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Interactive comment on “Land surface phenological
response to decadal climate variability across Australia
using satellite remote sensing” by M. Broich et al.

Final Responses to Anonymous Referee #2 (marked by “>>7)

>>General Comments

The manuscript presents a geographically comprehensive analysis of vegetation land surface
phenology variability over Australia using MODIS EVI data, with TRMM precipitation and the
Southern Oscillation Index as climatic drivers. The manuscript is well written, advances the
current understanding of vegetation phenology over this continent, and provides clear figures
illustrating the results. Clarification regarding the methods and a few minor changes are needed
however.

The implementation of the 7-parameter double logistic model needs to be clarified. The authors
show in Figure 1 the 36 sites used for “algorithm development and calibration” but it is not clear
how these sites were used in this regard. Stating they were calibration sites implies that they
were used to either provide initial estimates of the parameters, to constrain the parameters prior
to applying the model across all pixels, or perhaps to help identify the width of the smoothing
filter and moving window for defining seasonal minimums. And if so, were these estimations or
constraints specific to land cover types and therefore applied based on each pixels land cover?
or perhaps regionally to determine areas that may exhibit dual seasonality? | suspect the sites
were used simply as test cases to ensure the model produced expected results, correct? If this
is the case then | don’t believe using the term calibration is correct.

>We appreciate the positive feedback from Referee #2.
Our responses to general and specific comments follow (marked by “>”; new and modified
figures below).

Thank for your comment re the term ‘calibration’. We agree that the term was not suitable to
describe our use of the 36 sites. We changed the phrasing and now explain in more detail how
we used the sites as well as the implementation of the 7-parameter double logistic model as per
your suggestion.

We used the sites to determine optimized algorithm parameters such as the width of the
smoothing filter and the moving window for local min and max point detection as well as the
minimum cycle amplitude. The sites also served as test cases to ensure that the model
algorithm, which was generic across the study area, produced expected results. We now clarify
this in the text, removed the term calibration and rephrased relevant passages: e.g. in the
Methods section 2.1: “For algorithm development and testing, we used a set of EVI time series
at 36 sites distributed across Australia. These 36 sites represented a range of land cover and
climatic zones (Table 1; (Lymburner et al., 2011; Australian Bureau of Meteorology, 2014c)) to
ensure that the algorithm captures the variability in phenology across the country and we used
them to determine optimized algorithm smoothing and threshold parameters.”

Regarding the implementation of the 7-parameter double logistic model: In a first step it was
necessary to identify the locations of regularly or irregularly distributed growing cycles across
the time series (e.g. annually or non-annually reoccurring growing cycles). We used a Savitsky-
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Golay filter to smooth the data in preparation for the min and max point delimitation. The local
min max point delineation is susceptible to noise not screened by the QA filter setting thus
requiring prior smoothing. The local min and max point detection was used to define the
boundaries of cycles and define the bounding areas for fitting of a 7 parameter double logistic
curve to every cycle thus characterizing the cycles in a consistent way.

>>My second concern

In regard to these sites, is that only a single site is presented as an example of how well the
model works (and | agree it works fairly well in this location, aside from missing a second
season in 2010; see below). | would highly suggest including more plots (like those found in
Figure 2) that encompass the range of land cover types and/or climate zones. They need not be
as detailed as Figure 2, simply displaying the raw EVI and fitted curves would suffice. This
would highlight the robustness of the model and/or the areas where the model had trouble,
allowing researchers to determine whether applying this model would benefit future specific
analyses.

>Thank you. To highlight the robustness of the model and to facilitate future applications of the
model by readers, we added a figure (new Figure 3) showing the raw EVI, smoothed EVI and
fitted curves as well as the start and end of cycle points for three additional sites representing
different land cover types and rainfall.

>>The second point regarding the model fits is that of dual seasonality within a year. The
authors state a moving window was used to identify minimum points and hence the extent of the
phenological cycle, and that the model was then fit to each of these phenological cycles. First, if
this method identifies seasonal cycles without regard to fixed yearly intervals then why is it
necessary to fit “a second 7-parameter double logistic curve” when a second phenological cycle
was identified within a given year?

>Thank you. We changed the phrasing in section 2.2.3 clarifying that:
“We used the identified minimum points to define the temporal extent of phenological cycles in

the entire time series. We then fitted the 7-parameters double logistic model for each identified
interval. We did not expect one or multiple phenological cycles in fixed intervals of the year. We
thus allowed cycles to be characterized at any time to better represent the highly variable
rainfall-driven phenological patterns across Australia’s vast drylands and dual cycles in cropping
and pasture zones.“ Our algorithm first identified and characterized the cycles for each per pixel
time series and then binned the identified results by calendar year.

>>Second, how large was the moving window and how wide was the smoothing Savitsky-Golay
moving filter? The width of each of these would greatly effect whether a “second” season was
detected or not. This is very apparent in Figure 2. The EVI data points display what appears to
be two seasons in 2010, but the smoothing filter dampens the second season, minimums are
not identified, and the second season is not detected in the curve fit.

>We now state the width of the Savitsky-Golay filter (15 time steps) in the text in section 2.2.2.
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In general, the detectability of both single cycles and cycles close together is a function of the
signal amplitude, the noise level and the smoothing parameters. It is arguable if there are two
cycles in 2010 in Fig 2. At this stage we focused on investigating continent-scale biogeographic
patterns of land surface phenology and response of phenology to rainfall and ENSO variability.
However, we acknowledge that future studies are needed to refine the algorithm for better
characterizing the rainfall pulse-driven patterns of vegetation growth.

>>The dual seasonality problem could also be clarified by including a map showing which pixels
displayed two cycles within a year and how often this occurred. This would also help to clarify
the peak dates shown in Figure 4. Do these dates signify the timing of the first or second peak?
Do many of the areas without a peak in a given year contain two peaks the following year (i.e.
the season started late in year 1 and peaked in year 2, yet the pixel also displayed a second
season in year 2). | realize that it may seem | am belaboring the dual season problem, but this
can be a very common characteristic of highly variable rainfall-driven vegetation phenology and
should not be overlooked. If a very low percentage of the land area does not display dual
seasonality, then | would concede this point, but at this point it in unclear to what extent this
occurs throughout the continent. Dual peaks within a year also can affect the results displayed
in Figure 6B; lead time of SOI month relative to phenological peak.

>Thank you. We appreciate the comment. Two peaks during a calendar year occurred over only
25% of the Australian land surface. Within the 14 years of study, two peaks per year occurred
no more than 3 times across 96% of Australia. Areas with two peaks per year occurred mostly
on cropping or pasture land uses.

>>In regards to the results presented in Section 3.4, | understand the authors choice to only
present the most significant results (SOI in relation to peak magnitude), but | think it would be
worthwhile to also present the best rainfall correlation results as well. The authors clearly state
that Australia is the driest inhabited continent with one of the most variable rainfall climates in
the world and vast areas of dryland systems. This warrants at least the presentation of
precipitation related results, even if they were non-significant. Understanding where, and
perhaps why, the EVI phenology metrics do not coincide with rainfall is an important result. A
second row of maps in Figure 6 would suffice in displaying these results.

>Thank you. We added a second row of maps as per the reviewer’s suggestion (new Figure 8).
We added passages to the manuscript related to the expanded figure in the Results and
Discussion sections. For example in the discussion section the relevant passage now reads:
“‘We observed similar yet less concentrated pattern for the rainfall — peak magnitude correlation.
We interpret this latter pattern as primarily as the effect of the large-scale atmospheric
circulation patterns indicated by SOI. The lag times of correlations over North Eastern Australia
varied between 1 and 6 months following SOI or rainfall. Shorter lag time (1 to 3 months)
correlation patterns with SOl were observed near the West coast of Australia yet lag times
following rainfall were longer (5-8 month). These patterns are spatially remote from the
variability in convection over the Western Pacific (North East of Australia) indicated by SOI.”

>>Specific Comments
Line 55. | believe the correct term is recurring. The term reoccur more specifically refers to a
single event that happens a second time, while recurring defines periodicity.
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>Thank you. We made the change as suggested throughout the manuscript.

>>Lines 71-80. | would suggest moving these lines to the beginning of the introduction. They
provide a good general overview of land surface phenology and would give readers unfamiliar
with the topic a good initial understanding of its importance in relation to other disciplines and
applications.

>Thank you. We rearranged the text as suggested now starting with: “Vegetation phenology
refers to the response of vegetation to inter- and intra-annual variation of climate, specifically
irradiance, temperature and water (Myneni et al., 1997;White et al., 1997;Zhang et al., 2003).
Vegetation phenology is a useful indicator in the study of the response of ecosystems to climate
variability (Zhang et al., 2012;Richardson et al., 2013), and an important parameter for land
surface, climate and biogeochemical models that quantify the exchange of water, energy and
gases between vegetation and the atmosphere (Pitman, 2003;Eklundh and Jonsson, 2010). A
variety of applications that require the characterization of vegetation phenology include crop
yield quantification, wildfire fuel accumulation, vegetation condition, ecosystem response to
climate variability and climate change and ecosystem resilience (Schwartz, 2003;Liang and
Schwartz, 2009;Pefiuelas et al., 2009). Phenology of the vegetated land surface (land surface
phenology, hereafter phenology) is “the seasonal pattern of variation in vegetated land surfaces
observed from remote sensing” (Friedl et al., 2006).”

>>Line 118-199. This sentence is a bit hard to understand; referring to 80% and then 50% of the
land area does not allow for quick comprehension. Perhaps: : : rainfall exceeds 600mm over
20% of the land area and is less than 300mm over 50% of the land area.

>Thank you. We rearranged the sentence as per the reviewer’s suggestion

>>Line 128. “a set of 36 trajectories” is unclear. Please be more specific. “EVI time series over
36 sites: : :” Also, it may be more reader-friendly to use “time series” rather than “trajectories”
when describing the EVI.

>We modified the phrasing as suggested and changed trajectories to time series throughout.
>>Line 180. Parameters of the Savitsky-Golay filter should be identified as this can have a large

effect on the resulting smoothed time-series (see general comments).

>Thank you. We now state the parameters in the text (Section 2.2.2).

>>Line 186. Width of moving window needs to be identified (see general comments)

>We now state the moving window width of 9 time steps in the text (Section 2.2.3).

>>Line 237. “two” should be “to”
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>Thank you. We made the change.

>>Figure 4. An additional map displaying the standard deviation or range in peak timing would
be an ideal addition to the figure as it is difficult to trace a given pixel or area across each year
to determine the extent of variability. The color bar of the legend could be larger and vertical
lines denoting temporal increments would greatly help interpretation (e.g. lines at monthly
intervals).

>Thank you. We added the mean and standard deviation in peak timing to the figure and
caption (new Figure 6). We also added the bars to the legend to identify monthly interval as per
the reviewer’s suggestion (new Figure 5 and 6).

Interactive comment on “Land surface
phenological response to decadal climate
variability across Australia using satellite remote
sensing” by M. Broich et al.

