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Abstract:  29 

Climate change is expected to change intra-seasonal rainfall variability, arising from 30 

shifts in rainfall frequency, intensity and seasonality. These intra-seasonal changes are 31 

likely to have important ecological impacts on terrestrial ecosystems. Yet, quantifying 32 

these impacts across biomes and large climate gradients is largely missing. This gap 33 

hinders our ability to better predict ecosystem services and their responses to climate 34 

change, esp. for arid and semi-arid ecosystems. Here we use a synthetic weather 35 

generator and an independently validated vegetation dynamic model (SEIB-DGVM) 36 

to virtually conduct a series of “rainfall manipulation experiments” to study how 37 

changes in the intra-seasonal rainfall variability affect continent-scale ecosystem 38 

responses across Africa. We generated different rainfall scenarios with fixed total 39 

annual rainfall but shifts in: i) frequency vs. intensity, ii) rainy season length vs. 40 

frequency, iii) intensity vs. rainy season length. These scenarios were fed into 41 

SEIB-DGVM to investigate changes in biome distributions and ecosystem 42 

productivity. We find a loss of ecosystem productivity with increased rainfall 43 

frequency and decreased intensity at very low rainfall regimes (<400 mm/year) and 44 

low frequency (<0.3 event/day); beyond these very dry regimes, most ecosystems 45 

benefit from increasing frequency and decreasing intensity, except in the wet tropics 46 

(>1800 mm/year) where radiation limitation prevents further productivity gains. This 47 

result reconciles seemingly contradictory findings in previous field studies on rainfall 48 

frequency/intensity impacts on ecosystem productivity. We also find that changes in 49 

rainy season length can yield more dramatic ecosystem responses compared with 50 

similar percentage changes in rainfall frequency or intensity, with the largest impacts 51 

in semi-arid woodlands. This study demonstrates that not all rainfall regimes are 52 

ecologically equivalent, and that intra-seasonal rainfall characteristics play a 53 

significant role in influencing ecosystem function and structure through controls on 54 

ecohydrological processes. Our results also suggest that shifts in rainfall seasonality 55 

have potentially large impacts on terrestrial ecosystems, and these understudied 56 

impacts should be explicitly examined in future studies of climate impacts. 57 

Keywords: rainfall frequency, rainfall intensity, rainfall seasonality, biome 58 
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distribution, Gross Primary Production (GPP), Africa  59 

 60 

1. Introduction 61 

Due to increased water holding capacity in the atmosphere as a consequence of global 62 

warming (O’Gorman and Schneider, 2009), rainfall is projected to change in intensity 63 

and frequency across much of the world (Easterling et al., 2000; Trenberth et al., 2003; 64 

Chou et al., 2013), in conjunction with complex shifts in rainfall seasonality (Feng et 65 

al., 2013; Seth et al., 2013). These changes possibly indicate a large increase in the 66 

frequency of extreme events and variability in rainfall (Easterling et al., 2000; Allan 67 

and Soden, 2008), and many of these changes may be accompanied with little changes 68 

in total annual rainfall (Knapp et al., 2002; Franz et al., 2010). Meanwhile, regions 69 

sharing similar mean climate state may have very different intra-seasonal variabilities, 70 

and the ecological significance of intra-seasonal climate variabilities has been largely 71 

overlooked previously in terrestrial biogeography (Good and Caylor, 2011). For 72 

example, ecosystems in West Africa and Southwest Africa (Figure 1) share similar 73 

total annual rainfall, but West Africa has much more intense rainfall events within a 74 

much shorter rainy season, while Southwest Africa has a longer and less intense rainy 75 

season. The same amount of total rainfall can come in very different ways, which may 76 

cause distinctive ecosystem responses and structure. Understanding the impacts of 77 

these regional differences in intra-seasonal rainfall variability and their possible future 78 

changes on terrestrial ecosystems is critical for maintaining ecosystem services and 79 

planning adaptation and mitigation strategies for ecological and social benefits 80 

(Anderegg et al., 2013).  81 

 82 

[insert Figure 1] 83 

 84 

 The changes in intra-seasonal rainfall characteristics, specifically frequency, 85 

intensity and seasonality, have critical significance to ecosystem productivity and 86 

structure (Porporato et al., 2001; Weltzin et al., 2003; Williams and Albertson, 2006; 87 

Good and Caylor, 2011; Guan et al., 2014), but previous studies on this topic 88 
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(summarized in Table 1) have their limitations in the following aspects. First, existing 89 

relevant field studies mostly focus on a single ecosystem, i.e. grasslands, and 90 

subsequently only low rainfall regimes have been examined to date (mostly below 91 

800mm/year, see Table 1). Grasslands have the largest sensitivity to hydrological 92 

variabilities among all natural ecosystems (Scanlon et al., 2005; Guan et al., 2012), 93 

however inferences drawn from a single ecosystem are limited in scope and difficult 94 

to apply to other ecosystems. Second, even within grasslands, different studies have 95 

seemingly contradictory findings (see Table 1), and there is a lack of a comprehensive 96 

framework to resolve these inconsistencies. Specifically, whether increased rainfall 97 

intensity with decreased rainfall frequency has positive (Knapp et al., 2002; Fay et al., 98 

2003; Robertson et al., 2009; Heisler-White et al., 2009) or negative impacts 99 

(Heisler-White et al., 2009; Thomey et al., 2011) on grassland productivity is still 100 

under debate. Third, previous relevant studies mostly focus on the impacts of rainfall 101 

frequency and intensity (Table 1 and Rodríguez-Iturbe and Porporato, 2004), and 102 

largely overlook the possible changes in rainfall seasonality. Rainfall frequency and 103 

intensity mostly describe rainfall characteristics within the rainy season, but do not 104 

account for the impacts of interplay between rainy season length and dry season 105 

length (Guan et al., 2014). For ecosystems predominately controlled by water 106 

availability, rainy season length constrains the temporal niche for active plant 107 

physiological activities (van Schaik et al., 1993; Scholes and Archer, 1997), and large 108 

variations in rainfall seasonality can lead to significant shifts in biome distribution 109 

found from paleoclimate pollen records (e.g. Vincens et al., 2007). Given changes in 110 

rainfall seasonality have been found in various tropical regions (Feng et al., 2013) and 111 

have been projected in future climate (Biasutti and Sobel, 2009; Shongwe et al., 2009; 112 

Seth et al., 2013), studies investigating their impacts on terrestrial ecosystems are 113 

relatively rare, and very few field studies are designed to address this aspect (Table 1, 114 

