for stations 35-38 (deeper than $\sim 800 \text{ m}$) and
193 stations 45-49 (deeper than $\sim 1400 \text{ m}$), with slope and intercept values comparable to the second
194 phase observed on Transect 4. The other was the linear regression for the three shallow stations
195 on both transects largely influenced by coastal upwelling (Feely et al., 2008) (Fig. 3b and 3c).
196 This phase was not clearly seen from the full TALK-Sal plot (Fig. 2b and 2c), as the salinity in the
197 upper 175 m waters at stations 39 and 44 as well as in the entire water column of stations 40-43
198 varied within a much smaller range of $\sim 33.3\text{--}34.0$. The negligible intercepts of this TALK-Sal
199 regression suggested insignificant freshwater input with zero solutes to the intensive upwelling
200 zone off Oregon and northern California (Fig. 3b and 3c).

201 All phases shown in Fig. 3 displayed good linear TALK-Sal relationships ($r>0.94$), indicating
202 an overall two end-member mixing scheme for each phase. Although the non-conservativity of
203 TALK existed, it was not that significant as seen by the deviations of a few data points from each
204 linear regression (Fig. 3). As a matter of fact, Fassbender et al. (2011) estimate that the

205 contribution from CaCO_3 dissolution to the TALK addition in the surface mixed layer on Transect
206 5 was $<10 \text{ } \mu\text{mol kg}^{-1}$ ($<0.5\%$ of their absolute contents in seawater) and well around the
207 analytical precision. Such small non-conservative portions would not compromise the
208 application of TALK as a conservative tracer. Note that the two end-member mixing was not
209 spatially homogeneous in the upper waters off Oregon and northern California during the
210 sampling period. The top waters at stations 26-32 on Transect 4 were imprinted by the CR plume
211 with a salinity around ~ 30.0 . During the transport from the mouth of the CR estuary, the plume
212 water increasingly mixed with adjacent oceanic waters, largely feeding its pathway. However,
213 the majority of DIC and nutrients in waters immediately below the buoyant layer, as well as in
214 surface waters at station 33 and possibly at station 25, originated from deep waters through
215 coastal upwelling and/or vertical mixing. The influence of the CR plume still occurred but was
216 diluted by other freshwater masses such as rainwater, suggesting a mixing scheme between the
217 deep water of the eNP and a combined freshwater end-member (Park, 1966¹⁵, 1968). Such mixing
218 was also applicable to the surface waters at stations 35-38 on Transect 5 and stations 45-49 on
219 Transect 6. On the other hand, the upper 175 m waters or the entire water column at stations 39-
220 44 resulted from a simple two end-member mixing between the upwelling source water and the
221 rainwater with zero solutes, establishing for them an apparent OceMar-type system.

222 **3.2 ΔDIC and ΔNO_3 in the upper waters off Oregon and northern California**

223 The defined mixing schemes enabled us to estimate the non-conservative portion of DIC
224 (ΔDIC) and NO_3 (ΔNO_3) in the upper waters off Oregon and northern California following Dai
225 et al. (2013):

226
$$\Delta\text{DIC} = \text{DIC}^{\text{cons}} - \text{DIC}^{\text{meas}} \quad (1)$$

227
$$\Delta\text{NO}_3 = \text{NO}_3^{\text{cons}} - \text{NO}_3^{\text{meas}} \quad (2)$$

228
$$X^{cons} = \frac{Sal^{meas}}{Sal^{ref}} \times (X^{ref} - X^{eff}) + X^{eff} \quad (3)$$

229 The superscripts “cons” and “meas” in Eqs (1) and (2) denote conservative-mixing induced and
 230 field measured values. In Eq. (3), X represents DIC or NO_3 while Sal^{meas} is the CTD measured
 231 salinity. Sal^{ref} and X^{ref} are the reference salinity and concentration of DIC or NO_3 for the deep
 232 water end-member, which are the averages of all ~ 175 m samples from stations involved in each
 233 mixing scheme. Specifically, for waters immediately below the top buoyant layer at stations 27-
 234 32 and waters in the surface mixed layer at stations 25 and 33 on Transect 4, the deep water end-
 235 member values of the reference salinity and concentrations of DIC or NO_3 were the averages of
 236 ~ 175 m samples from stations 28-33 (Fig. 1). On Transects 5 and 6, the preformed salinity, DIC
 237 and NO_3 values for waters in the surface mixed layer at stations 35-38 and at stations 45-49 were
 238 the averages of ~ 175 m samples of these stations. For the upper waters influenced by the
 239 intensified upwelling at stations 39-41 and stations 42-44, the deep water end-member was
 240 selected as the ~ 175 m water at station 39 and at station 44 (Fig. 1).

241 The X^{eff} in Eq. (3) denotes the effective concentration of DIC or NO_3 sourced from the
 242 freshwater input to various zones off Oregon and northern California. Since rainwater was
 243 assumed to have no solutes, both DIC^{eff} and NO_3^{eff} would be zero for waters in the surface mixed
 244 layer of stations 39-41 on Transect 5 and stations 42-44 on Transect 6. On the other hand, the
 245 estimation of X^{eff} associated with the CR followed the method for the OceMar case study of the
 246 CS, which has a noticeable DIC^{eff} from the combination of the Amazon River and the Orinoco
 247 River (Dai et al., 2013).

248 Since bicarbonate dominates other CO_2 species and other alkalinity components, DIC
 249 concentrations in the main stream of the CR are numerically similar to TALK, which are also
 250 around $\sim 1000 \mu\text{mol kg}^{-1}$ (Park et al., 1969a, 1970). This value was taken as the DIC end-member

251 of the CR. The NO_3 end-member value was selected as $15 \text{ }\mu\text{mol kg}^{-1}$ based on recent years'
252 observations in May and July at station SATURN-05 established in the upstream CR (database of
253 the Center for Coastal Margin Observation and Prediction;
254 http://www.stccmop.org/datamart/observation_network/fixedstation?id=saturn05#anchor_5).
255 Assuming that the biological consumption of DIC and NO_3 in the CR plume followed the
256 Redfield ratio (Redfield et al., 1963), the DIC removal was estimated to be $\sim 100 \text{ }\mu\text{mol kg}^{-1}$
257 (approximately $15 \cdot 106/16$), while NO_3 was rapidly consumed along the pathway of the CR
258 plume and generally depleted in the area beyond the plume (Aguilar-Islas and Bruland, 2006;
259 Lohan and Bruland, 2006). As a consequence, the complete DIC^{eff} and NO_3^{eff} in the upper waters
260 from the CR would be $\sim 900 \text{ }\mu\text{mol kg}^{-1}$ and $\sim 0 \text{ }\mu\text{mol kg}^{-1}$.

