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Interactive comment on “Land surface phenological 1 

response to decadal climate variability across Australia 2 

using satellite remote sensing” by M. Broich et al. 3 

 4 

Final Responses to Anonymous Referee #2 (marked by “>>”) 5 
 6 
>>General Comments 7 
The manuscript presents a geographically comprehensive analysis of vegetation land surface 8 
phenology variability over Australia using MODIS EVI data, with TRMM precipitation and the 9 
Southern Oscillation Index as climatic drivers. The manuscript is well written, advances the 10 
current understanding of vegetation phenology over this continent, and provides clear figures 11 
illustrating the results. Clarification regarding the methods and a few minor changes are needed 12 
however.  13 
The implementation of the 7-parameter double logistic model needs to be clarified. The authors 14 
show in Figure 1 the 36 sites used for “algorithm development and calibration” but it is not clear 15 
how these sites were used in this regard. Stating they were calibration sites implies that they 16 
were used to either provide initial estimates of the parameters, to constrain the parameters prior 17 
to applying the model across all pixels, or perhaps to help identify the width of the smoothing 18 
filter and moving window for defining seasonal minimums. And if so, were these estimations or 19 
constraints specific to land cover types and therefore applied based on each pixels land cover? 20 
or perhaps regionally to determine areas that may exhibit dual seasonality? I suspect the sites 21 
were used simply as test cases to ensure the model produced expected results, correct? If this 22 
is the case then I don’t believe using the term calibration is correct.  23 
 24 
>We appreciate the positive feedback from Referee #2.  25 
Our responses to general and specific comments follow (marked by “>”; new and modified 26 
figures below). 27 
 28 
Thank for your comment re the term ‘calibration’. We agree that the term was not suitable to 29 
describe our use of the 36 sites. We changed the phrasing and now explain in more detail how 30 
we used the sites as well as the implementation of the 7-parameter double logistic model as per 31 
your suggestion.  32 
 33 
We used the sites to determine optimized algorithm parameters such as the width of the 34 
smoothing filter and the moving window for local min and max point detection as well as the 35 
minimum cycle amplitude. The sites also served as test cases to ensure that the model 36 
algorithm, which was generic across the study area, produced expected results. We now clarify 37 
this in the text, removed the term calibration and rephrased relevant passages: e.g. in the 38 
Methods section 2.1: “For algorithm development and testing, we used a set of EVI time series 39 
at 36 sites distributed across Australia. These 36 sites represented a range of land cover and 40 
climatic zones (Table 1; (Lymburner et al., 2011; Australian Bureau of Meteorology, 2014c)) to 41 
ensure that the algorithm captures the variability in phenology across the country and we used 42 
them to determine optimized algorithm smoothing and threshold parameters.” 43 
 44 
Regarding the implementation of the 7-parameter double logistic model: In a first step it was 45 
necessary to identify the locations of regularly or irregularly distributed growing cycles across 46 
the time series (e.g. annually or non-annually reoccurring growing cycles). We used a Savitsky-47 
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Golay filter to smooth the data in preparation for the min and max point delimitation. The local 48 
min max point delineation is susceptible to noise not screened by the QA filter setting thus 49 
requiring prior smoothing. The local min and max point detection was used to define the 50 
boundaries of cycles and define the bounding areas for fitting of a 7 parameter double logistic 51 
curve to every cycle thus characterizing the cycles in a consistent way. 52 
 53 
 54 
>>My second concern 55 
In regard to these sites, is that only a single site is presented as an example of how well the 56 
model works (and I agree it works fairly well in this location, aside from missing a second 57 
season in 2010; see below). I would highly suggest including more plots (like those found in 58 
Figure 2) that encompass the range of land cover types and/or climate zones. They need not be 59 
as detailed as Figure 2, simply displaying the raw EVI and fitted curves would suffice. This 60 
would highlight the robustness of the model and/or the areas where the model had trouble, 61 
allowing researchers to determine whether applying this model would benefit future specific 62 
analyses. 63 
 64 
>Thank you. To highlight the robustness of the model and to facilitate future applications of the 65 
model by readers, we added a figure (new Figure 3) showing the raw EVI, smoothed EVI and 66 
fitted curves as well as the start and end of cycle points for three additional sites representing 67 
different land cover types and rainfall.  68 
 69 
 70 
>>The second point regarding the model fits is that of dual seasonality within a year. The 71 
authors state a moving window was used to identify minimum points and hence the extent of the 72 
phenological cycle, and that the model was then fit to each of these phenological cycles. First, if 73 
this method identifies seasonal cycles without regard to fixed yearly intervals then why is it 74 
necessary to fit “a second 7-parameter double logistic curve” when a second phenological cycle 75 
was identified within a given year? 76 
 77 
>Thank you. We changed the phrasing in section 2.2.3 clarifying that:  78 
“We used the identified minimum points to define the temporal extent of phenological cycles in 79 

the entire time series. We then fitted the 7-parameters double logistic model for each identified 80 

interval. We did not expect one or multiple phenological cycles in fixed intervals of the year. We 81 

thus allowed cycles to be characterized at any time to better represent the highly variable 82 

rainfall-driven phenological patterns across Australia’s vast drylands and dual cycles in cropping 83 

and pasture zones.“ Our algorithm first identified and characterized the cycles for each per pixel 84 

time series and then binned the identified results by calendar year.  85 

 86 
 87 
>>Second, how large was the moving window and how wide was the smoothing Savitsky-Golay 88 
moving filter? The width of each of these would greatly effect whether a “second” season was 89 
detected or not. This is very apparent in Figure 2. The EVI data points display what appears to 90 
be two seasons in 2010, but the smoothing filter dampens the second season, minimums are 91 
not identified, and the second season is not detected in the curve fit. 92 
 93 
>We now state the width of the Savitsky-Golay filter (15 time steps) in the text in section 2.2.2.  94 
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In general, the detectability of both single cycles and cycles close together is a function of the 95 
signal amplitude, the noise level and the smoothing parameters. It is arguable if there are two 96 
cycles in 2010 in Fig 2. At this stage we focused on investigating continent-scale biogeographic 97 
patterns of land surface phenology and response of phenology to rainfall and ENSO variability. 98 
However, we acknowledge that future studies are needed to refine the algorithm for better 99 
characterizing the rainfall pulse-driven patterns of vegetation growth. 100 
 101 
 102 
>>The dual seasonality problem could also be clarified by including a map showing which pixels 103 
displayed two cycles within a year and how often this occurred. This would also help to clarify 104 
the peak dates shown in Figure 4. Do these dates signify the timing of the first or second peak? 105 
Do many of the areas without a peak in a given year contain two peaks the following year (i.e. 106 
the season started late in year 1 and peaked in year 2, yet the pixel also displayed a second 107 
season in year 2). I realize that it may seem I am belaboring the dual season problem, but this 108 
can be a very common characteristic of highly variable rainfall-driven vegetation phenology and 109 
should not be overlooked. If a very low percentage of the land area does not display dual 110 
seasonality, then I would concede this point, but at this point it in unclear to what extent this 111 
occurs throughout the continent. Dual peaks within a year also can affect the results displayed 112 
in Figure 6B; lead time of SOI month relative to phenological peak. 113 
 114 
>Thank you. We appreciate the comment. Two peaks during a calendar year occurred over only 115 
25% of the Australian land surface. Within the 14 years of study, two peaks per year occurred 116 
no more than 3 times across 96% of Australia. Areas with two peaks per year occurred mostly 117 
on cropping or pasture land uses.  118 
 119 
 120 
>>In regards to the results presented in Section 3.4, I understand the authors choice to only 121 
present the most significant results (SOI in relation to peak magnitude), but I think it would be 122 
worthwhile to also present the best rainfall correlation results as well. The authors clearly state 123 
that Australia is the driest inhabited continent with one of the most variable rainfall climates in 124 
the world and vast areas of dryland systems. This warrants at least the presentation of 125 
precipitation related results, even if they were non-significant. Understanding where, and 126 
perhaps why, the EVI phenology metrics do not coincide with rainfall is an important result. A 127 
second row of maps in Figure 6 would suffice in displaying these results. 128 
 129 
>Thank you. We added a second row of maps as per the reviewer’s suggestion (new Figure 8). 130 
We added passages to the manuscript related to the expanded figure in the Results and 131 
Discussion sections. For example in the discussion section the relevant passage now reads: 132 
“We observed similar yet less concentrated pattern for the rainfall – peak magnitude correlation. 133 
We interpret this latter pattern as primarily as the effect of the large-scale atmospheric 134 
circulation patterns indicated by SOI. The lag times of correlations over North Eastern Australia 135 
varied between 1 and 6 months following SOI or rainfall. Shorter lag time (1 to 3 months) 136 
correlation patterns with SOI were observed near the West coast of Australia yet lag times 137 
following rainfall were longer (5-8 month). These patterns are spatially remote from the 138 
variability in convection over the Western Pacific (North East of Australia) indicated by SOI.” 139 
 140 
 141 
>>Specific Comments 142 
Line 55. I believe the correct term is recurring. The term reoccur more specifically refers to a 143 
single event that happens a second time, while recurring defines periodicity. 144 
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 145 
>Thank you. We made the change as suggested throughout the manuscript.  146 
 147 
>>Lines 71-80. I would suggest moving these lines to the beginning of the introduction. They 148 
provide a good general overview of land surface phenology and would give readers unfamiliar 149 
with the topic a good initial understanding of its importance in relation to other disciplines and 150 
applications.  151 
 152 
 153 
>Thank you. We rearranged the text as suggested now starting with: “Vegetation phenology 154 
refers to the response of vegetation to inter- and intra-annual variation of climate, specifically 155 
irradiance, temperature and water (Myneni et al., 1997;White et al., 1997;Zhang et al., 2003). 156 
Vegetation phenology is a useful indicator in the study of the response of ecosystems to climate 157 
variability (Zhang et al., 2012;Richardson et al., 2013), and an important parameter for land 158 
surface, climate and biogeochemical models that quantify the exchange of water, energy and 159 
gases between vegetation and the atmosphere (Pitman, 2003;Eklundh and Jönsson, 2010). A 160 
variety of applications that require the characterization of vegetation phenology include crop 161 
yield quantification, wildfire fuel accumulation, vegetation condition, ecosystem response to 162 
climate variability and climate change and ecosystem resilience (Schwartz, 2003;Liang and 163 
Schwartz, 2009;Peñuelas et al., 2009). Phenology of the vegetated land surface (land surface 164 
phenology, hereafter phenology) is “the seasonal pattern of variation in vegetated land surfaces 165 
observed from remote sensing” (Friedl et al., 2006).”  166 
 167 
 168 
>>Line 118-199. This sentence is a bit hard to understand; referring to 80% and then 50% of the 169 
land area does not allow for quick comprehension. Perhaps: : : rainfall exceeds 600mm over 170 
20% of the land area and is less than 300mm over 50% of the land area. 171 
 172 
>Thank you. We rearranged the sentence as per the reviewer’s suggestion 173 
 174 
 175 
>>Line 128. “a set of 36 trajectories” is unclear. Please be more specific. “EVI time series over 176 
36 sites: : :” Also, it may be more reader-friendly to use “time series” rather than “trajectories” 177 
when describing the EVI. 178 
 179 
>We modified the phrasing as suggested and changed trajectories to time series throughout.  180 
 181 
 182 
>>Line 180. Parameters of the Savitsky-Golay filter should be identified as this can have a large 183 
effect on the resulting smoothed time-series (see general comments). 184 
 185 
>Thank you. We now state the parameters in the text (Section 2.2.2).  186 
 187 
 188 
>>Line 186. Width of moving window needs to be identified (see general comments) 189 
 190 
>We now state the moving window width of 9 time steps in the text (Section 2.2.3). 191 
 192 
 193 
>>Line 237. “two” should be “to” 194 
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 195 
>Thank you. We made the change.  196 
 197 
 198 
>>Figure 4. An additional map displaying the standard deviation or range in peak timing would 199 
be an ideal addition to the figure as it is difficult to trace a given pixel or area across each year 200 
to determine the extent of variability. The color bar of the legend could be larger and vertical 201 
lines denoting temporal increments would greatly help interpretation (e.g. lines at monthly 202 
intervals). 203 
>Thank you. We added the mean and standard deviation in peak timing to the figure and 204 
caption (new Figure 6). We also added the bars to the legend to identify monthly interval as per 205 
the reviewer’s suggestion (new Figure 5 and 6).  206 
 207 
 208 

