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Abstract 1 

Land surface phenological cycles of vegetation greening and browningare influenced by variability in 2 

climatic forcing. Quantitative spatial information on phenological cycles and their variability is 3 

important for agricultural applications, wildfire fuel accumulation, land management, land surface 4 

modeling, and climate change studies. Most phenology studies have focused on temperature-driven 5 

Northern Hemisphere systems, where phenology shows annually recurring patterns. Yet, 6 

precipitation-driven non-annual phenology of arid and semi-arid systems (i.e., drylands) received 7 

much less attention, despite the fact that they cover more than 30% of the global land surface. Here 8 

we focused on Australia, a continent with one of the most variable rainfall climates in the world and 9 

vast areas of dryland systems, where a detailed phenological investigation and a characterization of 10 

the relationship between phenology and climate variability are missing.  11 

To fill this knowledge gap, we developed an algorithm to characterize phenological cycles and 12 

analyzed geographic and climate-driven variability in phenology 2000-2013, which included extreme 13 

drought and wet years. We linked derived phenological metrics with rainfall and the Southern 14 

Oscillation Index (SOI). We conducted a continent-wide investigation and a more detailed 15 

investigation over the Murray-Darling Basin (MDB), the primary agricultural area and largest river 16 

catchment of Australia.  17 

Results showed high inter- and intra-annual variability in phenological cycles across Australia. The 18 

peak of phenological cycles occurred not only during the austral summer but at any time of the year, 19 

and their timing varied by more than a month in the interior of the continent. The magnitude of 20 

phenological cycle peak and the integrated greenness were most significantly correlated with 21 

monthly SOI within the preceding 12 months. Correlation patterns occurred primarily over North 22 

Eastern Australia and within the MDB predominantly over natural land cover and particularly in 23 

floodplain and wetland areas. Integrated greenness of the phenological cycles (surrogate of 24 
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vegetation productivity) showed positive anomalies of more than two standard deviations over most 1 

of Eastern Australia in 2009-2010, which coincided with the transition between the El Niño induced 2 

decadal droughts to flooding caused by La Niña.  3 

 4 

1 Introduction 5 

Vegetation phenology refers to the response of vegetation to inter- and intra-annual variation of 6 

climate, specifically irradiance, temperature and water (Myneni et al., 1997;White et al., 1997;Zhang 7 

et al., 2003). Vegetation phenology is a useful indicator in the study of the response of ecosystems 8 

to climate variability (Zhang et al., 2012;Richardson et al., 2013), and an important parameter for 9 

land surface, climate and biogeochemical models that quantify the exchange of water, energy and 10 

gases between vegetation and the atmosphere (Pitman, 2003;Eklundh and Jönsson, 2010). A variety 11 

of applications that require the characterization of vegetation phenology include crop yield 12 

quantification, wildfire fuel accumulation, vegetation condition, ecosystem response to climate 13 

variability and climate change and ecosystem resilience (Schwartz, 2003;Liang and Schwartz, 14 

2009;Peñuelas et al., 2009). Phenology of the vegetated land surface (land surface phenology, 15 

hereafter phenology) is “the seasonal pattern of variation in vegetated land surfaces observed from 16 

remote sensing” (Friedl et al., 2006).  17 

In temperature-limited systems, phenological cycles occur on an annual basis, starting in spring and 18 

ending in autumn. Existing algorithms aiming to characterize phenological cycles from remotely 19 

sensed spectral vegetation ‘greenness’ indices perform well for ecosystems in temperature-driven 20 

mid- and high-latitudes (Eklundh and Jönsson, 2010;Ganguly et al., 2010). Yet, in ecosystems where 21 

rainfall is limited and highly variable such as semi-arid and arid systems (i.e., drylands; United 22 

Nations(2011)), phenological cycles may be irregular in their length, timing, amplitude and 23 



4 

 

reoccurrence interval, occur at any time of the year or not occur at all in a given year (Brown and de 1 

Beurs, 2008;Ma et al., 2013;Walker et al., 2014;Bradley and Mustard, 2007).  2 

Despite the fact that drylands cover over 30% of the global land surface and occur on every 3 

continent (United Nations, 2011), their rainfall-driven phenology that features non-annual cycles has 4 

not been well characterized. Here we focused on Australia, a continent where drylands cover more 5 

than 80% of the land surface. Recent reports by the Intergovernmental Panel on Climate Change 6 

highlighted not only the importance of quantifying vegetation phenology in general (IPCC, 2013, 7 

2007;Schwartz, 2013) but pointed to a lack of phenological studies for Australia and New Zealand 8 

(Keatley et al., 2013;IPCC, 2001, 2007). We developed an algorithm to characterize phenological 9 

cycles and analyzed the phenology of Australia, as an example of a rainfall-driven dryland systems. 10 

Phenology at the landscape to continental scale is typically derived using time-series of remotely 11 

sensed vegetation greenness indices such as the normalized difference vegetation index (NDVI) and 12 

the enhanced vegetation index (EVI) (de Beurs and Henebry, 2008). Several studies have used NDVI 13 

time series recorded by the Advanced Very High Resolution Radiometer (AVHRR) to investigate long-14 

term phenological trends induced by climate change (Moulin et al., 1997;Zhang et al., 2012). More 15 

recent studies used EVI time series recorded by the MODerate-resolution Imaging 16 

Spectroradiometer (MODIS) that has better geometric correction and increased resolution 17 

compared to AVHRR (Tan et al., 2011). Compared with NDVI, EVI is less sensitive to residual 18 

atmospheric contamination and soil background variations, and has a larger dynamic range of 19 

sensitivity to vegetation greenness (Huete et al., 2002). EVI time series measure change in an 20 

integrated property commonly referred to as ‘greenness’ has been found to be correlated with sub 21 

pixel chlorophyll content and leaf area index (Huete et al., 2014).  22 

 23 

Parameters describing phenological cycles (hereafter phenological metrics) can be used to quantify 24 

the influence of climate change and variability on phenological magnitude (Ma et al., 2013;Brown et 25 

al., 2010) and timing (Guan et al., accepted). Australia has one of the most variable climates in the 26 
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world, subject to high inter-annual rainfall variability due to the influence of El Niño Southern 1 

Oscillation (ENSO) (Nicholls, 1991;Nicholls et al., 1997). Previous studies investigated the 2 

relationship between vegetation index time series and rainfall globally, and the correlation with soil 3 

moisture for Australia (Chen et al., 2014a;Andela et al., 2013). However, studies quantifying the 4 

relationship between phenological magnitude and ENSO-related climate variability as shown for 5 

example for Africa (Brown et al., 2010;Philippon et al., 2014) are missing. Here we analyzed 6 

phenological magnitude responses to climate variability through a period of time from 2000 to 2013. 7 

This period encompassed the Australian Millennium Drought from 2001-2009 (van Dijk et al., 2013) 8 

and the 2010-11 La Niña associated flooding (Heberger, 2011;Australian Bureau of Meteorology, 9 