Final Responses to Anonymous Referee #1 (marked by “>>")

>>General Comments

This study examined the spatial and temporal patterns of vegetation phenology in Australia. The
authors also assessed the relationship between climate variability especially rainfall and
vegetation phenology and productivity. The authors also developed an algorithm to extract key
phenological parameters from satellite greenness index time-series.

Phenological change is one of the most direct indicators of the impact of climate change to
terrestrial ecosystems. Although it has been widely studied in many ecosystems, it is
surprisingly rare to see landscape scale analysis of vegetation phenology in Australia, and more
importantly, how climate variability contributed to the changes. This study is thus novel and
important, and will contribute to our understandings of how climate variability controls vegetation
phenology. The manuscript in current form is concise and well written. It can be a better paper if
the following issues are addressed:

| agree with Anonymous Referee #2 that more clarification on the fitting algorithms is needed for
the readers to reproduce the method. Specifically, the moving window to identify minimum and
maximum needs more clarification: are those points identified local min/max points?

>We appreciate the positive feedback from Referee #1.
Our responses to general and specific comments follow (marked by “>”; new and modified
figures below).

Thank you for your comments. We now provide clarification concerning the fitting algorithms as
per the suggestion of both reviewers (we modified relevant passage in sections 2.1, 2.2.2 and
2.2.3. as detailed below). The identified minimum and maximum points are local min/max
points, which we now also clarify in the text.
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Regarding clarification of the 7-parameter double logistic model: In a first step it was necessary
to identify the locations of regularly or irregularly distributed growing cycles across the time
series (e.g. annually or non-annually reoccurring growing cycles). We used a Savitsky-Golay
filter to smooth the data in preparation for the local min and max point delimitation (window
width: 9 time steps). The local min and local max points delineation is susceptible to noises that
were not screened by the QA filter setting thus requiring prior smoothing. The min and max
point delineation was used to define the boundaries of cycles and define the bounding area for
fitting a 7-parameters double logistic curve to every cycle thus characterizing the cycles in a
consistent way.

We modified the text to clarify these points. The modified passage in section 2.1 now reads:
“For algorithm development and testing, we used a set of EVI time series at 36 sites distributed
across Australia (Figure 1). These 36 sites represented a range of land cover and climatic
zones (Table 1; (Lymburner et al., 2011; Australian Bureau of Meteorology, 2014c)) to ensure
that the algorithm effectively captures the variability in phenology across the country and we
used them to determine optimized algorithm parameters.”

The modified passage in section 2.2.2 now reads: “We used the quality assurance flags in the
MOD13 products to discard observations with insufficient quality, which included any
observation with either VI usefulness > code “10’, snow cover, high aerosol or climatology
aerosol quantity, mixed or high clouds present or water in the Land/Water Flag. For each pixel,
we first used cubic spline interpolation (Dougherty et al., 1989) to temporally gap-fill the data
points discarded in the previous filtering step. Next, we smoothed the time series for each pixel
using Savitzky-Golay smoothing filter (Savitzky and Golay, 1964) with a window width of 15 time
steps. This step effectively reduced the remaining noises in the time series that would otherwise
impact the identification of minimum and maximum points and the subsequent fitting of a
mathematical curve that we conducted to characterize the phenological cycles in a consistent
way. “

The modified passage in section 2.2.3 now reads: “We identified local minimum and maximum
points of the per-pixel time series using a moving window of 9 time steps and a > 0.01 EVI
amplitude threshold to identify cycles of greening and browning. We used the identified
minimum points to define the temporal extent of phenological cycles in the entire time series.
We then fitted the 7-parameters double logistic model for each identified interval. We did not
expect one or multiple phenological cycles in fixed intervals of the year. We thus allowed cycles
to be characterized at any time to better represent the highly variable rainfall-driven
phenological patterns across Australia’s vast drylands and dual cycles in cropping and pasture
zones.”

>>|f so, how did the authors determine the window size? Did the size of the window affect the
result? In addition, the authors need to explain the choice of EVI >0.01 (Page 7692) and 20%
amplitude threshold for the start and end of the season.

>Large areas of Australia are sparsely vegetated and with our algorithm we aimed to
characterize the low amplitude phenological cycles of this sparsely covered areas that occupy
most of Australia. The detectability of cycles is a function of the signal amplitude, the noise
amplitude and frequency, and the smoothing parameters. The window size thus affects the
results and we used the 36 sites to optimize the width of the smoothing filter and moving
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window for defining seasonal minimums and maximums as well as the minimum cycle
amplitude. The sites also served as test cases to ensure that the model algorithm, which was
generic across the study area, produced expected results.

We used the > 0.01 EVI threshold on the smoothed time series, which had lower amplitude
compared to the raw, noise affected time series. The 20% amplitude threshold for the start and
end of the cycle has been used in previous studies that we now cite in this context (section
2.2.3).

In section 2.1 we now state that “These 36 sites represented a range of land cover and climatic
zones (Table 1; (Lymburner et al., 2011);(Australian Bureau of Meteorology, 2014c)) to ensure
that the algorithm effectively captures the variability in phenology across the country and we
used them to determine optimized algorithm parameters.”

>>Some of the statements in the Discussion section need to be explicitly supported by the
results from the current study. For example, the authors mentioned in P 7700 Line 17 that
“however we see a fast response to rainfall pulses : : :”. However, according to Fig.6B, some
areas in interior Australia lag behind SOI for _12 months, which thus did not support the above
claim. Another example is that in P 7700, Line 27, the authors mentioned Lake Eyre, but Lake
Eyre was not annotated in the figures.

>Thank you. We changed the phrasing of the relevant passage in section 4.2 to “we interpret
the high variability in start of cycle and peak timing (new Figure 5 and 6) as a fast response to
rainfall pulses and the missing cycles (new Figure 6) were interpreted as dormant periods
during dry years (Loik et al. 2004).”

We state in the discussion (section 4.4) that the findings regarding the lag of phenological
response to SOI and rainfall “contradict the concept that rainfall pulses drive rapid phenological
response (Loik et al., 2004). We interpret our findings as the dominating space-time relationship
between large scale atmospheric circulation pattern variability and phenological response. Yet
these patterns are unlikely to represent responses to individual storm events. However, less
significant relationships with different SOI and rainfall month and lag time were also present
suggesting that vegetation responds to climatic variability at multiple time scales. A more in-
depth analysis of the relationship between climatic drivers and phenological response across
multiple temporal scales should be investigated in future research.”

We now also label Lake Eyre in Fig 1 as per the reviewer’s suggestion.

>>Please add the spatial resolution of TRMM. As | understand the resolution is 0.25 degree by
0.25 degree, which is much larger than the spatial resolution of MODIS. Then the authors need
to explain in detail how to compare the data from these two products.

>Thank you for this comment. We added the spatial resolution (0.25° x 0.25°) of
TRMM_3B43.v7 to the text in section 2.1 ‘Study area and data used’.
Prior to analysis we resample the TRMM data to the spatial resolution of our phenological
variables. As for the implication of the spatial resolution of driver variables, a coarse spatial
resolution driver can partially explain a fine-grained spatial response. In an extreme case, SOI is
a proxy of the air pressure gradient between Darwin and Tabhiti (~8500 km apart) yet we can
detect a fine spatial scale correlation pattern differentiating for example the vegetation response
of the Cooper Creek floodplain form its surroundings as the floodplain’s topography and
hydrology are different from adjacent vegetated areas at a fine spatial scale.
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>>|t would be useful to compare the inter-annual variability of the start of season, and the end of
season, and their relationship with the timing of rainfall (and SOI). As one previous study
suggested that for deciduous forest in Australian tropical savannah, leaf-out (or leaf flushing)
only occurs after the first rainfall event: Williams, R. J., et al. "Leaf phenology of woody species
in a north Australian tropical savanna." Ecology 78.8 (1997): 2542-2558.

>>Thank you for this suggestion. Analyzing the response of woody savanna vegetation to
rainfall timing would be an interesting topic for future work. Remotely sensed phenology in
savanna systems primarily reflects the dynamics of the grassy understory and, while attempts of
signal disaggregation have been made (e.g. Donohue et al 2009), teasing out overstory
dynamics in open canopy woody systems represents a research frontier.

In section 4.5 “Limitations and future work” we state that: “When interpreting the phenological
cycles characterized here, it should be noted that the sub pixel composition of vegetation and
background as well as multi-layer vegetation structure is unknown and may change over time
(Zhang et al., 2009;Walker et al., 2012;Walker et al., 2014).”

>>Specific comments (P for Page, L for Line): P7686 L11: what does “internally” mean here? It
would be better to avoid vague terms like this one.

>Thank you. We removed the term from the sentence.

>>P7686 L15: how to define the effectiveness of the method? If the algorithm used in this study
was not compared with other methods (which is the case), it will be better to refrain from using
this statement.

>Done. Thank you. We rephrased the sentence to: “To fill this knowledge gap and to advance
phenological research, we developed an algorithm to characterize phenological cycles and
analyzed geographic and climate-driven variability in phenology across Australia.”

>>P7690 L06: As Referee #2 suggested that more specifics are needed here. How was the
calibration done? What are the land cover types of those sites (a table will be better)?

>Thank you. We used the 36 sites to optimize the width of the smoothing filter and moving
window for defining seasonal minimums and maximums as well as the minimum cycle
amplitude (which we now specifically state in section 2.1). The sites also served as test cases to
ensure that the model algorithm, which was generic across the study area, produced expected
results. We removed the term calibration from the text and now state that we used the sites for
“algorithm development and testing” (section 2.1). As per the reviewer’s suggestion, we added
Table 1, showing the land cover classes of the test sites and the average annual rainfall to
differentiate phenological test sites that belong to the same land cover class.

>>P7690 L13: Comparing with the 16-day EVI data used in this study, MODQ9 products have
higher temporal resolution (daily and 8-day), which is important for the study of phenology. The
authors need to explain/discuss why the coarser temporal resolution product was selected.
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>Thank you. We chose the 16-day versions of the EVI data as it attenuates the noise present in
higher temporal resolution versions (Solano et al. 2013) and now state this in the text in section
2.1. The passage now reads: “We chose the 16-day versions of the products as they attenuate

the noise present in higher temporal resolution versions (Solano et al., 2012).”

>>P7695 L13: Please explain what is “persistent greenness”. Is it “high mean EVI, and low
magnitude”?

>Persistent greenness is high mean peak EVI and high mean minimum point EVI, so EVI is
always relatively high. We now state this in section 3.1. in the text.

The sentence now reads: “Other areas with high levels of persistent greenness (areas with high
mean peak magnitude and high mean minimum magnitude) included...”

>>Figures:
Fig.1: It will be better if the legend shows the land cover types different colors correspond to,
instead of use words in the caption.

>\We added a color legend to the figure as per the reviewer’s suggestion (Figure 1).
>>Fig.7: This figure would be better if the location of the Cooper Creek floodplain is shown in
the figure. In addition, north arrow would be good.