261 If the combined freshwater end-member was a mixture of the CR and the rainwater with zero
262 solutes, the intercept values of 521.0 ± 30.6 (Fig. 3a), 677.4 ± 32.2 (Fig. 3b) and 609.9 ± 34.1 (Fig.
263 3c) derived from the TALK-Sal regression indicated that the CR fractions were ~ 50 , ~ 65 and $\sim 60\%$
264 (approximately $500/1000$, $650/1000$ and $600/1000$ taking $\sim 1000 \text{ }\mu\text{mol kg}^{-1}$ as the TALK end-
265 member value of the CR, Park et al., 1969b; Evans et al., 2013). The DIC^{eff} from the freshwater
266 input was thus estimated to be $\sim 450 \text{ }\mu\text{mol kg}^{-1}$ (approximately $900 \cdot 50\%$) for waters immediately
267 below the top buoyant layer at stations 27-32 and waters in the surface mixed layer at stations 25
268 and 33 on Transect 4, which was slightly lower than the $\sim 585 \text{ }\mu\text{mol kg}^{-1}$ (approximately
269 $900 \cdot 65\%$) and the $\sim 540 \text{ }\mu\text{mol kg}^{-1}$ (approximately $900 \cdot 60\%$) for waters in the surface mixed
270 layer at stations 35-38 on Transect 5 and at stations 45-49 on Transect 6, respectively. The NO_3^{eff}
271 in any combined freshwater end-member was zero.

272 Note that numerous small mountainous rivers are distributed on the Oregon-California coast,
273 which might also have diluted the CR plume inducing the lower intercept of the TALK-Sal

274 regression observed on the three transects (Fig. 3). The average wintertime discharge from these
275 Coast Range rivers is estimated to be $\sim 2570 \text{ m}^3 \text{ s}^{-1}$ (Wetz et al., 2006), which is more than an
276 order of magnitude higher than that in the summer (Colbert and McManus, 2003; Sigleo and
277 Frick, 2003). However, the CR discharge in May to June 2007 reached its maximum of ~ 15000
278 $\text{m}^3 \text{ s}^{-1}$ (Evans et al., 2013), which should be approximately two orders of magnitude higher than
279 the discharge of small rivers. This significant contrast would suggest that inputs from small
280 rivers should be negligible compared to the CR plume. In particular, inputs from small rivers are
281 normally restricted to a narrow band near the coast, whereas the research domain of this study
282 extended to the open basin of the eNP. Even the surface salinity at the innermost stations (i.e.,
283 station 25 on Transect 4, station 41 on Transect 5 and station 42 on Transect 6; Fig. 1) was as
284 high as ~ 32.5 , ~ 33.9 and ~ 34.0 , which would rule out the influence of small rivers.

285 **3.3 Evaluating the CO₂ source/sink nature in the upper waters off Oregon and northern
286 California**

287 The coupling of DIC and NO₃ dynamics could then be examined based on the classic Redfield
288 ratio of C:N=106:16=6.6 (Redfield et al., 1963). Positive values of the difference between ΔDIC
289 and $6.6\Delta\text{NO}_3$ ($\Delta\text{DIC}-6.6\Delta\text{NO}_3$) suggested a CO₂ source term since “excess ΔDIC ” was removed
290 by CO₂ degassing into the atmosphere. In contrast, negative $\Delta\text{DIC}-6.6\Delta\text{NO}_3$ suggested that
291 “deficient ΔDIC ” was supplied via the atmospheric CO₂ input to the ocean representing a CO₂
292 sink. Such net CO₂ exchange between the seawater and the atmosphere was further quantified as
293 the sea-air difference of $p\text{CO}_2$ ($\Delta p\text{CO}_2$) via the Revelle factor (RF), which is referred to as the
294 fractional change in seawater CO₂ over that of DIC at a given temperature, salinity and alkalinity
295 and indicates the ocean’s sensitivity to an increase in atmospheric CO₂ (Revelle and Suess, 1957;

296 Sundquist et al., 1979). Because pCO_2 and CO_2 are proportional to each other, the RF can be
297 illustrated as:

298
$$RF = \frac{\partial pCO_2 / pCO_2}{\partial DIC / DIC} \quad (4)$$

299 Here, ∂pCO_2 and ∂DIC are the fractional changes of pCO_2 and DIC in the surface seawater. In
300 the OceMar framework, ∂DIC equals $\Delta DIC - 6.6\Delta NO_3$ that is solely achieved through air-sea
301 CO_2 exchange, implying that ∂pCO_2 represents the sea-air ΔpCO_2 . Given an initial balance of
302 CO_2 between the seawater and the atmosphere, the sea-air ΔpCO_2 is obtained by:

303
$$Sea-air \Delta pCO_2 = \partial pCO_2 = RF \times pCO_2 \times \frac{\partial DIC}{DIC} = RF \times pCO_2^{air} \times \frac{\Delta DIC - 6.6\Delta NO_3}{DIC} \quad (5)$$

304 As shown in Fig. 4, the estimated $\Delta DIC - 6.6\Delta NO_3$ values and their corresponding sea-air
305 ΔpCO_2 in the upper waters off Oregon and northern California were overall below zero,
306 suggesting a significant CO_2 sink nature.

307 **3.3.1 Transect 4**

308 On Transect 4 off Newport, the average value of $\Delta DIC - 6.6\Delta NO_3$ was $-23 \pm 2 \mu\text{mol kg}^{-1}$ in
309 waters immediately below the top buoyant layer at stations 27-32, which equaled the average
310 value for the surface mixed layer at station 33 (Fig. 4a). Note that we were not able to derive
311 values of $\Delta DIC - 6.6\Delta NO_3$ at station 26 where NO_3 data were not available. Although located at
312 different depths, the two water parcels experienced similar physical mixing and biogeochemical
313 modifications inducing the same CO_2 signature. The former water mass should work as a CO_2
314 sink when in contact with the atmosphere before or after the passage of the episodic CR plume.
315 The average sea-air ΔpCO_2 resulting from the combined deficient ΔDIC was $-54 \pm 4 \mu\text{atm}$ (Fig.
316 3a). Given the atmospheric pCO_2 of $\sim 390 \mu\text{atm}$ (Evans et al., 2011), the seawater pCO_2 in these
317 regions was thus estimated to be $336 \pm 4 \mu\text{atm}$, which agreed rather well with the field

318 measurements of 334 ± 13 μatm (the underway seawater $p\text{CO}_2$ data were not available online but
319 alternatively calculated by applying TALK and DIC data into the CO2SYS program, Lewis and
320 Wallace, 1998).

321 The diagnostic approach was not applied to the top buoyant layer since the aged CR plume
322 might have experienced complex mixing with various surrounding water masses during its
323 transport, as indicated by the scatter TALK-Sal relationship (Fig. 3a). However, the far-field CR
324 plume is suggested to be a strong sink of atmospheric CO_2 due to earlier biological consumption
325 (Evans et al., 2011), which was supported by the observed low $p\text{CO}_2$ of ~ 220 - 300 μatm in the
326 top buoyant layer on Transect 4. As a consequence, the CO_2 sink nature in the upper waters from
327 the outer shelf (the bottom depth of station 27 was ~ 170 m) to the open basin off Newport,
328 Oregon would primarily result from the higher utilization of nutrients relative to DIC based on
329 their concurrent inputs from deep waters. The non-local high productivity in the CR plume could
330 inject even lower $p\text{CO}_2$ but this effect would be transitory.