Bates et al., 2006; Svejcar et al., 2003; Chou et al., 2008). Finally, there is an 115 

increasing trend of large-scale studies addressing rainfall variability and ecological 116 

responses using satellite remote sensing (Fang et al., 2005; Zhang et al., 2005; Good 117 

and Caylor, 2011; Zhang et al., 2013; Holmgren et al., 2013) and flux network data 118 
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(Ross et al., 2012). These large-scale studies are able to expand analyses to more 119 

types of ecosystems and different climate conditions, and provide valuable 120 

observation-based insights. However there are very few theoretical modeling works to 121 

corroborate this effort. All these above issues call for a comprehensive modeling study 122 

to investigate different aspects of intra-seasonal rainfall variability on terrestrial 123 

ecosystems spanning large environmental gradients and various biomes. 124 

 In this paper, we aim to study ecological impacts of intra-seasonal rainfall 125 

variability on terrestrial ecosystems. In particular, we design virtual “rainfall 126 

manipulation experiments” to concurrently shift intra-seasonal rainfall characteristics 127 

without changing total annual rainfall. We focus on the impacts of these different 128 

rainfall scenarios on ecosystem productivity (e.g. Gross Primary Production, GPP) 129 

and biome distributions in the African continent, simulated by an independently 130 

validated dynamic vegetation model SEIB-DGVM (Sato and Ise, 2012). Previous 131 

modeling approaches in this topic (Gerten et al., 2008; Hély et al., 2006) designed 132 

various rainfall scenarios by rearranging (halving, doubling or shifting) the rainfall 133 

amount based on the existing rainfall observations. In contrast to these approaches, we 134 

design a weather generator based on a stochastic rainfall model (Rodríguez-Iturbe et 135 

al., 1999), which allows us to implement a series of experiments by synthetically 136 

varying two of the three rainfall characteristics (rainfall intensity, rainfall frequency, 137 

and rainy season length) while fixing total annual rainfall at the current climatology. 138 

We choose Africa as our test-bed mostly because the following two reasons: (1) the 139 

rainfall regimes and biomes have large gradients varying from extremely dry 140 

grasslands to highly humid tropical evergreen forests; (2) Africa is a continent usually 141 

assumed to have few temperature constrains (Nemani et al., 2003), which will help to 142 

isolate the impacts of precipitation from temperature, as one challenge in attributing 143 

climatic controls on temperate ecosystems or Mediterranean ecosystems is the 144 

superimposed influences from both temperature and precipitation. The overarching 145 

science question we will address is: How do African ecosystems respond to possible 146 

changes in intra-seasonal rainfall variability (i.e. rainfall frequency, intensity and 147 

rainy season length)? 148 
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 149 

[insert Table 1] 150 

 151 

2. Materials and Methods 152 

2.1 Methodology overview 153 

Table 1 summarizes previous field-based rainfall manipulation experiments, such as 154 

the one that Knapp et al. (2002) did in a grassland that concurrently increasing rainfall 155 

frequency and decreasing rainfall intensity while fixing total rainfall. The central idea 156 

of our study is to design similar rainfall manipulation experiments but test them 157 

virtually in the model domain across large environment gradients. We manipulate 158 

rainfall changes through a weather generator based on a parsimonious stochastic 159 

rainfall model (Rodriguez-Iturbe et al., 1984). We model the total amount of rainfall 160 

during rainy season as a product of the three intra-seasonal rainfall characteristics for 161 

the rainy season, rainfall frequency (λ, event/day), rainfall intensity (α, mm/event), 162 

and rainy season length (Tw, days) (More details in section 2.3). Thus it is possible to 163 

simultaneously perturb two of the rainfall characteristics away from their 164 

climatological values while preserving the mean annual precipitation (MAP) 165 

unchanged. We then feed these different rainfall scenarios into a well-validated 166 

dynamic vegetation model (SEIB-DGVM, section 2.2) to study simulated ecosystem 167 

responses. Detailed experiments design is described in section 2.5. 168 

 169 

2.2 SEIB-DGVM model and its performances in Africa 170 

We use a well-validated vegetation dynamic model SEIB-DGVM (Sato et al., 2007) 171 

as the tool to study ecosystem responses to different rainfall variabilities. This model 172 

follows the traditional “gap model” concept (Shugart, 1998) to explicitly simulate the 173 

dynamics of ecosystem structure and function for individual plants at a set of virtual 174 

vegetation patches, and uses results at these virtual patches as a surrogate to represent 175 

large-scale ecosystem states. Thus individual trees are simulated from establishment, 176 

competition with other plants, to death, which creates “gaps” for other plants to 177 

occupy and develop. SEIB-DGVM includes mechanical-based and empirical-based 178 
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algorithms for land physical processes, plant physiological processes, and plant 179 

dynamic processes. SEIB-DGVM contains algorithms that explicitly involve the 180 

mechanisms of plant-related water stress (Figure 2; Sato and Ise, 2012). With similar 181 

concepts to previous studies (e.g. Milly, 1992; Porporato et al., 2001), the current 182 

SEIB-DGVM implements a continuous “water stress factor” (Equation 2) based on 183 

the soil moisture status (Equation 1), scaling from 0 (most stressful) to 1 (with no 184 

stress), which then acts to scale the stomatal conductance for plant transpiration and 185 

carbon assimilation.   186 

statwater = (S − Sw) / (Sf − Sw)    (Equation 1) 187 

Water stress factor = 2*statwater - statwater
2    (Equation 2) 188 

where S, Sw and Sf refer to the fraction of volumetric soil water content within the 189 

rooting depth, at the wilting point, and at field capacity, respectively. Figure 2 190 

provides a schematic diagram of “water stress factor” from the SEIB-DGVM, and we 191 

also include an approximated linear model that has been widely adopted elsewhere 192 

(e.g. Milly, 1992; Porporato et al., 2001). The linear model uses an extra variable S*, 193 

so called “critical point” of soil moisture: when S>S*, there is no water stress (water 194 

stress factor =1); and when S<S*, water stress factor linearly decreases with the 195 

decrease of S. Though SEIB-DGVM adopts a quadratic form for “water stress factor”, 196 

it essentially functions similarly as the linear model, such that S* distinguishes two 197 

soil moisture regimes that below which there is a large sensitivity of water stress to 198 

soil moisture status, and above which there is little water stress. Understanding how 199 

this “water stress factor” functions is the key to explain the following results.  200 

