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Abstract  13	
  

Uncertainties surrounding vegetation response to increased disturbance rates associated with 14	
  

climate change remains a major global change issue for Amazon forests. Additionally, turnover 15	
  

rates computed as the average of mortality and recruitment rates in the Western Amazon basin are 16	
  

doubled when compared to the Central Amazon, and notable gradients currently exist in specific 17	
  

wood density and aboveground biomass (AGB) between these two regions. This study 18	
  

investigates the extent to which the variation in disturbance regimes contributes to these regional 19	
  

gradients. To address this issue, we evaluated disturbance-recovery processes in a Central 20	
  

Amazon forest under two scenarios of increased disturbance rates using first ZELIG-TROP, a 21	
  

dynamic vegetation gap model which we calibrated using long-term inventory data, and second 22	
  

using the Community Land Model (CLM), a global land surface model that is part of the 23	
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Community Earth System Model (CESM). Upon doubling the mortality rate in the Central 24	
  

Amazon to mirror the natural disturbance regime in the Western Amazon of ~2% mortality, the 25	
  

two regions continued to differ in multiple forest processes. With the inclusion of elevated natural 26	
  

disturbances, at steady-state, AGB significantly decreased by 41.9% with no significant 27	
  

difference between modeled AGB and empirical AGB from the Western Amazon datasets (104 28	
  

vs. 107 Mg C ha-1 respectively). However, different processes were responsible for the reductions 29	
  

in AGB between the models and empirical dataset. The empirical dataset suggests that a decrease 30	
  

in wood density drives the reduction in AGB. While decreased stand basal area was the driver of 31	
  

AGB loss in ZELIG-TROP, a forest attribute that does not significantly vary across the Amazon 32	
  

Basin. Further comparisons found that stem density, specific wood density, and basal area growth 33	
  

rates differed between the two Amazonian regions. Last, to help quantify the impacts of increased 34	
  

disturbances on the climate and earth system, we evaluated the fidelity of tree mortality and 35	
  

disturbance in CLM. Similar to ZELIG-TROP, CLM predicted a net carbon loss of 49.9%, with 36	
  

an insignificant effect on aboveground net primary productivity (ANPP). Decreased leaf area 37	
  

index (LAI) was the driver of AGB loss in CLM, another forest attribute that does not 38	
  

significantly vary across the Amazon Basin, and the temporal variability in carbon stock and 39	
  

fluxes was not replicated in CLM. Our results suggest that: 1) the variability between regions 40	
  

cannot be entirely explained by the variability in disturbance regime, but rather potentially 41	
  

sensitive to intrinsic environmental factors; or 2) the models are not accurately simulating all 42	
  

tropical forest characteristics in response to increased disturbances. 43	
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1 Introduction 47	
  

  One of the largest uncertainties in future terrestrial sources of atmospheric carbon dioxide 48	
  

results from changes to forest disturbance and tree mortality rates, specifically in tropical forests 49	
  

(Cox et al., 2000; 2004; DeFries et al., 2002; Clark, 2007; Pan et al., 2011). There has been 50	
  

evidence that climate change and forest disturbance are linked such that a changing climate can 51	
  

influence the timing, duration, and intensity of disturbance regimes (Overpeck et al., 1990; Dale 52	
  

et al., 2001; Anderegg et al., 2013). In the tropics, climate change related impacts such as water 53	
  

and heat stress, and increased vulnerability to fires could lead to increased forest dieback (i.e., tree 54	
  

mortality notably higher than usual mortality) and increased disturbance rates (Cox et al., 2004; 55	
  

Malhi et al., 2008; 2009; U.S. DOE 2012). Increased forest dieback in tropical locations could 56	
  

then produce large economic costs, ecological impacts, and lead to climate related positive 57	
  

feedback cycles (Canham and Marks 1985; Dale et al., 2001; Laurance and Williamson 2001, 58	
  

Bonan 2008).   59	
  

  The effects of large-scale removal of tropical forest, leading to changes in global climate 60	
  

have been studied within global general circulation models (GCMs) (Shukla et al., 1990; 61	
  

Henderson-Sellers et al., 1993; Hahmann and Dickinson 1997; Gedney and Valdes 2000; Avissar 62	
  

and Werth 2005). For example, a rapid and complete deforestation of the diverse Amazon Basin 63	
  

was predicted to be irreversible (Shukla et al., 1990), losing ~180 Gt carbon. These past studies 64	
  

have simulated extreme deforestation, or complete removal of the tropical forest biome, with the 65	
  

goal of evaluating climate impacts (i.e. albedo, evaporation, precipitation, surface boundary 66	
  

conditions). However, instead of sudden and complete removal, gradual increases and spatially 67	
  

heterogeneous patterns of tropical tree mortality due to multiple causes are more likely to occur 68	
  

than complete loss (Fearnside 2005; Morton et al., 2006). In addition, the effectiveness of climate 69	
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mitigation strategies will be affected by future changes in natural disturbances regimes (IPCC 70	
  