Interactive comment on “Land surface 209 

phenological response to decadal climate 210 

variability across Australia using satellite remote 211 

sensing” by M. Broich et al. 212 

 213 
Final Responses to Anonymous Referee #1 (marked by “>>”) 214 
 215 
>>General Comments 216 
This study examined the spatial and temporal patterns of vegetation phenology in Australia. The 217 
authors also assessed the relationship between climate variability especially rainfall and 218 
vegetation phenology and productivity. The authors also developed an algorithm to extract key 219 
phenological parameters from satellite greenness index time-series.  220 
Phenological change is one of the most direct indicators of the impact of climate change to 221 
terrestrial ecosystems. Although it has been widely studied in many ecosystems, it is 222 
surprisingly rare to see landscape scale analysis of vegetation phenology in Australia, and more 223 
importantly, how climate variability contributed to the changes. This study is thus novel and 224 
important, and will contribute to our understandings of how climate variability controls vegetation 225 
phenology. The manuscript in current form is concise and well written. It can be a better paper if 226 
the following issues are addressed: 227 
 228 
I agree with Anonymous Referee #2 that more clarification on the fitting algorithms is needed for 229 
the readers to reproduce the method. Specifically, the moving window to identify minimum and 230 
maximum needs more clarification: are those points identified local min/max points?  231 
 232 
>We appreciate the positive feedback from Referee #1.  233 
Our responses to general and specific comments follow (marked by “>”; new and modified 234 
figures below). 235 
 236 
Thank you for your comments. We now provide clarification concerning the fitting algorithms as 237 
per the suggestion of both reviewers (we modified relevant passage in sections 2.1, 2.2.2 and 238 
2.2.3. as detailed below). The identified minimum and maximum points are local min/max 239 
points, which we now also clarify in the text.  240 
 241 
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Regarding clarification of the 7-parameter double logistic model: In a first step it was necessary 242 
to identify the locations of regularly or irregularly distributed growing cycles across the time 243 
series (e.g. annually or non-annually reoccurring growing cycles). We used a Savitsky-Golay 244 
filter to smooth the data in preparation for the local min and max point delimitation (window 245 
width: 9 time steps). The local min and local max points delineation is susceptible to noises that 246 
were not screened by the QA filter setting thus requiring prior smoothing. The min and max 247 
point delineation was used to define the boundaries of cycles and define the bounding area for 248 
fitting a 7-parameters double logistic curve to every cycle thus characterizing the cycles in a 249 
consistent way.  250 
 251 
We modified the text to clarify these points. The modified passage in section 2.1 now reads: 252 
“For algorithm development and testing, we used a set of EVI time series at 36 sites distributed 253 
across Australia (Figure 1). These 36 sites represented a range of land cover and climatic 254 
zones (Table 1; (Lymburner et al., 2011; Australian Bureau of Meteorology, 2014c)) to ensure 255 
that the algorithm effectively captures the variability in phenology across the country and we 256 
used them to determine optimized algorithm parameters.” 257 
The modified passage in section 2.2.2 now reads: “We used the quality assurance flags in the 258 
MOD13 products to discard observations with insufficient quality, which included any 259 
observation with either VI usefulness > code ‘10’, snow cover, high aerosol or climatology 260 
aerosol quantity, mixed or high clouds present or water in the Land/Water Flag. For each pixel, 261 
we first used cubic spline interpolation (Dougherty et al., 1989) to temporally gap-fill the data 262 
points discarded in the previous filtering step. Next, we smoothed the time series for each pixel 263 
using Savitzky-Golay smoothing filter (Savitzky and Golay, 1964) with a window width of 15 time 264 
steps. This step effectively reduced the remaining noises in the time series that would otherwise 265 
impact the identification of minimum and maximum points and the subsequent fitting of a 266 
mathematical curve that we conducted to characterize the phenological cycles in a consistent 267 
way. “ 268 
The modified passage in section 2.2.3 now reads: “We identified local minimum and maximum 269 

points of the per-pixel time series using a moving window of 9 time steps and a > 0.01 EVI 270 

amplitude threshold to identify cycles of greening and browning. We used the identified 271 

minimum points to define the temporal extent of phenological cycles in the entire time series. 272 

We then fitted the 7-parameters double logistic model for each identified interval. We did not 273 

expect one or multiple phenological cycles in fixed intervals of the year. We thus allowed cycles 274 

to be characterized at any time to better represent the highly variable rainfall-driven 275 

phenological patterns across Australia’s vast drylands and dual cycles in cropping and pasture 276 