331 At the innermost station 25 on Transect 4, highly positive values of $\Delta\text{DIC} - 6.6\Delta\text{NO}_3$ and sea-
332 air $\Delta p\text{CO}_2$ (~ 82 $\mu\text{mol kg}^{-1}$ and ~ 157 μatm , respectively) were obtained for the surface mixed
333 layer of this station, indicating a significant CO_2 source. However, the lowest $p\text{CO}_2$ value of
334 ~ 170 μatm was observed in these nearshore waters off Oregon. The poor correlation between
335 TALK and salinity at station 25 (Fig. 3a) might compromise the estimation, whereas the same
336 method (Eqs 1-5) was successfully applied to other stations on Transect 4 with a distinct TALK-
337 Sal relationship (i.e., the second phase in Fig. 3a). Note that coastal upwelling clearly influenced
338 the bottom water at station 25 as indicated by the comparable salinity and TALK values to those in
339 offshore 200 m waters. Instead of being fed by the upwelled deep water, the DIC and nutrients in
340 the surface mixed layer might have originated from horizontal admixture of the surrounding

341 waters. These waters possibly experienced intense diatom blooms due to the fact that the surface
342 silicate concentrations at station 25 were almost zero, which led to the most undersaturated $p\text{CO}_2$
343 condition observed in the upper waters off Oregon.

344 **3.3.2 Transects 5 and 6**

345 On Transect 5 near the Oregon-California border, the average $\Delta\text{DIC}-6.6\Delta\text{NO}_3$ and sea-air
346 $\Delta p\text{CO}_2$ were estimated to be $-20\pm3 \mu\text{mol kg}^{-1}$ and $-48\pm8 \mu\text{atm}$ in the surface mixed layer of
347 stations 35-38 (Fig. 4b). Both values were comparable to those obtained from the surface mixed
348 layer of stations 45-49 on Transect 6 ($-23\pm3 \mu\text{mol kg}^{-1}$ and $-53\pm6 \mu\text{atm}$, respectively; Fig. 4c)
349 and on Transect 4, indicating a similar magnitude of the CO_2 sink term in offshore areas along
350 the Oregon and northern California coast. The estimated sea surface $p\text{CO}_2$ of $342\pm8 \mu\text{atm}$ for
351 Transect 5 and $337\pm6 \mu\text{atm}$ for Transect 6 were consistent with the field measurements of
352 332 ± 12 and $346\pm12 \mu\text{atm}$ in these regions.

353 The diagnosed CO_2 flux in the nearshore was also comparable between Transects 5 and 6. The
354 $\Delta\text{DIC}-6.6\Delta\text{NO}_3$ and sea-air $\Delta p\text{CO}_2$ in the surface mixed layer of stations 39-44, although still
355 below zero, were obviously higher than those of stations 35-38 on Transect 5 and of stations 45-
356 49 on Transect 6 (Fig. 4b and 4c). Such an increase was expected since stations 39-44 were
357 located in the area with the most intensive upwelling, which brought CO_2 -rich deep waters to the
358 nearshore surface (Feely et al., 2008). However, our estimation suggested a weaker CO_2 sink or
359 close to being in equilibrium with the combined estimated sea surface $p\text{CO}_2$ of $368\pm14 \mu\text{atm}$,
360 whereas the field measurements of ~ 600 -1000 μatm indicated that the coastal upwelling zone
361 should be a very strong source of CO_2 to the atmosphere.

362 Therefore, we took a closer look at Transect 5: A uniform salinity of ~ 34.0 through the entire
363 water column was observed at stations 40 and 41 due to the outcrop of the upwelling source

364 water at the surface of the inner shelf on Transect 5 (Feely et al., 2008). Although salinity in the
365 surface mixed layer at station 39 was lower, around \sim 33.4, the dilution effect of rainwater should
366 be negligible. After removing the rainwater from the mixing scheme and calculating Δ DIC and
367 Δ NO₃ by directly subtracting the field observed value from the end-member value for the
368 upwelling source water (Eqs 6 and 7; DIC^{ref} and NO₃^{ref} were field measurements of \sim 200 m
369 water samples at station 39), the Δ DIC–6.6 Δ NO₃ values were rapidly increased to above zero in
370 the surface mixed layer at stations 39 and 40, while values at station 41 with a small increase
371 were still overall below zero (Fig. 5a). Correspondingly, the estimated sea surface *p*CO₂ values
372 were higher than the atmospheric CO₂ value at stations 39 and 40 while they were slightly lower
373 than that at station 41. However, these values still largely fell below the field measurements of
374 seawater *p*CO₂, displaying shoreward increasing differences from \sim 200 to \sim 700 μ atm (Fig. 5b).

375 Δ DIC = DIC^{ref} – DIC^{meas} (6)

376 Δ NO₃ = NO₃^{ref} – NO₃^{meas} (7)

377 With or without taking rainwater into account, our diagnostic approach did not work in the
378 nearshore with strong upwelling off Oregon and northern California, even though the mixing
379 scheme of this region was in accordance with the OceMar concept. We contend that OceMar
380 assumes a steady state with balanced DIC and nutrients via both physical mixing and biological
381 alterations in comparable timescales. However, the continuous inputs from the coastal upwelling
382 might have led to the accumulation of DIC and nutrients in the nearshore surface, which could
383 not be timely consumed by the phytoplankton community, suggesting a possible non-steady
384 state. Fassbender et al. (2011) estimate that the age of the surface mixed layer at nearshore
385 stations on Transect 5 is only \sim 0.2 days, during which the DIC and NO₃ consumption via organic
386 carbon production was almost zero and CaCO₃ dissolution contributed a small fraction to the

387 slightly elevated DIC in the upwelled waters. They further predict that the nearshore surface
388 $p\text{CO}_2$ on Transect 5 will decrease to levels of $\sim 200 \mu\text{atm}$ in ~ 30 days until NO_3 exhaustion via
389 continued biological productivity, implying the achievement of a steady state (Fassbender et al.,
390 2011). Minor biological responses during the intensified upwelling period were also observed in
391 summer 2008, allowing highly oversaturated $p\text{CO}_2$ surface water to persist on the inner shelf off
392 Oregon for nearly two months (Evans et al., 2011). At this point, it is uncertain why there was
393 such a prolonged delay from the phytoplankton community to the persistent source of upwelled
394 DIC and nutrients. Note that under the condition of a more prevailing upwelling-favorable wind
395 as a predicted consequence of climate change (e.g., Snyder et al., 2003; Diffenbaugh et al., 2004;
396 Sydeman et al., 2014), the nearshore waters off the Oregon-California coast in the upwelling
397 season might always be in a non-steady state, and it is expected that fewer periodic relaxation
398 events or reversals would further decrease the chance for the biological response to be factored
399 in.

400 In addition, the negligible biological consumption might involve large errors when calculating
401 Δ . The portion of ΔDIC and ΔNO_3 at station 41 relative to the preformed values of the upwelling
402 source water were only ~ 0.5 and $\sim 10\%$, slightly higher than the measurement uncertainties. The
403 portion of DIC and NO_3 consumption in the surface mixed layer at offshore stations on Transect
404 5 were, however, one order of magnitude higher (~ 7 and $\sim 90\%$, respectively). This contrast
405 might partially explain why the OceMar framework did not work when insignificant biological
406 alterations occurred. Given the predominant control of physical mixing, we contend that the
407 prediction of the CO_2 flux in the nearshore off Oregon and northern California with intensified
408 upwelling could be simplified without considering DIC/nutrient consumption. In other words,

409 surface CO₂ levels in this region were simply imprints of the upwelling source water ($p\text{CO}_2$
410 ~1000 μatm at ~150-200 m) with minor dilution by rainwater.