2014; Le Page et al., 2013), due to the effect of disturbances on the terrestrial carbon balance. By 71	
  

using an economic/energy integrated assessment model, it was found that when natural 72	
  

disturbance rates are doubled and in order to reach a stringent mitigation target, (3.7 W m-2 level) 73	
  

the societal, technological, and economic strategies will be up to 2.5 times more costly (Le Page 74	
  

et al., 2013). Due to the strong feedbacks from terrestrial processes, there is a need to utilize an 75	
  

integrated Earth System Model approach (i.e., iESM; Jones et al., 2013) where an integrated 76	
  

assessment model is coupled with a biogeochemical and biophysical climate model such as 77	
  

CLM/CESM. It is necessary to improve earth system models in order to simulate dynamic 78	
  

disturbance rates and gradual forest biomass loss in response to increasing mortality rates. 79	
  

  Turnover rates currently vary for different regions of Amazonia (Baker et al., 2004a; 80	
  

2004b; Lewis et al., 2004; Phillips et al., 2004; Chao et al. 2009), with Central Amazon forests 81	
  

having “slower” turnover rates, and the Western and Southern Amazon forests (which we call 82	
  

‘west and south’) exhibiting “faster” turnover rates. This regional variation in turnover rates is 83	
  

connected with differences in carbon stocks, growth rates, specific wood density, and 84	
  

biodiversity. Baker et al. (2004a) investigated regional-scale AGB estimates, concluding that 85	
  

differences in species composition and related specific wood density determined the regional 86	
  

patterns in AGB. There is a strong west-east gradient in that ‘west and south’ Amazon forests 87	
  

were found to have significantly lower AGB than their eastern counterparts; also confirmed by 88	
  

additional studies (Malhi et al., 2006, Baraloto et al., 2011).  89	
  

  It is unclear if these regional variations in forest processes and carbon stocks are driven by 90	
  

external disturbance (e.g., increased drought, windstorm, forest fragmentation) or internal 91	
  

influences (e.g., soil quality, phosphorus limitation, species composition, wood density) (Phillips 92	
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et al., 2004; Chao et al. 2009; Quesada et al., 2010; Yang et al., 2013). Investigating the causes 93	
  

that drive variation in tree dynamics in the Amazon, in order to understand consequences for 94	
  

future carbon stocks for each region should still be explored. For example, are the differences in 95	
  

forest structure and function between the two regions a result of the disturbance regime? If the 96	
  

Central Amazon forests were subject to a higher disturbance regime and turnover rates similar to 97	
  

that of the ‘west and south’, would the two regions match in terms of forest dynamics, carbon 98	
  

stocks and fluxes? A goal of this paper is to use modeling tools to explore the influence of 99	
  

disturbance regimes on net carbon stocks and fluxes in the Central Amazon, and then compare to 100	
  

observational data from the ‘west and south’ regions of the Amazon.   101	
  

  We are using an individual-based, demographic, gap-model (Botkin et al., 1972; Shugart, 102	
  

2002) as a “benchmark” model to 1) evaluate the influence of disturbance on net carbon loss and 103	
  

variations in forest dynamics between two regions (central vs. ‘west and south’), 2) evaluate 104	
  

disturbance and mortality in CLM-CN 4.5 (called CLM for remainder of paper), and 3) improve 105	
  

upon representing terrestrial feedbacks more accurately in earth system modeling. We used the 106	
  

dynamic vegetation gap model ZELIG (Cumming and Burton 1993; Urban et al., 1993). ZELIG 107	
  

has been updated and modified to simulate a tropical forest in Puerto Rico with a new versatile 108	
  

disturbance routine (ZELIG-TROP; Holm et al., 2012), making this vegetation dynamic model a 109	
  

good choice for this study.  110	
  

  Vegetation and carbon response to increased disturbance rates resulting from human 111	
  

induced climate change must be examined in more detail. To test how a widely used global land 112	
  

surface model, CLM, forecasts changes in forest carbon sinks and sources we addressed 113	
  

differences in AGB, ANPP, growth rates, and coarse litter production rates as a result of 114	
  

disturbances. The main research questions of the study are: 1) what are the long-term 115	
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consequences of continual elevated disturbance rates and periodic, large-scale disturbances in the 116	
  

Central Amazon? 2) Can the variability in forest dynamics, carbon stocks and fluxes between the 117	
  