2014a) and focused on one of the most affected areas, the MDB in South East of Australia (van Dijk 10 

et al., 2013;Kirby et al., 2012;Australian Bureau of Meteorology, 2014b).  11 

Particular emphasis was given to the MDB the catchment of Australia’s largest river system and 12 

associated ecologically valuable floodplain and wetland ecosystems and the primary agricultural 13 

area of the continent (Connell, 2007).  14 

 15 

The objectives of this study were to: 1) characterize the inter- and intra-annual variability of 16 

phenological cycles of greening and browning, including non-annual cycles across Australia, a 17 

continent with vast areas of dryland ecosystems; and 2) investigate the relationships between the 18 

derived phenological magnitude and rainfall, as well as between phenological magnitude and the 19 

Southern Oscillation Index (SOI; Trenberth and Caron (2000)), a proxy of ENSO, across the entire 20 

continent and in more detail for the MDB.  21 

 22 

2 Methods 23 
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2.1 Study area and data used 1 

Australia covers an area of > 7.6 million km2 and climatic zones range from tropical in the North to 2 

temperate in the South (Fig. 1). Average rainfall does not exceed 600 mm over 80% of the land area 3 

and is less than 300 mm over 50% of the land area (Australian Bureau of Meteorology, 2014c). 4 

Northern Australia is dominated by savanna, whereas most of the country is covered by grassland 5 

and desert vegetation (Köppen, 1884). Forest occurs at higher elevation in the temperate South 6 

West and South East where large areas of the lowlands are used for rain-fed agriculture (Fig. 1; 7 

Lymburner et al. (2011)). The MDB contains Australia’s primary agricultural area and occupies 14% 8 

of Australia in the South East of the continent (Fig. 1).  9 

 10 

Place Fig. 1 around here 11 

 12 

For algorithm development and testing, we used a set of EVI time series at 36 sites distributed across 13 

Australia (Fig. 1). These 36 sites represented a range of land cover and climatic zones (Table 1; 14 

(Lymburner et al., 2011);(Australian Bureau of Meteorology, 2014c)) to ensure that the algorithm 15 

effectively captures the variability in phenology across the country and we used them to determine 16 

optimized algorithm parameters. The majority (21) of our test sites were flux tower sites from the 17 

OzFlux network (2014). We selected 15 additional test sites to represent a wider coverage of climate 18 

conditions, vegetation cover and land uses.  19 

 20 

Place Table 1 around here 21 

 22 

As input data for the phenological characterization, we sourced EVI MOD13C2 and MOD13A1 with a 23 

temporal resolution of 16 days for the 18 Feb 2000 – 22 Apr 2013 time period (NASA Land Processes 24 

Distributed Active Archive Center, 2014).  25 

https://lpdaac.usgs.gov/products/modis_products_table/mod13c2
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We used the 5.6-km product (MOD13C2) to characterize the biogeographic patterns of vegetation 1 

phenology across the entire Australian continent and the 500-m product (MOD13A1) to investigate 2 

the phenological patterns in more detail across the MDB. We chose the 16-day versions of the 3 

products as they attenuate the noise present in higher temporal resolution versions (Solano et al., 4 

2012).  5 

To analyze the responses of phenological metrics to rainfall variability, we used monthly data from 6 

the Tropical Rainfall Monitoring Mission Project (TRMM_3B43.v7 product; (Goddard Space Flight 7 

Center, 2014)) with 0.25° x 0.25° spatial resolution for 1999-2012. Instead of using gridded rainfall 8 

data interpolated from widely spaced weather stations across large areas of the interior, we opted 9 

for remotely sensed rainfall measured by TRMM, which is systematic across space and time.  10 

To analyze the responses of phenological metrics to ENSO, we used monthly data of the Southern 11 

Oscillation Index (SOI) obtained from the Australian Bureau of Meteorology (2014d). SOI represents 12 

the standardized difference of air pressures between Darwin and Tahiti and serves as a proxy of 13 

convection in the Western Pacific caused by ENSO sea surface temperature anomalies (Trenberth 14 

and Caron, 2000).  15 

Across the MDB we used the Dynamic Land Cover dataset provided by Geoscience Australia 16 

(Lymburner et al., 2011) to investigate the differences between the phenological responses to SOI 17 

and rainfall over natural and managed land cover types. We derived the natural land cover class by 18 

grouping land cover dominated by trees, shrubs and grasses. The managed land cover classes 19 

encompassed rain-fed and irrigated agriculture and pasture. Almost a third of the basin’s area is 20 

managed for cropping and pasture (Lymburner et al., 2011). We also analyzed the phenological 21 

response over the ecologically valuable floodplain and wetland areas of MDB (Kingsford et al., 2004) 22 

and evaluated the floodplain’s response to SOI as a proxy of ENSO-related drought and flooding.  23 

 24 
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2.2 Phenology metrics and algorithm  1 

2.2.1 Phenology metrics 2 

To account for non-annual vegetation dynamics, we defined a phenological cycle not as an annually 3 

or seasonally recurring event but more broadly as a cycle of EVI-measured greening and browning 4 

that may occur more than once per year or may skip a year entirely and not occur for one or more 5 

years.  6 

We modeled phenological cycle curves and key properties of each phenological cycle in the form of 7 

curve metrics. The phenological metrics modeled the timing and magnitude of key transitional 8 

points on the cycle’s curve and included the timing and magnitude of the minimum points before 9 

and after a phenological cycle, the peak point of the cycle and the start and end point of the cycle. In 10 

addition, we also calculated the integrated area between the start and end points of a cycle as a 11 

surrogate of vegetation productivity during a cycle (Zhang et al., 2013). By tracking the phenological 12 

cycle metrics over time, we characterized the intra- and inter-annual variability of the phenological 13 

cycle and thereby vegetation growth patterns.  14 

 15 

2.2.2 Data pre-processing 16 

We used the quality assurance flags in the MOD13 products to discard observations with insufficient 17 

quality, which included any observation with either VI usefulness > code ‘10’, snow cover, high 18 

aerosol or climatology aerosol quantity, mixed or high clouds present or water in the Land/Water 19 

Flag. For each pixel, we first used cubic spline interpolation (Dougherty et al., 1989) to temporally 20 

gap-fill the data points discarded in the previous filtering step. Next, we smoothed the time series 21 

for each pixel using Savitzky-Golay smoothing filter (Savitzky and Golay, 1964) with a window width 22 

of 15 time steps. This step effectively reduced the remaining noises in the time series that would 23 

otherwise impact the identification of minimum and maximum points and the subsequent fitting of a 24 

mathematical curve that we conducted to characterize the phenological cycles in a consistent way.  25 
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2.2.3 Curve fitting and phenological metric derivation 1 