411 **3.4 Sensitivity analysis**

412 In the above exercise, both the end-member values revealed in the water mass mixing scheme
413 and the Redfield ratio adopted in coupling DIC and nutrients were critically important in
414 resolving the CO₂ fluxes. We thus conducted sensitivity analysis for these two sets of variables
415 for the CO₂ sink zones off Oregon and northern California where our diagnostic approach
416 worked well (i.e., waters immediately below the top buoyant layer at stations 27-32 as well as
417 waters in the surface mixed layer at station 33 on Transect 4, waters in the surface mixed layer at
418 stations 35-38 on Transect 5 and waters in the surface mixed layer at stations 45-49 on Transect
419 6).

420 **3.4.1 The combined freshwater end-member**

421 While the value of ~1000 $\mu\text{mol kg}^{-1}$ was selected for TALK and DIC in the main stream of the
422 CR, the field observed TALK varies within a range of ~800-1200 $\mu\text{mol kg}^{-1}$ in spring/early
423 summer (Evans et al., 2013). We thus took the values of ~800 and ~1200 $\mu\text{mol kg}^{-1}$ as the lower
424 and upper limit of the TALK and DIC end-members in the CR to test the diagnostic approach.
425 Following the same calculation of the combined freshwater end-member (X^{eff} in Eq. 3), the
426 lower and upper limit of DIC^{eff} was estimated to be ~435 and ~460 $\mu\text{mol kg}^{-1}$, for waters
427 immediately below the top buoyant layer at stations 27-32 and in the surface mixed layer at
428 station 33 on Transect 4. Those values were ~565 and ~600 $\mu\text{mol kg}^{-1}$ for waters in the surface
429 mixed layer at stations 35-38 on Transect 5, and ~520 and ~550 $\mu\text{mol kg}^{-1}$ in the surface mixed
430 layer at stations 45-49 on Transect 6. The NO₃^{eff} in any scenario was still zero.

431 The newly diagnosed $\Delta\text{DIC}-6.6\Delta\text{NO}_3$ and sea-air $\Delta p\text{CO}_2$ on Transects 4, 5 and 6 displayed no
432 difference with those with the initial TALK and DIC of $\sim 1000 \mu\text{mol kg}^{-1}$ in the CR (Table 1),
433 while all estimated sea surface $p\text{CO}_2$ values were within error compared to the field
434 measurements. Although the TALK and DIC end-members had large variations of up to ~ 400
435 $\mu\text{mol kg}^{-1}$ in the main stream of the CR, the corresponding range of DIC^{eff} contributing to waters
436 beyond the CR plume significantly decreased by approximately one order of magnitude,
437 implying minor influence of its variations on our diagnostic of the CO_2 fluxes.

438 **3.4.2 The deep water end-member**

439 We selected values at ~ 175 m as the deep water end-member based on the TALK-Sal
440 relationship, whereas this end-member depth might not be spatially stable in a highly dynamic
441 upwelling system. Previous studies also show that the upwelling source water onto the Oregon-
442 California shelf can vary between 150 and 200 m (e.g., Hales et al., 2005; Feely et al., 2008). We
443 thus tested the diagnostic approach with values at three other depths of ~ 130 , ~ 150 and ~ 200 m.

444 On Transects 4 and 6, the newly estimated $\Delta\text{DIC}-6.6\Delta\text{NO}_3$, sea-air $\Delta p\text{CO}_2$ and sea surface
445 $p\text{CO}_2$ using end-member values at both ~ 150 and ~ 200 m agreed well with those using end-
446 member values at ~ 175 m, while the three variables were slightly higher using end-member
447 values at ~ 130 m (Table 2). On Transect 5, the newly estimated $\Delta\text{DIC}-6.6\Delta\text{NO}_3$, sea-air $\Delta p\text{CO}_2$
448 and sea surface $p\text{CO}_2$ using end-member values at both ~ 130 and ~ 150 m agreed well with those
449 using end-member values at ~ 175 m, while the three variables were slightly higher using end-
450 member values at ~ 200 m (Table 2).

451 **3.4.3 The C/N uptake ratio**

452 In a given oceanic setting, the real C/N uptake ratio during organic carbon production can be
453 different from the Redfield one of ~ 6.6 (Redfield et al., 1963). For instance, higher ratios

454 estimated from the DIC- NO_3 relationship are observed in both coastal waters and open ocean
455 sites, possibly resulting from excess DIC uptake via the production of dissolved organic carbon
456 (Sambrotto et al., 1993; Ianson et al., 2003). However, since the precise estimation of the C/N
457 uptake ratio (via e.g. in situ incubation experiments) is still problematic, such data are currently
458 scarce over the world's oceans and the empirical stoichiometry is routinely applied into field
459 studies investigating the dynamics and coupling of carbon and nutrients (e.g., Chen et al., 2008;
460 Fassbender et al., 2011). Fassbender et al. (2011) apply another empirical C/N uptake ratio of 7.3
461 (approximately 117/16; Anderson and Sarmiento, 1994) into the same data set as this study. We
462 thus performed a simple sensitivity analysis using this alternative value of 7.3, which implies
463 excess DIC uptake relative to NO_3 .

464 Since $\Delta\text{DIC}-7.3\Delta\text{NO}_3$ values were obviously smaller than $\Delta\text{DIC}-6.6\Delta\text{NO}_3$ ones, the new sea-
465 air $\Delta p\text{CO}_2$ values were halved (Table 3). Correspondingly, the newly estimated sea surface $p\text{CO}_2$
466 values on Transects 4, 5 and 6 were \sim 35-45 μatm lower than the estimation using the Redfield
467 ratio, which were however consistent with the field measurements. Given that the Redfield ratio
468 also works in our OceMar case studies of the SCS and the CS (Dai et al., 2013), we contend that
469 this classic ratio could be preferentially employed if the field observed elemental stoichiometry
470 is not available. Moreover, as Martz et al. (2014) point out, "treating the Redfield ratios as global
471 or regional constants may be acceptable in the context of interpreting snapshots of the water
472 column captured in shipboard bottle data".