zones.” 277 

 278 
 279 
>>If so, how did the authors determine the window size? Did the size of the window affect the 280 
result? In addition, the authors need to explain the choice of EVI >0.01 (Page 7692) and 20% 281 
amplitude threshold for the start and end of the season. 282 
 283 
>Large areas of Australia are sparsely vegetated and with our algorithm we aimed to 284 
characterize the low amplitude phenological cycles of this sparsely covered areas that occupy 285 
most of Australia. The detectability of cycles is a function of the signal amplitude, the noise 286 
amplitude and frequency, and the smoothing parameters. The window size thus affects the 287 
results and we used the 36 sites to optimize the width of the smoothing filter and moving 288 
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window for defining seasonal minimums and maximums as well as the minimum cycle 289 
amplitude. The sites also served as test cases to ensure that the model algorithm, which was 290 
generic across the study area, produced expected results.  291 
We used the > 0.01 EVI threshold on the smoothed time series, which had lower amplitude 292 
compared to the raw, noise affected time series. The 20% amplitude threshold for the start and 293 
end of the cycle has been used in previous studies that we now cite in this context (section 294 
2.2.3).  295 
In section 2.1 we now state that “These 36 sites represented a range of land cover and climatic 296 
zones (Table 1; (Lymburner et al., 2011);(Australian Bureau of Meteorology, 2014c)) to ensure 297 
that the algorithm effectively captures the variability in phenology across the country and we 298 
used them to determine optimized algorithm parameters.” 299 
 300 
 301 
>>Some of the statements in the Discussion section need to be explicitly supported by the 302 
results from the current study. For example, the authors mentioned in P 7700 Line 17 that 303 
“however we see a fast response to rainfall pulses : : :”. However, according to Fig.6B, some 304 
areas in interior Australia lag behind SOI for _12 months, which thus did not support the above 305 
claim. Another example is that in P 7700, Line 27, the authors mentioned Lake Eyre, but Lake 306 
Eyre was not annotated in the figures. 307 
 308 
>Thank you. We changed the phrasing of the relevant passage in section 4.2 to “we interpret 309 
the high variability in start of cycle and peak timing (new Figure 5 and 6) as a fast response to 310 
rainfall pulses and the missing cycles (new Figure 6) were interpreted as dormant periods 311 
during dry years (Loik et al. 2004).” 312 
 313 
We state in the discussion (section 4.4) that the findings regarding the lag of phenological 314 
response to SOI and rainfall “contradict the concept that rainfall pulses drive rapid phenological 315 
response (Loik et al., 2004). We interpret our findings as the dominating space-time relationship 316 
between large scale atmospheric circulation pattern variability and phenological response. Yet 317 
these patterns are unlikely to represent responses to individual storm events. However, less 318 
significant relationships with different SOI and rainfall month and lag time were also present 319 
suggesting that vegetation responds to climatic variability at multiple time scales. A more in-320 
depth analysis of the relationship between climatic drivers and phenological response across 321 
multiple temporal scales should be investigated in future research.” 322 
We now also label Lake Eyre in Fig 1 as per the reviewer’s suggestion.  323 
 324 
 325 
>>Please add the spatial resolution of TRMM. As I understand the resolution is 0.25 degree by 326 
0.25 degree, which is much larger than the spatial resolution of MODIS. Then the authors need 327 
to explain in detail how to compare the data from these two products. 328 
 329 
>Thank you for this comment. We added the spatial resolution (0.25° x 0.25°) of 330 
TRMM_3B43.v7 to the text in section 2.1 ‘Study area and data used’.  331 
Prior to analysis we resample the TRMM data to the spatial resolution of our phenological 332 
variables. As for the implication of the spatial resolution of driver variables, a coarse spatial 333 
resolution driver can partially explain a fine-grained spatial response. In an extreme case, SOI is 334 
a proxy of the air pressure gradient between Darwin and Tahiti (~8500 km apart) yet we can 335 
detect a fine spatial scale correlation pattern differentiating for example the vegetation response 336 
of the Cooper Creek floodplain form its surroundings as the floodplain’s topography and 337 
hydrology are different from adjacent vegetated areas at a fine spatial scale.  338 
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 340 
>>It would be useful to compare the inter-annual variability of the start of season, and the end of 341 
season, and their relationship with the timing of rainfall (and SOI). As one previous study 342 
suggested that for deciduous forest in Australian tropical savannah, leaf-out (or leaf flushing) 343 
only occurs after the first rainfall event: Williams, R. J., et al. "Leaf phenology of woody species 344 
in a north Australian tropical savanna." Ecology 78.8 (1997): 2542-2558. 345 
 346 
>>Thank you for this suggestion. Analyzing the response of woody savanna vegetation to 347 
rainfall timing would be an interesting topic for future work. Remotely sensed phenology in 348 
savanna systems primarily reflects the dynamics of the grassy understory and, while attempts of 349 
signal disaggregation have been made (e.g. Donohue et al 2009), teasing out overstory 350 
dynamics in open canopy woody systems represents a research frontier.  351 
In section 4.5 “Limitations and future work” we state that: “When interpreting the phenological 352 
cycles characterized here, it should be noted that the sub pixel composition of vegetation and 353 
background as well as multi-layer vegetation structure is unknown and may change over time 354 
(Zhang et al., 2009;Walker et al., 2012;Walker et al., 2014).” 355 
 356 
 357 
>>Specific comments (P for Page, L for Line): P7686 L11: what does “internally” mean here? It 358 
would be better to avoid vague terms like this one. 359 
 360 
>Thank you. We removed the term from the sentence.  361 
 362 
 363 
>>P7686 L15: how to define the effectiveness of the method? If the algorithm used in this study 364 
was not compared with other methods (which is the case), it will be better to refrain from using 365 
this statement. 366 
 367 
>Done. Thank you. We rephrased the sentence to: “To fill this knowledge gap and to advance 368 
phenological research, we developed an algorithm to characterize phenological cycles and 369 
analyzed geographic and climate-driven variability in phenology across Australia.” 370 
 371 
 372 
>>P7690 L06: As Referee #2 suggested that more specifics are needed here. How was the 373 
calibration done? What are the land cover types of those sites (a table will be better)? 374 
 375 
>Thank you. We used the 36 sites to optimize the width of the smoothing filter and moving 376 
window for defining seasonal minimums and maximums as well as the minimum cycle 377 
amplitude (which we now specifically state in section 2.1). The sites also served as test cases to 378 
ensure that the model algorithm, which was generic across the study area, produced expected 379 
results. We removed the term calibration from the text and now state that we used the sites for 380 
“algorithm development and testing” (section 2.1). As per the reviewer’s suggestion, we added 381 
Table 1, showing the land cover classes of the test sites and the average annual rainfall to 382 
differentiate phenological test sites that belong to the same land cover class.  383 
 384 
 385 
>>P7690 L13: Comparing with the 16-day EVI data used in this study, MOD09 products have 386 
higher temporal resolution (daily and 8-day), which is important for the study of phenology. The 387 
authors need to explain/discuss why the coarser temporal resolution product was selected. 388 
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 389 
>Thank you. We chose the 16-day versions of the EVI data as it attenuates the noise present in 390 
higher temporal resolution versions (Solano et al. 2013) and now state this in the text in section 391 
2.1. The passage now reads: “We chose the 16-day versions of the products as they attenuate 392 
the noise present in higher temporal resolution versions (Solano et al., 2012).” 393 
 394 
 395 
>>P7695 L13: Please explain what is “persistent greenness”. Is it “high mean EVI, and low 396 
magnitude”? 397 
 398 
>Persistent greenness is high mean peak EVI and high mean minimum point EVI, so EVI is 399 
always relatively high. We now state this in section 3.1. in the text.  400 
The sentence now reads: “Other areas with high levels of persistent greenness (areas with high 401 
mean peak magnitude and high mean minimum magnitude) included…” 402 
 403 
 404 
>>Figures: 405 
Fig.1: It will be better if the legend shows the land cover types different colors correspond to, 406 
instead of use words in the caption. 407 
 408 
>We added a color legend to the figure as per the reviewer’s suggestion (Figure 1).  409 
 410 
 411 
>>Fig.7: This figure would be better if the location of the Cooper Creek floodplain is shown in 412 
the figure. In addition, north arrow would be good. 413 
 414 
>Thank you. We now show the Cooper Creek floodplain in the figure and added a north arrow 415 
as per the reviewer’s suggestion (new Figure 9). 416 
 417 
 418 
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Abstract 

Land surface phenological cycles of vegetation greening and browning, recorded by earth observing 

satellites, are influenced by variability in climatic forcing. Quantitative spatial information on 

phenological cycles and their variability is important for agricultural applications, wildfire fuel 

accumulation, land management, land surface modeling, and climate change studies. Most 

phenology studies have focused on temperature-driven Northern Hemisphere systems, where 

phenology shows annually recurring reoccurring patterns. Yet, precipitation-driven non-annual 

phenology of arid and semi-arid systems (i.e., drylands) received much less attention, despite the 

fact that they cover more than 30% of the global land surface. Here we focused on Australia, the 

driest inhabited continent with one of the most variable rainfall climates in the world and vast areas 

of dryland systems. Detailed and internally consistent studies that investigate phenological cycles via 

satellite image time series and their response to climate variability across the entire continent 

designed specifically for Australian dryland conditions are missing. To fill this knowledge gap and to 

advance phenological research, we used existing methods more effectively developed an algorithm 

to characterize phenological cycles and analyzed to study geographic and climate-driven variability in 

phenology across Australia. We linked derived phenological metrics with rainfall and the Southern 

Oscillation Index (SOI). We performed our analysis on Enhanced Vegetation Index (EVI) data from 

the MODerate Resolution Imaging Spectroradiometer (MODIS) from 2000 to 2013, which included 

extreme drought and wet years. We conducted a continent-wide investigation of the link between 

phenology and climate variability and a more detailed investigation over the Murray-Darling Basin 

(MDB), the primary agricultural area and largest river catchment of Australia.  

Results showed high inter- and intra-annual variability in phenological cycles across Australia. The 

peak of phenological cycles occurred not only during the austral summer but at any time of the year, 

and their timing varied by more than a month in the interior of the continent. The magnitude of 
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phenological cycle peak and the integrated greenness were most significantly correlated with 

monthly SOI within the preceding 12 months. Correlation patterns occurred primarily over North 

Eastern Australia and within the MDB predominantly over natural land cover and particularly in 

floodplain and wetland areas. Integrated greenness of the phenological cycles (surrogate of 

vegetation productivity) showed positive anomalies of more than two standard deviations over most 

of Eastern Australia in 2009-2010, which coincided with the transition between the El Niño induced 

decadal droughts to flooding caused by La Niña. The quantified spatial-temporal variability in 

phenology across Australia in response to climate variability presented here provides important 

information for land management and climate change studies and applications.  