We identified local minimum and maximum points of the per-pixel time series using a moving 2 

window of 9 time steps and a > 0.01 EVI amplitude threshold to identify cycles of greening and 3 

browning. We used the identified minimum points to define the temporal extent of phenological 4 

cycles in the entire time series. We then fitted the 7-parameters double logistic model for each 5 

identified interval. We did not expect one or multiple phenological cycles in fixed intervals of the 6 

year. We thus allowed cycles to be characterized at any time to better represent the highly variable 7 

rainfall-driven phenological patterns across Australia’s vast drylands and dual cycles in cropping and 8 

pasture zones. We fitted 7-parameter double logistic curves to each cycle in the per-pixel time 9 

series, defined as: 10 

 11 

              (1) 

12 

 13 

where Vmina and Vminb are equal to the first and second minimum EVI, respectively. Vmax is the 14 

high asymptote in the double logistic model, Tmida is the time when EVI reached half of Vmax - 15 

Vmina. Tmidb is the time when EVI reached half of Vmax - Vminb. Sa and Sb are the scale parameters 16 

on the increasing and the decreasing side of the curve, respectively. We identified the start and end 17 

points of each cycle as the points where the EVI reached 20% of the amplitude, between the first 18 

minimum and the peak, and the peak and the second minimum, respectively as also used in other 19 

studies (Eklundh and Jönsson, 2010;Tan et al., 2011;Jones et al., 2011;Delbart et al., 2005). 20 

An example of the algorithm processing steps is shown for the Alice Springs flux tower site (Fig. 2). 21 

The site represents Acacia woodlands in the arid interior of Australia. The site serves as an example 22 

showing how our algorithm derives phenological metrics to characterize the high temporal 23 

variability in phenological cycles for the interior of Australia.  24 
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 1 

Place Fig. 2 around here 2 

 3 

We provide further examples of how the algorithm characterized the phenological cycles over 4 

different land cover types in different rainfall zones in Fig. 3. The sites’ location and description is 5 

provided in Fig. 1 and Table 1, respectively.  6 

 7 

Place Fig. 3 around here 8 

 9 

2.3 Analysis of spatial-temporal patterns of phenology across Australia 10 

After deriving phenological cycles and their metrics from per-pixel greenness time series we 11 

analyzed the metrics across Australia at two levels of temporal aggregation: 1) In the form of 12 

summary statistics (mean and standard deviation) across greenness time series to quantify overall 13 

phenological variability over the 14-year time series; and 2) In the form of inter-cyclic variability as 14 

the difference between a metric of one cycle and the following cycle over the 14-year time series. 15 

For a given site, we calculated for example the mean peak magnitude and the peak magnitude’s 16 

standard deviation. An example of inter-cycle variability of metrics is our analysis of peak timing for 17 

all peaks across the time series. We also analyzed the deviation of an individual phenological cycle 18 

integral relative to the expected variability. For this purpose, we calculated the standardized 19 

anomaly of each cycle’s integral as the difference of the cycle’s integral from the mean integral 20 

divided by the standard deviation of the integrals.  21 

 22 
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2.4 Analysis of spatial-temporal patterns of Australian phenology in response 1 

to rainfall and SOI variability  2 

We further analyzed the statistical relationship between phenological cycle peak magnitude and 3 

cycle integrated greenness and TRMM rainfall and SOI (four combinations of correlation analyses) 4 

across Australia and in more detail for the MDB. The cycle peak magnitude represents maximum 5 

greenness while the cycle integrated greenness serves as a proxy of ecosystem productivity (Zhang 6 

et al., 2013). We used non-parametric Spearman rank correlation tests (Lehmann and D'Abrera, 7 

1975), hereafter Spearman rho, to determine the strength and significant od monotonic 8 

relationships between rainfall and each of the two phenology metrics as well as SOI and the two 9 

phenology metrics. We evaluated relationships between rainfall and SOI as the explanatory variables 10 

binned over different intervals and with different lead times to the phenological cycle integral and 11 

peak magnitude, which were used as the response variables. We binned rainfall accumulation for 12 

intervals of 1 to 12 months and average SOI values for periods of 1 to 12 months up to 12 months 13 

prior to the phenological cycle peak.  14 

The underlying assumption for investigating Spearman rho correlations between phenology and 15 

rainfall or SOI was that a significant and strong monotonic relationship between a phenological 16 

metric and preceding rainfall or SOI suggested that the phenology metric (peak magnitude and 17 

integrated greenness) is likely driven by the respective climate variable.  18 

Aiming to identify correlation patterns and how these patterns change as a function of binning 19 

interval (1 – 12 months) and lead times (up to 12 months), we extracted for each pixel and binning 20 

interval the most significant test result. For each potential driver and binning interval, we analyzed 21 

the lead time, correlation and significance value. We illustrated the results only for areas that were 22 

significant (p-value < 0.05) and had a rho value of > 0.6.  23 

Using the above methodology, we conducted a continent-wide analysis and a higher resolution 24 

analysis investigating the relationship of SOI with phenology metrics for the MDB in South Eastern 25 
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Australia. Within the MDB we further investigated relationship between SOI and phenology 1 

(differences in correlation patterns) over natural and managed land cover types as well as the 2 

catchment’s floodplain and wetlands.  3 

 4 

3 Results 5 

3.1 Mean and variability of peak and minimum magnitude as well as start and 6 

end of cycle timing across 14 years 7 

We evaluated the mean and variability of the peak and minimum magnitude across the 14-year time 8 

series to investigate the inter-annual variations in vegetation phenology. The highest mean peak 9 

magnitude occurred in a narrow area covered predominantly by evergreen humid tropical forest 10 

along the North Eastern coast (areas with high EVI in Fig.4 A and B). The same area also had the 11 

highest mean minimum magnitude values, indicating that greenness was persistently high (light 12 

color areas in Fig.4 B). Other areas with high levels of persistent greenness (areas with high mean 13 

peak magnitude and high mean minimum magnitude) included temperate grasslands in coastal 14 

locations of South East Australia, temperate broadleaf forest in the South East and South West of 15 

the continent, and across most of Tasmania (light color areas in Fig.4 A and B). The largest mean 16 

seasonal amplitude (peak minus minimum magnitude) occurred in areas used for crop cultivation 17 

and grazing in the South West and the South East. Areas of low mean peak amplitude were found 18 

across large parts of the interior (darker tone areas in both Fig.4 A and B) with the exception of the 19 

desert river beds.  20 

The highest level of variability in peak magnitude occurred over cropped areas in the South East and 21 

South West of Australia (light colored areas in Fig.4 C). High variability of peak magnitude over 22 

natural vegetation cover was observed for example for regions predominantly covered with tropical 23 

tussock grasses in the inland North and North East as well as areas with predominant chenopod 24 
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woody shrubs cover along the Great Australian Bight along the Southern coast of Australia (light 1 

color areas in Fig.4 C). High variability in minimum magnitude occurred at higher elevations of the 2 