473 The above notion was also supported by examining the slope of the linear regression between
474 DIC and NO_3 normalized to a constant salinity in the surface water or in the surface mixed layer,
475 which provides an alternative to the C/N uptake ratio associated with organic carbon production
476 (Sambrotto et al., 1993; Wong et al., 2002; Ianson et al., 2003). Given a non-zero combined

477 freshwater end-member, we adopted in this study an approach of regional normalization (Friis et
478 al., 2003; Cao et al., 2011) as:

$$479 \quad nX = \frac{X^{\text{meas}} - X^{\text{eff}}}{Sal^{\text{meas}}} \times Sal^{\text{aver}} + X^{\text{eff}} \quad (8)$$

480 Here, nX and X^{meas} are salinity normalized and field measured values for DIC and NO_3 . Sal^{meas} is
481 the CTD measured salinity. Sal^{aver} is the average salinity value of ~33.0 in these CO_2 sink zones,
482 which was selected as the constant salinity. X^{eff} is the same as that in Eq. (3), denoting the
483 effective concentration of DIC or NO_3 sourced from the freshwater input to various zones off
484 Oregon and northern California. While the NO_3^{eff} in any combined freshwater end-member was
485 zero, the DIC^{eff} was ~450 $\mu\text{mol kg}^{-1}$ for waters immediately below the top buoyant layer at
486 stations 27-32 and waters in the surface mixed layer at stations 25 and 33 on Transect 4, ~585
487 $\mu\text{mol kg}^{-1}$ for waters in the surface mixed layer at stations 35-38 on Transect 5, and ~540 μmol
488 kg^{-1} for waters in the surface mixed layer at stations 45-49 on Transect 6.

489 As shown in Fig. 6, our new analysis with all data from the CO_2 sink zones along the three
490 transects revealed a slope of 6.70 ± 0.37 . This value was within error comparable to that of 6.6,
491 suggesting that using the Redfield ratio in our diagnostic approach was in order.

492 **4 Concluding Remarks**

493 The semi-analytical diagnostic approach of mass balance that couples physical transport and
494 biogeochemical alterations was well applied to the CO_2 sink zones off Oregon and northern
495 California, extending from the outer shelf to the open basin. In these zones with the absence of
496 any significant influence of the CR plume, the source of DIC was largely from deep waters of the
497 eNP and the ultimate CO_2 sink nature was determined by the higher nutrient consumption than
498 DIC in the upper waters. On the other hand, the estimated CO_2 flux was opposite to the field
499 observations in the coastal upwelling zone along the Oregon-California coast, which behaved

500 like a typical OceMar system in terms of its mixing process. This discrepancy was very likely
501 due to minor biological responses during the intensified upwelling period, making our mass
502 balance approach based on the coupled physical biogeochemistry invalid. This suggested that the
503 applicability of the proposed semi-analytical diagnostic approach is limited to steady state
504 systems with comparable timescales of water mass mixing and biogeochemical reactions. In such
505 a physical mixing prevailing regime, resolving the CO₂ fluxes could be simplified without
506 considering the biological consumption of DIC and nutrients. Further work is however needed to
507 understand the carbon and nutrient dynamics as well as the timing between physics and biology
508 associated with coastal upwelling.

509 *Acknowledgments.* This work was funded by the National Natural Science Foundation of China
510 through grants 91328202, 41121091, 90711005, and 41130857, and the National Basic Research
511 Program (973) sponsored by the Ministry of Science and Technology through grant
512 2009CB421200. We are very grateful to the Carbon Dioxide Information Analysis Center
513 (CDIAC; <http://cdiac.ornl.gov/oceans/>) for the online published data of the first North American
514 Carbon Program (NACP) West Coast Cruise. Zhimian Cao is supported by the Humboldt
515 Research Fellowship for postdoctoral researchers provided by the Alexander von Humboldt
516 Foundation. We thank John Hodgkiss for his help with English.

517 **References**

518 Aguilar-Islas, A. M., and Bruland, K. W.: Dissolved manganese and silicic acid in the Columbia
519 River plume: A major source to the California current and coastal waters off Washington and
520 Oregon, *Mar. Chem.*, 101, 233-247, 2006.

521 Allen, J. S., Newberger, P. A., and Federiuk, J.: Upwelling circulation on the Oregon continental
522 shelf. Part I: Response to idealized forcing, *J. Phys. Oceanogr.*, 25, 1843-1866, 1995.

523 Anderson, L. A., and Sarmiento, J. L.: Redfield ratios of remineralization determined by nutrient
524 data analysis, *Global Biogeochem. Cycles*, 8, 65-80, 1994.

525 Barth, J. A. and Smith, R. L.: Separation of a coastal upwelling jet at Cape Blanco, Oregon,
526 USA, in: *Benguela Dynamics: Impacts of Variability on Shelf-Sea Environments and their*
527 *Living Resources*, edited by S. C. Pillar, C. L. Moloney, A. I. L. Payne, and F. A. Shillington,
528 *S. Afr. J. Mar. Sci.*, 19, 5-14, 1998.

529 Barth, J. A., Pierce, S. D., and Smith, R. L.: A separating coastal upwelling jet at Cape Blanco,
530 Oregon and its connection to the California Current System, *Deep-Sea Res. II*, 47, 783-810,
531 2000.

532 Borges, A. V.: Present day carbon dioxide fluxes in the coastal ocean and possible feedbacks
533 under global change, in: *Oceans and the Atmospheric Carbon Content*, edited by P. Duarte,
534 and J. M. Santana-Casiano, Springer Science+Business Media B.V., chap. 3, 47-77, 2011.

535 Borges, A. V., Delille, B., and Frankignoulle, M.: Budgeting sinks and sources of CO₂ in the
536 coastal ocean: Diversity of ecosystems counts, *Geophys. Res. Lett.*, 32, L14601,
537 doi:10.1029/2005GL023053, 2005.

538 Borges, A. V., and Frankignoulle, M.: Distribution of surface carbon dioxide and air-sea
539 exchange in the upwelling system off the Galician coast, *Global Biogeochem. Cycles*, 16,

540 1020, doi:10.1029/2000GB001385, 2002.

541 Cai, W.-J.: Estuarine and coastal ocean carbon paradox: CO₂ sinks or sites of terrestrial carbon
542 incineration?, *Annu. Rev. Mar. Sci.*, 3, 123-145, 2011.

543 Cai, W.-J., Dai, M., and Wang, Y.: Air-sea exchange of carbon dioxide in ocean margins: A
544 province-based synthesis, *Geophys. Res. Lett.*, 33, L12603, doi:10.1029/2006GL026219,
545 2006.

546 Cao, Z., Dai, M., Zheng, N., Wang, D., Li, Q., Zhai, W., Meng, F., and Gan, J.: Dynamics of the
547 carbonate system in a large continental shelf system under the influence of both a river
548 plume and coastal upwelling, *J. Geophys. Res.*, 116, G02010, doi:10.1029/2010JG001596,
549 2011.

550 Castro, C. G., Chavez, F. P., and Collins, C. A.: Role of the California Undercurrent in the export
551 of denitrified waters from the eastern tropical North Pacific, *Global Biogeochem. Cycles*,
552 15(4), 819-830, doi:10.1029/2000GB001324, 2001.

553 Chase, Z., Strutton, P. G., and Hales, B.: Iron links river runoff and shelf width to phytoplankton
554 biomass along the U.S. West Coast, *Geophys. Res. Lett.*, 34, L04607,
555 doi:10.1029/2006GL028069, 2007.

556 Chen, C.-T. A., and Borges, A. V.: Reconciling opposing views on carbon cycling in the coastal
557 ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric
558 CO₂, *Deep-Sea Res. II*, 56, 578-590, 2009.

559 Chen, F., Cai, W.-J., Wang, Y., Rii, Y. M., Bidigare, R. R., and Benitez-Nelson, C. R.: The carbon
560 dioxide system and net community production within a cyclonic eddy in the lee of Hawaii,
561 *Deep-Sea Res. II*, 55, 1412-1425, 2008.