 201 

[insert Figure 2] 202 

 203 

SEIB-DGVM allows development of annual and perennial grasses as well as multiple 204 

life cycles of grass at one year based on environmental conditions. Multiple life cycles 205 

of tree growth per year are possible in theory but rarely happen in simulations (Sato 206 

and Ise, 2012). Soil moisture status is the predominant factor to determine LAI of the 207 

vegetation layer, which influences maximum daily productivity and leaf phenology. 208 
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When LAI exceeds 0 for 7 continuous days, dormant phase of perennial vegetation 209 

layer changes into growth phase. While when LAI falls below 0 for 7 continuous days, 210 

growth phase switches to dormant phase (Sato et al, 2007). SEIB-DGVM also 211 

explicitly simulates light conditions and light competition among different PFTs in the 212 

landscape based on its simulated 3D canopy structure and radiative transfer scheme 213 

(Sato et al, 2007).  214 

SEIB-DGVM has been tested both globally (Sato et al., 2007) and regionally for 215 

various ecosystems (Sato et al., 2010; Sato, 2009; Sato and Ise, 2012), whose 216 

simulated results compare favorably with ground observations and satellite remote 217 

sensing measures for ecosystem composition, structure and function. In particular, 218 

SEIB-DGVM has been successfully validated and demonstrated its ability in 219 

simulating ecosystem structure and function in the African continent (Sato and Ise, 220 

2012). Two plant function types (PFTs) of tropical woody species are simulated by 221 

SEIB-DGVM in Africa: tropical evergreen trees and tropical deciduous trees. The 222 

distribution of these two woody types in the simulation is largely determined by 223 

hydro-climatic environments. Tropical evergreen trees only develop in regions where 224 

water resources are sufficient all year around, so they can maintain leaves for all 225 

seasons; otherwise, tropical deciduous trees could survive and dominate the landscape 226 

as they can shed leaves if there is no sufficient water supply in its root zone during the 227 

dry season (Sato and Ise, 2012). Trees and grasses coexist in a cell, with the floor of a 228 

virtual forest monopolized by one of the two grass PFTs, C3 or C4 grass. The 229 

dominating grass type is determined at the end of each year by air temperature, 230 

precipitation, and CO2 partial pressure (Sato and Ise, 2012).  231 

 SEIB-DGVM was run at 1° spatial resolution and at the daily step. It was spun-up 232 

for 2000 years driven by the observed climate (1970-2000) repeatedly for the soil 233 

carbon pool to reach steady state, followed by 200 years simulation driven by the 234 

forcings based on the experiment design in Section 2.4. Because our purpose is to 235 

understand the direct impacts of intra-seasonal rainfall variability, we turned off the 236 

fire component of SEIB-DGVM to exclude fire-mediated feedbacks in the results. 237 

Though we are fully aware of the important role of fire in interacting with rainfall 238 
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seasonality and their influence on African ecosystems (Bond et al., 2005; Lehmann et 239 

al., 2011; Staver et al., 2012), studying these interactions is beyond the scope of this 240 

work. For the similar reason, we fixed the atmospheric CO2 concentration at 380 241 

ppmv to exclude possible impacts of CO2 fertilization effects. 242 

 243 

2.3 Synthetic weather generator 244 

The synthetic weather generator used here has two major components: i) to 245 

stochastically generate daily rainfall based on a stochastic rainfall model, and ii) to 246 

conditionally sample all other environmental variables from historical records to 247 

preserve the covariance among climate forcing variables.  248 

The stochastic rainfall model can be expressed as MAP=α λ Tw / fw, and we set fw 249 

to be 0.9, i.e. the period including 90% of total annual rainfall is defined as “rainy 250 

season” (exchangeable with “wet season” hereafter). In particular, we first use 251 

Markham (1970)’s approach to find the center of the rainy season, and then extend the 252 

same length to both sides of the center until the total rainfall amount in this temporal 253 

window (i.e. “rainy season”) is equal to 90% of the total annual rainfall. Rainy season 254 

and dry season have their own rainfall frequency and intensity. Two seasons are 255 

separately modeled based on the Market Poisson Process. Here we only focus on and 256 

manipulate rainy-season rainfall characteristics in our study, as rainy-season rainfall 257 

accounts for almost all the meaningful rainfall inputs for plant use. Thus in the 258 

following paper, whenever we mention α or λ, we refer to those during the rainy 259 

season.  260 

In this rainfall model, any day can be either rainy or not, and a rainy day is 261 

counted as one rainy event; rainfall events occur as a Poisson Process, with the 262 

parameter 1/λ (unit: days/event) being the mean intervals between rainfall events, and 263 

rainfall intensity α for each rainfall event following an exponential distribution, with α 264 

being the mean rainfall intensity per event (Rodríguez-Iturbe et al., 1999). The wet 265 

season length is modeled as a beta distribution bounded from 0 to 1, scaled by 365 266 

days. All the necessary parameters to fit for the stochastic rainfall model (including 267 

the mean and variance of rainfall frequency, intensity and length of wet and dry 268 
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seasons) were derived from the satellite-gauge-merged rainfall measurement from 269 

TRMM 3b42V7 (Huffman et al., 2007) for the period of 1998 to 2012, based on the 270 

above assumptions for the rainfall process. Specifically, we applied our definition of 271 

“rainy season” to each year of the TRMM rainfall data for per pixel, and calculated 272 

the mean and variance of the “rainy season length”, using which we fitted the beta 273 

distribution for Tw. For rainfall frequency and intensity, we lumped all the wet or dry 274 

season rainfall record together to derive their parameters. The two steps of the 275 

synthetic weather generator are described below:  276 

Step 1: Model the daily rainfall following the Marked Poisson process described 277 

above. In particular, for a specific year, we first stochastically generate the wet season 278 

length by sampling from the beta distribution, and the dry season length is determined 279 

accordingly. Then we generate the daily rainfall for wet and dry season respectively.  280 

Step 2: Based on the simulated daily rainfall time series in Step 1, we conditionally 281 

sample temperature, wind, and humidity from the Global Meteorological Forcing 282 