Southern Great Dividing Range in South East of Australia (light color areas in Fig.4 D) and around the 3 

center of the arid Lake Eyre, which is the lowest point of the continent.  4 

 5 

Place Fig.4 around here 6 

 7 

We also evaluated the mean and variability of the start and end of cycle timing across the 14-year 8 

time series. Across Western and South Eastern Australia the mean start of cycles occurred during the 9 

first half of the year and the mean end of cycle occurred in the second half of the year (Fig.5 A1). 10 

Across Northern and Eastern Australia, the mean start of cycles occurred during the second half of 11 

the year and the mean end of cycle occurred in first half of the following year (Fig.5 A2). The 12 

variability in start and end of cycle was highest across interior Australia with the area of high 13 

variability being higher for the end of cycle timing (Fig.5 B1 and 2).  14 

 15 

Place Fig.5 around here 16 

 17 

 18 

3.2 Inter-cycle variability in peak timing 19 

The timing of the first cycles’ peak within each year showed large variation from one year to another 20 

across most of Australia (Fig.6). Variations in peak timing were observed over most of interior 21 

Australia. Peak timing was later than average in 2001, 2004 and 2005 (Fig.6), but earlier in 2010-22 

2012 over interior Australia (Fig.6). The peak timing in the wet tropical savannas of the Northern 23 

Territory and for most of the South West wheat belt was relatively stable (Fig.6). The center of the 24 

continent showed an earlier than average peak in 2002 and 2009.  25 
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Over interior Australia peak timing varied by over a month from one year to another. Areas for 1 

which no peak was observed in a given year (shown in gray in Fig.6) occurred primarily in the 2 

drylands of the continent’s interior, where phenological cycles may not follow an annually recurring 3 

pattern. For example, areas with no peak over interior Australia in Fig.6 for 2005 and 2008 can be 4 

also traced in Fig.2 where the phenology of the Alice Springs site did not show a peak in those years.  5 

 6 

Place Fig.6 around here 7 

 8 

3.3 Variability of cycle-integrated greenness 9 

Greenness integrated between the start and end of a phenological cycle can provide a first 10 

approximation of vegetation productivity (Ponce Campos et al., 2013;Zhang et al., 2013). 11 

Standardized anomalies of integrated greenness highlight the deviation of an individual value from 12 

the mean, relative to the expected level of variability (the standard deviation). Standardized 13 

anomalies of integrated greenness were highly variable across time (Fig.7). Negative standardized 14 

anomalies of integrated greenness (red tones in Fig.7) occurred across the continent in most areas in 15 

2002 and vast areas of the continent in 2008 and 2009. Large areas of negative anomalies also 16 

occurred in 2001 to 2003 and from 2004 to 2009. Large areas of positive standardized anomalies 17 

(green tones in Fig.8), with increased greening of 1 to 2 standard deviations, occurred in 2010 a year 18 

of particularly high rainfall. 19 

 20 

Place Fig.7 around here 21 

 22 

When relating the cycles’ standardized anomalies of integrated greenness to the phenology at the 23 

Alice Springs tower site, the widespread negative standardized anomaly over interior Australia in 24 

2008 (Fig.7) was not represented in the site’s curve (Fig 2) where no cycle started or ended in 2008 25 
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and 2009. Conversely, the positive standardized anomalies of cycles that started in 2010 and 2011 1 

over large areas of Eastern and interior Australia can also be seen in the Alice Springs curve in the 2 

form of larger than average integrals (Fig 2).  3 

 4 

3.4 Analysis of spatial-temporal patterns of Australian phenology relative to 5 

rainfall and SOI variability  6 

We conducted correlation analysis relating two climate drivers (SOI and rainfall) and two 7 

phenological metrics (first peak magnitude and cycle integral of each year), respectively (four 8 

combinations). Each of the four analysis included climate drivers binned over periods between 1 and 9 

12 months within the 12 month period leading up to the phenological peak. We found that areas 10 

with significant correlations between SOI and phenology or rainfall and phenology were most 11 

widespread for a binning interval of one month. Areas with significant correlations shrank as we 12 

increased the binning interval of SOI or rainfall from 1 to 12 months.  13 

The spatial pattern of significant correlations (areas significantly correlated, correlation strength, and 14 

lead times) was generally similar for all four combinations of variables. However, the patterns of 15 

significant correlation between peak magnitude and climate variables covered a larger area 16 

compared to patterns of significant correlation between cycle integral and climate variables. The 17 

patterns of significant SOI-driven correlation with phenology covered a larger and more 18 

concentrated area compared to the rainfall driven correlation patterns. Given the above similarities 19 

and the largest extent of significant correlation patterns at a single month binning interval, we limit 20 

the presentation of results to the most significant monthly SOI and – cycle peak magnitude and the 21 

most significant monthly rainfall– cycle peak magnitude correlation.  22 

The most significant correlation of monthly SOI and cycle peak magnitude and monthly rainfall and 23 

cycle peak magnitude were most widespread in North Eastern Australia (Fig.8 C). Lead times 24 

between the most significantly correlated driver month and the phenological cycle peak were 1 to 6 25 



16 

 

months for North Eastern Australia and 7 to 12 months for the East Australian interior representing 1 

an increase in lead time along a gradient of decreasing rainfall (Fig.8 A and B). These correlation 2 

patterns extended into the Australian interior along desert river drainage lines such as the Cooper 3 

Creek. The floodplain of the of the middle reach of the Cooper Creek can be clearly distinguished in 4 

the correlation pattern, indicating a strong response of the floodplain vegetation to for example SOI 5 

variability (Fig.9). Additional correlation patterns with a shorter lag time behind SOI (1-3 months) 6 

were observed near the West coast of Australia with longer lag times of 5-8 month behind rainfall 7 

(Fig 8 A).  8 

 9 

Place Fig.8 around here 10 

 11 

Place Fig.9 around here 12 

 13 

In the MDB, correlation patterns between monthly SOI and cycle peak magnitude occurred primarily 14 

over natural vegetation cover as opposed to areas used for agriculture or pasture (managed land 15 

cover). The percentage of all significant relationships over natural land cover was 83.6% as opposed 16 

to 15.9%, the percentage of all significant relationships over managed land cover (Table 2). These 17 

percentages were disproportional to areal percentages of natural and managed land cover within 18 

the MDB (71.8% and 28.2%, respectively). The highest percentage of significantly correlated areas 19 

within each land cover class and highest mean rho values were found in areas dominated by shrubs, 20 

trees and grasses. Irrigated agriculture and pasture had the smallest percentage of correlated area 21 

(Table 2) compared to other land cover classes.  22 

The ecologically valuable floodplains and wetlands of the MDB made up 10.9% of the basin area and 23 

were of mixed land cover composition. The percentage of all areas with significant correlations 24 

between monthly SOI and phenological cycle peak magnitude in floodplains and wetlands was 25 

disproportionally higher (14.8%) than the percentage of area occupied by this zone (10.9%). In 26 
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addition, 6.1% of the floodplain and wetlands area showed significant relationships with monthly 1 