>Thank you. We now show the Cooper Creek floodplain in the figure and added a north arrow
as per the reviewer’s suggestion (new Figure 9).
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Abstract

Land surface phenological cycles of vegetation greening and browning, recorded by earth observing
satellites, are influenced by variability in climatic forcing. Quantitative spatial information on
phenological cycles and their variability is important for agricultural applications, wildfire fuel
accumulation, land management, land surface modeling, and climate change studies. Most
phenology studies have focused on temperature-driven Northern Hemisphere systems, where
phenology shows annually recurring reeeeurring patterns. Yet, precipitation-driven non-annual
phenology of arid and semi-arid systems (i.e., drylands) received much less attention, despite the
fact that they cover more than 30% of the global land surface. Here we focused on Australia, the
driest inhabited continent with one of the most variable rainfall climates in the world and vast areas
of dryland systems. Detailed and internatly eonsistent studies that investigate phenological cycles via
satellite image time series and their response to climate variability across the entire continent
designed specifically for Australian dryland conditions are missing. To fill this knowledge gap and to
advance phenological research, we used-existing-methods-more-effectively developed an algorithm
to characterize phenological cycles and analyzed te-study geographic and climate-driven variability in
phenology across Australia. We linked derived phenological metrics with rainfall and the Southern
Oscillation Index (SOI). We performed our analysis on Enhanced Vegetation Index (EVI) data from
the MODerate Resolution Imaging Spectroradiometer (MODIS) from 2000 to 2013, which included
extreme drought and wet years. We conducted a continent-wide investigation of the link between
phenology and climate variability and a more detailed investigation over the Murray-Darling Basin
(MDB), the primary agricultural area and largest river catchment of Australia.

Results showed high inter- and intra-annual variability in phenological cycles across Australia. The
peak of phenological cycles occurred not only during the austral summer but at any time of the year,

and their timing varied by more than a month in the interior of the continent. The magnitude of



phenological cycle peak and the integrated greenness were most significantly correlated with
monthly SOI within the preceding 12 months. Correlation patterns occurred primarily over North
Eastern Australia and within the MDB predominantly over natural land cover and particularly in
floodplain and wetland areas. Integrated greenness of the phenological cycles (surrogate of
vegetation productivity) showed positive anomalies of more than two standard deviations over most
of Eastern Australia in 2009-2010, which coincided with the transition between the El Nifio induced
decadal droughts to flooding caused by La Nifia. The quantified spatial-temporal variability in
phenology across Australia in response to climate variability presented here provides important

information for land management and climate change studies and applications.

1 Introduction

Vegetation phenology refers to the response of vegetation to inter- and intra-annual variation of
climate, specifically irradiance, temperature and water (Myneni et al., 1997;White et al., 1997;Zhang
et al., 2003). Vegetation phenology is a useful indicator in the study of the response of ecosystems
to climate variability (Zhang et al., 2012;Richardson et al., 2013), and an important parameter for
land surface, climate and biogeochemical models that quantify the exchange of water, energy and
gases between vegetation and the atmosphere (Pitman, 2003;Eklundh and Jénsson, 2010). A variety
of applications that require the characterization of vegetation phenology include crop yield
guantification, wildfire fuel accumulation, vegetation condition, ecosystem response to climate
variability and climate change and ecosystem resilience (Schwartz, 2003;Liang and Schwartz,
2009;Penuelas et al., 2009). Phenology of the vegetated land surface (land surface phenology,
hereafter phenology) is “the seasonal pattern of variation in vegetated land surfaces observed from

remote sensing” (Friedl et al., 2006).



- In temperature-
limited systems, phenological cycles occur on an annual basis, starting in spring and ending in
autumn. Existing algorithms aiming to characterize phenological cycles from remotely sensed
spectral vegetation ‘greenness’ indices perform well for ecosystems in temperature-driven mid- and
high-latitudes (Eklundh and Jonsson, 2010;Ganguly et al., 2010). Yet, in ecosystems where rainfall is
limited and highly variable such as semi-arid and arid systems (i.e., drylands; United Nations(2011)),
phenological cycles may be irregular in their length, timing, amplitude and reoccurrence interval,
occur at any time of the year or not occur at all in a given year (Brown and de Beurs, 2008;Ma et al.,
2013;Walker et al., 2014;Bradley and Mustard, 2007).

Despite the fact that drylands cover over 30% of the global land surface and occur on every
continent (United Nations, 2011), their rainfall-driven phenology that features non-annual cycles has
not been well characterized. Here we focused on Australia, a continent where drylands cover more
than 80% of the land surface. Recent reports by the Intergovernmental Panel on Climate Change
highlighted not only the importance of quantifying vegetation phenology in general (IPCC, 2013,
2007;Schwartz, 2013) but pointed to a lack of phenological studies for Australia and New Zealand

(Keatley et al., 2013;IPCC, 2001, 2007). We developed an algorithm to characterize phenological

cycles and analyzed used-existing-methods+ore-effectivelyto-guantifirthe phenology of Australia,

as an example of a rainfall-driven dryland systems. Mereever+ecentreporis-by-the




Phenology at the landscape to continental scale {{and-surfacephenology-hereatterphenslogy) is

typically derived using time-series of remotely sensed vegetation greenness indices such as the
normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI) (de Beurs
and Henebry, 2008). Several studies have used NDVI time series recorded by the Advanced Very High
Resolution Radiometer (AVHRR) to investigate long-term phenological trends induced by climate
change (Moulin et al., 1997;Zhang et al., 2012). /butdueto-better geometriccorrectionand
inereasedreselution,+ere More recent studies used EVI time series recorded by the MODerate-
resolution Imaging Spectroradiometer -MQDBIS (MODIS) that has better geometric correction and
increased resolution compared to AVHRR (Tan et al., 2011). Compared with NDVI, EVI is less
sensitive to residual atmospheric contamination and soil background variations, and has a larger
dynamic range of sensitivity to vegetation greenness (Huete et al., 2002). EVI trajecteries-time series
measure change in an integrated property commonly referred to as ‘greenness’ has been found to

be correlated with sub pixel chlorophyll content and leaf area index (Huete et al., 2014).

Onee-derived; Parameters describing phenological cycles parameters (hereafter phenological
metrics) can be used to quantify the influence of climate change and variability on phenology (Ma et
al., 2013;Brown et al., 2010). Australia has one of the most variable climates in the world, subject to
high inter-annual rainfall variability due to the influence of El Nifio Southern Oscillation (ENSO)
(Nicholls, 1991;Nicholls et al., 1997). Previous studies investigated the relationship between
vegetation index time series and rainfall globally, and the correlation with soil moisture for Australia

(Chen et al., 2014a;Andela et al., 2013). However, studies quantifying the relationship between
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phenology and ENSO-related climate variability as shown for example for Africa (Brown et al.,
2010;Philippon et al., 2014) are missing. Here we analyzed phenological responses to climate
variability through a period of time from 2000 to 2013. This period which encompassed the
Australian Millennium Drought from 2001-2009 (van Dijk et al., 2013) and the 2010-11 La Nifia
associated flooding flooding events (Heberger, 2011;Australian Bureau of Meteorology, 2014a) and
focused on one of the most affected areas, the MDB in South East of Australia (van Dijk et al.,
2013;Kirby et al., 2012;Australian Bureau of Meteorology, 2014b).

Particular emphasis was given to the MDB the catchment of Australia’s largest river system and

associated ecologically valuable floodplain and wetland ecosystems and the primary agricultural

area of the continent (Connell, 2007). Besides-being the catchmentof Australia’slargest riversystem

The objectives of this study were to: 1) characterize the inter- and intra-annual variability of

phenological cycles of greening and browning, including non-annual cycles across Australia, a

continent with vast areas of dryland ecosystems using-an-internally-consistentalgerithm; and 2)

investigate the relationships between the derived phenological metrics and rainfall, as well as

between phenological metrics and the Southern Oscillation Index (SOI; Trenberth and Caron (2000)),

a natmeosphericeirewlationindexand proxy of ENSO, across the entire continent and in more detail

for the MDB.

2 Methods



2.1 Study area and data used

Australia covers an area of > 7.6 million km? and climatic zones range from tropical in the North to
temperate in the South (Fig. 1). Average rainfall does not exceed 600 mm over 80% of the land area
and is less than 300 mm over 50% of the land area 600-and-300-mm-peryearacross-80%-and-50%of
theland;+respectively-(Australian Bureau of Meteorology, 2014c). Northern Australia is dominated
by savanna, whereas most of the country is covered by grassland and desert vegetation (Képpen,
1884). Forest occurs at higher elevation in the temperate South West and South East where large
areas of the lowlands are used for rain-fed agriculture (Fig. 1; Lymburner et al. (2011)). The MDB
contains Australia’s primary agricultural area and occupies 14% of Australia in the South East of the

continent (Fig. 1).

Place Fig. 1 around here

For algorithm development and testing ealibration, we used a set of EVI time series trajectories at 36
sites distributed across Australia (Fig. 1). These 36 sites represented a range of land cover and
climatic zones (Table 1; (Lymburner et al., 2011);(Australian Bureau of Meteorology, 2014c)) to
ensure that the algorithm effectively captures the variability in phenology across the country and we
used them to determine optimized algorithm parameters. The majority (21) of our test sites were
flux tower sites from the OzFlux network (2014). We selected 15 additional test sites to represent a

wider coverage of climate conditions, vegetation cover and land uses.

Place Table 1 around here



As input data for the phenological characterization, we sourced EVI MOD13C2 and MOD13A1 with a
temporal resolution of 16 days for the 18 Feb 2000 — 22 Apr 2013 time period (NASA Land Processes
Distributed Active Archive Center, 2014).

We used the 5.6-km product (MOD13C2) to characterize the biogeographic patterns of vegetation
phenology across the entire Australian continent and the 500-m product (MOD13A1) to investigate
the phenological patterns in more detail across the MDB. We chose the 16-day versions of the
products as they attenuate the noise present in higher temporal resolution versions (Solano et al.,
2012).

To analyze the responses of phenological metrics to rainfall variability, we used monthly data from
the Tropical Rainfall Monitoring Mission Project (TRMM_3B43.v7 product; (Goddard Space Flight
Center, 2014)) with 0.25° x 0.25° spatial resolution for 1999-2012. Instead of using gridded rainfall
data interpolated from widely spaced weather stations across large areas of the interior, we opted
for remotely sensed rainfall measured by TRMM, which is systematic across space and time.

To analyze the responses of phenological metrics to ENSO, we used monthly data of the Southern
Oscillation Index (SOI) obtained from the Australian Bureau of Meteorology (2014d). SOI represents
the standardized difference of air pressures between Darwin and Tahiti and serves as a proxy of
convection in the Western Pacific caused by ENSO sea surface temperature anomalies (Trenberth
and Caron, 2000).