Dataset (GMFD, Sheffield et al., 2006), as well as cloud fraction and soil temperature 283 

from the Climate Forecast System Reanalysis (CFSR) from National Centers for 284 

Environmental Prediction (NCEP) (Saha et al., 2010). To sample for a specific day, all 285 

the historical record within a 21-day time window centered at that specific day makes 286 

up a sampling pool. From the sampling pool, we choose the day such that the 287 

historical rainfall amount of the chosen day is within (100-30)% to (100+30)% of the 288 

simulated daily rainfall amount. We then draw all the environmental variables (except 289 

rainfall) on that sampled day to the new climate forcing. If we can find a sample from 290 

the pool based on the above rule, this sampling is called “successful”. When there is 291 

more than one suitable sample, we randomly select one. When there is no suitable 292 

sample, we randomly select one day within the pool. The mean “successful” rate for 293 

all the experiments and ensembles across Africa is 83%. 294 

 To test the validity of the synthetic weather generator, we ran SEIB-DGVM using 295 

the historical climate record (Sclimatology) and the synthetic forcing (Scontrol), with the 296 

latter generated using the weather generator based on the rainfall characteristics 297 

derived from the former. Figure S1 shows that the SEIB-DGVM simulations driven 298 
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by these two different forcings generate similar biome distributions with a Cohen’s 299 

Kappa coefficient of 0.78 (Cohen, 1960), and similar GPP patterns in Africa, with the 300 

linear fit of annual GPP as: GPP(Scontrol)= 1.03×GPP(Sclimatology)+0.215 (R2=0.89, 301 

P<0.0001). Both biome and GPP patterns are consistent with observations (Sato and 302 

Ise, 2012). These results provide confidence in using the synthetic weather generator 303 

and SEIB-DGVM to conduct the further study. 304 

 305 

2.4 Experiment design  306 

Three experiments are designed as follows:   307 

Exp 1 (Perturbation of rainfall frequency and intensity, termed as Sλ-α hereafter) 308 

Simulations forced by the synthetic forcings with varying λ and α simultaneously for 309 

wet season (20% increases of λ and corresponding decreases of α to make MAP 310 

unchanged; 20% decreases of λ and corresponding increases of α to make MAP 311 

unchanged; no change for dry season rainfall characteristics), while fixing Tw at the 312 

current climatology; 313 

Exp 2 (Perturbation of rainfall frequency and rainy season length, termed as STw-λ) 314 

Simulations forced by the synthetic forcing with varying Tw and λ simultaneously for 315 

wet season (20% increases of Tw and corresponding decreases of λ to make MAP 316 

unchanged; 20% decreases of Tw and corresponding increases of λ to make MAP 317 

unchanged; no change for dry season characteristics), while fixing α at the current 318 

climatology; 319 

Exp 3 (Perturbation of rainy season length and intensity, termed as STw-α) Simulations 320 

forced by the synthetic forcing with varying Tw and α simultaneously for wet season 321 

(20% increases of Tw and corresponding decreases of α to make MAP unchanged; 322 

20% decreases of Tw and corresponding increases of α to make MAP unchanged; no 323 

change for dry season characteristics), while fixing λ at the current climatology. 324 

 Because λ and Tw have bounded ranges (λ~[0, 1] and Tw~[0, 365]), if these two 325 

variables after perturbation exceeds the range, we would force their value to be the 326 

lower or upper bound, and rearrange the other corresponding rainfall characteristic to 327 

ensure MAP unchanged. Each rainfall scenario has six ensemble realizations of 328 
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synthetic climate forcings to account for the stochasticity of our synthetic weather 329 

generator. 330 

 331 

3. Results  332 

We present the differences in simulated biome distributions of the three experiments 333 

(i.e. Sλ-α, STw-λ, STw-α) in Figure 3, and their spatial patterns are shown in Figure S2 334 

and S3. Differences in simulated annually averaged soil moisture and GPP for each 335 

experiment are shown in Figure 4 and 6. These differences represent the simulated 336 

ecosystem sensitivity to the slight perturbation of intra-seasonal rainfall characteristics 337 

deviating from the current climatology. To further explore how MAP and these 338 

rainfall characteristics affect the simulated GPP, Figure 5 shows the difference of 339 

simulated GPP as a function of MAP and a perturbed rainfall characteristic in the 340 

corresponding experiment. We term Figure 5 as “GPP sensitivity space”, and “positive 341 

GPP sensitivity” means that GPP changes at the same direction with MAP or rainfall 342 

characteristics, and vise versa for “negative GPP response”. These “GPP sensitivity 343 

spaces” are generated based on the aggregated mean GPP in each bin of the rainfall 344 

properties. The bin size for MAP, rainfall frequency, rainfall intensity and rainy 345 

season length are 100 mm/year, 0.05 event/day, 1 mm/event and 15 days respectively. 346 

We also provide the standard error (SE) of the “GPP sensitivity spaces” in each bin to 347 

assess their uncertainties, with higher SE meaning larger uncertainties. 
n

SE  , 348 

where   and n refer to the standard deviation of GPP values and the sample size in 349 

each bin respectively. A series of illustrations in Figure 6 were generalized from the 350 

simulated time series, and are used to explain the underlying mechanisms.  351 

 352 

[insert Figure 3; Figure 4; Figure 5] 353 

 354 

3.1 Ecosystem sensitivity to rainfall frequency and intensity (Experiment Sλ-α) 355 

Experiment Sλ-α assesses ecosystem responses after increasing rainfall frequency λ 356 

and decreasing rainfall intensity α (λ↑, α↓) under a fixed total annual rainfall. The 357 
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simulated biome distributions show that a small portion of regions are converted from 358 

woodland to grassland at low rainfall regime (~500 mm/year), corresponding to a 359 

decrease of GPP in these regions. In the high rainfall regime (around 1500 mm/year, 360 

Figure 3a), increasing rainfall frequency significantly converts tropical evergreen 361 

forests into woodlands. In the intermediate rainfall regime (600-1000 mm/year), there 362 

is little change in biome distributions. We further check the spatial patterns of 363 

differences in annual mean soil moisture and annual total GPP (Figure 4a and 5b). We 364 

find that GPP increases with increasing rainfall frequency across most of the Africa 365 

continent, except in the very dry end (in the southern and eastern Africa) and the very 366 

wet regions (in central Africa and northeastern Madagascar). This GPP pattern mostly 367 

mirrors the soil moisture change in woodlands and grasslands (Figure 4b), except the 368 

wet tropics, where the changes of soil moisture and GPP are reversed. 369 

Figure 5a shows the GPP sensitivity as a function of MAP and the climatological 370 

rainfall frequency, and we find three major patterns:  371 

Pattern 1.1: Negative GPP sensitivity shows up in the very dry end of MAP regime 372 