SOI, which is higher than for any of the individual land cover classes in Table 2.  2 

 3 

Place Table 2 around here 4 

 5 

4 Discussion 6 

4.1 A phenological characterization of Australia that accommodates non-7 

annual phenological cycles  8 

Our research characterized the cycles and variability of non-annual vegetation phenology across 9 

Australia and identified their relationships with variability in rainfall and ENSO-related large scale 10 

atmospheric circulation. We provide a characterization of annual and non-annual phenological cycles 11 

of vegetation greening and browning for Australia based on MODIS EVI data. 12 

We used an enhanced phenology model to characterize rainfall-driven phenology across the 13 

Australian continent, which includes large dryland regions. Very few studies have previously 14 

quantified the land surface phenology of dryland systems (Walker et al., 2014), likely due to the fact 15 

that the phenology of these systems is more complex than that of most temperature-limited regions 16 

(Walker et al., 2014;Primack and Miller-Rushing, 2011). Dryland phenology responds to a variable 17 

rainfall regime where the timing and magnitude of precipitation events varies inter-annually (Loik et 18 

al., 2004;Brown et al., 1997). 19 

We identified and characterized rainfall-driven phenological cycles at any time of the year over a 14-20 

year time series rather than within a predefined interval of every calendar year. This is important as 21 

the timing of phenological cycles varied and not every phenological cycle metric occurred in every 22 

year. We first identified points demarcating phenological cycles from the entire EVI time series and 23 

then characterized the cycles using mathematical curves. For example, we did not identify a cycle 24 
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peak for every year and every pixel (areas shown in gray in Fig.6). However, this does not imply that 1 

no cycle occurred but that the vegetation at these sites and points in time could be greening up 2 

towards a peak in the following year, browning down towards an end of cycle point or be in a phase 3 

between cycles. For example, the absence of peaks over interior Australia in 2005 and 2008 (Fig.6) is 4 

also reflected in Fig 2. where the vegetation at the Alice Springs site in interior Australia was in 5 

between phenological cycles. Phenological cycles thus need to be analyzed in the temporal context 6 

of multiple years. While most studies of phenology attempted to fit phenological curves within a 7 

predefined interval every calendar year, certain authors have proposed methods that include 8 

iterating the curve fitted to the vegetation index time series or by fitting a curve of vegetation index 9 

versus accumulated moisture (Tan et al., 2011;Brown and de Beurs, 2008). Our approach to 10 

characterize non-annual phenology can be applied to other areas with rainfall-driven phenology and 11 

thus contributes to our understanding of non-annual, rainfall-driven phenological dynamics globally. 12 

While the results presented in this work focus on the phenological metrics of the first cycles of each 13 

year, a second cycle was not detected over most of Australia. For example two peaks during a 14 

calendar year occurred over only 25% of the Australian land surface. Within the 14 years of study, 15 

two peaks per year occured no more than three times across 96% of Australia. Areas with two peaks 16 

per year occurred mostly on cropping or pasture land uses (Fig. 10). An alternative method to 17 

identify the number of cycles for broad regions can be found in Guan et al., (2014).  18 

 19 

Place Fig 10 around here 20 

 21 

4.2 Phenology of Australia’s interior 22 

For the interior of Australia we identified low phenological peak and minimum magnitude and 23 

associated small amplitude (darker tone areas in both Fig.4 A and B), high variability in magnitude, 24 

timing and cycle integral. In addition, a peak was not identified in every year for large areas of the 25 
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interior. Most areas of the interior are dryland systems with sparse vegetation cover and where 1 

vegetation phenology is driven by highly irregular rainfall timing and amounts (Australian Bureau of 2 

Meteorology, 2014c, e) and hydrologic regimes can be difficult to predict (Young and Kingsford, 3 

2006). Thus we do not see a strong phenological response (low amplitude), however we interpret 4 

the high variability in start of cycle and peak timing (Fig 4 and Fig 5) as a fast response to rainfall 5 

pulses and the missing cycles (Fig 5) were interpreted as dormant periods during dry years (Loik et 6 

al. 2004). We interpret these patterns of variable phenological cycles over interior Australia, where a 7 

cycle may vary in timing and length, or may skip a year entirely, to occur as a function of high climate 8 

variability. De Jong et al. (2012) identified frequent trend breaks of greening and browning over 9 

Australia that may be related to the non-annual phenological cycles identified here. 10 

Desert river beds in the interior of the continent had low minimum but moderate peak magnitude. 11 

The elevated peak magnitudes are caused by flooding driven by high amounts of distant rainfall 12 

(Young and Kingsford, 2006). The center of the arid Lake Eyre basin showed high variability in 13 

minimum magnitude. Lake Eyre is the center of a sparsely vegetated, close drainage basin and the 14 

fact that we identified high variability was in line with known flooding patterns as this salt lake is 15 

reached by flooding only once in a century (McMahon et al., 2005). We interpret the positive 16 

anomaly in 2010 (Fig.7) as a function of the La Niña floods (Australian Bureau of Meteorology, 17 

2014a).  18 

Conversely, large variability of peak timing and cycle integrated greenness from one to another 19 

phenological cycle was found not just in the interior of Australia but across most of the continent 20 

(Fig. 6 and Fig. 7). High inter-annual variability in water availability across most of Australia rather 21 

than for the continent’s interior has also been demonstrated by the Australian Water Availability 22 

Project (2014).  23 

 24 
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4.3 Australia’s phenology, the 2001 to 2009 Millennium Drought and La Niña 1 

high precipitation event in 2010 2 

The years with widespread negative standard anomalies of cycle integrated greenness coincided 3 

with the Millennium Drought from 2001 to 2009 (Heberger (2011); Fig. 7). Dryland vegetation is 4 

subject to environmentally marginal conditions and is therefore highly sensitive to climate variability  5 

(Hufkens et al., 2012;Brown et al., 1997).  6 

Yet, the spatial extent of negative anomalies in certain years that extend beyond the dry interior 7 

suggested temporary yet severe drought-related water limitations also in the monsoonal North and 8 

the temperate area of South Eastern and South Western Australia (Fig. 7). The large positive 9 

standardized anomalies of cycle integrated greenness identified in this work across most of Eastern 10 

Australia in 2010 (1 to 2 standard anomalies; Fig. 7) coincided with a strong La Niña event and 11 

associated high rainfall and floods that broke the Millennium Drought (Australian Bureau of 12 

Meteorology, 2014a;Heberger, 2011). This pattern includes the desert rivers extending from North 13 