Across the MDB we used the Dynamic Land Cover dataset provided by Geoscience Australia
(Lymburner et al., 2011) to investigate the differences between the phenological responses to SOI
and rainfall over natural and managed land cover types. We derived the natural land cover class by
grouping land cover dominated by trees, shrubs and grasses. The managed land cover classes
encompassed rain-fed and irrigated agriculture and pasture. Almost a third of the basin’s area is
managed for cropping and pasture (Lymburner et al., 2011). We also analyzed the phenological
response over the ecologically valuable floodplain and wetland areas of MDB (Kingsford et al., 2004)

and evaluated the floodplain’s response to SOl as a proxy of ENSO-related drought and flooding.
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2.2 Phenology metrics and algorithm

2.2.1 Phenology metrics

To account for non-annual vegetation dynamics, we defined a phenological cycle not as an annually
or seasonally recurring reeeeurring event but more broadly as a cycle of EVI-measured greening and
browning that may occur more than once per year or may skip a year entirely and not occur for one
or more years.

We modeled phenological cycle curves and key properties of each phenological cycle in the form of
curve metrics. The phenological metrics modeled the timing and magnitude of key transitional
points on the cycle’s curve and included the timing and magnitude of the minimum points before
and after a phenological cycle, the peak point of the cycle and the start and end point of the cycle. In
addition, we also calculated the integrated area between the start and end points of a cycle as a
surrogate of vegetation productivity during a cycle (Zhang et al., 2013). By tracking the phenological
cycle metrics over time, we characterized the intra- and inter-annual variability of the phenological

cycle and thereby vegetation growth patterns.

2.2.2 Data pre-processing

We used the quality assurance flags in the MOD13 products to discard observations with insufficient
quality, which included any observation with either VI usefulness > code ‘10’, snow cover, high
aerosol or climatology aerosol quantity, mixed or high clouds present or water in the Land/Water

Flag. For each pixel, we first used cubic spline interpolation (Dougherty et al., 1989) to temporally

gap-fill the data points discarded in the previous filtering step. Fereachpixel-wefirst gap-filed-the

filing-method{Deugherty-etal1989}. Next, we smoothed the time series for each pixel using

Savitzky-Golay smoothing filter (Savitzky and Golay, 1964) with a window width of 15 time steps.
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This step effectively reduced the remaining noises in the time series trajectories that would
otherwise impact influence the identification of minimum and maximum points and the subsequent
fitting of a mathematical curve that we conducted to characterize the phenological cycles in a

consistent way.
2.2.3 Curve fitting and phenological metric derivation

We identified local minimum and maximum points of the per-pixel time series using a moving
window of 9 time steps and a > 0.01 EVI amplitude threshold to identify cycles of greening and
browning. We used the identified minimum points to define the temporal extent of phenological
cycles in the entire time series. We and then fitted the 7-parameters double logistic model
mathematical-funetion for each identified interval. We did not expect a one or multiple phenological
cycles in a fixed intervals of the year. We thus but allowed the cycles to eceurand be characterized
at any time witheuta-predefined-intervals to better represent the highly variable rainfall-driven
phenological patterns across Australia’s vast drylands and dual cycles in cropping and pasture zones.

We fitted 7-parameter double logistic curves to each cycle in the per-pixel time series, defined as:

_ , Vmaox—Vming Vmax —Vming
EVI(t) = Vmin, + A I:’r:m ﬂa-f‘} - s (Tmmh—r}
Py Eq Bxp . Ep

(1)

where Vmin, and Vmin, are equal to the first and second minimum EVI, respectively. Vmax is the
high asymptote in the double logistic model, Tmid, is the time when EVI reached half of Vmax -

Vmin,. Tmidy is the time when EVI reached half of Vmax - Vminy. S, and S, are the scale parameters

on the increasing and the decreasing side of the curve, respectively. Hasecond-phenelogical-eyele

thiseyele: We identified the start and end points of each cycle as the points where the EVI reached

20% of the amplitude, between the first minimum and the peak, and the peak and the second
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minimum, respectively as also used in other studies (Eklundh and Jonsson, 2010;Tan et al.,
2011;Jones et al., 2011;Delbart et al., 2005).

An example of the algorithm processing steps is shown for the Alice Springs flux tower site (Fig. 2).
The site represents Acacia woodlands in the arid interior of Australia. The site serves as an example
showing how our algorithm derives phenological metrics to characterize the high temporal

variability in phenological cycles for the interior of Australia.

Place Fig. 2 around here

We provide further examples of how the algorithm characterized the phenological cycles over
different land cover types in different rainfall zones in Fig. 3. The sites’ location and description is

provided in Fig. 1 and Table 1, respectively.

Place Fig. 3 around here

2.3 Analysis of spatial-temporal patterns of phenology across Australia

After deriving phenological cycles and their metrics from per-pixel greenness time series trajectories
we analyzed the metrics across Australia at two levels of temporal aggregation: 1) In the form of
summary statistics (mean and standard deviation) across greenness trajectory to quantify overall
phenological variability over the 14-year time series; and 2) In the form of inter-cyclic variability as
the difference between a metric of one cycle and the following cycle over the 14-year time series.
For a given site, we calculated for example the mean peak magnitude and the peak magnitude’s
standard deviation. An example of inter-cycle variability of metrics is our analysis of peak timing for
all peaks across the time series. We also analyzed the deviation of an individual phenological cycle

integral relative to the expected variability. For this purpose, we calculated the standardized
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anomaly of each cycle’s integral as the difference of the cycle’s integral from the mean integral

divided by the standard deviation of the integrals.

2.4 Analysis of spatial-temporal patterns of Australian phenology in response

to rainfall and SOI variability

We further analyzed the statistical relationship between phenological cycle peak magnitude and
cycle integrated greenness and TRMM rainfall and SOI (four combinations of correlation analyses)
across Australia and in more detail for the MDB. The cycle peak magnitude represents maximum
greenness while the cycle integrated greenness serves as a proxy of ecosystem productivity (Zhang
et al., 2013). We used non-parametric Spearman rank correlation tests (Lehmann and D'Abrera,
1975), hereafter Spearman rho, to determine the strength and significant od monotonic
relationships between rainfall and each of the two phenology metrics as well as SOI and the two
phenology metrics. We evaluated relationships between rainfall and SOI as the explanatory variables
binned over different intervals and with different lead times to the phenological cycle integral and
peak magnitude, which were used as the response variables. We binned rainfall accumulation for
intervals of 1 to 12 months and average SOl values for periods of 1 to 12 months up twe to 12
months prior to the phenological cycle peak.

The underlying assumption for investigating Spearman rho correlations between phenology and
rainfall or SOl was that a significant and strong monotonic relationship between a phenological
metric and preceding rainfall or SOI suggested that the phenology metric (peak magnitude and
integrated greenness) is likely driven by the respective climate variable.

Aiming to identify correlation patterns and how these patterns change as a function of binning
interval (1 — 12 months) and lead times (up to 12 months), we extracted for each pixel and binning

interval the most significant test result. For each potential driver and binning interval, we analyzed
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the lead time, correlation and significance value. We illustrated the results only for areas that were
significant (p-value < 0.05) and had a rho value of > 0.6.

Using the above methodology, we conducted a continent-wide analysis and a higher resolution
analysis investigating the relationship of SOl with phenology metrics for the MDB in South Eastern
Australia. Within the MDB we further investigated relationship between SOl and phenology
(differences in correlation patterns) over natural and managed land cover types as well as the

catchment’s floodplain and wetlands.

3 Results

3.1 Mean and variability of peak and minimum magnitude as well as start and

end of cycle timing across 14 years

We evaluated the mean and variability of the peak and minimum magnitude across the 14-year time
series to investigate the inter-annual variations in vegetation phenology. The highest mean peak
magnitude occurred in a narrow area covered predominantly by evergreen humid tropical forest
along the North Eastern coast (areas with high EVI in Fig. 4A and Fig. 4B light-colorareasin-Fig—3-A).
The same area also had the highest mean minimum magnitude values, indicating that greenness was
persistently high (light color areas in Fig. 4 B). Other areas with high levels of persistent greenness
(areas with high mean peak magnitude and high mean minimum magnitude) included temperate
grasslands in coastal locations of South East Australia, temperate broadleaf forest in the South East
and South West of the continent, and across most of Tasmania (light color areas in Fig. 4 A and B).
The largest mean seasonal amplitude (peak minus minimum magnitude) occurred in areas used for
crop cultivation and grazing in the South West and the South East. Areas of low mean peak
amplitude were found across large parts of the interior (darker tone areas in both Fig. 4 A and B)

with the exception of the desert river beds.
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The highest level of variability in peak magnitude occurred over cropped areas in the South East and
South West of Australia (light colored areas in Fig. 4 C). High variability of peak magnitude over
natural vegetation cover was observed for example for regions predominantly covered with tropical
tussock grasses in the inland North and North East as well as areas with predominant chenopod
woody shrubs cover along the Great Australian Bight along the Southern coast of Australia (light
color areas in Fig. 4 C). High variability in minimum magnitude occurred at higher elevations of the
Southern Great Dividing Range in South East of Australia (light color areas in Fig. 4 D) and around the

center of the arid Lake Eyre, which is the lowest point of the continent.

Place Fig. 4 around here

We also evaluated the mean and variability of the start and end of cycle timing across the 14-year
time series. Across Western and South Eastern Australia the mean start of cycles occurred during the
first half of the year and the mean end of cycle occurred in the second half of the year (Fig. 5 Al).
Across Northern and Eastern Australia, the mean start of cycles occurred during the second half of
the year and the mean end of cycle occurred in first half of the following year (Fig. 5 A2). The
variability in start and end of cycle was highest across interior Australia with the area of high

variability being higher for the end of cycle timing (Fig. 5 B1 and 2).

Place Fig. 6 around here

3.2 Inter-cycle variability in peak timing

The timing of the first cycles’ peak within each year showed large variation from one year to another
across most of Australia (Fig. 6). Variations in peak timing were observed over most of interior

Australia. Peak timing was later than average in 2001, 2004 and 2005 (Fig. 6), but earlier in 2010-
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2012 over interior Australia (Fig. 6). The peak timing in the wet tropical savannas of the Northern
Territory and for most of the South West wheat belt was relatively stable (Fig. 6). The center of the
continent showed an earlier than average peak in 2002 and 2009.

Over interior Australia peak timing varied by over a month from one year to another. Areas for
which no peak was observed in a given year (shown in gray in Fig. 6) occurred primarily in the
drylands of the continent’s interior, where phenological cycles may not follow an annually recurring
reeceurring pattern. For example, areas with no peak over interior Australia in Fig. 6 for 2005 and
2008 can be also traced in Fig 2. where the phenological trajectory of the Alice Springs site did not

show a peak in those years.

Place Fig. 6 around here

3.3 Variability of cycle-integrated greenness

Greenness integrated between the start and end of a phenological cycle can provide a first
approximation of vegetation productivity (Ponce Campos et al., 2013;Zhang et al., 2013).
Standardized anomalies of integrated greenness highlight the deviation of an individual value from
the mean, relative to the expected level of variability (the standard deviation). Standardized
anomalies of integrated greenness were highly variable across time (Fig. 7). Negative standardized
anomalies of integrated greenness (red tones in Fig. 7) occurred across the continent in most areas
in 2002 and vast areas of the continent in 2008 and 2009. Large areas of negative anomalies also
occurred in 2001 to 2003 and from 2004 to 2009. Large areas of positive standardized anomalies
(green tones in Fig. 7), with increased greening of 1 to 2 standard deviations, occurred in 2010 a year

of particularly high rainfall.