Western and Southern Amazon and the Central Amazon forests be explained by the variability in 118	
  

the natural disturbance regime (i.e., higher mortality rates)? Finally: 3) what are the differences 119	
  

after increasing disturbance rates in ZELIG-TROP vs. CLM for the Central Amazon? We are 120	
  

assuming an independent driver of mortality; therefore we are not assigning mortality to any 121	
  

particular cause. The final research question will evaluate the accuracy of CLM to predict changes 122	
  

to carbon fluxes due to increased disturbance, a process that is likely to increase with human 123	
  

induced climate change.  124	
  

 125	
  

2 Methods   126	
  

2.1  Study Area and Forest Inventory Plots 127	
  

  The empirical data used for this study were from two permanent transects inventoried 128	
  

from 1996-2006, located in reserves of the National Institute for Amazon Research (Instituto 129	
  

Nacional de Pequisas da Amazonia, INPA) in the Central Amazon in Brazil. The forest inventory 130	
  

transects are approximately 60 km north of Manaus, Brazil, in the Central Amazon where 131	
  

vegetation is old-growth closed-canopy tropical evergreen forest. The mean annual precipitation 132	
  

at Manaus was 2,110 mm yr-1 with a dry season from July – September, and mean annual 133	
  

temperature was 26.7°C (Chambers et al., 2004; National Oceanic and Atmospheric 134	
  

Administration, National Climatic Data Center, Asheville, N.C., USA). However, during 2003 to 135	
  

2004, mean annual precipitation in the study area reached 2,739 mm yr-1.  136	
  

  We quantified demographic data such as stem density, diameter at breast height (DBH, 137	
  

cm), and change in diameter for trees >10 cm DBH from census data from the two transects. This 138	
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data was used to calculate above-ground biomass (ABG) estimates (Mg C ha-1) and were 139	
  

determined using region-specific allometric equations after harvesting 315 trees in the Central 140	
  

Amazon (Chambers et al., 2001; see eq. 1 below). This data was also used to estimate observed 141	
  

values for above-ground net primary productivity (ANPP, Mg C ha-1 yr-1) after taking into 142	
  

account loss of tree mass due to tree damage (Chambers et al., 2001). Observed mortality rates (% 143	
  

stems yr-1) were based on census intervals ranging from 1 to 5 years on 21 1-ha undisturbed plots 144	
  

located in the Biomass and Nutrient Experiment (BIONTE), and the Biological Dynamics and 145	
  

Forest Fragments Project (BDFFP), also located in INPA (Chambers et al., 2004). We compared 146	
  

model predictions from ZELIG-TROP to observed field data. 147	
  

  In order to test whether the variability in forest dynamics and carbon stocks between the 148	
  

‘west and south’ and the Central Amazon forests can be explained by the variability in the natural 149	
  

disturbance regime, we used forest inventory data collected and reported in Baker et al. (2004a) 150	
  

and Phillips et al. (2004). We used inventory data collected from 59 plots as reported in Baker et 151	
  

al. (2004a; 2004b), and from 97 plots as reported in Phillips et al. (2004) with these plots 152	
  

constituting a large part of the RAINFOR Amazon forest inventory network (Malhi et al., 2002). 153	
  

Sites occur across a large range of environmental gradients, such as varying soil types and level of 154	
  

seasonal flooding, however all sites are considered to be mature tropical forests. We then 155	
  

compared the Central Amazon forests (both simulated and observed data) to the observed ‘west 156	
  

and south’ datasets. 157	
  

 158	
  

2.2  Description of ZELIG-TROP 159	
  

  ZELIG-TROP is an individual based gap model developed to simulate tropical forests 160	
  

(Holm et al., 2012). It is derived from the gap model ZELIG (Urban 1990; 2000; Urban et al., 161	
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1991; 1993), which is based on the original principles of the JABOWA (Botkin et al. 1972) and 162	
  

FORET forest gap models (Shugart and West, 1977). ZELIG-TROP follows the regeneration, 163	
  

growth, development, and death of each individual tree within dynamic environmental conditions 164	
  

across many plots (400m2 plots, replicated uniquely 100 times). Maximum potential tree 165	
  

behaviors (e.g. optimal tree establishment, diameter growth, and survival rates) are reduced as a 166	
  

function of light conditions, soil moisture, level of soil fertility resources, and temperature. 167	
  

Specific details on the ZELIG model modifications to create ZELIG-TROP can be found in Holm 168	
  

et al. (2012). Gap models have been used extensively to forecast forest change from varying types 169	
  

and levels of disturbances, such as windstorms and hurricanes (O’Brien et al., 1992; Mailly et al., 170	
  

2000); simulate vegetation dynamics in response to global change (Solomon 1986; Smith and 171	
  

Urban 1988; Smith and Tirpak 1989; Overpeck et al., 1990; Shugart et al., 1992); and explore 172	
  

feedbacks between climate change and vegetation cover (Shuman et al., 2011; Lutz et al., 2013). 173	
  

ZELIG has been used to simulate forest succession dynamics in many forest types across the 174	
  

globe (O’Brien et al., 1992; Seagle and Liang 2001; Busing and Solomon 2004; Larocque et al., 175	
  