(MAP<400 mm/year) and with relatively low rainfall frequency (λ<0.3 event/day), i.e. 373 

GPP decreases with more frequent but less intense rainfall in this low rainfall range.  374 

Pattern 1.2: Across most rainfall ranges (MAP from 400 mm/year to 1600 mm/year), 375 

increasing frequency of rainfall (and simultaneously decreasing rainfall intensity) lead 376 

to positive GPP sensitivity. This positive GPP sensitivity peaks at the low range of 377 

rainfall frequency (~0.35 event/day) and around the MAP of 1000 mm/year.  378 

Pattern 1.3: At the high range of MAP (>1800 mm/year) with low rainfall frequency 379 

(~0.4 event/day), GPP decreases with increased rainfall frequency. 380 

 The relationship of GPP sensitivity to MAP and rainfall intensity (Fig. 6c) has no 381 

clear patterns as previous ones, mostly because the GPP sensitivity space (Fig. A4c) 382 

contains large uncertainties (Fig. A4d, shown as large variance in the data). Thus we 383 

will not over-interpret the pattern in Fig. 6c. 384 

Pattern 1.1 and Pattern 1.2 can be explained by the illustrative time series in 385 

Figure 6a and 6b, respectively. Figure 6a shows that when rainfall events are small 386 

and very infrequent, increasing rainfall frequency while decreasing intensity would 387 
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cause more frequent downcrossings of soil moisture at the wilting point Sw, which 388 

subsequently would reduce the effective time of carbon assimilation and plant growth 389 

(i.e. when soil moisture is below Sw, plants would be in the extreme water stress and 390 

slow down or stop physiological activity). This case only happens where MAP is very 391 

low with low frequency and the biome is predominantly grasslands, which explains 392 

why negative changes in soil moisture and GPP in Figure 4a and 4b are distributed in 393 

those regions. This result also corroborates the field findings of the negative impacts 394 

from increasing rainfall frequency in Heisler-White et al.(2009) and Thomey et al. 395 

(2011) at low rainfall regimes.  396 

Figure 6b provides the hydrological mechanism for the positive sensitivity of soil 397 

moisture and GPP with increasing rainfall frequency over the most African continent 398 

(Pattern 1.2). Once individual rainfall event has enough intensity and rainfall 399 

frequency is enough, downcrossings of Sw would not easily happen. Instead, the 400 

accumulative rainy-season soil moisture becomes the dominant control of plant 401 

growth, and increasing rainfall frequency has led to a significant increase of soil 402 

moisture for plant water use (Figure 4a and 4b). This conclusion drawn from our 403 

numerical modeling is consistent with previous findings in Rodríguez-Iturbe and 404 

Porporato (2004) based on stochastic modeling. We also find that this positive GPP 405 

sensitivity reaches to its maximum in the intermediate total rainfall (~1000 mm/year) 406 

and relatively low rainfall frequency (~0.35 event/day), indicating that in these 407 

regimes increasing rainfall frequency could most effectively increase soil moisture for 408 

plant water use and create marginal benefits of GPP to the increased rainfall frequency. 409 

Further increase in large total annual rainfall or rainfall frequency would reduce the 410 

sensitivity to water stress with fewer downcrossings of soil moisture critical point S*; 411 

and once the soil moisture is always ample (i.e. above S*), the changes in either MAP 412 

or rainfall frequency would not alter plant water stress.   413 

Pattern 1.3 also shows a negative GPP sensitivity, but its mechanism is different 414 

from the previous case of Pattern 1.1. In regions with total rainfall usually more than 415 

1800 mm/year, SEIB-simulated tropical forests exhibit radiation-limitation rather than 416 

water-limitation during wet season. Increase of rainfall frequency at daily scale would 417 
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enhance cloud fraction and suppress plant productivity in these regions (Graham et al., 418 

2003). Thus even though soil moisture still increases (Figure 4a), GPP decreases with 419 

increased rainfall frequency. This mechanism also explains why tropical evergreen 420 

forests shrink its area with increased rainfall frequency (Figure 3a).  421 

It is worth noting that the magnitude of GPP changes due to rainfall frequency 422 

and intensity is relatively small in most of the woodlands, but can be relatively large 423 

for drylands with MAP below 600 mm/year (up to 10-20% of annual GPP). This 424 

pattern also explains why only modest changes in biome distribution happen between 425 

woodlands and grasslands in Sλ-α (Figure 3a).  426 

 427 

[insert Figure 6] 428 

 429 

3.2 Ecosystem sensitivity to rainfall seasonality and frequency (Experiment STw-λ) 430 

Experiment STw-λ assesses ecosystem responses after increasing rainy season length 431 

and decreasing rainfall frequency (i.e. Tw↑, λ↓) under a fixed total annual rainfall. The 432 

simulated biome distribution shows a gain of area in tropical evergreen forests 433 

converted from woodlands. The northern Africa has an area increase of woodlands 434 

converted from grasslands, and African Horn region has a small expansion of 435 

grasslands into woodlands (Figure 3b). Figure 4c and 4d show that increasing rainy 436 

season length Tw and decreasing frequency λ would significantly increase annual 437 

mean soil moisture and GPP (up to 30%) in most woodland area. Meanwhile 438 

decreased soil moisture and GPP are found in the southern and eastern Africa. 439 

Tropical evergreen forests show little response. We further explore the GPP sensitivity 440 

space in Figure 5e and 5g, and find the following robust patterns (based on small 441 

standard errors shown in Figure 5f and 5h):  442 

Pattern 2.1: The negative GPP sensitivity tends to happen where MAP is mostly 443 

below 1000 mm/year with long rainy season length (Tw>150 days) and low rainfall 444 

frequency (λ<0.35 event/day).  445 

Pattern 2.2: When MAP and rainfall frequency are large enough (MAP>1000 446 

mm/year and λ>0.4 event/day), decreasing λ while increasing Tw would significantly 447 
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increase GPP. The maximum positive GPP sensitivity happens at the intermediate 448 

MAP range (1100-1500 mm/year) and the high rainfall frequency (λ~0.7 event/day).  449 

Pattern 2.3: There exists an “optimal rainy season length” for relative changes in 450 

ecosystem productivity across large MAP ranges (the white area between the red and 451 

blue space in Figure 5e). For the same MAP, any deviation of Tw from the “optimal 452 

rainy season length” would reduce GPP. This “optimal rainy season length” follows 453 

an increasing trend with MAP until 1400 mm/year.  454 

  Figure 6c explains the hydrological mechanism for the negative GPP sensitivity 455 

in Pattern 2.1. In the situation with low MAP and infrequent rainfall events, 456 

decreasing rainfall frequency and expanding rainy season length (i.e. Tw↑, λ↓) would 457 

lead to longer intervals between rainfall events and possibly longer excursions below 458 