562 Colbert, D., and McManus, J.: Nutrient biogeochemistry in an upwelling-influenced estuary of

563 the Pacific Northwest (Tillamook Bay, Oregon, USA), *Estuaries*, 26, 1205-1219, 2003.

564 Dai, M., Cao, Z., Guo, X., Zhai, W., Liu, Z., Yin, Z., Xu, Y., Gan, J., Hu, J., and Du, C.: Why are
565 some marginal seas sources of atmospheric CO₂?, *Geophys. Res. Lett.*, 40, 2154-2158,
566 doi:10.1002/grl.50390, 2013.

567 Diffenbaugh, N. S., Snyder, M. A., and Sloan, L. C.: Could CO₂-induced land-cover feedbacks
568 alter near-shore upwelling regimes?, *Proc. Natl. Acad. Sci. USA*, 101, 27-32, 2004.

569 Evans, W., Hales, B., and Strutton, P. G.: Seasonal cycle of surface ocean *p*CO₂ on the Oregon
570 shelf, *J. Geophys. Res.*, 116, C05012, doi:10.1029/2010JC006625, 2011.

571 Evans, W., Hales, B., and Strutton, P. G.: *p*CO₂ distributions and air-water CO₂ fluxes in the
572 Columbia River estuary, *Estuar. Coast. Shelf Sci.*, 117, 260-272, 2013.

573 Evans, W., Hales, B., Strutton, P. G., and Ianson, D.: Sea-air CO₂ fluxes in the western Canadian
574 coastal ocean, *Prog. Oceanogr.*, 101, 78-91, 2012.

575 Fassbender, A. J., Sabine, C. L., Feely, R. A., Langdon, C., and Mordy, C. W.: Inorganic carbon
576 dynamics during northern California coastal upwelling, *Cont. Shelf Res.*, 31, 1180-1192,
577 2011.

578 Federiuk, J., and Allen, J. S.: Upwelling circulation on the Oregon continental shelf. Part II:
579 Simulations and comparisons with observations, *J. Phys. Oceanogr.*, 25, 1867-1889, 1995.

580 Feely, R., and Sabine, C.: Carbon dioxide and hydrographic measurements during the 2007
581 NACP West Coast Cruise,
582 http://cdiac.ornl.gov/ftp/oceans/NACP_West_Coast_Cruise_2007/, Carbon Dioxide
583 Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy,
584 Oak Ridge, Tennessee,
585 doi: 10.3334/CDIAC/otg.CLIVAR_NACP_West_Coast_Cruise_2007, 2011.

586 Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D., and Hales, B.: Evidence for
587 upwelling of corrosive “acidified” water onto the continental shelf, *Science*, 320, 1490-1492,
588 2008.

589 Fransson, A., Chierici, M., and Nojiri, Y.: Increased net CO₂ outgassing in the upwelling region
590 of the southern Bering Sea in a period of variable marine climate between 1995 and 2001, *J.*
591 *Geophys. Res.*, 111, C08008, doi:10.1029/2004JC002759, 2006.

592 Friederich, G. E., Walz, P. M., Burczynski, M. G., and Chavez, F. P.: Inorganic carbon in the
593 central California upwelling system during the 1997-1999 El Niño-La Niña event, *Prog.*
594 *Oceanogr.*, 54, 185-203, 2002.

595 Friis, K., Körtzinger, A., and Wallace, D. W. R.: The salinity normalization of marine inorganic
596 carbon chemistry data, *Geophys. Res. Lett.*, 30(2), 1085, doi:10.1029/2002GL015898, 2003.

597 Gan, J. and Allen, J. S.: A modeling study of shelf circulation off northern California in the
598 region of the Coastal Ocean Dynamics Experiment, response to relaxation of upwelling, *J.*
599 *Geophys. Res.*, 107(C9), 3123, doi:10.1029/2000JC000768, 2002.

600 Gan, J., and Allen, J. S.: Modeling upwelling circulation off the Oregon coast, *J. Geophys. Res.*,
601 110, C10S07, doi:10.1029/2004JC002692, 2005.

602 Hales, B., Takahashi, T., and Bandstra, L.: Atmospheric CO₂ uptake by a coastal upwelling
603 system, *Global Biogeochem. Cycles*, 19, GB1009, doi:10.1029/2004GB002295, 2005.

604 Hales, B., Struttong, P. G., Saraceno, M., Letelier, R., Takahashi, T., Feely, R., Sabine, C., and
605 Chavez, F.: Satellite-based prediction of *p*CO₂ in coastal waters of the eastern North Pacific,
606 *Prog. Oceanogr.*, 103, 1-15, 2012.

607 Hickey, B. M.: Patterns and processes of circulation over the Washington continental shelf and
608 slope, in: *Coastal Oceanography of Washington and Oregon*, Elsevier Sci., New York, 41-

609 115, doi:10.1016/S0422-9894(08)70346-5, 1989.

610 Hill, J. K., and Wheeler, P. A.: Organic carbon and nitrogen in the northern California current
611 system: comparison of offshore, river plume, and coastally upwelled waters, *Prog.*
612 *Oceanogr.*, 53, 369-387, 2002.

613 Huyer, A.: Coastal upwelling in the California Current system, *Prog. Oceanogr.*, 12, 259-284,
614 1983.

615 Ianson, D., Allen, S. E., Harris, S. L., Orians, K. J., Varela, D. E., and Wong, C. S.: The inorganic
616 carbon system in the coastal upwelling region west of Vancouver Island, Canada, *Deep-Sea*
617 *Res. I*, 50, 1023-1042, 2003.

618 Kosro, P. M., Huyer, A., Ramp, S. R., Smith, R. L., Chavez, F. P., Cowles, T. J., Abbott, M. R.,
619 Strub, P. T., Barber, R. T., Jessen, P., and Small, L. F.: The structure of the transition zone
620 between coastal waters and the open ocean off northern California, winter and spring 1987,
621 *J. Geophys. Res.*, 96(8), 14707-14730, 1991.

622 Laruelle, G. G., Dürr, H. H., Slomp, C. P., and Borges, A. V.: Evaluation of sinks and sources of
623 CO₂ in the global coastal ocean using a spatially-explicit typology of estuaries and
624 continental shelves, *Geophys. Res. Lett.*, 37, L15607, doi:10.1029/2010GL043691, 2010.

625 Lewis, E., and Wallace, D. W. R.: Program Developed for CO₂ System Calculations,
626 ORNL/CDIAC-105, Carbon Dioxide Information Analysis Center, Oak Ridge National
627 Laboratory, U.S. Department of Energy, Oak Ridge, TN, 1998.

628 Lohan, M. C., and Bruland, K. W.: The importance of vertical mixing for the supply of nitrate
629 and iron to the Columbia River plume: Implications for biology, *Mar. Chem.*, 98, 260-273,
630 2006.

631 Lynn, R. J., and Simpson, J. J.: The California Current system: The seasonal variability of its

632 physical characteristics, *J. Geophys. Res.*, 92(12), 12947-12966, 1987.