2006; Nakayama 2008). (Descriptions of the plant mortality algorithm as well as definitions of 176	
  

terms and parameters used in ZELIG-TROP are provided in the supplemental material).  177	
  

 178	
  

2.3  Model Parameterization for the Central Amazon 179	
  

  The silvicultural and biological parameters for each of the 90 tropical tree species required 180	
  

for ZELIG-TROP are found in Table 1. The 90 tree species consist of 25 different families, 54 181	
  

canopy species, 18 emergent species, 12 sub-canopy species, and 6 pioneer species (Table 1).  182	
  

While these tree species do not represent all existing species found in the Central Amazon forest, 183	
  

they represent a diverse array of family types, canopy growth forms, and demographic traits such 184	
  



	
   9	
  

as growth rates, stress tolerances, and recruitment variations that will produce a robust and 185	
  

reliable result. The majority of the data used to parameterize ZELIG-TROP for the Amazon was 186	
  

derived from a long-term (14-18 years) demographic study to estimate tree longevity (Laurance et 187	
  

al., 2004) located in Central Amazon. Data was collected on 3159 individual trees from 24 188	
  

permanent, 1 ha plots which span across an area of 1000 km2 (Laurance et al., 2004). Wood 189	
  

density data for the 90 species used in this study were gathered from published sources with sites 190	
  

across South America (Fearnside, 1997; Chave et al., 2006). 191	
  

  We used results found by Laurance et al. (2004) to determine several parameters; 192	
  

specifically the maximum age of the species (AGEMAX), the maximum diameter at breast height 193	
  

(DBHmax, cm), and the growth-rate scaling coefficient (G) for ZELIG-TROP. AGEMAX was 194	
  

found by taking the mean of three longevity estimates. DBHmax were scaled to match a more 195	
  

accurate representation of maximum DBH in the simulated field sites (Chambers et al., 2004). We 196	
  

used the canopy classification as described by Laurance et al. (2004) to infer species-specific 197	
  

rankings for tolerance and intolerance to shading. Average monthly precipitation (cm) and 198	
  

temperature (°C) required for the environmental parameters in ZELIG-TROP (Table 2) were 199	
  

based on field data collected from 2002-2004 in the study site (Tribuzy, 2005). Soil field capacity 200	
  

(cm) and soil wilting point (cm) were determined from soil measurements in nearby central 201	
  

Amazon study sites (Laurance et al., 1999).  202	
  

  In order to more accurately simulate the Central Amazonian forest, a few modifications 203	
  

were made to the original ZELIG-TROP model (Holm et al., 2012). First, the allometric equation 204	
  

used to estimate above-ground biomass (Mg C ha-1) was updated to include an equation specific 205	
  

for the Brazilian rainforest in the Central Amazon (Chambers et al., 2001; Eq. 1).  206	
  

ln 𝑚𝑎𝑠𝑠 =   𝛼 +   𝛽! ln 𝐷𝐵𝐻 + 𝛽![ln 𝐷𝐵𝐻 ]! + 𝛽![ln 𝐷𝐵𝐻 ]!    (1) 207	
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where above-ground biomass (mass) is in kg, α is -0.370, β1 is 0.333, β2 is 0.933, and β3 is -0.122 208	
  

(r2
adj = 0.973) based upon data collected from 315 harvested trees. Specific wood density is not 209	
  

taken into account in this model.  210	
  

  In model development of the original ZELIG-TROP (modified for a subtropical dry 211	
  

forest), death caused by natural mortality (age-related) was killing tropical trees prematurely. This 212	
  

was also seen in initial model testing for the wet tropical forest. In contrast to tropical dry forests, 213	
  

individuals in tropical wet forests have a longer life potential and a higher likelihood of reaching 214	
  

their potential size. For example, the Central Amazon is able to support trees >1000 years old 215	
  

(Chambers et al., 1998; 2001; Laurance et al., 2004), where a dry forest may only be able to 216	
  

support trees to a maximum of 400 years. To adjust for this variation, the natural survivorship rate 217	
  

was increased from 1.5% to 6% of trees surviving to their maximum age (Table 1).  This was a 218	
  

conservative value, with one study estimating about 15% of species in Central Amazon attaining 219	
  

their maximum ages (Laurance et al., 2004). Lastly, we also modified ZELIG-TROP’s mean 220	
  

available light growing factor algorithm, which in part was used to accurately calculate tree height 221	
  

and crown interaction effects, as developed in ZELIG-CFS (Larocque et al., 2011). To best 222	
  

portray tree growth and crown development typical of an individual within a tropical canopy, we 223	
  

used an earlier algorithm version developed for ZELIG-CFS. This algorithm was the ratio of 224	
  

available growing light factor (ALGF) to a doubled crown width for each individual, thereby 225	
  

adjusting the ALGF relative to horizontal space occupied by the crown and improving the 226	
  

predictive capacities of ZELIG-TROP for the Amazon. This modification thus affected the light 227	
  

extinction on tree growth, allowed more available light from the top to the bottom of the 228	
  

individual-tree crown, and in turn better predicted observed data of basal area growth and 229	
  

abundance of stems per plot. 230	
  



	
   11	
  

 231	
  

2.3.1 Verification Methods 232	
  

  ZELIG-TROP simulations for the Central Amazon forest were run for 500 years and 233	
  

replicated on 100 independent plots, each the size of 400m2. All simulations began from bare 234	
  

ground, and results from ZELIG-TROP were averaged over the final 100 years of simulation. 235	
  