Sw, which would disrupt continuous plant growth and have detrimental effects on 459 

ecosystem productivity. It is worth noting that long rainy season in dryland (Figure 5e) 460 

is usually accompanied with low rainfall frequency (Figure 5g). The southern African 461 

drylands (south of 15°S) typically fall in this category, and these regions thus have 462 

negative GPP sensitivity (Figure 4c and 4d), accompanied by a small biome 463 

conversion from woodlands to grasslands (Figure 3b).  464 

 Figure 6d explains the hydrological mechanisms for the positive GPP sensitivity 465 

in Pattern 2.2. When rainfall is ample enough to maintain little or no water stress 466 

during rainy season, increasing the interval of rainfall events may introduce little 467 

additional water stress but can significantly extend the growing season. This situation 468 

mostly happens in woodlands, where limited water stress exists during rainy season, 469 

and dry season length is the major constraint for plant growth. Thus the increase of 470 

rainy season length extends the temporal niche for plant growth, and leads to a 471 

significant woodland expansion to grasslands as well as an expansion of tropical 472 

evergreen forests to woodlands (Figure 3b). 473 

 The little GPP sensitivity in tropical evergreen forest regions is mostly attributed 474 

to the long rainy season length in this ecosystem. Thus further increasing Tw may 475 

reach to its saturation (365 days) and has little impact to ecosystem productivity. This 476 

also explains why the magnitude of GPP sensitivity is much smaller at high MAP 477 
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range than at the intermediate MAP range.  478 

 The finding of “optimal rainy season length” across different rainfall regimes 479 

(Figure 5e) is consistent with our previous empirical finding about the similar pattern 480 

of “optimal rainy season length” for tree fractional cover in Africa derived based on a 481 

satellite remote sensing product (Guan et al., 2014). The existence of “optimal rainy 482 

season length” fully demonstrates the importance to explicitly consider the non-linear 483 

impacts of rainy season length on ecosystem productivity under climate change, 484 

which has been largely overlooked before. 485 

 486 

3.3 Ecosystem sensitivity to rainfall seasonality and intensity (STw-α) 487 

Results of Experiment STw-α have many similarities with those of STw-λ, including the 488 

similar changes in biome distributions (Figure 3), soil moisture and GPP patterns 489 

(Figure 4e and 4f). We further find that the GPP sensitivity space with MAP and rainy 490 

season length for STw-α (Figure 5i) is also similar with that for STw-λ (Figure 5e). One 491 

new finding is that rainfall intensity has little impact on GPP, as the contour lines in 492 

Figure 5k are mostly parallel with y-axis (i.e. rainfall intensity).  493 

Figure 6e and 6f explain the governing hydrological mechanisms for the patterns 494 

of STw-α, which also have many similarities with STw-λ. For the negative case (Figure 495 

6e), decreasing rainfall intensity and increasing rainy season length in the very low 496 

MAP regime may lead to more downcrossings of Sw and interrupt continuous plant 497 

growth. The positive case (Figure 6e) is similar as that in Figure 6d, i.e. the 498 

repartitioning of excessive wet-season rainfall to the dry season for an extended 499 

growing period would significantly benefit plant growth and possible increase tree 500 

fraction cover.  501 

 502 

4. Discussion 503 

In this paper we provide a new modeling approach to systematically interpret the 504 

ecological impacts from changes in intra-seasonal rainfall characteristics (i.e. rainfall 505 

frequency, rainfall intensity and rainy season length) across biomes and climate 506 

gradients in the African continent. 507 
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 508 

4.1 Limitation of the methodology 509 

Though our modeling framework is able to characterize the diverse ecosystem 510 

responses to the shifts in different rainfall characteristics, it nevertheless has its 511 

limitations. The current rainfall model only deals with the case of single rainy season 512 

per year, and approximates the case of double rainy seasons per year to be the single 513 

rainy season case. This assumption may induce unrealistic synthetic rainfall patterns 514 

in the equatorial dryland regions, in particular the Horn of Africa. Thus the simulated 515 

sensitivity of these regions may be less reliable. We also assume that rainfall 516 

frequency and intensity are homogenous throughout wet seasons (or dry seasons), but 517 

in reality they have seasonal variations. We only consider rainy season length for 518 

rainfall seasonality, and neglect the possible temporal phase change; in reality, rainfall 519 

seasonality change usually has length and phase shifts in concert. These 520 

rainfall-model-related limitations can be possibly overcame by simulating smaller 521 

intervals of rainfall processes (e.g. each month has their own α and λ) rather than 522 

simulating the whole wet or dry season using one fixed set of α and λ. Besides, only 523 

using one ecosystem model also means that the simulated ecosystem sensitivity can 524 

be model-specific. Though magnitudes or thresholds for the corresponding patterns 525 

may vary depending on different models, we argue that the qualitative results for the 526 

GPP sensitivity patterns (e.g. Figure 4 and Figure 5) should hold as the necessary 527 

ecohydrological processes have been incorporated in SEIB-DGVM. We also 528 

recognize that to exclude fire impacts in the current simulation may bring some 529 

limitation for this study, as evidence shows that many savanna regions can be bistable 530 

due to fire effects (Staver et al 2011; Hirota et al 2011; Higgins and Scheiter 2012; 531 

also see for a possible rebuttal in Hanan et al, 2013). Changes in rainfall regimes not 532 

only have direct effects on vegetation productivity, but can also indirectly affect 533 

ecosystems through its interactions with fire, with rapid biome shifts being a possible 534 

consequence. These feedbacks can be important in situations when the changes in 535 

growing season length are related to fuel loads, fuel moisture dynamics and hence fire 536 

intensity (Lehmann et al., 2011). Quantifying these fire-rainfall feedbacks will be the 537 
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important future direction to pursue. 538 