 

1 Introduction 

Vegetation phenology refers to the response of vegetation to inter- and intra-annual variation of 

climate, specifically irradiance, temperature and water (Myneni et al., 1997;White et al., 1997;Zhang 

et al., 2003). Vegetation phenology is a useful indicator in the study of the response of ecosystems 

to climate variability (Zhang et al., 2012;Richardson et al., 2013), and an important parameter for 

land surface, climate and biogeochemical models that quantify the exchange of water, energy and 

gases between vegetation and the atmosphere (Pitman, 2003;Eklundh and Jönsson, 2010). A variety 

of applications that require the characterization of vegetation phenology include crop yield 

quantification, wildfire fuel accumulation, vegetation condition, ecosystem response to climate 

variability and climate change and ecosystem resilience (Schwartz, 2003;Liang and Schwartz, 

2009;Peñuelas et al., 2009). Phenology of the vegetated land surface (land surface phenology, 

hereafter phenology) is “the seasonal pattern of variation in vegetated land surfaces observed from 

remote sensing” (Friedl et al., 2006).  
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Vegetation Pphenological cycles are periodically recurring reoccurring events. In temperature-

limited systems, phenological cycles occur on an annual basis, starting in spring and ending in 

autumn. Existing algorithms aiming to characterize phenological cycles from remotely sensed 

spectral vegetation ‘greenness’ indices perform well for ecosystems in temperature-driven mid- and 

high-latitudes (Eklundh and Jönsson, 2010;Ganguly et al., 2010). Yet, in ecosystems where rainfall is 

limited and highly variable such as semi-arid and arid systems (i.e., drylands; United Nations(2011)), 

phenological cycles may be irregular in their length, timing, amplitude and reoccurrence interval, 

occur at any time of the year or not occur at all in a given year (Brown and de Beurs, 2008;Ma et al., 

2013;Walker et al., 2014;Bradley and Mustard, 2007).  

Despite the fact that drylands cover over 30% of the global land surface and occur on every 

continent (United Nations, 2011), their rainfall-driven phenology that features non-annual cycles has 

not been well characterized. Here we focused on Australia, a continent where drylands cover more 

than 80% of the land surface. Recent reports by the Intergovernmental Panel on Climate Change 

highlighted not only the importance of quantifying vegetation phenology in general (IPCC, 2013, 

2007;Schwartz, 2013) but pointed to a lack of phenological studies for Australia and New Zealand 

(Keatley et al., 2013;IPCC, 2001, 2007). We developed an algorithm to characterize phenological 

cycles and analyzed used existing methods more effectively to quantify the phenology of Australia, 

as an example of a rainfall-driven dryland systems. Moreover, recent reports by the 

Intergovernmental Panel on Climate Change highlighted not only the importance of quantifying 

vegetation phenology in general (IPCC, 2013, 2007;Schwartz, 2013) but pointed to a lack of 

phenological studies for Australia and New Zealand (Keatley et al., 2013;IPCC, 2001, 2007).  

Vegetation phenology refers to the response of vegetation to inter- and intra-annual variation of the 

Earth’s climate, including irradiance, temperature and water (Myneni et al., 1997;White et al., 

1997;Zhang et al., 2003). Vegetation phenology is a useful indicator in the study of the response of 

ecosystems to climate change (Zhang et al., 2012;Richardson et al., 2013), and an important 

parameter for land surface, climate and biogeochemical models that quantify the exchange of water, 
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energy and gases between vegetation and the atmosphere (Pitman, 2003;Eklundh and Jönsson, 

2010). Other applications that require the characterization of vegetation phenology include crop 

yield quantification, wildfire fuel accumulation, vegetation condition, ecosystem response to climate 

variability and climate change and ecosystem resilience (Schwartz, 2003;Liang and Schwartz, 

2009;Peñuelas et al., 2009).  

Phenology at the landscape to continental scale (land surface phenology, hereafter phenology) is 

typically derived using time-series of remotely sensed vegetation greenness indices such as the 

normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI) (de Beurs 

and Henebry, 2008). Several studies have used NDVI time series recorded by the Advanced Very High 

Resolution Radiometer (AVHRR) to investigate long-term phenological trends induced by climate 

change (Moulin et al., 1997;Zhang et al., 2012). , but due to better geometric correction and 

increased resolution, more More recent studies used EVI time series recorded by the MODerate-

resolution Imaging Spectroradiometer , MODIS (MODIS) that has better geometric correction and 

increased resolution compared to AVHRR (Tan et al., 2011). Compared with NDVI, EVI is less 

sensitive to residual atmospheric contamination and soil background variations, and has a larger 

dynamic range of sensitivity to vegetation greenness (Huete et al., 2002). EVI trajectories time series 

measure change in an integrated property commonly referred to as ‘greenness’ has been found to 

be correlated with sub pixel chlorophyll content and leaf area index (Huete et al., 2014).  

 

Once derived, Parameters describing phenological cycles parameters (hereafter phenological 

metrics) can be used to quantify the influence of climate change and variability on phenology (Ma et 

al., 2013;Brown et al., 2010). Australia has one of the most variable climates in the world, subject to 

high inter-annual rainfall variability due to the influence of El Niño Southern Oscillation (ENSO) 

(Nicholls, 1991;Nicholls et al., 1997). Previous studies investigated the relationship between 

vegetation index time series and rainfall globally, and the correlation with soil moisture for Australia 

(Chen et al., 2014a;Andela et al., 2013). However, studies quantifying the relationship between 
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phenology and ENSO-related climate variability as shown for example for Africa (Brown et al., 

2010;Philippon et al., 2014) are missing. Here we analyzed phenological responses to climate 

variability through a period of time from 2000 to 2013. This period , which encompassed the 

Australian Millennium Drought from 2001-2009 (van Dijk et al., 2013) and the 2010-11 La Niña 

associated flooding flooding events (Heberger, 2011;Australian Bureau of Meteorology, 2014a) and 

focused on one of the most affected areas, the MDB in South East of Australia (van Dijk et al., 

2013;Kirby et al., 2012;Australian Bureau of Meteorology, 2014b).  

Particular emphasis was given to the MDB the catchment of Australia’s largest river system and 

associated ecologically valuable floodplain and wetland ecosystems and the primary agricultural 

area of the continent (Connell, 2007). Besides being the catchment of Australia’s largest river system 

and associated ecologically valuable floodplain and wetland ecosystems, the MDB contains the main 

agricultural area of the continent (Connell, 2007).   

 

The objectives of this study were to: 1) characterize the inter- and intra-annual variability of 

phenological cycles of greening and browning, including non-annual cycles across Australia, a 

continent with vast areas of dryland ecosystems using an internally consistent algorithm; and 2) 

investigate the relationships between the derived phenological metrics and rainfall, as well as 

between phenological metrics and the Southern Oscillation Index (SOI; Trenberth and Caron (2000)), 

a n atmospheric circulation index and proxy of ENSO, across the entire continent and in more detail 

for the MDB.  

 

2 Methods 
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2.1 Study area and data used 

Australia covers an area of > 7.6 million km2 and climatic zones range from tropical in the North to 

temperate in the South (Fig. 1). Average rainfall does not exceed 600 mm over 80% of the land area 

and is less than 300 mm over 50% of the land area 600 and 300 mm per year across 80% and 50% of 

the land, respectively (Australian Bureau of Meteorology, 2014c). Northern Australia is dominated 

by savanna, whereas most of the country is covered by grassland and desert vegetation (Köppen, 

1884). Forest occurs at higher elevation in the temperate South West and South East where large 

areas of the lowlands are used for rain-fed agriculture (Fig. 1; Lymburner et al. (2011)). The MDB 

contains Australia’s primary agricultural area and occupies 14% of Australia in the South East of the 

continent (Fig. 1).  

 

Place Fig. 1 around here 

 

For algorithm development and testing calibration, we used a set of EVI time series trajectories at 36 

sites distributed across Australia (Fig. 1). These 36 sites represented a range of land cover and 

climatic zones (Table 1; (Lymburner et al., 2011);(Australian Bureau of Meteorology, 2014c)) to 

ensure that the algorithm effectively captures the variability in phenology across the country and we 

used them to determine optimized algorithm parameters. The majority (21) of our test sites were 

flux tower sites from the OzFlux network (2014). We selected 15 additional test sites to represent a 

wider coverage of climate conditions, vegetation cover and land uses.  

 

Place Table 1 around here 
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As input data for the phenological characterization, we sourced EVI MOD13C2 and MOD13A1 with a 

temporal resolution of 16 days for the 18 Feb 2000 – 22 Apr 2013 time period (NASA Land Processes 

Distributed Active Archive Center, 2014).  

We used the 5.6-km product (MOD13C2) to characterize the biogeographic patterns of vegetation 

phenology across the entire Australian continent and the 500-m product (MOD13A1) to investigate 

the phenological patterns in more detail across the MDB. We chose the 16-day versions of the 

products as they attenuate the noise present in higher temporal resolution versions (Solano et al., 

2012).  

To analyze the responses of phenological metrics to rainfall variability, we used monthly data from 

the Tropical Rainfall Monitoring Mission Project (TRMM_3B43.v7 product; (Goddard Space Flight 

Center, 2014)) with 0.25° x 0.25° spatial resolution for 1999-2012. Instead of using gridded rainfall 

data interpolated from widely spaced weather stations across large areas of the interior, we opted 

for remotely sensed rainfall measured by TRMM, which is systematic across space and time.  

To analyze the responses of phenological metrics to ENSO, we used monthly data of the Southern 

Oscillation Index (SOI) obtained from the Australian Bureau of Meteorology (2014d). SOI represents 

the standardized difference of air pressures between Darwin and Tahiti and serves as a proxy of 

convection in the Western Pacific caused by ENSO sea surface temperature anomalies (Trenberth 

and Caron, 2000).  

Across the MDB we used the Dynamic Land Cover dataset provided by Geoscience Australia 

(Lymburner et al., 2011) to investigate the differences between the phenological responses to SOI 

and rainfall over natural and managed land cover types. We derived the natural land cover class by 

grouping land cover dominated by trees, shrubs and grasses. The managed land cover classes 

encompassed rain-fed and irrigated agriculture and pasture. Almost a third of the basin’s area is 

managed for cropping and pasture (Lymburner et al., 2011). We also analyzed the phenological 

response over the ecologically valuable floodplain and wetland areas of MDB (Kingsford et al., 2004) 

and evaluated the floodplain’s response to SOI as a proxy of ENSO-related drought and flooding.  

https://lpdaac.usgs.gov/products/modis_products_table/mod13c2
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2.2 Phenology metrics and algorithm  

2.2.1 Phenology metrics 

To account for non-annual vegetation dynamics, we defined a phenological cycle not as an annually 

or seasonally recurring reoccurring event but more broadly as a cycle of EVI-measured greening and 

browning that may occur more than once per year or may skip a year entirely and not occur for one 

or more years.  