This was the period when forest dynamics (e.g. stem density, AGB, ANPP) were seen to reach a 236	
  

stable state and represent a mature forest stand. The model was verified by comparing the 237	
  

following five simulated forest attributes (average ± SD) to observed field data from the two 238	
  

inventory transects: (1) total basal area (m2 ha-1); (2) total AGB (Mg C ha-1); (3) total stem density 239	
  

(ha-1); (4) leaf area index; and (5) ANPP (Mg C ha-1 yr-1). To test model validity for the Central 240	
  

Amazon forest we report percent difference between the observed and simulated results (Table 3).  241	
  

 242	
  

2.4  Disturbance Treatments 243	
  

  To better understand the long-term consequences of high disturbance in a Central Amazon 244	
  

rainforest, we crafted a simulation that doubled annual background tree mortality in both ZELIG-245	
  

TROP and CLM assuming an independent mechanism as the driver of mortality. A description of 246	
  

the Community Land Model (CLM) can be found in the supplementary materials. Predicting the 247	
  

impacts of increased mortality is critical since other recent studies have found that tree mortality 248	
  

in the Central Amazon has been undersampled in plot-based approaches, and after analyzing a 249	
  

larger range of gap sizes (including larger gaps), ~9.1 to 16.9% of tree mortality was missing 250	
  

(Chambers et al., 2013). The majority of gaps created in Amazonian rainforests are from 251	
  

windthrow of canopy trees with a large percentage of gaps having relatively small areas of <200 252	
  

m2 (Uhl, 1982; Denslow, 1987; Stanford, 1990). However, some windthrow events will create 253	
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large gaps that then initiate secondary succession processes (Brokaw, 1985, Chambers et al., 254	
  

2013). Since there can be multiple spatial scales and drivers of tree mortality, we are simulating 255	
  

mortality as a stochastic, independent event within ZELIG-TROP, using the new versatile 256	
  

disturbance routine implemented in Holm et al. (2012). Most mortality events in the Central 257	
  

Amazon occur on individual trees (Chambers et al., 2004; 2013). Therefore, this phenomenon was 258	
  

replicated in the model. Specifically, any one tree >10cm DBH was randomly selected to die and 259	
  

be removed from the forest canopy on an annual basis at the gap scale, in addition to the existing 260	
  

selection of trees removed by natural senescence. This ‘high disturbance’ treatment for the 261	
  

Central Amazon forests is representative of the current turnover rates in ‘west and south’ (Phillips 262	
  

et al., 2004), thus creating an opportunity to test whether the variability in forest dynamics and 263	
  

carbon stocks between the ‘west and south’ and the Central Amazon forests can be explained by 264	
  

the variability in the natural disturbance regime. Variables compared between the two regions 265	
  

included AGB, wood density (Baker et al., 2004a), recruitment rates, and stem density (Phillips et 266	
  

al., 2004), and stand-level BA growth rates (Lewis et al., 2004). 267	
  

  A second treatment has been applied in order to improve understanding of periodic large-268	
  

scale disturbance and recovery events. This treatment consisted of removing 20% of stems >10cm 269	
  

DBH every 50 years (i.e. periodic treatment). It has recently been noted that patch-scale (400m2) 270	
  

succession-inducing disturbances exhibit a return frequency of about 50 years within the Central 271	
  

Amazon region (Chambers et al., 2013). Therefore we have set our large-scale disturbance event 272	
  

to repeat four times over a 200 year period (every 50 years) after the forest has reached a mature 273	
  

stable state. This treatment was also conducted in both ZELIG-TROP and CLM. An important 274	
  

metric in determining the forest carbon balance as a result of disturbance is the total change in 275	
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stand biomass over time (ΔAGB, Mg C ha-1), defined as AGBt2 – AGBt1 over the simulation 276	
  

period.  277	
  

 278	
  

3 Results 279	
  

3.1  Model Verification Results 280	
  

  Results simulated by ZELIG-TROP for the mature Central Amazon tropical forest (pre-281	
  

disturbance treatment) were in close range (e.g., within 17%) to empirical data (Table 3), making 282	
  

ZELIG-TROP successful at predicting stand dynamics of a complex tropical forest. Average basal 283	
  

area was 9.7% higher than the observed value (32.96 vs. 30.06 m2 ha-1), average AGB was 5.0% 284	
  

higher (178.38 vs. 169.84 Mg C ha-1), and average leaf area index (LAI) was 1.8% higher (5.8 vs. 285	
  