Place Fig. 7 around here
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When relating the cycles’ standardized anomalies of integrated greenness to the phenological
trajectory at the Alice Springs tower site, the widespread negative standardized anomaly over
interior Australia in 2008 (Fig. 7) was not represented in the site’s curve (Fig 2.) where no cycle
started or ended in 2008 and 2009. Conversely, the positive standardized anomalies of cycles that
started in 2010 and 2011 over large areas of Eastern and interior Australia can also be seen in the

Alice Springs curve in the form of larger than average integrals (Fig 2.).

3.4 Analysis of spatial-temporal patterns of Australian phenology relative to

rainfall and SOI variability

We conducted correlation analysis relating two climate drivers (SOl and rainfall) and two
phenological metrics (first peak magnitude and cycle integral of each year), respectively (four
combinations). Each of the four analysis included climate drivers binned over periods between 1 and
12 months within the 12 month period leading up to the phenological peak. We found that areas
with significant correlations between SOl and phenology or rainfall and phenology were most
widespread for a binning interval of one month. Areas with significant correlations shrank as we
increased the binning interval of SOI or rainfall from 1 to 12 months.

The spatial pattern of significant correlations (areas significantly correlated, correlation strength, and
lead times) was generally similar for all four combinations of variables. However, the patterns of
significant correlation between peak magnitude and climate variables covered a larger area
compared to patterns of significant correlation between cycle integral and climate variables. The
patterns of significant SOI-driven correlation with phenology covered a larger and more
concentrated area compared to the rainfall driven correlation patterns. Given the above similarities

and the largest extent of significant correlation patterns at a single month binning interval, we limit
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the presentation of results to the most significant monthly SOl and — cycle peak magnitude and the
most significant monthly rainfall- cycle peak magnitude correlation.

The most significant correlation of monthly SOl and cycle peak magnitude and monthly rainfall and
cycle peak magnitude were most widespread in North Eastern Australia (Fig. 8 C). Lead times
between the most significantly correlated driver month and the phenological cycle peak were 1to 6
months for North Eastern Australia and 7 to 12 months for the East Australian interior representing
an increase in lead time along a gradient of decreasing rainfall (Fig. 8 A and B). These correlation
patterns extended into the Australian interior along desert river drainage lines such as the Cooper
Creek. The floodplain of the of the middle reach of the Cooper Creek Coopertreeksfloodplain can
be clearly distinguished in the correlation pattern, indicating a strong response of the floodplain
vegetation to for example SOI variability (Fig 9.). Additional correlation patterns with a shorter lag
time behind SOI (1-3 months) were observed near the West coast of Australia with longer lag times

of 5-8 month behind rainfall (Fig 8 A).

Place Fig. 8 around here

Place Fig 9 around here

In the MDB, correlation patterns between monthly SOl and cycle peak magnitude occurred primarily
over natural vegetation cover as opposed to areas used for agriculture or pasture (managed land
cover). The percentage of all significant relationships over natural land cover was 83.6% as opposed
to 15.9%, the percentage of all significant relationships over managed land cover (Table 2). These
percentages were disproportional to areal percentages of natural and managed land cover within
the MDB (71.8% and 28.2%, respectively). The highest percentage of significantly correlated areas

within each land cover class and highest mean rho values were found in areas dominated by shrubs,
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trees and grasses. Irrigated agriculture and pasture had the smallest percentage of correlated area
(Table 2) compared to other land cover classes.

The ecologically valuable floodplains and wetlands of the MDB made up 10.9% of the basin area and
were of mixed land cover composition. The percentage of all areas with significant correlations
between monthly SOl and phenological cycle peak magnitude in floodplains and wetlands was
disproportionally higher (14.8%) than the percentage of area occupied by this zone (10.9%). In
addition, 6.1% of the floodplain and wetlands area showed significant relationships with monthly

SOI, which is higher than for any of the individual land cover classes in Table 2.

Place Table 2 around here

4 Discussion

4.1 A phenological characterization of Australia that accommodates non-

annual phenological cycles

Our research characterized the cycles and variability of non-annual vegetation phenology across
Australia and identified their relationships with variability in rainfall and ENSO-related large scale
atmospheric circulation. We provide a characterization of annual and non-annual phenological cycles
of vegetation greening and browning for Australia based on MODIS EVI data.

We used an enhanced phenology model to characterize rainfall-driven phenology across the
Australian continent, which includes large dryland regions. Very few studies have previously
quantified the land surface phenology of dryland systems (Walker et al., 2014), likely due to the fact
that the phenology of these systems is more complex than that of most temperature-limited regions

(Walker et al., 2014;Primack and Miller-Rushing, 2011). Dryland phenology responds to a variable
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rainfall regime where the timing and magnitude of precipitation events varies inter-annually (Loik et
al., 2004;Brown et al., 1997).

We identified and characterized rainfall-driven phenological cycles at any time of the year over a 14-
year time series rather than within a predefined interval of every calendar year. This is important as
the timing of phenological cycles varied and not every phenological cycle metric occurred in every
year. We first identified points demarcating phenological cycles from the entire EVI time series and
then characterized the cycles using mathematical curves. For example, we did not identify a cycle
peak for every year and every pixel (areas shown in gray in Fig. 6). However, this does not imply that
no cycle occurred but that the vegetation at these sites and points in time could be greening up
towards a peak in the following year, browning down towards an end of cycle point or be in a phase
between cycles. For example, the absence of peaks over interior Australia in 2005 and 2008 (Fig. 6) is
also reflected in Fig 2. where the phenological trajectory of the Alice Springs site in interior Australia
was in between phenological cycles. Phenological cycles thus need to be analyzed in the temporal
context of multiple years. While most studies of phenology attempted to fit phenological curves
within a predefined interval every calendar year, certain authors have proposed methods that
include iterating the curve fitted to the vegetation index trajectory or by fitting a curve of vegetation
index versus accumulated moisture (Tan et al., 2011;Brown and de Beurs, 2008). Our approach to
characterize non-annual phenology can be applied to other areas with rainfall-driven phenology and

thus contributes to our understanding of non-annual, rainfall-driven phenological dynamics globally.

4.2 Phenology of Australia’s interior

For the interior of Australia we identified low phenological peak and minimum magnitude and
associated small amplitude (darker tone areas in both Fig. 4 A and B), high variability in magnitude,
timing and cycle integral. In addition, a peak was not identified in every year for large areas of the

interior. Most areas of the interior are dryland systems with sparse vegetation cover and where
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vegetation phenology is driven by highly irregular rainfall timing and amounts (Australian Bureau of
Meteorology, 2014c, e) and hydrologic regimes can be difficult to predict (Young and Kingsford,
2006). Thus we do not see a strong phenological response (low amplitude), however we interpret
the high variability in start of cycle and peak timing (Fig 4 and Fig 5.) as a fast response to rainfall
pulses and the missing cycles (Fig 5.) were interpreted as dormant periods during dry years (Loik et
al. 2004). We interpret these patterns of variable phenological cycles over interior Australia, where a
cycle may vary in timing and length, or may skip a year entirely, to occur as a function of high climate
variability. De Jong et al. (2012) identified frequent trend breaks of greening and browning over
Australia that may be related to the non-annual phenological cycles identified here.

Desert river beds in the interior of the continent had low minimum but moderate peak magnitude.
The elevated peak magnitudes are caused by flooding driven by high amounts of distant rainfall
(Young and Kingsford, 2006). The center of the arid Lake Eyre basin showed high variability in
minimum magnitude. Lake Eyre is the center of a sparsely vegetated, close drainage basin and the
fact that we identified high variability was in line with known flooding patterns as this salt lake is
reached by flooding only once in a century (McMahon et al., 2005). We interpret the positive
anomaly in 2010 (Fig. 7) as a function of the La Nifia floods (Australian Bureau of Meteorology,
2014a).

Conversely, large variability of peak timing and cycle integrated greenness from one to another
phenological cycle was found not just in the interior of Australia but across most of the continent
(Fig. 6 and Fig. 7). High inter-annual variability in water availability across most of Australia rather
than for the continent’s interior has also been demonstrated by the Australian Water Availability

Project (2014).
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4.3 Australia’s phenology, the 2001 to 2009 Millennium Drought and La Nifia

high precipitation event in 2010

The years with widespread negative standard anomalies of cycle integrated greenness coincided
with the Millennium Drought from 2001 to 2009 (Heberger (2011); Fig. 7). Dryland vegetation is
subject to environmentally marginal conditions and is therefore highly sensitive to climate variability
(Hufkens et al., 2012;Brown et al., 1997).

Yet, the spatial extent of negative anomalies in certain years that extend beyond the dry interior
suggested temporary yet severe drought-related water limitations also in the monsoonal North and
the temperate area of South Eastern and South Western Australia (Fig. 7). The large positive
standardized anomalies of cycle integrated greenness identified in this work across most of Eastern
Australia in 2010 (1 to 2 standard anomalies; Fig. 7) coincided with a strong La Nifia event and
associated high rainfall and floods that broke the Millennium Drought (Australian Bureau of
Meteorology, 2014a;Heberger, 2011). This pattern includes the desert rivers extending from North
Eastern Australia to Lake Eyre, which experienced a major flood in 2010.

While the relationship between ENSO cycles and rainfall variability primarily over Eastern Australia
has been investigated before (van Dijk et al., 2013;Risbey et al., 2009), our research has quantified
vegetation response across Australia to the transition from a strong El Nifio drought to La Nifia wet
periods. While the positive vegetation response to the 2010 La Nifia occurred over Eastern Australia
that is also influenced by ENSO cycles (van Dijk et al., 2013;Nicholls, 1991;Nicholls et al., 1997), the
negative vegetation response during the Millennium Drought cover a larger area and occurred

across the continent.

4.4 Spatially explicit relationship between phenology and climatic variability

We found that SOI-driven patterns of correlation with phenology covered a larger area compared to

rainfall-driven patterns likely because SOl is a more generic proxy of climatic variability that
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influences temperature, incoming solar radiation and rainfall rather than rainfall alone (Risbey et al.,
2009;Australian Bureau of Meteorology, 2014f) and because not all ecosystems of Australia are only
limited by water availability but also by temperature and radiation (Nemani et al., 2003).

The spatial extent of areas where we detected correlation between SOI or rainfall and phenological
metrics shrank with longer binning intervals of the climatic drivers. This suggested that relationships
between climatic drivers and phenological variability were strongest for driver variability within a
specific month of the year (e.g., SOl in September) as opposed to driver variability within for
example a 6 month period (e.g., mean SOl across 6 months starting in April). This falls in line with the
findings by Stone et al. (1996) who identified relationships between short-term SOl dynamics at
specific times of the year and rainfall. Previous studies (e.g. Brown et al. (2010)) using seasonal or
longer temporal aggregation of driver variables may therefore have not identified the full spatial
extent of correlation patterns.