We modeled phenological cycle curves and key properties of each phenological cycle in the form of 

curve metrics. The phenological metrics modeled the timing and magnitude of key transitional 

points on the cycle’s curve and included the timing and magnitude of the minimum points before 

and after a phenological cycle, the peak point of the cycle and the start and end point of the cycle. In 

addition, we also calculated the integrated area between the start and end points of a cycle as a 

surrogate of vegetation productivity during a cycle (Zhang et al., 2013). By tracking the phenological 

cycle metrics over time, we characterized the intra- and inter-annual variability of the phenological 

cycle and thereby vegetation growth patterns.  

 

2.2.2 Data pre-processing 

We used the quality assurance flags in the MOD13 products to discard observations with insufficient 

quality, which included any observation with either VI usefulness > code ‘10’, snow cover, high 

aerosol or climatology aerosol quantity, mixed or high clouds present or water in the Land/Water 

Flag. For each pixel, we first used cubic spline interpolation (Dougherty et al., 1989) to temporally 

gap-fill the data points discarded in the previous filtering step. For each pixel, we first gap-filled the 

data points discarded in the previous step. We used cubic spline interpolation as the temporal gap 

filling method (Dougherty et al., 1989). Next, we smoothed the time series for each pixel using 

Savitzky-Golay smoothing filter (Savitzky and Golay, 1964) with a window width of 15 time steps. 
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This step effectively reduced the remaining noises in the time series trajectories that would 

otherwise impact influence the identification of minimum and maximum points and the subsequent 

fitting of a mathematical curve that we conducted to characterize the phenological cycles in a 

consistent way.  

2.2.3 Curve fitting and phenological metric derivation 

We identified local minimum and maximum points of the per-pixel time series using a moving 

window of 9 time steps and a > 0.01 EVI amplitude threshold to identify cycles of greening and 

browning. We used the identified minimum points to define the temporal extent of phenological 

cycles in the entire time series. We and then fitted the 7-parameters double logistic model 

mathematical function for each identified interval. We did not expect a one or multiple phenological 

cycles in a fixed intervals of the year. We thus but allowed the cycles to occur and be characterized 

at any time without a predefined intervals to better represent the highly variable rainfall-driven 

phenological patterns across Australia’s vast drylands and dual cycles in cropping and pasture zones. 

We fitted 7-parameter double logistic curves to each cycle in the per-pixel time series, defined as: 

 

              (1) 

 

where Vmina and Vminb are equal to the first and second minimum EVI, respectively. Vmax is the 

high asymptote in the double logistic model, Tmida is the time when EVI reached half of Vmax - 

Vmina. Tmidb is the time when EVI reached half of Vmax - Vminb. Sa and Sb are the scale parameters 

on the increasing and the decreasing side of the curve, respectively. If a second phenological cycle 

was identified within a year, a second 7-parameter double logistic curve was fitted to characterize 

this cycle.  We identified the start and end points of each cycle as the points where the EVI reached 

20% of the amplitude, between the first minimum and the peak, and the peak and the second 
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minimum, respectively as also used in other studies (Eklundh and Jönsson, 2010;Tan et al., 

2011;Jones et al., 2011;Delbart et al., 2005). 

An example of the algorithm processing steps is shown for the Alice Springs flux tower site (Fig. 2). 

The site represents Acacia woodlands in the arid interior of Australia. The site serves as an example 

showing how our algorithm derives phenological metrics to characterize the high temporal 

variability in phenological cycles for the interior of Australia.  

 

Place Fig. 2 around here 

 

We provide further examples of how the algorithm characterized the phenological cycles over 

different land cover types in different rainfall zones in Fig. 3. The sites’ location and description is 

provided in Fig. 1 and Table 1, respectively.  

 

Place Fig. 3 around here 

 

2.3 Analysis of spatial-temporal patterns of phenology across Australia 

After deriving phenological cycles and their metrics from per-pixel greenness time series trajectories 

we analyzed the metrics across Australia at two levels of temporal aggregation: 1) In the form of 

summary statistics (mean and standard deviation) across greenness trajectory to quantify overall 

phenological variability over the 14-year time series; and 2) In the form of inter-cyclic variability as 

the difference between a metric of one cycle and the following cycle over the 14-year time series. 

For a given site, we calculated for example the mean peak magnitude and the peak magnitude’s 

standard deviation. An example of inter-cycle variability of metrics is our analysis of peak timing for 

all peaks across the time series. We also analyzed the deviation of an individual phenological cycle 

integral relative to the expected variability. For this purpose, we calculated the standardized 
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anomaly of each cycle’s integral as the difference of the cycle’s integral from the mean integral 

divided by the standard deviation of the integrals.  

 

2.4 Analysis of spatial-temporal patterns of Australian phenology in response 

to rainfall and SOI variability  

We further analyzed the statistical relationship between phenological cycle peak magnitude and 

cycle integrated greenness and TRMM rainfall and SOI (four combinations of correlation analyses) 

across Australia and in more detail for the MDB. The cycle peak magnitude represents maximum 

greenness while the cycle integrated greenness serves as a proxy of ecosystem productivity (Zhang 

et al., 2013). We used non-parametric Spearman rank correlation tests (Lehmann and D'Abrera, 

1975), hereafter Spearman rho, to determine the strength and significant od monotonic 

relationships between rainfall and each of the two phenology metrics as well as SOI and the two 

phenology metrics. We evaluated relationships between rainfall and SOI as the explanatory variables 

binned over different intervals and with different lead times to the phenological cycle integral and 

peak magnitude, which were used as the response variables. We binned rainfall accumulation for 

intervals of 1 to 12 months and average SOI values for periods of 1 to 12 months up two to 12 

months prior to the phenological cycle peak.  

The underlying assumption for investigating Spearman rho correlations between phenology and 

rainfall or SOI was that a significant and strong monotonic relationship between a phenological 

metric and preceding rainfall or SOI suggested that the phenology metric (peak magnitude and 

integrated greenness) is likely driven by the respective climate variable.  

Aiming to identify correlation patterns and how these patterns change as a function of binning 

interval (1 – 12 months) and lead times (up to 12 months), we extracted for each pixel and binning 

interval the most significant test result. For each potential driver and binning interval, we analyzed 
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the lead time, correlation and significance value. We illustrated the results only for areas that were 

significant (p-value < 0.05) and had a rho value of > 0.6.  

Using the above methodology, we conducted a continent-wide analysis and a higher resolution 

analysis investigating the relationship of SOI with phenology metrics for the MDB in South Eastern 

Australia. Within the MDB we further investigated relationship between SOI and phenology 

(differences in correlation patterns) over natural and managed land cover types as well as the 

catchment’s floodplain and wetlands.  

 

3 Results 

3.1 Mean and variability of peak and minimum magnitude as well as start and 

end of cycle timing across 14 years 

We evaluated the mean and variability of the peak and minimum magnitude across the 14-year time 

series to investigate the inter-annual variations in vegetation phenology. The highest mean peak 

magnitude occurred in a narrow area covered predominantly by evergreen humid tropical forest 

along the North Eastern coast (areas with high EVI in Fig. 4A and Fig. 4B light color areas in Fig. 3 A). 

The same area also had the highest mean minimum magnitude values, indicating that greenness was 

persistently high (light color areas in Fig. 4 B). Other areas with high levels of persistent greenness 

(areas with high mean peak magnitude and high mean minimum magnitude) included temperate 

grasslands in coastal locations of South East Australia, temperate broadleaf forest in the South East 

and South West of the continent, and across most of Tasmania (light color areas in Fig. 4 A and B). 

The largest mean seasonal amplitude (peak minus minimum magnitude) occurred in areas used for 

crop cultivation and grazing in the South West and the South East. Areas of low mean peak 

amplitude were found across large parts of the interior (darker tone areas in both Fig. 4 A and B) 

with the exception of the desert river beds.  
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The highest level of variability in peak magnitude occurred over cropped areas in the South East and 

South West of Australia (light colored areas in Fig. 4 C). High variability of peak magnitude over 

natural vegetation cover was observed for example for regions predominantly covered with tropical 

tussock grasses in the inland North and North East as well as areas with predominant chenopod 

woody shrubs cover along the Great Australian Bight along the Southern coast of Australia (light 

color areas in Fig. 4 C). High variability in minimum magnitude occurred at higher elevations of the 

Southern Great Dividing Range in South East of Australia (light color areas in Fig. 4 D) and around the 

center of the arid Lake Eyre, which is the lowest point of the continent.  

 

Place Fig. 4 around here 

 

We also evaluated the mean and variability of the start and end of cycle timing across the 14-year 

time series. Across Western and South Eastern Australia the mean start of cycles occurred during the 

first half of the year and the mean end of cycle occurred in the second half of the year (Fig. 5 A1). 

Across Northern and Eastern Australia, the mean start of cycles occurred during the second half of 

the year and the mean end of cycle occurred in first half of the following year (Fig. 5 A2). The 

variability in start and end of cycle was highest across interior Australia with the area of high 

variability being higher for the end of cycle timing (Fig. 5 B1 and 2).  