Eastern Australia to Lake Eyre, which experienced a major flood in 2010.  14 

While the relationship between ENSO cycles and rainfall variability primarily over Eastern Australia 15 

has been investigated before (van Dijk et al., 2013;Risbey et al., 2009), our research has quantified 16 

vegetation response across Australia to the transition from a strong El Niño drought to La Niña wet 17 

periods. While the positive vegetation response to the 2010 La Niña occurred over Eastern Australia 18 

that is also influenced by ENSO cycles (van Dijk et al., 2013;Nicholls, 1991;Nicholls et al., 1997), the 19 

negative vegetation response during the Millennium Drought cover a larger area and occurred 20 

across the continent.  21 

 22 

4.4 Spatially explicit relationship between phenology and climatic variability 23 

We found that SOI-driven patterns of correlation with phenology covered a larger area compared to 24 

rainfall-driven patterns likely because SOI is a more generic proxy of climatic variability that 25 
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influences temperature, incoming solar radiation and rainfall rather than rainfall alone (Risbey et al., 1 

2009;Australian Bureau of Meteorology, 2014f) and because not all ecosystems of Australia are only 2 

limited by water availability but also by temperature and radiation (Nemani et al., 2003).  3 

The spatial extent of areas where we detected correlation between SOI or rainfall and phenological 4 

metrics shrank with longer binning intervals of the climatic drivers. This suggested that relationships 5 

between climatic drivers and phenological variability were strongest for driver variability within a 6 

specific month of the year (e.g., SOI in September) as opposed to driver variability within for 7 

example a 6 month period (e.g., mean SOI across 6 months starting in April). This falls in line with the 8 

findings by Stone et al. (1996) who identified relationships between short-term SOI dynamics at 9 

specific times of the year and rainfall. Previous studies (e.g. Brown et al. (2010)) using seasonal or 10 

longer temporal aggregation of driver variables may therefore have not identified the full spatial 11 

extent of correlation patterns.  12 

We found the most concentrated significant correlation patterns between SOI and peak magnitude 13 

in North Eastern Australia, which is in the proximity of the West Pacific convection variability 14 

indicated by SOI. We observed similar yet less concentrated pattern for the rainfall – peak 15 

magnitude correlation. We interpret this latter pattern as primarily as the effect of the large-scale 16 

atmospheric circulation patterns indicated by SOI. The lag times of correlations over North Eastern 17 

Australia varied between 1 and 6 months following SOI or rainfall. Shorter lag time (1 to 3 months) 18 

correlation patterns with SOI were observed near the West coast of Australia yet lag times following 19 

rainfall were longer (5-8 month). These patterns are spatially remote from the variability in 20 

convection over the Western Pacific (North East of Australia) indicated by SOI. They may be related 21 

to influence of the Indian Ocean Dipole (IOD) and the interaction between SOI and IOD (Risbey et al., 22 

2009), which may explain the difference in lead time of the SOI and rainfall drivers. Over North 23 

Eastern Australia and the East Australian interior, the identified 3 to 6 and 7 to 12 months lag time of 24 

phenological cycle peak magnitude was similar for the SOI and rainfall driver. The lag times identified 25 

here fell within the range of aggregation found by Andela et al. (2013) who related NDVI with 26 
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rainfall. A study by Chen et al. (2014b) identified short lags (predominantly 1 month) between soil 1 

moisture and NDVI, which are shorter than most of the lags we identified here. Soil moisture in the 2 

previous month may provide the most direct relationship with vegetation response (as it represents 3 

water available to vegetation) but the climatic conditions that drive soil moisture may precede the 4 

soil moisture by a few months (Philippon et al., 2014). The identified increase in lag time between 5 

SOI and phenological peak magnitude and rainfall and phenological peak magnitude along a gradient 6 

of decreasing rainfall was in agreement with the findings by Andela et al. (2013). However, these 7 

findings contradict the concept that rainfall pulses drive rapid phenological response (Loik et al., 8 

2004). We interpret our findings as the dominating space-time relationship between large scale 9 

atmospheric circulation pattern variability and phenological response. Yet these patterns are unlikely 10 

to represent responses to individual storm events. However, less significant relationships with 11 

different SOI and rainfall month and lag time were also present suggesting that vegetation responds 12 

to climatic variability at multiple time scales. A more in-depth analysis of the relationship between 13 

climatic drivers and phenological response across multiple temporal scales should be investigated in 14 

future research.  15 

The proportion of areas for which we identified significant correlations was generally smaller than 16 

those identified in other studies (e.g. Andela et al. (2013) and Chen et al. (2014a)). This could be 17 

related to the relatively short time series we used and consequently the smaller power of our 18 

correlation analysis. Nonetheless, the spatial pattern of correlation was most widespread in North 19 

Eastern Australia and along desert river beds (e.g., Cooper Creek) in the interior. These patterns 20 

agreed spatially with what would be expected from the SOI-approximated moisture source over the 21 

West Pacific and the associated progression of rainfall and runoff into interior Australia.  22 

We conducted a higher spatial resolution correlation analysis for the MDB to investigate sensitivity 23 

of the area’s vegetation to SOI variability. The MDB contains the primary agricultural area of 24 

Australia and the basin’s agriculture was severely impacted by the Millennium Drought (van Dijk et 25 

al., 2013;Kirby et al., 2012;Heberger, 2011). We identified correlation patterns between SOI and 26 
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peak magnitude primarily over natural vegetation cover as opposed to areas used for dryland 1 

agriculture or pasture. As expected, irrigated agriculture had the lowest percentage of area with 2 

significant correlations between SOI and phenological peak magnitude. The lowest percentage of 3 

area with significant correlations over managed land may be explained by the effort that land 4 

managers and irrigators make to archive maximum production regardless of climatic variability (e.g. 5 

fertilization, use of pesticides, crop rotation, livestock density, movement and irrigation) whereas 6 

landscapes with natural vegetation cover may respond directly to climatic variability. In the context 7 

of climatic influence on agriculture in the MDB, van Dijk et al. (2013) suggested that the Millennium 8 

Drought impact on dryland wheat yields was offset by steady increases in cropped area and plant 9 

water use efficiency as well as possibly CO2 fertilization. As a zone of special interest within the MDB 10 

we focused on floodplains and wetlands. These ecosystems were strongly impacted by the 11 

Millennium Drought and 2010 La Niña floods (Australian Bureau of Meteorology, 2014b;Leblanc et 12 

al., 2012). Across the MDB’s floodplains and wetlands, we identified the highest percentage of areas 13 

(6.1%) with significant correlation between SOI and phenological peak magnitude compared to other 14 

natural or managed land cover, highlighting the sensitivity of these ecosystems to ENSO-related 15 

climatic variability. We attributed the low percentage to limited test power as a function of the 16 

relatively short time series (14 years) used here. For example Brown et al. (2010) found between 17 

10% and 27% of certain areas in Africa to be significantly correlated with atmospheric indices using a 18 

25-year AVHRR time series.  19 

 20 

4.5 Limitations and future work 21 

Several caveats of our work should be noted. When interpreting the phenological cycles 22 

characterized here, it should be noted that the sub pixel composition of vegetation and background 23 

as well as multi-layer vegetation structure is unknown and may change over time (Zhang et al., 24 