We found the most concentrated significant correlation patterns between SOl and peak magnitude
in North Eastern Australia, which is in the proximity of the West Pacific convection variability
indicated by SOI. We observed similar yet less concentrated pattern for the rainfall — peak
magnitude correlation. We interpret this latter pattern as primarily as the effect of the large-scale
atmospheric circulation patterns indicated by SOI. The lag times of correlations over North Eastern
Australia varied between 1 and 6 months following SOI or rainfall. Shorter lag time (1 to 3 months)
correlation patterns with SOl were observed near the West coast of Australia yet lag times following
rainfall were longer (5-8 month). These patterns are spatially remote from the variability in
convection over the Western Pacific (North East of Australia) indicated by SOI. They may be related
to influence of the Indian Ocean Dipole (I0D) and the interaction between SOl and IOD (Risbey et al.,
2009), which may explain the difference in lead time of the SOl and rainfall drivers. Over North
Eastern Australia and the East Australian interior, the identified 3 to 6 and 7 to 12 months lag time of
phenological cycle peak magnitude was similar for the SOl and rainfall driver. The lag times identified

here fell within the range of aggregation found by Andela et al. (2013) who related NDVI with
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rainfall. A study by Chen et al. (2014b) identified short lags (predominantly 1 month) between soil
moisture and NDVI, which are shorter than most of the lags we identified here. Soil moisture in the
previous month may provide the most direct relationship with vegetation response (as it represents
water available to vegetation) but the climatic conditions that drive soil moisture may precede the
soil moisture by a few months (Philippon et al., 2014). The identified increase in lag time between
SOl and phenological peak magnitude and rainfall and phenological peak magnitude along a gradient
of decreasing rainfall was in agreement with the findings by Andela et al. (2013). However, these
findings contradict the concept that rainfall pulses drive rapid phenological response (Loik et al.,

2004).

interpret our findings as the dominating space-time relationship between large scale atmospheric
circulation pattern variability and phenological response. Yet these patterns are unlikely to represent
responses to individual storm events. However, less significant relationships with different SOl and
rainfall month and lag time were also present suggesting that vegetation responds to climatic
variability at multiple time scales. A more in-depth analysis of the relationship between climatic
drivers and phenological response across multiple temporal scales should be investigated in future
research.

The proportion of areas for which we identified significant correlations was generally smaller than
those identified in other studies (e.g. Andela et al. (2013) and Chen et al. (2014a)). This could be
related to the relatively short time series we used and consequently the smaller power of our
correlation analysis. Nonetheless, the spatial pattern of correlation was most widespread in North
Eastern Australia and along desert river beds (e.g., Cooper Creek) in the interior. These patterns
agreed spatially with what would be expected from the SOIl-approximated moisture source over the
West Pacific and the associated progression of rainfall and runoff into interior Australia.

We conducted a higher spatial resolution correlation analysis for the MDB to investigate sensitivity
of the area’s vegetation to SOI variability. The MDB contains the primary agricultural area of

Australia and the basin’s agriculture was severely impacted by the Millennium Drought (van Dijk et
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al., 2013;Kirby et al., 2012;Heberger, 2011). We identified correlation patterns between SOl and
peak magnitude primarily over natural vegetation cover as opposed to areas used for dryland
agriculture or pasture. As expected, irrigated agriculture had the lowest percentage of area with
significant correlations between SOl and phenological peak magnitude. The lowest percentage of
area with significant correlations over managed land may be explained by the effort that land
managers and irrigators make to archive maximum production regardless of climatic variability (e.g.
fertilization, use of pesticides, crop rotation, livestock density, movement and irrigation) whereas
landscapes with natural vegetation cover may respond directly to climatic variability. In the context
of climatic influence on agriculture in the MDB, van Dijk et al. (2013) suggested that the Millennium
Drought impact on dryland wheat yields was offset by steady increases in cropped area and plant
water use efficiency as well as possibly CO, fertilization. As a zone of special interest within the MDB
we focused on floodplains and wetlands. These ecosystems were strongly impacted by the
Millennium Drought and 2010 La Nifia floods (Australian Bureau of Meteorology, 2014b;Leblanc et
al., 2012). Across the MDB’s floodplains and wetlands, we identified the highest percentage of areas
(6.1%) with significant correlation between SOI and phenological peak magnitude compared to other
natural or managed land cover, highlighting the sensitivity of these ecosystems to ENSO-related
climatic variability. We attributed the low percentage to limited test power as a function of the
relatively short time series (14 years) used here. For example Brown et al. (2010) found between
10% and 27% of certain areas in Africa to be significantly correlated with atmospheric indices using a

25-year AVHRR time series.

4.5 Limitations and future work

Several caveats of our work should be noted. When interpreting the phenological cycles
characterized here, it should be noted that the sub pixel composition of vegetation and background

as well as multi-layer vegetation structure is unknown and may change over time (Zhang et al.,
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2009;Walker et al., 2012;Walker et al., 2014). Various methods for validating remotely sensed
metrics of phenological cycles with ground-based observations have been discussed including flux
tower productivity time series, ground based radiation sensor time series, phenocam time series as
well as crowd sourced citizen science (Richardson et al., 2007;Liang and Schwartz, 2009;Restrepo-
Coupe et al., 2013). Validation of the phenological metrics developed here is currently underway.
The phenological metrics derived and described here represent different stages of vegetation
growth. They have been made freely available in contribution to the Australian Terrestrial Ecosystem
Research Network (TERN) and can be downloaded from the AusCover TERN Sydney node™:
http://data.c3.uts.edu.au providing opportunities for a range of applications.

In this work we traced phenological cycles over time, quantified cycles’ inter-annual variability and
investigate their relationship with rainfall and ENSO thereby advancing phenological research for
Australia, a country with extensive drylands. The phenological metrics provided here can be further
used for characterizing the effect of anthropogenic disturbances on phenology and unraveling this
effect from the influence of climatic forcing related to ENSO. Another opportunity for future work is
the reanalysis of trends and trend breaks in vegetation dynamics and climatic drivers (Donohue et

al., 2009;de Jong et al., 2012;Chen et al., 2014a).

Acknowledgements

This research was supported by an Australian Research Council Discovery grant (DP1115479) entitled
"Integrating remote sensing, landscape flux measurements, and phenology to understand the
impacts of climate change on Australian landscapes" (Huete, Cl) and funding from the AusCover

Facility of the Australian Terrestrial Ecosystem Research Network (TERN). Calculations were

! The Australian Phenology Product is scheduled to permanently migrate to the Australian Research Data
Storage Infrastructure (RDSI) that is funded through the Australian Government’s Super Science Initiative and
sourced from the Education Investment Fund (EIF).

25


http://data.c3.uts.edu.au/

performed on the University of Technology, Sydney eResearch high performance computing facility.
Tulbure was partially funded through an Australian Research Council Discovery Early Career

Researcher Award (DE140101608).

References

Andela, N., Liu, Y. Y., van Dijk, a. I. J. M., de Jeu, R. a. M., and McVicar, T. R.: Global changes in
dryland vegetation dynamics (1988-2008) assessed by satellite remote sensing: comparing a new
passive microwave vegetation density record with reflective greenness data, Biogeosciences, 10,
6657-6676, 10.5194/bg-10-6657-2013, 2013.

Australian Bureau of Meteorology: The 2010-11 La Nifia: Australia soaked by one of the strongest
events on record, http://www.bom.gov.au/climate/enso/feature/ENSO-feature.shtml, 2014a.
Australian Bureau of Meteorology: El Nifio - Detailed Australian Analysis and La Nifia — Detailed
Australian Analysis; http://www.bom.gov.au/climate/enso/enlist/;
http://www.bom.gov.au/climate/enso/Inlist/, 2014b.

Australian Bureau of Meteorology: Climate Data Online: Average annual, seasonal and monthly
rainfall (mm) and Rainfall variability (index of variability);
http://www.bom.gov.au/climate/data/index.shtml, 2014c.

Australian Bureau of Meteorology: Southern Oscillation Index Data,
http://www.bom.gov.au/climate/current/soi2.shtml, 2014d.

Australian Bureau of Meteorology: Rainfall variability,
http://www.bom.gov.au/jsp/ncc/climate_averages/rainfall-variability/index.jsp, 2014e.
Australian Bureau of Meteorology: ENSO impacts — temperature,

http://www.bom.gov.au/climate/enso/history/In-2010-12/ENSO-temperature.shtml, 2014f,

26



Bradley, B. a., and Mustard, J. F.: Comparison of phenology trends by land cover class: a case study in
the Great Basin, USA, Global Change Biology, 14, 334-346, 10.1111/j.1365-2486.2007.01479.x, 2007.
Brown, J. H., Valone, T. J., and Curtin, C. G.: Reorganization of an arid ecosystem in response to
recent climate change, Proceedings of the National Academy of Sciences, 94, 9729-9733, 1997.
Brown, M. E., and de Beurs, K. M.: Evaluation of multi-sensor semi-arid crop season parameters
based on NDVI and rainfall, Remote Sensing of Environment, 112, 2261-2271,
10.1016/j.rse.2007.10.008, 2008.

Brown, M. E., de Beurs, K., and Vrieling, A.: The response of African land surface phenology to large
scale climate oscillations, Remote Sensing of Environment, 114, 2286-2296,
10.1016/j.rse.2010.05.005, 2010.

Chen, B., Xu, G., Coops, N. C,, Ciais, P., Innes, J. L., Wang, G., Myneni, R. B., Wang, T., Krzyzanowski,
J., Li, Q. Cao, L., and Liu, Y.: Changes in vegetation photosynthetic activity trends across the Asia—
Pacific region over the last three decades, Remote Sensing of Environment, 144, 28-41,
10.1016/j.rse.2013.12.018, 2014a.

Chen, T., de Jeu, R. a. M,, Liu, Y. Y., van der Werf, G. R., and Dolman, a. J.: Using satellite based soil
moisture to quantify the water driven variability in NDVI: A case study over mainland Australia,
Remote Sensing of Environment, 140, 330-338, 10.1016/j.rse.2013.08.022, 2014b.

Connell, D.: Water politics in the Murray-Darling basin, Federation Press, 2007.

de Beurs, K. M., and Henebry, G. M.: Spatio-temporal statistical methods for modeling land surface
phenology, in, edited by: Hudson, I. L., and Keatley, M. R., Springer, Dordrecht, 2008.

de Jong, R., Verbesselt, J., Schaepman, M. E., and Bruin, S.: Trend changes in global greening and
browning: contribution of short-term trends to longer-term change, Global Change Biology, 18, 642-
655, 10.1111/j.1365-2486.2011.02578.x, 2012.

Delbart, N., Kergoat, L., Le Toan, T., Lhermitte, J., and Picard, G.: Determination of phenological
dates in boreal regions using normalized difference water index, Remote Sensing of Environment,

97, 26-38, http://dx.doi.org/10.1016/j.rse.2005.03.011, 2005.
27



Donohue, R. J., McVicar, T. R., and Roderick, M. L.: Climate-related trends in Australian vegetation
cover as inferred from satellite observations, 1981-2006, Global Change Biology, 15, 1025-1039,
10.1111/j.1365-2486.2008.01746.x, 2009.