5.7). ZELIG-TROP predicted average stem density to be 12.5% lower (574 vs. 656 stems ha-1), 286	
  

and ANPP was 17.1% lower than observed values reported by Chambers et al. (2001) (5.4 vs. 6.5 287	
  

Mg C ha-1 yr-1). ZELIG-TROP was also successful at accurately predicting stem density and AGB 288	
  

by DBH (cm) size class (Fig. 1a, 1c). The model over predicted the number of stems in the lowest 289	
  

size class (10-20 cm), by an additional 84 stems per hectare, and in the eighth size class (80-90 290	
  

cm), but for the remaining size classes values were near to the observed data. Even with these 291	
  

slight over predictions in certain DBH size classes, the model predicted AGB to be within a 292	
  

reasonable range (8.5 Mg C ha-1) of the observed values (r2 = 0.60).  293	
  

  ZELIG-TROP was also able to predict a realistic community composition (Fig. 2a). After 294	
  

initiating the model from bare ground, there was a sudden increase in basal area per species, 295	
  

followed by a typical jigsaw pattern of die-offs and growth increases, with the model reaching a 296	
  

steady-state during the last 100 years. The dominant species in terms of basal area, (Parkia 297	
  

multijuga), a large, fast-growing emergent species from the Leguminosae family accounted for 298	
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17% of the total basal area in the last 100 years of simulation. The next four dominant species 299	
  

were all canopy-level species. This was an accurate representation of the forest, as the canopy 300	
  

layer consists of many tree crowns, large trees, and usually a dense area of biodiversity (Wirth et 301	
  

al., 2001). For example, 63% of the 90 tree species simulated were categorized as a canopy 302	
  

growth form. However, there was also an even mixture of emergent, sub-canopy, and pioneer 303	
  

species as dominant and rare species, typical of a diverse Central Amazon forest. There was no 304	
  

one single species that dominated the canopy throughout the course of the simulation. Instead, we 305	
  

saw a diverse species representation (Fig. 2a). During the last 100 years of simulation, emergent 306	
  

species represented 29.6% of the total basal area, sub-canopy species represented 1.7%, and 307	
  

pioneer species represented 5.5% of the total basal area.  308	
  

  Empirical mortality rates (% stems yr-1) from BDFFP and BIONTE data were log-309	
  

normally distributed averaging 1.02% ± 1.72% (Chambers et al. 2004). As estimated by ZELIG-310	
  

TROP, the no-disturbance annual mortality rates were near to observed values (1.27% ± 0.21%) 311	
  

but had a smaller distribution around the mean (Fig. 3). As expected, annual mortality rate 312	
  

doubled (2.66% ± 0.26%) for the high disturbance treatment.  313	
  

 314	
  

3.2  Central and Western Amazon Disturbance Comparisons 315	
  

3.2.1 AGB, stem density, growth and recruitment rates 316	
  

  Upon increasing the turnover rates of the Central Amazon forest to mirror the ~2% yr-1 317	
  

mortality rates in the ‘west and south’, the two Amazon regions continued to differ in forest 318	
  

structure and function. Stem density, specific wood density, basal area growth rates, and AGB 319	
  

from the treatment site did not match the trends observed in the ‘west and south’ plot network. 320	
  

Using a Tukey’s multiple comparison procedure following a one-way ANOVA, there was a 321	
  



	
   15	
  

significant difference in both wood density and basal area growth rates between the two regions in 322	
  

the empirical dataset, but no significant difference in the model results (Fig. 4). Alternatively 323	
  

when comparing stem density there was no significant difference between the two regions in the 324	
  

empirical dataset, but there was a significant increase in the model results (Fig. 4).  325	
  

  The high disturbance treatment did significantly reduce AGB in the Central Amazon to 326	
  

values similar to the ‘west and south’ counterpart, but wood density was not included in the 327	
  

biomass allometric equation for the Central Amazon therefore this reduction in AGB was a ‘false-328	
  

positive’. Specifically, when the Central Amazon was subjected to faster turnover rates there was 329	
  

a significant reduction in AGB (two sample t-test, t(99,1.97) = 108.98, p<0.001) and net carbon loss 330	
  

was 74 Mg C ha-1 (from 178 to 104 Mg C ha-1) averaged over the last 100 years of simulation 331	
  

(Fig. 1d) equivalent to a 41.9% decrease. AGB in the Central Amazon was impacted the most by 332	
  

the high disturbance treatment. The AGB from the higher disturbed Central Amazon was similar 333	
  

(104 Mg C ha-1) to AGB values in the ‘west and south’ RAINFOR network plots, but only when 334	
  

comparing to biomass equations that included weighting for wood density (Chave et al., 2001; 335	
  