 

Place Fig. 6 around here 

 

3.2 Inter-cycle variability in peak timing 

The timing of the first cycles’ peak within each year showed large variation from one year to another 

across most of Australia (Fig. 6). Variations in peak timing were observed over most of interior 

Australia. Peak timing was later than average in 2001, 2004 and 2005 (Fig. 6), but earlier in 2010-
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2012 over interior Australia (Fig. 6). The peak timing in the wet tropical savannas of the Northern 

Territory and for most of the South West wheat belt was relatively stable (Fig. 6). The center of the 

continent showed an earlier than average peak in 2002 and 2009.  

Over interior Australia peak timing varied by over a month from one year to another. Areas for 

which no peak was observed in a given year (shown in gray in Fig. 6) occurred primarily in the 

drylands of the continent’s interior, where phenological cycles may not follow an annually recurring 

reoccurring pattern. For example, areas with no peak over interior Australia in Fig. 6 for 2005 and 

2008 can be also traced in Fig 2. where the phenological trajectory of the Alice Springs site did not 

show a peak in those years.  

 

Place Fig. 6 around here 

 

3.3 Variability of cycle-integrated greenness 

Greenness integrated between the start and end of a phenological cycle can provide a first 

approximation of vegetation productivity (Ponce Campos et al., 2013;Zhang et al., 2013). 

Standardized anomalies of integrated greenness highlight the deviation of an individual value from 

the mean, relative to the expected level of variability (the standard deviation). Standardized 

anomalies of integrated greenness were highly variable across time (Fig. 7). Negative standardized 

anomalies of integrated greenness (red tones in Fig. 7) occurred across the continent in most areas 

in 2002 and vast areas of the continent in 2008 and 2009. Large areas of negative anomalies also 

occurred in 2001 to 2003 and from 2004 to 2009. Large areas of positive standardized anomalies 

(green tones in Fig. 7), with increased greening of 1 to 2 standard deviations, occurred in 2010 a year 

of particularly high rainfall. 

 

Place Fig. 7 around here 
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When relating the cycles’ standardized anomalies of integrated greenness to the phenological 

trajectory at the Alice Springs tower site, the widespread negative standardized anomaly over 

interior Australia in 2008 (Fig. 7) was not represented in the site’s curve (Fig 2.) where no cycle 

started or ended in 2008 and 2009. Conversely, the positive standardized anomalies of cycles that 

started in 2010 and 2011 over large areas of Eastern and interior Australia can also be seen in the 

Alice Springs curve in the form of larger than average integrals (Fig 2.).  

 

3.4 Analysis of spatial-temporal patterns of Australian phenology relative to 

rainfall and SOI variability  

We conducted correlation analysis relating two climate drivers (SOI and rainfall) and two 

phenological metrics (first peak magnitude and cycle integral of each year), respectively (four 

combinations). Each of the four analysis included climate drivers binned over periods between 1 and 

12 months within the 12 month period leading up to the phenological peak. We found that areas 

with significant correlations between SOI and phenology or rainfall and phenology were most 

widespread for a binning interval of one month. Areas with significant correlations shrank as we 

increased the binning interval of SOI or rainfall from 1 to 12 months.  

The spatial pattern of significant correlations (areas significantly correlated, correlation strength, and 

lead times) was generally similar for all four combinations of variables. However, the patterns of 

significant correlation between peak magnitude and climate variables covered a larger area 

compared to patterns of significant correlation between cycle integral and climate variables. The 

patterns of significant SOI-driven correlation with phenology covered a larger and more 

concentrated area compared to the rainfall driven correlation patterns. Given the above similarities 

and the largest extent of significant correlation patterns at a single month binning interval, we limit 
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the presentation of results to the most significant monthly SOI and – cycle peak magnitude and the 

most significant monthly rainfall– cycle peak magnitude correlation.  

The most significant correlation of monthly SOI and cycle peak magnitude and monthly rainfall and 

cycle peak magnitude were most widespread in North Eastern Australia (Fig. 8 C). Lead times 

between the most significantly correlated driver month and the phenological cycle peak were 1 to 6 

months for North Eastern Australia and 7 to 12 months for the East Australian interior representing 

an increase in lead time along a gradient of decreasing rainfall (Fig. 8 A and B). These correlation 

patterns extended into the Australian interior along desert river drainage lines such as the Cooper 

Creek. The floodplain of the of the middle reach of the Cooper Creek Cooper Creek’s floodplain can 

be clearly distinguished in the correlation pattern, indicating a strong response of the floodplain 

vegetation to for example SOI variability (Fig 9.). Additional correlation patterns with a shorter lag 

time behind SOI (1-3 months) were observed near the West coast of Australia with longer lag times 

of 5-8 month behind rainfall (Fig 8 A).  

 

Place Fig. 8 around here 

 

Place Fig 9 around here 

 

In the MDB, correlation patterns between monthly SOI and cycle peak magnitude occurred primarily 

over natural vegetation cover as opposed to areas used for agriculture or pasture (managed land 

cover). The percentage of all significant relationships over natural land cover was 83.6% as opposed 

to 15.9%, the percentage of all significant relationships over managed land cover (Table 2). These 

percentages were disproportional to areal percentages of natural and managed land cover within 

the MDB (71.8% and 28.2%, respectively). The highest percentage of significantly correlated areas 

within each land cover class and highest mean rho values were found in areas dominated by shrubs, 
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trees and grasses. Irrigated agriculture and pasture had the smallest percentage of correlated area 

(Table 2) compared to other land cover classes.  

The ecologically valuable floodplains and wetlands of the MDB made up 10.9% of the basin area and 

were of mixed land cover composition. The percentage of all areas with significant correlations 

between monthly SOI and phenological cycle peak magnitude in floodplains and wetlands was 

disproportionally higher (14.8%) than the percentage of area occupied by this zone (10.9%). In 

addition, 6.1% of the floodplain and wetlands area showed significant relationships with monthly 

SOI, which is higher than for any of the individual land cover classes in Table 2.  

 

Place Table 2 around here 

 

4 Discussion 

4.1 A phenological characterization of Australia that accommodates non-

annual phenological cycles  

Our research characterized the cycles and variability of non-annual vegetation phenology across 

Australia and identified their relationships with variability in rainfall and ENSO-related large scale 

atmospheric circulation. We provide a characterization of annual and non-annual phenological cycles 

of vegetation greening and browning for Australia based on MODIS EVI data. 

We used an enhanced phenology model to characterize rainfall-driven phenology across the 

Australian continent, which includes large dryland regions. Very few studies have previously 

quantified the land surface phenology of dryland systems (Walker et al., 2014), likely due to the fact 

that the phenology of these systems is more complex than that of most temperature-limited regions 

(Walker et al., 2014;Primack and Miller-Rushing, 2011). Dryland phenology responds to a variable 
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rainfall regime where the timing and magnitude of precipitation events varies inter-annually (Loik et 

al., 2004;Brown et al., 1997). 

We identified and characterized rainfall-driven phenological cycles at any time of the year over a 14-

year time series rather than within a predefined interval of every calendar year. This is important as 

the timing of phenological cycles varied and not every phenological cycle metric occurred in every 

year. We first identified points demarcating phenological cycles from the entire EVI time series and 

then characterized the cycles using mathematical curves. For example, we did not identify a cycle 

peak for every year and every pixel (areas shown in gray in Fig. 6). However, this does not imply that 

no cycle occurred but that the vegetation at these sites and points in time could be greening up 

towards a peak in the following year, browning down towards an end of cycle point or be in a phase 

between cycles. For example, the absence of peaks over interior Australia in 2005 and 2008 (Fig. 6) is 

also reflected in Fig 2. where the phenological trajectory of the Alice Springs site in interior Australia 

was in between phenological cycles. Phenological cycles thus need to be analyzed in the temporal 

context of multiple years. While most studies of phenology attempted to fit phenological curves 

within a predefined interval every calendar year, certain authors have proposed methods that 

include iterating the curve fitted to the vegetation index trajectory or by fitting a curve of vegetation 

index versus accumulated moisture (Tan et al., 2011;Brown and de Beurs, 2008). Our approach to 

characterize non-annual phenology can be applied to other areas with rainfall-driven phenology and 

thus contributes to our understanding of non-annual, rainfall-driven phenological dynamics globally. 

 

4.2 Phenology of Australia’s interior 

For the interior of Australia we identified low phenological peak and minimum magnitude and 

associated small amplitude (darker tone areas in both Fig. 4 A and B), high variability in magnitude, 

timing and cycle integral. In addition, a peak was not identified in every year for large areas of the 

interior. Most areas of the interior are dryland systems with sparse vegetation cover and where 
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vegetation phenology is driven by highly irregular rainfall timing and amounts (Australian Bureau of 

Meteorology, 2014c, e) and hydrologic regimes can be difficult to predict (Young and Kingsford, 

2006). Thus we do not see a strong phenological response (low amplitude), however we interpret 

the high variability in start of cycle and peak timing (Fig 4 and Fig 5.) as a fast response to rainfall 

pulses and the missing cycles (Fig 5.) were interpreted as dormant periods during dry years (Loik et 

al. 2004). We interpret these patterns of variable phenological cycles over interior Australia, where a 

cycle may vary in timing and length, or may skip a year entirely, to occur as a function of high climate 

variability. De Jong et al. (2012) identified frequent trend breaks of greening and browning over 

Australia that may be related to the non-annual phenological cycles identified here. 

Desert river beds in the interior of the continent had low minimum but moderate peak magnitude. 