633 Martz, T., Send, U., Ohman, M. D., Takeshita, Y., Bresnahan, P., Kim, H.-J., and Nam, S. H.:
634 Dynamic variability of biogeochemical ratios in the Southern California Current System,
635 *Geophys. Res. Lett.*, 41, 2496-2501, doi:10.1002/2014GL059332, 2014.

636 Oke, P. R., Allen, J. S., Miller, R. N., Egbert, G. D., Austin, J. A., Barth, J. A., Boyd, T. J., Kosro,
637 P. M., and Levine, M. D.: A modeling study of the three-dimensional continental shelf
638 circulation off Oregon. Part I: Model-data comparisons, *J. Phys. Oceanogr.*, 32, 1360-1382,
639 2002.

640 Park, K.: Columbia River plume identification by specific alkalinity, *Limnol. Oceanogr.*, 11, 118-
641 120, 1966.

642 Park, K.: Alkalinity and pH off the coast of Oregon, *Deep-Sea Res.*, 15, 171-183, 1968.

643 Park, P. K., Catalfomo, M., Webster, G. R., and Reid, B. H.: Nutrients and carbon dioxide in the
644 Columbia river, *Limnol. Oceanogr.*, 15, 70-79, 1970.

645 Park, P. K., Gordon, L. I., Hager, S. W., and Cissell, M. C.: Carbon dioxide partial pressure in the
646 Columbia river, *Science*, 166, 867-868, 1969a.

647 Park, P. K., Webster, G. R., and Yamamoto, R.: Alkalinity budget of the Columbia River, *Limnol.*
648 *Oceanogr.*, 14, 559-567, 1969b.

649 Redfield, A. C., Ketchum, B. H., and Richards, F. A.: The influence of organisms on the
650 composition of seawater, in: *The Sea*, edited by M. N. Hill, Wiley, New York, 26-77, 1963.

651 Revelle, R., and Suess, H. E.: Carbon dioxide exchange between atmosphere and ocean and the
652 question of an increase of atmospheric CO₂ during the past decades, *Tellus*, 9, 18-27, 1957.

653 Sambrotto, R. M., Savidge, G., Robinson, C., Boyd, P., Takahashi, T., Karl, D. M., Langdon, C.,
654 Chipman, D., Marra, J., and Codispoti, L.: Elevated consumption of carbon relative to

655 nitrogen in the surface ocean, *Nature*, 363, 248-250, 1993.

656 Santana-Casiano, J. M., González-Dávila, M., and Ucha, I. R.: Carbon dioxide fluxes in the
657 Benguela upwelling system during winter and spring: A comparison between 2005 and 2006,
658 *Deep-Sea Res. II*, 56, 533-541, 2009.

659 Sigleo, A. C., and Frick, W. E.: Seasonal variations in river flow and nutrient concentrations in a
660 northwestern USA watershed, in: First interagency conference on research in the watersheds,
661 edited by K. G. Renard, S. A. McElroy, W. J. Gburek, H. E. Canfield, and R. L. Scott, U.S.
662 Department of Agriculture, 370-376, 2003.

663 Snyder, M. A., Sloan, L. C., Diffenbaugh, N. S., and Bell, J. L.: Future climate change and
664 upwelling in the California Current, *Geophys. Res. Lett.*, 30(15), 1823,
665 doi:10.1029/2003GL017647, 2003.

666 Spitz, Y. H., Allen, J. S., and Gan, J.: Modeling of ecosystem processes on the Oregon shelf
667 during the 2001 summer upwelling, *J. Geophys. Res.*, 110, C10S17,
668 doi:10.1029/2005JC002870, 2005.

669 Sundquist, E. T., Plummer, L. N., and Wigley, T. M. L.: Carbon dioxide in the ocean surface: The
670 homogenous buffer factor, *Science*, 204, 1203-1205, 1979.

671 Sydeman, W. J., García-Reyes, M., Schoeman, D. S., Rykaczewski, R. R., Thompson, S. A.,
672 Black, B. A., and Bograd, S. J.: Climate change and wind intensification in coastal upwelling
673 ecosystems, *Science*, 345, 77-80, 2014.

674 Thomson, R. E., and Krassovski, M. V.: Poleward reach of the California Undercurrent
675 extension, *J. Geophys. Res.*, 115, C09027, doi:10.1029/2010JC006280, 2010.

676 Torres, R., Turner, D. R., Rutllant, J., and Lefèvre, N.: Continued CO₂ outgassing in an
677 upwelling area off northern Chile during the development phase of El Niño 1997-1998 (July

678 1997), *J. Geophys. Res.*, 108, 3336, doi:10.1029/2000JC000569, 2003.

679 Wetz, M. S., Hales, B., Chase, Z., Wheeler, P. A., and Whitney, M. M.: Riverine input of
680 macronutrients, iron, and organic matter to the coastal ocean off Oregon, U.S.A., during the
681 winter, *Limnol. Oceanogr.*, 51, 2221-2231, 2006.

682 Wong, C. S., Waser, N. A. D., Nojiri, Y., Whitney, F. A., Page J. S., and Zeng, J.: Seasonal cycles
683 of nutrients and dissolved inorganic carbon at high and mid latitudes in the North Pacific
684 Ocean during the *Skaugran* cruises: determination of new production and nutrient uptake
685 ratios, *Deep-Sea Res. II*, 49, 5317-5338, 2002.

686 **Table 1.** $\Delta\text{DIC}-6.6\Delta\text{NO}_3$, sea-air $\Delta p\text{CO}_2$ and sea surface $p\text{CO}_2$ estimated with different DIC^{eff} , which is the combined freshwater end-
 687 member of DIC partly sourced from the Columbia River (CR).

TALK/DIC of CR ($\mu\text{mol kg}^{-1}$)	DIC^{eff} ($\mu\text{mol kg}^{-1}$)	$\Delta\text{DIC}-6.6\Delta\text{NO}_3$ ($\mu\text{mol kg}^{-1}$)		Sea-air $\Delta p\text{CO}_2$ (μatm)		Sea surface $p\text{CO}_2$ (μatm)	
		Transect 4		Transect 4		Transect 4	
		Stations 27-32 ^a	Station 33 ^b	Stations 27-32 ^a	Station 33 ^b	Stations 27-32 ^a	Station 33 ^b
800	435	-24±2	-24±1	-58±5	-55±3	332±5	335±3
1000	450	-23±2	-23±1	-55±5	-53±3	335±5	337±3
1200	460	-22±2	-22±1	-54±5	-53±3	336±5	337±3
		Transect 5 Stations 35-38 ^b		Transect 5 Stations 35-38 ^b		Transect 5 Stations 35-38 ^b	
800	565	-21±3		-51±8		339±8	
1000	585	-20±3		-48±8		342±8	
1200	600	-20±3		-47±8		343±8	
		Transect 6 Stations 45-49 ^b		Transect 6 Stations 45-49 ^b		Transect 6 Stations 45-49 ^b	
800	520	-24±3		-56±6		334±6	
1000	540	-23±3		-53±6		337±6	
1200	550	-23±3		-53±6		337±6	

688 ^a data for these stations were obtained from waters immediately below the top buoyant layer.

689 ^b data for these stations were obtained from the surface mixed layer.