 539 

4.2 Clarifying the impacts of rainfall frequency and intensity on ecosystem 540 

productivity 541 

In this modeling study, we provide a plausible answer to possibly resolve the previous 542 

debate about whether increasing rainfall intensity (or equivalently decreasing rainfall 543 

frequency, i.e. λ↓, α↑) has positive or negative impacts on above-ground primary 544 

productivity under a fixed annual rainfall total. We identify that negative GPP 545 

sensitivity with increased rainfall frequency is possible at very low MAP range (~ 400 546 

mm/year) with relatively low rainfall frequency (<0.35 event/day) (Figure 5a), due to 547 

the increased downcrossings of soil moisture wilting point, which restricts plant 548 

growth (Figure 6a). This derived MAP threshold (~400 mm/year) is consistent with 549 

our meta-analysis based on the previous field studies (Table 1), which shows a 550 

threshold of MAP at 340 mm/year separates positive and negative impacts of more 551 

intense rainfall on aboveground net primary production (ANPP). Our findings are also 552 

consistent with another study about increased tree encroachments with increased 553 

rainfall intensity in low rainfall regime (<544mm/year, Kulmatiski and Beard, 2013), 554 

which essentially follows the same mechanism as identified in Figure 6a.  555 

In addition, we thoroughly investigated the ecosystem responses across a wide 556 

range of annual rainfall in Africa. We find that beyond the very low rainfall range 557 

(below 400 mm/year), most grasslands and woodlands would benefit from increasing 558 

rainfall frequency, which also corroborate the previous large-scale findings about the 559 

positive effects of increased rainfall frequency (and decreased rainfall intensity) for 560 

tree fractions across the African continent (Good and Caylor, 2011). The only 561 

exception happens at the very wet end of MAP (~1800mm/year) where cloud-induced 562 

radiation-limitation may suppress ecosystem productivity with increased rainfall 563 

frequency. We also find that changes in rainfall frequency and intensity mostly affect 564 

grassland-dominated savannas (changes of GPP up to 20%), and the corresponding 565 

effects are much smaller in woodlands and have little impact on woodland distribution. 566 

Though this work is only based on a single model, it provides a primary assessment 567 
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for understanding of interactive changes between λ and α in ecosystem functioning, 568 

and expands the analysis to a wide range of annual rainfall conditions compared with 569 

previous studies (e.g. Porporato et al., 2004).  570 

 571 

4.3 Ecological importance of rainy season length 572 

The results involving rainy season length (i.e. STw-λ and STw-α) provide evidence for 573 

the ecological importance of rainfall seasonality. The magnitudes of changes in soil 574 

moisture, GPP and biome distribution in STw-λ and STw-α are much larger than those of 575 

Sλ-α, with almost one order of magnitude difference. These disproportional impacts of 576 

Tw indicate that slight changes in rainy season length could modify biome distribution 577 

and ecosystem function more dramatically compared with the same percentage 578 

changes in rainfall frequency and intensity. We also notice that STw-λ and STw-α have 579 

similar results. This is because that both λ and α describe rainfall characteristics 580 

within wet season, while Tw describes rainfall characteristics of both dry season and 581 

wet season. Cautions are required that our simplified treatment rainy season length 582 

may overestimate its importance, and we did not consider the rainfall phase 583 

information here.  584 

Given the importance of rainy season length, its ecological impacts under climate 585 

change are largely understudied, though substantial shifts in rainfall seasonality have 586 

been projected in both Sahel and South Africa (Biasutti and Sobel, 2009; Shongwe et 587 

al., 2009; Seth et al., 2013). Here we only address the rainfall seasonality in terms of 588 

its length, and future changes in rainfall seasonality may modify their phase and 589 

magnitude in concert. The climate community has focused on the increase of extreme 590 

rainfall events (Field et al., 2012), which could be captured by the changes in λ or α 591 

towards heavier tails in their distribution. However, explicit and systematic 592 

assessments and projection on rainfall seasonality changes (including both phase and 593 

magnitude) are still limited even in the latest Intergovernmental Panel on Climate 594 

Change (IPCC) synthesis reports (Field et al., 2012; Stocker et al., 2013). More 595 

detailed studies related to these changes and their ecological implications are required 596 

for future hydroclimate-ecosystem research.  597 
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 598 

4.4 Not all rainfall regimes are ecologically equivalent 599 

As Figure 1 gives a convincing example that the same total annual rainfall may arrive 600 

in a very different way, our results further demonstrate that ecosystems respond 601 

differently to the changes in these intra-seasonal rainfall variability. For example, with 602 

similar MAP, drylands in West Africa and Southwest Africa show reversed responses 603 

to the same changes in intra-seasonal rainfall variability. As shown in the experiments 604 

of STw-λ and STw-α, increasing Tw while decreasing λ or α generates slightly positive 605 

soil moisture and GPP sensitivity in West Africa (Figure 4c and 4d), but would cause 606 

relatively large GPP decrease in Southwest Africa. The prior hydroclimate conditions 607 

of these two regions can explain these differences: West Africa has much shorter rainy 608 

season with more intense rainfall events; in contrast, Southwest Africa has a long 609 

rainy season but many small and sporadic rainfall events. As a result, under a fixed 610 

annual rainfall total, slightly increasing rainy season and meanwhile decreasing 611 

rainfall intensity would benefit plant growth in West Africa, but the same change 612 

would lengthen dry spells in Southwest Africa and bring negative effects to the 613 

ecosystem productivity. We further deduce that the rainfall use efficiency (RUE, 614 

defined as the ratio of plant net primary production to total rainfall amount) in these 615 

two drylands could be different: West Africa may have lower RUE, and the intense 616 

rainfall could lead to more infiltration-excess runoff, and thus less water would be 617 

used by plants; while Southwest Africa can have higher RUE, because its sporadic 618 

and feeble rainfall events would favor grass to fully take the advantage of the 619 

ephemerally existed water resources. This conclusion is partly supported by Martiny 620 

et al. (2007) based on satellite remote sensing. We further hypothesize that landscape 621 

geomorphology in these two drylands may be different and therefore reflect 622 

distinctive rainfall characteristics. More bare soil may exist in West Africa grasslands 623 

due to intense-rainfall-induced erosion, while Southwest Africa may have more grass 624 

fraction and less bare soil fraction. Testing these interesting hypotheses is beyond the 625 

scope of this paper, but is worthy the further exploration.  626 

 627 
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Table 1. Summary of previous representative studies on assessing the impacts of rainfall characteristics (i.e. rainfall frequency, intensity and 

seasonality) on the structure and function of terrestrial ecosystem.  

Focus: frequency (freq); intensity (int); seasonality (sea); variation (CV).  

Methods: Field Experiments (Field); Remote Sensing (RS); Flux Tower (Flux).  