The elevated peak magnitudes are caused by flooding driven by high amounts of distant rainfall 

(Young and Kingsford, 2006). The center of the arid Lake Eyre basin showed high variability in 

minimum magnitude. Lake Eyre is the center of a sparsely vegetated, close drainage basin and the 

fact that we identified high variability was in line with known flooding patterns as this salt lake is 

reached by flooding only once in a century (McMahon et al., 2005). We interpret the positive 

anomaly in 2010 (Fig. 7) as a function of the La Niña floods (Australian Bureau of Meteorology, 

2014a).  

Conversely, large variability of peak timing and cycle integrated greenness from one to another 

phenological cycle was found not just in the interior of Australia but across most of the continent 

(Fig. 6 and Fig. 7). High inter-annual variability in water availability across most of Australia rather 

than for the continent’s interior has also been demonstrated by the Australian Water Availability 

Project (2014).  
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4.3 Australia’s phenology, the 2001 to 2009 Millennium Drought and La Niña 

high precipitation event in 2010 

The years with widespread negative standard anomalies of cycle integrated greenness coincided 

with the Millennium Drought from 2001 to 2009 (Heberger (2011); Fig. 7). Dryland vegetation is 

subject to environmentally marginal conditions and is therefore highly sensitive to climate variability  

(Hufkens et al., 2012;Brown et al., 1997).  

Yet, the spatial extent of negative anomalies in certain years that extend beyond the dry interior 

suggested temporary yet severe drought-related water limitations also in the monsoonal North and 

the temperate area of South Eastern and South Western Australia (Fig. 7). The large positive 

standardized anomalies of cycle integrated greenness identified in this work across most of Eastern 

Australia in 2010 (1 to 2 standard anomalies; Fig. 7) coincided with a strong La Niña event and 

associated high rainfall and floods that broke the Millennium Drought (Australian Bureau of 

Meteorology, 2014a;Heberger, 2011). This pattern includes the desert rivers extending from North 

Eastern Australia to Lake Eyre, which experienced a major flood in 2010.  

While the relationship between ENSO cycles and rainfall variability primarily over Eastern Australia 

has been investigated before (van Dijk et al., 2013;Risbey et al., 2009), our research has quantified 

vegetation response across Australia to the transition from a strong El Niño drought to La Niña wet 

periods. While the positive vegetation response to the 2010 La Niña occurred over Eastern Australia 

that is also influenced by ENSO cycles (van Dijk et al., 2013;Nicholls, 1991;Nicholls et al., 1997), the 

negative vegetation response during the Millennium Drought cover a larger area and occurred 

across the continent.  

 

4.4 Spatially explicit relationship between phenology and climatic variability 

We found that SOI-driven patterns of correlation with phenology covered a larger area compared to 

rainfall-driven patterns likely because SOI is a more generic proxy of climatic variability that 



22 

 

influences temperature, incoming solar radiation and rainfall rather than rainfall alone (Risbey et al., 

2009;Australian Bureau of Meteorology, 2014f) and because not all ecosystems of Australia are only 

limited by water availability but also by temperature and radiation (Nemani et al., 2003).  

The spatial extent of areas where we detected correlation between SOI or rainfall and phenological 

metrics shrank with longer binning intervals of the climatic drivers. This suggested that relationships 

between climatic drivers and phenological variability were strongest for driver variability within a 

specific month of the year (e.g., SOI in September) as opposed to driver variability within for 

example a 6 month period (e.g., mean SOI across 6 months starting in April). This falls in line with the 

findings by Stone et al. (1996) who identified relationships between short-term SOI dynamics at 

specific times of the year and rainfall. Previous studies (e.g. Brown et al. (2010)) using seasonal or 

longer temporal aggregation of driver variables may therefore have not identified the full spatial 

extent of correlation patterns.  

We found the most concentrated significant correlation patterns between SOI and peak magnitude 

in North Eastern Australia, which is in the proximity of the West Pacific convection variability 

indicated by SOI. We observed similar yet less concentrated pattern for the rainfall – peak 

magnitude correlation. We interpret this latter pattern as primarily as the effect of the large-scale 

atmospheric circulation patterns indicated by SOI. The lag times of correlations over North Eastern 

Australia varied between 1 and 6 months following SOI or rainfall. Shorter lag time (1 to 3 months) 

correlation patterns with SOI were observed near the West coast of Australia yet lag times following 

rainfall were longer (5-8 month). These patterns are spatially remote from the variability in 

convection over the Western Pacific (North East of Australia) indicated by SOI. They may be related 

to influence of the Indian Ocean Dipole (IOD) and the interaction between SOI and IOD (Risbey et al., 

2009), which may explain the difference in lead time of the SOI and rainfall drivers. Over North 

Eastern Australia and the East Australian interior, the identified 3 to 6 and 7 to 12 months lag time of 

phenological cycle peak magnitude was similar for the SOI and rainfall driver. The lag times identified 

here fell within the range of aggregation found by Andela et al. (2013) who related NDVI with 
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rainfall. A study by Chen et al. (2014b) identified short lags (predominantly 1 month) between soil 

moisture and NDVI, which are shorter than most of the lags we identified here. Soil moisture in the 

previous month may provide the most direct relationship with vegetation response (as it represents 

water available to vegetation) but the climatic conditions that drive soil moisture may precede the 

soil moisture by a few months (Philippon et al., 2014). The identified increase in lag time between 

SOI and phenological peak magnitude and rainfall and phenological peak magnitude along a gradient 

of decreasing rainfall was in agreement with the findings by Andela et al. (2013). However, these 

findings contradict the concept that rainfall pulses drive rapid phenological response (Loik et al., 

2004). or may suggest that vegetation responds to climatic variability at multiple time scales. We 

interpret our findings as the dominating space-time relationship between large scale atmospheric 

circulation pattern variability and phenological response. Yet these patterns are unlikely to represent 

responses to individual storm events. However, less significant relationships with different SOI and 

rainfall month and lag time were also present suggesting that vegetation responds to climatic 

variability at multiple time scales. A more in-depth analysis of the relationship between climatic 

drivers and phenological response across multiple temporal scales should be investigated in future 

research.  

The proportion of areas for which we identified significant correlations was generally smaller than 

those identified in other studies (e.g. Andela et al. (2013) and Chen et al. (2014a)). This could be 

related to the relatively short time series we used and consequently the smaller power of our 

correlation analysis. Nonetheless, the spatial pattern of correlation was most widespread in North 

Eastern Australia and along desert river beds (e.g., Cooper Creek) in the interior. These patterns 

agreed spatially with what would be expected from the SOI-approximated moisture source over the 

West Pacific and the associated progression of rainfall and runoff into interior Australia.  

We conducted a higher spatial resolution correlation analysis for the MDB to investigate sensitivity 

of the area’s vegetation to SOI variability. The MDB contains the primary agricultural area of 

Australia and the basin’s agriculture was severely impacted by the Millennium Drought (van Dijk et 
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al., 2013;Kirby et al., 2012;Heberger, 2011). We identified correlation patterns between SOI and 

peak magnitude primarily over natural vegetation cover as opposed to areas used for dryland 

agriculture or pasture. As expected, irrigated agriculture had the lowest percentage of area with 

significant correlations between SOI and phenological peak magnitude. The lowest percentage of 

area with significant correlations over managed land may be explained by the effort that land 

managers and irrigators make to archive maximum production regardless of climatic variability (e.g. 

fertilization, use of pesticides, crop rotation, livestock density, movement and irrigation) whereas 

landscapes with natural vegetation cover may respond directly to climatic variability. In the context 

of climatic influence on agriculture in the MDB, van Dijk et al. (2013) suggested that the Millennium 

Drought impact on dryland wheat yields was offset by steady increases in cropped area and plant 

water use efficiency as well as possibly CO2 fertilization. As a zone of special interest within the MDB 

we focused on floodplains and wetlands. These ecosystems were strongly impacted by the 

Millennium Drought and 2010 La Niña floods (Australian Bureau of Meteorology, 2014b;Leblanc et 

al., 2012). Across the MDB’s floodplains and wetlands, we identified the highest percentage of areas 

(6.1%) with significant correlation between SOI and phenological peak magnitude compared to other 

natural or managed land cover, highlighting the sensitivity of these ecosystems to ENSO-related 

climatic variability. We attributed the low percentage to limited test power as a function of the 

relatively short time series (14 years) used here. For example Brown et al. (2010) found between 

10% and 27% of certain areas in Africa to be significantly correlated with atmospheric indices using a 

25-year AVHRR time series.  

 

4.5 Limitations and future work 

Several caveats of our work should be noted. When interpreting the phenological cycles 

characterized here, it should be noted that the sub pixel composition of vegetation and background 

as well as multi-layer vegetation structure is unknown and may change over time (Zhang et al., 
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2009;Walker et al., 2012;Walker et al., 2014). Various methods for validating remotely sensed 

metrics of phenological cycles with ground-based observations have been discussed including flux 

tower productivity time series, ground based radiation sensor time series, phenocam time series as 

well as crowd sourced citizen science (Richardson et al., 2007;Liang and Schwartz, 2009;Restrepo-

Coupe et al., 2013). Validation of the phenological metrics developed here is currently underway.  

The phenological metrics derived and described here represent different stages of vegetation 

growth. They have been made freely available in contribution to the Australian Terrestrial Ecosystem 

Research Network (TERN) and can be downloaded from the AusCover TERN Sydney node1: 

http://data.c3.uts.edu.au providing opportunities for a range of applications.  