690 **Table 2.** $\Delta\text{DIC}-6.6\Delta\text{NO}_3$, sea-air $\Delta p\text{CO}_2$ and sea surface $p\text{CO}_2$ estimated with the deep water end-member from different depths.

Depth of the deep water end- member (m)	$\Delta\text{DIC}-6.6\Delta\text{NO}_3$ ($\mu\text{mol kg}^{-1}$)		Sea-air $\Delta p\text{CO}_2$ (μatm)		Sea surface $p\text{CO}_2$ (μatm)	
	Transect 4		Transect 4		Transect 4	
	Stations 27-32 ^a	Station 33 ^b	Stations 27-32 ^a	Station 33 ^b	Stations 27-32 ^a	Station 33 ^b
~130	-23±2	-19±1	-56±5	-45±3	334±5	345±3
~150	-23±2	-22±1	-55±5	-52±3	335±5	338±3
~175	-23±2	-23±1	-55±5	-53±3	335±5	337±3
~200	-23±2	-24±1	-55±5	-56±3	335±5	334±3
	Transect 5 Stations 35-38 ^b		Transect 5 Stations 35-38 ^b		Transect 5 Stations 35-38 ^b	
~130	-21±3		-51±8		339±8	
~150	-20±3		-46±8		344±8	
~175	-20±3		-48±8		342±8	
~200	-17±3		-40±8		350±8	
	Transect 6 Stations 45-49 ^b		Transect 6 Stations 45-49 ^b		Transect 6 Stations 45-49 ^b	
~130	-20±3		-46±6		344±6	
~150	-22±3		-51±6		339±6	
~175	-23±3		-53±6		337±6	
~200	-21±3		-50±6		340±6	

691 ^a data for these stations were obtained from waters immediately below the top buoyant layer.692 ^b data for these stations were obtained from the surface mixed layer.

693 **Table 3.** Sea-air $\Delta p\text{CO}_2$ and sea surface $p\text{CO}_2$ estimated with different $\Delta\text{DIC}-x\Delta\text{NO}_3$. x denotes the C/N uptake ratio during organic carbon
 694 production. T and S represent transect and station(s).

C/N uptake ratio	$\Delta\text{DIC}-x\Delta\text{NO}_3$ ($\mu\text{mol kg}^{-1}$)				Sea-air $\Delta p\text{CO}_2$ (μatm)				Sea surface $p\text{CO}_2$ (μatm)			
	T4		T5	T6	T4		T5	T6	T4		T5	T6
	S27-32 ^a	S33 ^b	S35-38 ^b	S45-49 ^b	S27-32 ^a	S33 ^b	S35-38 ^b	S45-49 ^b	S27-32 ^a	S33 ^b	S35-38 ^b	S45-49 ^b
6.6 ^c	-23±2	-23±1	-20±3	-23±3	-55±5	-53±3	-48±8	-53±6	335±5	337±3	342±8	337±6
7.3 ^d	-42±3	-42±1	-39±3	-42±3	-101±6	-100±3	-92±8	-97±6	289±6	290±3	298±8	293±6

695 ^a data for these stations were obtained from waters immediately below the top buoyant layer.

696 ^b data for these stations were obtained from the surface mixed layer.

697 ^c 6.6 is the Redfield C/N uptake ratio (approximately 106/16; Redfield et al., 1963).

698 ^d 7.3 is the more recent evaluation of the C/N uptake ratio (approximately 117/16; Anderson and Sarmiento, 1994).

699

700 **Fig. 1.** Map of the US west coast off Oregon and northern California showing the topography
 701 and the locations of sampling stations along Transects 4, 5 and 6 in spring/early summer 2007.

702

703 **Fig. 2.** Total alkalinity versus salinity through the entire water column of sampling stations along Transects 4 (a), 5 (b) and 6 (c) off
 704 Oregon and northern California in spring/early summer 2007. The solid lines indicate various linear relationships observed on each
 705 transect. The numbers in italics denote the sampling depth/depth range of the endpoints of each line.

706

707 **Fig. 3.** Total alkalinity versus salinity (TALK-Sal relationship) in the upper 175 m waters of sampling stations along Transects 4 (a), 5
 708 (b) and 6 (c) off Oregon and northern California in spring/early summer 2007. The solid lines as well as the equations (in accordance
 709 with the symbol colors) indicate the linear regression analyses of the TALK-Sal relationship for various stations. The numbers in italics
 710 denote the sampling depth/depth range of the endpoints of each line. In (a), the TALK-Sal relationship at station 26-32 displayed two
 711 phases for waters with salinity lower and higher than ~ 32.0 . The top waters at these stations were imprinted by the Columbia River
 712 plume. The data points of bottom waters at stations 26 (~ 75 m) and 27 (~ 130 m and ~ 160 m) were not included, as they were located
 713 on the third linear relationship shown in Fig. 2a. In (b) and (c), stations 39-41 and stations 42-44 were largely influenced by coastal
 714 upwelling.

715

716 **Fig. 4.** $\Delta\text{DIC}-6.6\Delta\text{NO}_3$ (squares) and sea-air $\Delta p\text{CO}_2$ (triangles) versus salinity in the upper waters on Transects 4 (a), 5 (b) and 6 (c)
 717 off Oregon and northern California in spring/early summer 2007. Note that data for stations 27-32 on Transect 4 were obtained from
 718 waters immediately below the top buoyant layer, while data for other stations were obtained from the surface mixed layer. The value
 719 of 6.6 is the Redfield C/N uptake ratio (approximately 106/16; Redfield et al., 1963). The solid line indicates the $p\text{CO}_2$ equilibrium
 720 between the seawater and the atmosphere.

721

722

Fig. 5. $\Delta\text{DIC}-6.6\Delta\text{NO}_3$ (a) and seawater $p\text{CO}_2$ (b) in the surface mixed layer at stations 39-41 on Transect 5 near the Oregon-California border in spring/early summer 2007. In (a), open symbols indicate values estimated based on the two end-member mixing between the upwelling source water and the rainwater, while filled symbols indicate values after removing the rainwater. The value of 6.6 is the Redfield C/N uptake ratio (approximately 106/16; Redfield et al., 1963). The solid line indicates the $p\text{CO}_2$ equilibrium between the seawater and the atmosphere. In (b), the open and semi-filled symbols denote the estimated sea surface $p\text{CO}_2$ from $\Delta\text{DIC}-6.6\Delta\text{NO}_3$ on top of the mixing with and without rainwater, respectively. The filled symbols denote the field observed sea surface $p\text{CO}_2$, which were obtained by applying TALK and DIC data into the CO2SYS program (Lewis and Wallace, 1998). The solid line denotes the atmospheric $p\text{CO}_2$ of ~ 390 μatm (Evans et al., 2011).

733

734 **Fig. 6.** Salinity normalized DIC (nDIC) versus salinity normalized NO₃ (nNO₃) in the CO₂ sink
 735 zones off Oregon and northern California in spring/early summer 2007, which included waters
 736 immediately below the top buoyant layer at stations 27-32 as well as waters in the surface mixed
 737 layer at station 33 on Transect 4, waters in the surface mixed layer at stations 35-38 on Transect
 738 5, and waters in the surface mixed layer at stations 45-49 on Transect 6.