Major Conclusion: increasing rainfall intensity (or decreasing frequency) has positive impacts (int+); increasing intensity (or decreasing 

frequency)has negative impacts (int-); increasing rainfall CV has positive impacts (CV+); increasing rainfall CV has negative impacts (CV-).  

 

Focus Methods Spatial Scale Time scale MAP (mm/year) Ecosystem type Major Conclusion Reference 

freq; int RS Africa continent intra-annual 

climatology 

[0,3000] Africa all (int-) woody cover Good and Caylor, 

2011 

freq; int RS US  [163,1227] US (int-) ANPP greatest in arid grassland (16%)and 

Mediterranean forest (20%) and less for mesic grassland 

and temperate forest (3%) 

Zhang et al., 2013 

freq; int RS Pan-tropics (35°N to 

15°S) 

inter-annual [0,3000] Tropical 

ecosystems 

(CV+) wood cover in dry tropics; (CV-) wood cover in 

wet tropics 

Holmgren et al., 

2013 

freq; int RS Northern China intra-annual [100,850] temperate 

grassland and 

forests 

(int-) NDVI for temprate grassland and broadleaf 

forests, not for coniferous forest 

Fang et al., 2005 

freq; int Flux Northern Hemisphere intra-annual [393±155,906±243

] 

shrubland and 

forest 

(int-) GPP, RE and NEP Ross et al., 2012 

seas RS Africa continent climatology [0,3000] Africa all rainy season onset and offset controls vegetation 

growing season 

Zhang et al., 2005 

freq; int Field plot (Kansas, USA) intra-annual 615 grassland (int-) ANPP Knapp et al., 2002 
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(fix MAP) 

freq; int 

(fix MAP) 

Field plot (Kansas, USA) intra-annual 835 grassland (int-) ANPP Fay et al., 2003 

increase 

seasonal 

rainfall 

Field plot(Taxes, USA) intra-annual 365 grassland (int-) ANPP Robertson et al., 

2009 

freq; int Field plot (Kansas, USA) intra-annual [320,830] grassland (int-)ANPP for MAP=830mm/yr; (int+)ANPP for 

MAP=320mm/yr 

Heisler-White et 

al., 2009 

freq; int Field plot( New Mexico, 

USA) 

intra-annual 250 grassland (int+) ANPP Thomey et al., 

2011 

freq; int 

(fix MAP) 

Field Plot(Kansas, USA) intra-annual 834 grassland (int-) soil CO2 flux Harper et al., 2005 

freq; int 

(fix MAP) 

Field plot(Kruger National 

Park, South Africa) 

intra-annual 544 sub-tropical 

savanna 

(int+) wood growth; (int-) grass growth Kulmatiski and 

Beard, 2013 

sea 

(fix MAP) 

Field plot(Oregon, USA) intra-annual [140,530] grassland impact biomass and bare soil fraction Bates et al., 2006;  

Svejcar et al., 2003 

sea Field       

freq; int; 

MAP 

Field plot(South Africa) intra-annual [538,798] grassland (int-) ANPP Swemmer et al., 

2007 

MAP; sea Field plot(Spain) intra-/inter-an

nual 

242 grassland Mediterranean dryland ecosystem has more resilience 

for intra- and inter-annual changes in rainfall 

Miranda et al., 

2008 
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Figure 1. a-b: Spatial pattern of the rainfall characteristics in Africa: a-MAP; b-rainfall 

intensity; c-rainfall frequency; d-rainy season length. The black-line identified areas refer to 

two savanna regions in West and Southwest Africa. e-f: Normalized histograms of the rainfall 

characteristics in two savanna regions of West and Southwest Africa. e-MAP (bin width for 

the x-axis: 100 mm/year); f-rainfall intensity (bin width for the x-axis: 1 mm/event); g-rainfall 

frequency (bin width for the x-axis: 0.1 event/day); h-rainy season length (bin width for the 

x-axis: 20 days).  
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Figure 2. Schematic diagram of water stress factor ranging from 0 (most stressful) to 1 (no 

stress), which acts to reduce transpiration and carbon assimilation. The red dotted line is 

based on Porporato et al. (2001) with a reversed sign, and SEIB-DGVM has a nonlinear 

implementation (blue solid line, Sato and Ise, 2012). 
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Figure 3. Differences in simulated dominated biomes in the three experiments (i.e. Sλ-α, STw-λ, 

STw-α). 
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Figure 4. Simulated changes in annual mean soil moisture (0-500mm, first column) and 

annual mean GPP (second column) for different experiments. Please note that the scales of 

Sλ-α is much smaller than those of S Tw-λ and STw-α. The two areas with black boundaries in each 

panel are West African grassland and Southwest African grassland associated with Figure 1. 

The spatial patterns shown here are smoothed by 3*3 smoothing window from the raw data.  
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Figure 5. Differences in simulated annual GPP as a function of mean annual precipitation and 

one of the perturbed rainfall characteristics in all the three experiments (i.e. Sλ-α, STw-λ, STw-α) 

in the left column. The right column shows the correspondent standard errors (SE, calculated 

as 
n

SE  , where   refers to the standard deviation within each bin, n  is the 

sample size in each bin, and n  and   are shown in Figure S4), with larger values 

associated with more uncertainties and requires more caution in interpretation. The contours 

are based on the binned values, with for each 100 mm/year in MAP, each 0.05 event/day in 

rainfall frequency, each 1 mm/event in rainfall intensity and each 15 day in rainy season 

length.  
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Figure 6. Illustrative time series for hydrological controls on plant root-zone soil moisture 

dynamics for all the experiments, and these illustrations are generalized based on the 

simulated time series from the experiments. Both negative and positive cases are shown, and 

cases with directly hydrological controls are shown (i.e. cloud-induced negative impacts in 

tropical forests are not shown). The cumulative shaded areas refer to “plant water stress” 

defined by Porporato et al. (2001).  
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Supplementary materials:  

 

Figure S1. Comparison of biomes and annual GPP between Sclimatology and Scontrol to test the 

validity of the synthetic weather generator. The biome definition follows Sato and Ise (2012). 
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Figure S2. Simulated biomes for different experiments.  



 40 

 

Figure S3. Normalized histograms of three simulated dominating biomes in the three 

experiments.  



 41 

  
Figure S4. The sample size ( n ) in each bin (left column) and standard deviation ( ) in each 

bin (right column), corresponding to Figure 5. In Figure 5 right column, standard deviation 

(SE) is calculated as
n

SE  .  