Dougherty, R. L., Edelman, A., and Hyman, J. M.: Nonnegativity-, Monotonicity-, or Convexity-
Preserving Cubic and Quintic Hermite Interpolation, Mathematics of Computation, 52, 471-794,
1989.

Friedl, M., Henebry, G., Reed, B., Huete, A., White, M., Morisette, J., Nemani, R., Zhang, X., and
Myneni, R.: Land surface phenology, A Community White Paper requested by NASA. April 10., 2006.
Ganguly, S., Friedl, M. A,, Tan, B., Zhang, X., and Verma, M.: Remote Sensing of Environment Land
surface phenology from MODIS : Characterization of the Collection 5 global land cover dynamics
product, Remote Sensing of Environment, 114, 1805-1816, 10.1016/j.rse.2010.04.005, 2010.
Goddard Space Flight Center: Tropical Rainfall Monitoring Mission Project TRMM_3B43.v7 product,
USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota,
http://trmm.gsfc.nasa.gov/, 2014.

Heberger, M.: Australia’s Millennium Drought: Impacts and Responses, in, edited by: Gleick, P. H.,
The World’s Water, Island Press/Center for Resource Economics, 97-125, 2011.

Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L. G.: Overview of the
radiometric and biophysical performance of the MODIS vegetation indices, Remote Sensing of
Environment, 83, 195-213, 2002.

Huete, A., Miura, T., Yoshioka, H., Ratana, P., and Broich, M.: Indices of Vegetation Activity, in, edited
by: Hanes, J., Springer, Berlin Heidelberg, 2014.

Hufkens, K., Friedl, M., Sonnentag, O., Braswell, B. H., Milliman, T., and Richardson, A. D.: Linking
near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology,

Remote Sensing of Environment, 117, 307-321, 10.1016/j.rse.2011.10.006, 2012.

28



IPCC: Climate Change 2001: impacts, adaptation, and vulnerability. Contribution of working group Il
to the third assessment report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge
University Press, Cambridge, 2001.

IPCC: Climate change 2007 — impacts, adaptation and vulnerability. Contribution of Working Group |l
to the Fourth Assessment Report of the IPCC., Cambridge University Press, Cambridge, 2007.

IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group | to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press,
Cambridge, 2013.

Jones, M. 0., Jones, L. a., Kimball, J. S., and McDonald, K. C.: Satellite passive microwave remote
sensing for monitoring global land surface phenology, Remote Sensing of Environment, 115, 1102-
1114, 10.1016/j.rse.2010.12.015, 2011.

Keatley, M. R., Chambers, L. E., and Phillips, R.: Australia and New Zealand, in: Phenology : An
Integrative Environmental Science, edited by: Schwartz, M. D., Springer, Dordrecht, 2013.

Kingsford, R. T., Brandis, K., Thomas, R. F., Crighton, P., Knowles, E., and Gale, E.: Classifying
landform at broad spatial scales: the distribution and conservation of wetlands in New South Wales,
Australia, Marine and Freshwater Research, 55, 17-31, 2004.

Kirby, M., Connor, J., Bark, R., Qureshi, E., and Keyworth, S.: The economic impact of water
reductions during the Millennium Drought in the Murray-Darling Basin, AARES conference, 2012, 7-
10,

Képpen, W.: The thermal zones of the Earth according to the duration of hot, moderate and cold
periods and of the impact of heat on the organic world. (translated and edited by Volken, E. and S.
Bronnimann), Meteorologische Zeitschrift, 1, 351-360, 1884.

Leblanc, M., Tweed, S., Van Dijk, A., and Timbal, B.: A review of historic and future hydrological
changes in the Murray-Darling Basin, Global and Planetary Change, 80-81, 226-246,

http://dx.doi.org/10.1016/j.gloplacha.2011.10.012, 2012.

29



Lehmann, E. L., and D'Abrera, H. J. M.: Nonparametrics: statistical methods based on ranks, Holden-
Day, 1975.

Liang, L., and Schwartz, M.: Landscape phenology: an integrative approach to seasonal vegetation
dynamics, Landscape Ecology, 24, 465-472, 10.1007/s10980-009-9328-x, 2009.

Loik, M., Breshears, D., Lauenroth, W., and Belnap, J.: A multi-scale perspective of water pulses in
dryland ecosystems: climatology and ecohydrology of the western USA, Oecologia, 141, 269-281,
10.1007/s00442-004-1570-y, 2004.

Lymburner, L., Tan, P., Mueller, N., Thackway, R., Lewis, A., Thankappan, M., Randall, L., Islam, A.,
and Senarath, U.: The National Dynamic Land Cover Dataset, Geoscience Australia, Symonston,
Australia9781921954306, 105-105, 2011.

Ma, X., Huete, A, Yu, Q., Coupe, N. R., Davies, K., Broich, M., Ratana, P., Beringer, J., Hutley, L. B.,
Cleverly, J., Boulain, N., and Eamus, D.: Spatial patterns and temporal dynamics in savanna
vegetation phenology across the North Australian Tropical Transect, Remote Sensing of
Environment, 139, 97-115, 10.1016/j.rse.2013.07.030, 2013.

McMahon, T. A. T. A,, Murphy, R, Little, P., Costelloe, J. F., Peel, M. C. M. C., Chiew, F. H. S., Hayes,
S., Nathan, R. J. R.J., Kandel, D. D., (Firm), S. K. M., Engineering, U. 0. M. D. o. C. a. E., and Heritage,
A.D. o.t. E. a.: Hydrology of Lake Eyre Basin / Thomas A. McMahon, Rachel Murphy, Pat Little, Justin
F. Costelloe, Murray C. Peel, Francis H. S. Chiew, Susan Hayes, Rory Nathan, Durga D. Kandel,
[Canberra, Australian Capital Territory] Natural Heritage Trust, 2005.

Moulin, S., Kergoat, L., Viovy, N., and Dedieu, G.: Global-Scale Assessment of Vegetation Phenology
Using NOAA/AVHRR Satellite Measurements, Journal of Climate, 10, 1154-1170, 10.1175/1520-
0442(1997)010<1154:GSAOVP>2.0.CO;2

10.1175/1520-0442(1997)0102.0.CO;2, 1997.

Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., and Nemani, R. R.: Increased plant growth in the

northern high latitudes from 1981 to 1991, Nature, 386, 698-702, 1997.

30



Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., Myneni, R. B., and
Running, S. W.: Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to
1999, Science, 300, 1560-1563, 2003.

Nicholls, N.: The El Nifio / Southern Oscillation and Australian vegetation, Vegetatio, 91, 23-36,
10.1007/BF00036045, 1991.

Nicholls, N., Drosdowsky, W., and Lavery, B.: Australian rainfall variability and change, Weather, 52,
66-72,10.1002/j.1477-8696.1997.tb06274.x, 1997.

OzFlux: Australian and New Zealand Flux Research and Monitoring, http://www.ozflux.org.au/, 2014.
Pefiuelas, J., Rutishauser, T., and Filella, I.: Phenology Feedbacks on Climate Change, Science, 324,
887-888, 10.1126/science.1173004, 2009.

Philippon, N., Martiny, N., Camberlin, P., Hoffman, M. T., and Gond, V.: Timing and patterns of ENSO
signal in Africa over the last 30 years: insights from Normalized Difference Vegetation Index data,
Journal of Climate, 140111082254009-140111082254009, 10.1175/JCLI-D-13-00365.1, 2014.

Pitman, A. J.: The evolution of, and revolution in, land surface schemes designed for climate models,
International Journal of Climatology, 23, 479-510, 10.1002/joc.893, 2003.

Ponce Campos, G. E., Moran, M. S., Huete, A., Zhang, Y., Bresloff, C., Huxman, T. E., Eamus, D., Bosch,
D.D., Buda, A. R,, Gunter, S. A, Scalley, T. H., Kitchen, S. G., McClaran, M. P., McNab, W. H.,
Montoya, D. S., Morgan, J. A., Peters, D. P. C,, Sadler, E. J., Seyfried, M. S., and Starks, P. J.:
Ecosystem resilience despite large-scale altered hydroclimatic conditions, Nature, 494, 349-352,
http://www.nature.com/nature/journal/v494/n7437/abs/nature11836.html#supplementary-
information, 2013.

Primack, R. B., and Miller-Rushing, A. J.: Broadening the study of phenology and climate change, New
Phytologist, 191, 307-309, 10.1111/j.1469-8137.2011.03773.x, 2011.

Restrepo-Coupe, N., Huete, A., Broich, M., and Davies, K.: Phenology Validation, in, Terrestrial

Ecosystem Research Network, 2013.

31



Richardson, A., Jenkins, J., Braswell, B., Hollinger, D., Ollinger, S., and Smith, M.-L.: Use of digital
webcam images to track spring green-up in a deciduous broadleaf forest, Oecologia, 152, 323-334,
10.1007/s00442-006-0657-z, 2007.

Richardson, A. D., Keenan, T. F., Migliavacca, M., Ryu, Y., Sonnentag, O., and Toomey, M.: Climate
change, phenology, and phenological control of vegetation feedbacks to the climate system,
Agricultural and Forest Meteorology, 169, 156-173, 10.1016/j.agrformet.2012.09.012, 2013.

Risbey, J. S., Pook, M. J., Mclntosh, P. C., Wheeler, M. C., and Hendon, H. H.: On the Remote Drivers
of Rainfall Variability in Australia, Monthly Weather Review, 137, 3233-3253,
10.1175/2009MWR2861.1, 2009.

Savitzky, A., and Golay, M. J. E.: Smoothing and Differentiation of Data by Simplified Least Squares
Procedures, Analytical Chemistry, 36, 1627-1639, 10.1021/ac60214a047, 1964.

Schwartz, M.: Introduction, in, edited by: Schwartz, M., Tasks for Vegetation Science, Springer,
Netherlands, 3-7, 2003.

Schwartz, M. D.: Preface, in: Phenology : An Integrative Environmental Science, edited by: Schwartz,
M. D., Springer, Dordrecht, 2013.

Stone, R. C., Hammer, G. L., and Marcussen, T.: Prediction of global rainfall probabilities using phases
of the Southern Oscillation Index, Nature, 384, 1996.

Tan, B., Morisette, J. T., Wolfe, R. E., Gao, F., Ederer, G. A,, Nightingale, J., and Pedelty, J. A.: An
Enhanced TIMESAT Algorithm for Estimating Vegetation Phenology Metrics From MODIS Data, IEEE
Journal of Selectd Topics in Applied Earth Observations and Remote Sensing, 4, 361-371, 2011.
Trenberth, K. E., and Caron, J. M.: The Southern Oscillation Revisited: Sea Level Pressures, Surface
Temperatures, and Precipitation, Journal of Climate, 13, 4358-4365, 10.1175/1520-
0442(2000)013<4358:TSORSL>2.0.C0;2, 2000.