Chambers et al., 2001). For example, AGB predicted by the Chave et al. (2001) equation (107 Mg 336	
  

C ha-1), had no significant difference between the two disturbed regions (two sample t-test, t(38, 2.7) 337	
  

= 2.29, considering alpha=0.01, p=0.03) (Fig. 4a). The significant reduction in stand basal area, 338	
  

and not variation in wood density, was the main driver of decrease in AGB in ZELIG-TROP (Fig. 339	
  

5e). However, there was no significant difference in stand basal area between the empirical 340	
  

datasets in the Central and ‘west and south’ plots (p=0.368), a finding also confirmed by Baker et 341	
  

al. (2004a) and Malhi et al. (2006). While net carbon loss was the expected result, it constitutes a 342	
  

‘false positive’ resulting from omitting wood density in the model estimate of biomass and from 343	
  

an absence of significant difference in stand basal area across the Amazonia field network. 344	
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   The high disturbance treatment in the Central Amazon led to a significant increase in 345	
  

stem density by 197 stems from 574 to 771 stems ha-1 (34.3% increase, Fig. 1b, two sample t-test, 346	
  

t(99,1.97) = 28.06, p<0.001). Compared to the regional gradient in the RAINFOR network there was 347	
  

no significant difference between the higher disturbed and the Central Amazon empirical dataset 348	
  

(573 stems ha-1 vs. 589 stems ha-1) (two sample t-test, t(46,2.01) = 0.84, p=0.4077, Fig. 4d). ANPP 349	
  

did not significantly alter in the Central Amazon forest under a high disturbance treatment (two 350	
  

sample t-test, t(99,1.97) = 1.54, p=0.1260), only decreasing ANPP by 0.04 (from 5.39 to 5.35 Mg C 351	
  

ha-1 yr-1, 1.0%, Fig. 5a). Even with increased disturbance events, ANPP did not decrease in the 352	
  

same manner as biomass due to recovery episodes from more frequent thinning and the increase 353	
  

in smaller stems (i.e., 10 cm DBH size class) in newly opened gaps. When comparing the stand-354	
  

level BA growth rates (proxy for productivity) in the RAINFOR network there was a significant 355	
  

increase in growth rates in the ‘west and south’ compared to the Central Amazon, but there was 356	
  

no significant difference between the modeled treatments. In fact, an opposite response was seen, 357	
  

and there was a slight decrease as a result of higher disturbance (by 0.21 m2 ha-1 yr-1, Fig. 4e or 358	
  

0.20 Mg C ha-1 yr-1, Fig. 5c). The model might be inaccurately representing growth rates because 359	
  

prior to applying a higher disturbance regime in the Central Amazon, ZELIG-TROP significantly 360	
  

over-estimated the stand-level growth compared to empirical data (3.2 vs. 1.4 m2 ha-1 yr-1).  361	
  

  The recruitment rates (% yr-1) from the treatment site constitute the only variable that 362	
  

matched the ‘west and south’ observational dataset. Under a high disturbance treatment in the 363	
  

Central Amazon, as expected, there were subsequent increases in recruitment rate, where 364	
  

recruitment significantly increased from 2.3 to 3.9% yr-1, constituting a 69.1% increase above no-365	
  

disturbance recruitment rates (Table 4, Fig. 6a). Pre-treatment, modeled recruitment rates were 366	
  

0.9% yr-1 higher compared to empirical values from the Central Amazon BDFFP plots (Phillips et 367	
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al., 2004). Recruitment and mortality rates are tightly linked (Lieberman et al., 1985), therefore 368	
  

when tree mortality increased, recruitment also significantly increased. In the ‘west and south’ 369	
  

empirical dataset recruitment rates were ~79% higher compared to the Central region (Fig. 4b). 370	
  

However, while turnover rates increased, there was not an increase in coarse litter production rate 371	
  

(trunks and large stems >10 cm diameter, Mg C ha-1 yr-1, Fig. 6b) compared to the no-disturbance 372	
  

scenario, but rather a significant decrease (two sample t-test, t(99,1.97) = 2.70, p<0.01). Under a high 373	
  

disturbance treatment, the production of coarse litter decreased by an average of 0.25 Mg C ha-1 374	
  

yr-1 (8.3%, Table 4). However it is unclear if this decrease in production of coarse litter is 375	
  

biologically or atmospherically significant.  376	
  

  Once the forest reached a mature stable state (after 500 years) the periodic disturbance 377	
  

treatment was applied, removing 20% of stems in the mature forest every 50 years (for a duration 378	
  

of 200 years). The carbon loss over the 200-year period, including the four large-scale 379	
  

disturbances, was less severe than the high-disturbance treatment, but was still a significant 380	
  

decrease (two sample t-test, t(99,1.97) = 22.73, p<0.001). Compared to the no-disturbance scenario, 381	
  

average AGB net carbon loss was 40 Mg C ha-1 (from 178 to 138 Mg C ha-1, 22.7%, Fig. 7c) and 382	
  