In this work we traced phenological cycles over time, quantified cycles’ inter-annual variability and 

investigate their relationship with rainfall and ENSO thereby advancing phenological research for 

Australia, a country with extensive drylands. The phenological metrics provided here can be further 

used for characterizing the effect of anthropogenic disturbances on phenology and unraveling this 

effect from the influence of climatic forcing related to ENSO. Another opportunity for future work is 

the reanalysis of trends and trend breaks in vegetation dynamics and climatic drivers (Donohue et 

al., 2009;de Jong et al., 2012;Chen et al., 2014a).  
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Figure captions 

Fig. 1. Land cover map of Australia shows closed and open tree cover in dark and light green, respectively. 

The purple colors that occur predominantly in the South West and South East represent crops and pasture. 

Brown marks shrubs, orange colors mark tussock grass and light brown colors mark hummock grass cover 

across most of the semi-arid and arid interior (land cover classes were aggregated based on: Lymburner et 

al. (2011). The most prominent topographic feature is the Great Dividing Range that runs along the Eastern 

seaboard. Locations of the 21 OzFlux flux tower sites and 15 additional sites are shown as red and blue 

circles and were used for phenological trajectory evaluation. We used the EVI time series at the sites for 

phenological algorithm development and testing (site list provided in Table 1). The phenology for the sites 

marked by a large black circles is presented and discussed in Section 2.2.3. The bottom left panel shows the 

extent of the MDB.  

 

Fig. 2. Algorithm steps applied to the 14-year MODIS EVI trajectory (MOD13C2 single 5.6-km pixel) for the 

Alice Springs flux site representing semi-arid mulga (Acacia) woodland of the center of Australia. (A) EVI 

time series after screening out low quality observations (brown circles), EVI time series after gap filling and 

smoothing (blue circles), and flagged minimum and peak of cycle points (green diamonds). (B) Curves fitted 

as 7-parameter double logistic functions (red squares) characterizing the phenological cycles, and identifying 

start and end of cycles points (yellow circles) delineating the cycles. The timing, length, amplitude, and 

magnitudes of the phenological cycles at the site vary inter-annually. 

 

Fig. 3. Examples of temporal variability of the characterized phenological cycles for the Sturt Plains, 

Calperum, and Great Western Woodlands sites (refer to Fig. 1 and Table 1 for the sites’ location and 

description, respectively). Based on 14-years of MODIS EVI data after screening out low quality observations 

(brown circles), EVI time series after gap filling and smoothing (blue circles), fitting 7-parameter double 

logistic functions (red squares) and identifying start and end of cycles points (yellow circles) delineating the 

characterized phenological cycles. 

 

Fig. 4. Mean of peak magnitude (A), mean of minimum magnitude (B), standard deviation of peak 

magnitude (C) and standard deviation of minimum magnitude (D). A map of dominant land cover type is 

provided in Fig. 1. 

 

Fig. 5. Mean Julian day of the start of the phenological cycles (A1) and standard deviation of the start of the 

phenological cycles in number of days (B1) and mean Julian day of the end of the phenological cycles (A2) 

and standard deviation of the end of the phenological cycles in number of days (B2) across the 14-year time 

series. 

 

Fig. 6. Inter-annual variation in the peak   in   The   lian da  of the  henolo ical c cles’  ea  is dis la ed 

in the calendar  ear  hen the  ea  occ rred  The  ean    ) and standard deviation (σ) of the cycle peak 
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timing is provided for reference. The scale is cyclic. Areas where no peak was observed during a given 

calendar year are shown in gray.  

 

Fig. 7  Mean of the c cles’ inte ral  reenness across the ti e series  to  left  anel in da   nits) and 

standardized ano al  of each c cle’s inte rated  reenness  The standardized anomalies of the cycles are 

shown in the year when the cycle started. For example, for a site with six phenological cycles across the time 

series that started in 2001, 2002, 2003, 2005, 2008 and 2010, the c cles’ standard deviations are sho n in 

2001, 2002, 2003, 2005, 2008 and 2010. All other years are shown as gray as no phenological cycle start was 

detected for those years. The white circle in the top left panel mark the OzFlux site shown in Fig. 2. 

 

Fig. 8. Statistically significant relationships between monthly SOI and phenological cycle peak magnitude 

(top row) and monthly rainfall and phenological cycle peak magnitude (bottom row). (A) SOI and rainfall 

month most significantly correlated with peak magnitude. (B) Lead time of SOI and rainfall month relative to 

phenolo ical  ea  and  C) S ear an’s rho  Areas with p > 0.05 area shown in white. The black box in the top 

right panel marks the extent of the area shown in Fig. 7 centered on the Cooper Creek floodplain in interior 

Eastern Australia. 

  

Fig. 9. Significant Spearman rho correlations (shown in green) between monthly SOI and phenological cycle 

peak magnitude over a region in central Australia. The Cooper Creek floodplain of the middle reach of the 

Cooper Creek is visible in the center. Only areas with p < 0.05 and rho >= 0.6 are shown.  
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Tables and Figures: 

Table 1. Names, locations, land cover class (Lymburner et al., 2011) and, average annual 

rainfall amounts (Australian Bureau of Meteorology, 2014c) for the 36 sites shown in Fig. 1 

Site Name 
Ozflux 
site Site Code Lat (°S) 

Long 
(°E) Land cover classes  

Average annual 
rainfall [mm]  

Nullaboure   NU -30.275 127.175 

Woody shrubs 

scattered  

200 

Great Blight 
Desert   GBD -29.125 133.075 

Woody shrubs sparse  

200 

Lake Eyre   LE -27.425 137.225 

Woody shrubs sparse 

200 

Great Western 
Woodlands   GWW -30.225 120.625 

Woody trees scattered 

300 

East of Shark 
Bay   ESB -24.475 116.325 

Woody shrubs sparse 

300 

Central 
Western 
Australia   CW -24.125 124.175 

Woody shrubs sparse 

300 

Interior 
Southeast 
Australia   IEA -29.425 144.225 

Woody shrubs sparse 

chenopods 

300 

Calperum x CP -34.025 140.375 

Woody trees scattered 

300 

West 
Australian 
wheat belt   WAW -32.125 117.425 

Herbaceous graminoids 

rainfed  

400 

Irrigated 
cropping   IC -35.275 145.275 

Herbaceous graminoids 

rainfed 

400 

Alice Springs x AS -22.275 133.225 

Herbaceous graminoids 

sparse hummock 

grasses 

400 

Simpson 
Desert   SD -20.475 124.025 

Herbaceous graminoids 

sparse hummock 

grasses 

400 

Hamersley x HA -22.275 115.725 

Woody shrubs sparse 

400 

Great Western 
Woodlands flux x GWWF -31.925 120.075 

Herbaceous graminoids 

sparse hummock 

grasses 

400 

Queensland 
Tussock   QTU -21.225 143.075 

Herbaceous graminoids 

sparse hummock 

grasses 

500 

North West 
Queensland   NWQ -19.525 140.025 

Woody trees scattered  

600 
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Sturt Plains x SP -17.175 133.375 

Woody trees sparse 

600 

Riggs Creek x RC -36.625 145.575 

Herbaceous graminoids 

rainfed pasture 

800 

Arcturus x AR -23.875 149.275 

Woody trees open 

800 

Gingin x GG -31.375 115.725 

Woody trees sparse 

800 

Otway x OT -38.525 142.825 

Herbaceous graminoids 

rainfed pasture 

1000 

Wombat x WO -37.425 144.075 

Woody trees closed 

1000 

Cumberland 
Plain x CU -33.725 150.725 

Woody trees sparse 

1000 

Dry River x DR -15.275 132.375 

Woody trees sparse  

1000 

Wallaby Creek x WC -37.425 145.175 

Woody trees closed 

1200 

Daly River 
Pasture x DRP -14.075 131.375 

Woody trees open 

1200 

West of North 
Queensland   WNQ -16.275 142.475 

Woody trees sparse 

1200 

Nimmo x NI -36.225 148.575 

Woody trees closed 

1600 

Samford x SA -27.425 152.825 

Woody trees closed 

1600 

Tumbarumba x TU -35.675 148.175 

Woody trees open 

1600 

Howard 
Springs x HO -12.475 131.175 

Woody trees open  

1600 

Dampier 
peninsula   DP -15.125 125.725 

Woody trees sparse 

1600 

Dargo x DA -37.125 147.175 

Herbaceous graminoids 

rainfed pasture 

2000 

Northwest 
Tasmania   NWT -41.225 145.175 

Woody trees closed 

2000 

Cape 
Tribulation x CT -16.125 145.375 

Woody trees closed 

8000 

Daintree x DT -16.225 145.425 

Woody trees closed  

8000 
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Table 2. Percentage distribution of most significant correlation relationship between monthly SOI and 

phenological peak magnitude per land cover class across the MDB. Shown are percentages of the MDB occupied 

by different land cover, percentage of basin-wide significantly correlated areas per land cover, percent of 

significantly correlated land cover class and average rho value per land cover.  

Aggregated 

land cover 

classes 

(LCC) 

Percent of 

basin 

covered by 

each LCC 

% of the areas of significant 

correlations between monthly 

SOI and peak magnitude within 

each LCC 

% of each LCC where 

significant correlation 

between monthly SOI 

and peak magnitude 

occurred 

Average rho of 

significant correlations 

within LCC 

Trees 43.0 48.7 5.2 0.71 

Shrubs 9.8 12.2 5.7 0.74 

Grasses  19.0 22.7 5.4 0.72 

Rain-fed 

agriculture 

and pasture 

28.1 15.9 2.6 0.69 

Irrigated 

agriculture 

and pasture 

0.1 < 0.0 0.9 0.69 
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