United Nations: Global Drylands: A UN system-wide response, Geneva, Switzerland, 2011.

van Dijk, A. I. J. M., Beck, H. E., Crosbie, R. S., de Jeu, R. a. M,, Liu, Y. Y., Podger, G. M., Timbal, B., and

Viney, N. R.: The Millennium Drought in southeast Australia (2001-2009): Natural and human causes
32



and implications for water resources, ecosystems, economy, and society, Water Resources Research,
49, 1040-1057, 10.1002/wrcr.20123, 2013.

Walker, J. J., de Beurs, K. M., Wynne, R. H., and Gao, F.: Evaluation of Landsat and MODIS data fusion
products for analysis of dryland forest phenology, Remote Sensing of Environment, 117, 381-393,
10.1016/j.rse.2011.10.014, 2012.

Walker, J. J., de Beurs, K. M., and Wynne, R. H.: Dryland vegetation phenology across an elevation
gradient in Arizona, USA, investigated with fused MODIS and Landsat data, Remote Sensing of
Environment, 144, 85-97, 10.1016/j.rse.2014.01.007, 2014.

White, M. A,, Thornton, P. E., and Running, S. W.: A continental phenology model for monitoring
vegetation responses to interannual climatic variability, Global Biogeochemical Cycles, 11, 217-234,
1997.

Young, W. J., and Kingsford, R. T.: Flow variability in large unregulated dryland rivers, in: Ecology of
Desert Rivers, edited by: R., K., Cambridge University Press, Cambridge 2006.

Zhang, X., Friedl, M. A,, and Schaaf, C. B.: Monitoring vegetation phenology using MODIS, Remote
Sensing of Environment, 84, 471-475, 2003.

Zhang, X., Friedl, M. A,, and Schaaf, C. B.: Sensitivity of vegetation phenology detection to the
temporal resolution of satellite data, International Journal of Remote Sensing, 30, 2061-2074, 2009.
Zhang, X. Y., Friedl, M. A, and Tan, B.: Long-term detection of global vegetation phenology from
satellite instruments, in, edited by: Zhang, X., InTech, 2012.

Zhang, Y., Susan Moran, M., Nearing, M. A., Ponce Campos, G. E., Huete, A. R., Buda, A. R., Bosch, D.
D., Gunter, S. A., Kitchen, S. G., Henry McNab, W., Morgan, J. A., McClaran, M. P., Montoya, D. S.,
Peters, D. P. C., and Starks, P. J.: Extreme precipitation patterns and reductions of terrestrial
ecosystem production across biomes, Journal of Geophysical Research: Biogeosciences, 118, 148-

157, 10.1029/2012)G002136, 2013.

33



Figure captions

Fig. 1. Land cover map of Australia shows closed and open tree cover in dark and light green, respectively.
The purple colors that occur predominantly in the South West and South East represent crops and pasture.
Brown marks shrubs, orange colors mark tussock grass and light brown colors mark hummock grass cover
across most of the semi-arid and arid interior (land cover classes were aggregated based on: Lymburner et
al. (2011). The most prominent topographic feature is the Great Dividing Range that runs along the Eastern
seaboard. Locations of the 21 OzFlux flux tower sites and 15 additional sites are shown as red and blue
circles and-were-used-forphenologicaltrajectory-evaluation. We used the EVI time series at the sites for
phenological algorithm development and testing (site list provided in Table 1). The phenology for the sites
marked by a large black circles is presented and discussed in Section 2.2.3. The bottom left panel shows the
extent of the MDB.

Fig. 2. Algorithm steps applied to the 14-year MODIS EVI trajectory (MOD13C2 single 5.6-km pixel) for the
Alice Springs flux site representing semi-arid mulga (Acacia) woodland of the center of Australia. (A) EVI
time series after screening out low quality observations (brown circles), EVI time series after gap filling and
smoothing (blue circles), and flagged minimum and peak of cycle points (green diamonds). (B) Curves fitted
as 7-parameter double logistic functions (red squares) characterizing the phenological cycles, and identifying
start and end of cycles points (yellow circles) delineating the cycles. The timing, length, amplitude, and
magnitudes of the phenological cycles at the site vary inter-annually.

Fig. 3. Examples of temporal variability of the characterized phenological cycles for the Sturt Plains,
Calperum, and Great Western Woodlands sites (refer to Fig. 1 and Table 1 for the sites’ location and
description, respectively). Based on 14-years of MODIS EVI data after screening out low quality observations
(brown circles), EVI time series after gap filling and smoothing (blue circles), fitting 7-parameter double
logistic functions (red squares) and identifying start and end of cycles points (yellow circles) delineating the
characterized phenological cycles.

Fig. 4. Mean of peak magnitude (A), mean of minimum magnitude (B), standard deviation of peak
magnitude (C) and standard deviation of minimum magnitude (D). A map of dominant land cover type is
provided in Fig. 1.

Fig. 5. Mean Julian day of the start of the phenological cycles (A1) and standard deviation of the start of the
phenological cycles in number of days (B1) and mean Julian day of the end of the phenological cycles (A2)
and standard deviation of the end of the phenological cycles in number of days (B2) across the 14-year time
series.

Fig. 6. Inter-annual variation in the peak timing. The Julian day of the phenological cycles’ peak is displayed
in the calendar year when the peak occurred. The mean (x) and standard deviation (o) of the cycle peak
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timing is provided for reference. The scale is cyclic. Areas where no peak was observed during a given
calendar year are shown in gray.

Fig. 7. Mean of the cycles’ integral greenness across the time series (top left panel in day units) and
standardized anomaly of each cycle’s integrated greenness. The standardized anomalies of the cycles are
shown in the year when the cycle started. For example, for a site with six phenological cycles across the time
series that started in 2001, 2002, 2003, 2005, 2008 and 2010, the cycles’ standard deviations are shown in
2001, 2002, 2003, 2005, 2008 and 2010. All other years are shown as gray as no phenological cycle start was
detected for those years. The white circle in the top left panel mark the OzFlux site shown in Fig. 2.

Fig. 8. Statistically significant relationships between monthly SOl and phenological cycle peak magnitude
(top row) and monthly rainfall and phenological cycle peak magnitude (bottom row). (A) SOI and rainfall
month most significantly correlated with peak magnitude. (B) Lead time of SOI and rainfall month relative to
phenological peak and (C) Spearman’s rho. Areas with p > 0.05 area shown in white. The black box in the top
right panel marks the extent of the area shown in Fig. 7 centered on the Cooper Creek floodplain in interior
Eastern Australia.

Fig. 9. Significant Spearman rho correlations (shown in green) between monthly SOI and phenological cycle
peak magnitude over a region in central Australia. The Cooper Creek floodplain of the middle reach of the
Cooper Creek is visible in the center. Only areas with p < 0.05 and rho >= 0.6 are shown.
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Tables and Figures:

Table 1. Names, locations, land cover class (Lymburner et al., 2011) and, average annual
rainfall amounts (Australian Bureau of Meteorology, 2014c) for the 36 sites shown in Fig. 1

Ozflux Long Average annual

Site Name site Site Code Lat (°S) (°E) Land cover classes rainfall [mm]
Woody shrubs
scattered

Nullaboure NU -30.275 | 127.175 200

Great Blight Woody shrubs sparse

Desert GBD -29.125 | 133.075 200
Woody shrubs sparse

Lake Eyre LE -27.425 | 137.225 200

Great Western Woody trees scattered

Woodlands GWW -30.225 | 120.625 300

East of Shark Woody shrubs sparse

Bay ESB -24.475 | 116.325 300

Central

Western Woody shrubs sparse

Australia CW -24.125 | 124.175 300

Interior Woody shrubs sparse

Southeast chenopods

Australia IEA -29.425 | 144.225 300
Woody trees scattered

Calperum X CP -34.025 | 140.375 300

West Herbaceous graminoids

Australian rainfed

wheat belt WAW -32.125 | 117.425 400
Herbaceous graminoids

Irrigated rainfed

cropping IC -35.275 | 145.275 400
Herbaceous graminoids
sparse hummock
grasses

Alice Springs X AS -22.275 | 133.225 400
Herbaceous graminoids
sparse hummock

Simpson grasses

Desert SD -20.475 | 124.025 400
Woody shrubs sparse

Hamersley X HA -22.275 | 115.725 400
Herbaceous graminoids
sparse hummock

Great Western grasses

Woodlands flux | x GWWEF -31.925 | 120.075 400
Herbaceous graminoids
sparse hummock

Queensland grasses

Tussock QTuU -21.225 | 143.075 500

North West Woody trees scattered

Queensland NWQ -19.525 | 140.025 600
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Woody trees sparse

Sturt Plains SP -17.175 | 133.375 600
Herbaceous graminoids
rainfed pasture

Riggs Creek RC -36.625 | 145.575 800
Woody trees open

Arcturus AR -23.875 | 149.275 800
Woody trees sparse

Gingin GG -31.375 | 115.725 800
Herbaceous graminoids
rainfed pasture

Otway oT -38.525 | 142.825 1000
Woody trees closed

Wombat WO -37.425 | 144.075 1000

Cumberland Woody trees sparse

Plain CU -33.725 | 150.725 1000
Woody trees sparse

Dry River DR -15.275 | 132.375 1000
Woody trees closed

Wallaby Creek WC -37.425 | 145.175 1200

Daly River Woody trees open

Pasture DRP -14.075 | 131.375 1200

West of North Woody trees sparse

Queensland WNQ -16.275 | 142.475 1200
Woody trees closed

Nimmo NI -36.225 | 148.575 1600
Woody trees closed

Samford SA -27.425 | 152.825 1600
Woody trees open

Tumbarumba TU -35.675 | 148.175 1600

Howard Woody trees open

Springs HO -12.475 | 131.175 1600

Dampier Woody trees sparse

peninsula DP -15.125 | 125.725 1600
Herbaceous graminoids
rainfed pasture

Dargo DA -37.125 | 147.175 2000

Northwest Woody trees closed

Tasmania NWT -41.225 | 145.175 2000

Cape Woody trees closed

Tribulation CT -16.125 | 145.375 8000
Woody trees closed

Daintree DT -16.225 | 145.425 8000
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Table 2. Percentage distribution of most significant correlation relationship between monthly SOl and

phenological peak magnitude per land cover class across the MDB. Shown are percentages of the MDB occupied

by different land cover, percentage of basin-wide significantly correlated areas per land cover, percent of

significantly correlated land cover class and average rho value per land cover.

Aggregated | Percentof | % of the areas of significant % of each LCC where Average rho of
land cover basin correlations between monthly significant correlation significant correlations
classes covered by | SOI and peak magnitude within | between monthly SOI within LCC
(LCC) each LCC | each LCC and peak magnitude

occurred
Trees 43.0 48.7 5.2 0.71
Shrubs 9.8 12.2 5.7 0.74
Grasses 19.0 22.7 5.4 0.72
Rain-fed 28.1 15.9 2.6 0.69
agriculture
and pasture
Irrigated 0.1 <0.0 0.9 0.69
agriculture

and pasture
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