2009;Walker et al., 2012;Walker et al., 2014). Various methods for validating remotely sensed 25 
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metrics of phenological cycles with ground-based observations have been discussed including flux 1 

tower productivity time series, ground based radiation sensor time series, phenocam time series as 2 

well as crowd sourced citizen science (Richardson et al., 2007;Liang and Schwartz, 2009;Restrepo-3 

Coupe et al., 2013). Validation of the phenological metrics developed here is currently underway.  4 

The phenological metrics derived and described here represent different stages of vegetation 5 

growth. They have been made freely available in contribution to the Australian Terrestrial Ecosystem 6 

Research Network (TERN) and can be downloaded from the AusCover TERN Sydney node1: 7 

http://data.c3.uts.edu.au providing opportunities for a range of applications.  8 

In this work we traced phenological cycles over time, quantified cycles’ inter-annual variability and 9 

investigate their relationship with rainfall and ENSO thereby advancing phenological research for 10 

Australia, a country with extensive drylands. The phenological metrics provided here can be further 11 

used for characterizing the effect of anthropogenic disturbances on phenology and unraveling this 12 

effect from the influence of climatic forcing related to ENSO. Another opportunities for future work 13 

are the reanalysis of trends and trend breaks in vegetation phenological magnitude dynamics and 14 

climatic drivers (Donohue et al., 2009;de Jong et al., 2012;Chen et al., 2014a) and the relationship 15 

between vegetation phenologcal timing and climate controll (Guan et al., accepted).  16 

 17 

5 Conclusion 18 

We characterized vegetation phenological cycles that we derived from time series of earth observing 19 

satellite images from 2000 to 2013, across Australia, the driest inhabited continent. The 20 

precipitation-driven, non-annual phenology of Australia’s drylands has not been previously studied 21 

                                                           
1
 The Australian Phenology Product is scheduled to permanently migrate to the Australian Research Data 

Storage Infrastructure (RDSI) that is funded through the Australian Government’s Super Science Initiative and 

sourced from the Education Investment Fund (EIF). 

http://data.c3.uts.edu.au/
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in detail and the relationship between phenology and climatic drivers including rainfall and SOI has 1 

not been previously quantified.  2 

We found the phenology of Australia’s drylands to be highly variable across the time series with 3 

shifts in phenological cycle peak timing of more than one month in the interior of the continent. 4 

Cycle integrated greenness, surrogate of vegetation productivity, shifted from negative to positive 5 

anomalies over most of Eastern Australia with the transition between the El Niño induced decadal 6 

droughts to flooding caused by La Niña. We related phenological magnitude response variability to 7 

the variability in rainfall and SOI across the continent and at higher spatial resolution for the MDB, 8 

the main agricultural basin of Australia. We found the most widespread correlation patterns with 9 

single-month as opposed to multi-month aggregated drivers, suggesting that rainfall and SOI at a 10 

specific point in time is of primary importance in driving phenology. Correlation patterns between 11 

phenological magnitude response with rainfall and SOI occurred primarily over North Eastern 12 

Australia and within the MDB predominantly over natural land cover and particularly in floodplain 13 

and wetland areas, highlighting the sensitivity of these ecosystems to ENSO-related climatic 14 

variability. 15 

A more in-depth analysis of the relationship between climatic drivers and phenological magnitude 16 

response across multiple temporal scales and including temperature and radiation drivers and driver 17 

combinations should be investigated in future research. Further, the analysis of the relationship 18 

between phenological timing and climatic drivers should also be investigated.  19 

Our approach could be valuable for other areas of rainfall-driven system and thus contributes to our 20 

understanding of non-annual phenological dynamics globally. The quantified spatial-temporal 21 

variability in phenology across Australia in response to climate variability presented here advances 22 

research of dryland phenology and provides important information for land management and 23 

climate change studies. The phenological metrics derived represent different stages of vegetation 24 
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growth. They have been made freely available in contribution to the Australian Terrestrial Ecosystem 1 

Research Network (TERN) and can be downloaded from the AusCover TERN Sydney node providing 2 

opportunities for a range of applications. The phenological metrics can be further used for 3 

characterizing the effect of anthropogenic disturbances on phenology and unraveling this effect 4 

from the influence of climatic forcing components and large scale atmospheric circulation indices. 5 
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Figure captions 1 

Fig. 1. Land cover map of Australia shows closed and open tree cover in dark and light green, respectively. 2 

The purple colors that occur predominantly in the South West and South East represent crops and pasture. 3 

Brown marks shrubs, orange colors mark tussock grass and light brown colors mark hummock grass cover 4 

across most of the semi-arid and arid interior (land cover classes were aggregated based on: Lymburner et 5 

al. (2011). The most prominent topographic feature is the Great Dividing Range that runs along the Eastern 6 

seaboard. Locations of the 21 OzFlux flux tower sites and 15 additional sites are shown as red and blue 7 

circles. We used the EVI time series at the sites for phenological algorithm development and testing (site list 8 

provided in Table 1). The phenology for the sites marked by a large black circles is presented and discussed 9 

in Section 2.2.3. The bottom left panel shows the extent of the MDB.  10 

 11 

Fig. 2. Algorithm steps applied to the 14-year MODIS EVI time series (MOD13C2 single 5.6-km pixel) for the 12 

Alice Springs flux site representing semi-arid mulga (Acacia) woodland of the center of Australia. (A) EVI 13 

time series after screening out low quality observations (brown circles), EVI time series after gap filling and 14 

smoothing (blue circles), and flagged minimum and peak of cycle points (green diamonds). (B) Curves fitted 15 

as 7-parameter double logistic functions (red squares) characterizing the phenological cycles, and identifying 16 

start and end of cycles points (yellow circles) delineating the cycles. The timing, length, amplitude, and 17 

magnitudes of the phenological cycles at the site vary inter-annually. 18 

 19 

Fig. 3. Examples of temporal variability of the characterized phenological cycles for the Sturt Plains, 20 

Calperum, and Great Western Woodlands sites (refer to Fig. 1 and Table 1 for the sites’ location and 21 

description, respectively). Based on 14-years of MODIS EVI data after screening out low quality observations 22 

(brown circles), EVI time series after gap filling and smoothing (blue circles), fitting 7-parameter double 23 

logistic functions (red squares) and identifying start and end of cycles points (yellow circles) delineating the 24 

characterized phenological cycles. 25 

 26 

Fig. 4. Mean of peak magnitude (A), mean of minimum magnitude (B), standard deviation of peak 27 

magnitude (C) and standard deviation of minimum magnitude (D). A map of dominant land cover type is 28 

provided in Fig. 1.  29 

 30 

Fig. 5. Mean Julian day of the start of the phenological cycles (A1) and standard deviation of the start of the 31 

phenological cycles in number of days (B1) and mean Julian day of the end of the phenological cycles (A2) 32 

and standard deviation of the end of the phenological cycles in number of days (B2) across the 14-year time 33 

series. 34 

 35 

Fig. 6. Inter-annual variation in the peak timing. The Julian day of the phenological cycles’ peak is displayed 36 

in the calendar year  hen the peak occurred. The mean    ) and standard deviation (σ) of the cycle peak 37 
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timing is provided for reference. The scale is cyclic. Areas where no peak was observed during a given 1 

calendar year are shown in gray.  2 

 3 

Fig. 7. Mean of the cycles’ integral greenness across the time series (top left panel in day units) and 4 

standardized anomaly of each cycle’s integrated greenness. The standardized anomalies of the cycles are 5 

shown in the year when the cycle started. For example, for a site with six phenological cycles across the time 6 

series that started in 2001, 2002, 2003, 2005, 2008 and 2010, the cycles’ standard deviations are sho n in 7 

2001, 2002, 2003, 2005, 2008 and 2010. All other years are shown as gray as no phenological cycle start was 8 

detected for those years. The white circle in the top left panel mark the OzFlux site shown in Fig. 2. 9 

 10 

Fig. 8. Statistically significant relationships between monthly SOI and phenological cycle peak magnitude 11 

(top row) and monthly rainfall and phenological cycle peak magnitude (bottom row). (A) SOI and rainfall 12 

month most significantly correlated with peak magnitude. (B) Lead time of SOI and rainfall month relative to 13 

phenological peak and  C) Spearman’s rho. Areas  ith p > 0.05 area sho n in  hite. The black bo  in the top 14 

right panel marks the extent of the area shown in Fig. 9 centered on the Cooper Creek floodplain in interior 15 

Eastern Australia. 16 

  17 

Fig. 9. Significant Spearman rho correlations (shown in green) between monthly SOI and phenological cycle 18 

peak magnitude over a region in central Australia. The Cooper Creek floodplain of the middle reach of the 19 

Cooper Creek is visible in the center. Only areas with p < 0.05 and rho >= 0.6 are shown.  20 

 21 

Fig. 10. Number of years within the 14-year time series where two peaks were detected mostly associated 22 

with cropping or pasture land (Fig. 1).  23 

 24 

 25 

26 
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Tables and Figures: 1 

Table 1. Names, locations, land cover class (Lymburner et al., 2011) and, average annual 

rainfall amounts (Australian Bureau of Meteorology, 2014c) for the 36 sites shown in Fig. 1 

Site Name 
Ozflux 
site 

Site Code 
Fig. 1 Lat (°S) 

Long 
(°E) Land cover classes  

Average annual 
rainfall [mm]  

Nullaboure   NU -30.275 127.175 

Woody shrubs 

scattered  

200 

Great Blight 
Desert   GBD -29.125 133.075 

Woody shrubs sparse  

200 

Lake Eyre   LE -27.425 137.225 

Woody shrubs sparse 

200 

Great Western 
Woodlands   GWW -30.225 120.625 

Woody trees scattered 

300 

East of Shark 
Bay   ESB -24.475 116.325 

Woody shrubs sparse 

300 

Central 
Western 
Australia   CW -24.125 124.175 

Woody shrubs sparse 

300 

Interior 
Southeast 
Australia   IEA -29.425 144.225 

Woody shrubs sparse 

chenopods 

300 

Calperum x CP -34.025 140.375 

Woody trees scattered 

300 

West 
Australian 
wheat belt   WAW -32.125 117.425 

Herbaceous graminoids 

rainfed  

400 

Irrigated 
cropping   IC -35.275 145.275 

Herbaceous graminoids 

rainfed 

400 

Alice Springs x AS -22.275 133.225 

Herbaceous graminoids 

sparse hummock 

grasses 

400 

Simpson 
Desert   SD -20.475 124.025 

Herbaceous graminoids 

sparse hummock 

grasses 

400 

Hamersley x HA -22.275 115.725 

Woody shrubs sparse 

400 

Great Western 
Woodlands flux x GWWF -31.925 120.075 

Herbaceous graminoids 

sparse hummock 

grasses 

400 

Queensland 
Tussock   QTU -21.225 143.075 

Herbaceous graminoids 

sparse hummock 

grasses 

500 

North West 
Queensland   NWQ -19.525 140.025 

Woody trees scattered  

600 
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Sturt Plains x SP -17.175 133.375 

Woody trees sparse 

600 

Riggs Creek x RC -36.625 145.575 

Herbaceous graminoids 

rainfed pasture 

800 

Arcturus x AR -23.875 149.275 

Woody trees open 

800 

Gingin x GG -31.375 115.725 

Woody trees sparse 

800 

Otway x OT -38.525 142.825 

Herbaceous graminoids 

rainfed pasture 

1000 

Wombat x WO -37.425 144.075 

Woody trees closed 

1000 

Cumberland 
Plain x CU -33.725 150.725 

Woody trees sparse 

1000 

Dry River x DR -15.275 132.375 

Woody trees sparse  

1000 

Wallaby Creek x WC -37.425 145.175 

Woody trees closed 

1200 

Daly River 
Pasture x DRP -14.075 131.375 

Woody trees open 

1200 

West of North 
Queensland   WNQ -16.275 142.475 

Woody trees sparse 

1200 

Nimmo x NI -36.225 148.575 

Woody trees closed 

1600 

Samford x SA -27.425 152.825 

Woody trees closed 

1600 

Tumbarumba x TU -35.675 148.175 

Woody trees open 

1600 

Howard 
Springs x HO -12.475 131.175 

Woody trees open  

1600 

Dampier 
peninsula   DP -15.125 125.725 

Woody trees sparse 

1600 

Dargo x DA -37.125 147.175 

Herbaceous graminoids 

rainfed pasture 

2000 

Northwest 
Tasmania   NWT -41.225 145.175 

Woody trees closed 

2000 

Cape 
Tribulation x CT -16.125 145.375 

Woody trees closed 

8000 

Daintree x DT -16.225 145.425 

Woody trees closed  

8000 

 1 

 2 

 3 

 4 

 5 
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Table 2. Percentage distribution of most significant correlation relationship between monthly SOI and 

phenological peak magnitude per land cover class across the MDB. Shown are percentages of the MDB occupied 

by different land cover, percentage of basin-wide significantly correlated areas per land cover, percent of 

significantly correlated land cover class and average rho value per land cover.  

Aggregated 

land cover 

classes 

(LCC) 

Percent of 

basin 

covered by 

each LCC 

% of the areas of significant 

correlations between monthly 

SOI and peak magnitude within 

each LCC 

% of each LCC where 

significant correlation 

between monthly SOI 

and peak magnitude 

occurred 

Average rho of 

significant correlations 

within LCC 

Trees 43.0 48.7 5.2 0.71 

Shrubs 9.8 12.2 5.7 0.74 

Grasses  19.0 22.7 5.4 0.72 

Rain-fed 

agriculture 

and pasture 

28.1 15.9 2.6 0.69 

Irrigated 

agriculture 

and pasture 

0.1 < 0.0 0.9 0.69 

 1 

 2 
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