ANPP significantly decreased from an average of 5.39 to 5.06 Mg C ha-1 yr-1 (6.1%, two sample t-383	
  

test, t(99,1.97) = 7.65, p<0.001). For the periodic treatment, the decrease in biomass was roughly half 384	
  

the decrease observed in the high-disturbance treatment, however the decrease in ANPP was more 385	
  

severe. 386	
  

 387	
  

3.2.2  Community Composition Changes 388	
  

  The individual-based dynamic vegetation model approach was able to explore the long-389	
  

term changes to community composition and fate of each species with increased disturbance. A 390	
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high disturbance treatment shifted species composition towards a more even canopy structure, and 391	
  

increased the species evenness and diversity (Fig. 2b). The largest basal area reduction occurred 392	
  

in the most common species; specifically the top two emergent species, followed by the most 393	
  

common canopy species. With an increase in disturbance, the species originally occupying the 394	
  

largest basal area on the plot, Parkia multijuga, decreased by 94.8% in relative difference in basal 395	
  

area compared to all species averaged over the last 100 years. The next most common emergent 396	
  

species, Cariniana micrantha, decreased by 32.6% with high disturbance, and canopy species 397	
  

filled in as the dominant growth form (Fig. 2b).  398	
  

  The empirical dataset found wood density to be higher in the central region (~0.68 g cm-3), 399	
  

and lower in more disturbed ‘west and south’ (~0.57 g cm-3) (Baker et al., 2004a). This trend was 400	
  

not seen between the no-disturbance and high disturbance treatment in the central Amazon, with 401	
  

no significant difference between the treatments (Fig. 4c). Before implementing the high 402	
  

disturbance treatment average wood density was low for the non-disturbed Central Forest (0.59 g 403	
  

cm-3, similar to values of the ‘west and south’), and with increased disturbances average wood 404	
  

density increased (0.63 g cm-3), an opposite response from empirical trends. Taking a closer look 405	
  

at the community composition and representation of species, the emergent canopy class 406	
  

experienced a decrease in basal area, amounting to 7.8% of total basal area, compared to 29.6% 407	
  

prior to high disturbances. The three remaining growth forms all increased in basal area. The 408	
  

emergent species had on average the highest wood density (0.72 g cm-3), and the pioneer species 409	
  

had on average the lowest wood density (0.52 g cm-3). With a decrease in emergent species, it 410	
  

would seem likely that average wood density would decrease, as expected in a forest with higher 411	
  

turnover rates. However the dominant species prior to disturbance (the emergent: Parkia 412	
  

multijuga), which experienced the largest decrease in basal area, had a very low wood density 413	
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(0.39 g cm-3). In addition, even though the emergent size class decreased, the canopy species 414	
  

(which also had high average wood density of 0.71 g cm-3) basal area increased from 63% to 415	
  

79.6%, and the increase in pioneer species from 5.5% to 5.9% was not sufficient to lower the total 416	
  

wood density of the forest. With higher disturbance rates subcanopy species represented 6.7% of 417	
  

the total basal area, compared to 1.7% prior to high disturbances. 418	
  

 419	
  

3.3  Disturbances and Carbon Change in CLM-CN 4.5 vs. ZELIG-TROP 420	
  

  After applying a continual disturbance regime within CLM as in ZELIG-TROP, similar 421	
  

patterns in forest biomass in response to disturbance were observed, and both models were in 422	
  

agreement with each other. For example, the relative change in AGB was consistent (41.9% vs. 423	
  

49.9% decrease) for ZELIG-TROP and CLM respectively (Fig. 5b). In CLM the aboveground 424	
  

carbon storage pools are not determined using allometric equations, but rather through a carbon 425	
  

allocation framework based off of photosynthesis, total GPP, and respiration (Thornton et al., 426	
  

2002). Including or excluding specific wood density is not considered in CLM. The model 427	
  

outputs from CLM for the disturbed Central Amazon also showed a reduction in AGB similar to 428	
  

the ‘west and south’; which was also a ‘false-positive’ result. The significant loss of LAI with 429	
  

disturbance was the main driver of reduction in AGB (Fig. 5f). There was a weak non-significant 430	
  

difference in LAI between the empirical datasets in the Central and ‘west and south’ Amazon 431	
  

regions (p=0.077). Another similarity between the two models was the non-significant change in 432	
  

ANPP, however ZELIG-TROP predicted a decrease in ANPP while CLM predicted a slight 433	
  

increase in ANPP (Fig. 5a).  434	
  

  With regards to the periodic disturbance treatment of large-scale disturbance events, CLM 435	
  

also replicated analogous patterns in biomass loss and recovery as seen in ZELIG-TROP (Fig. 436	
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7c). In both models, the sudden decrease in biomass as well as re-equilibration during the 437	
  

recovery phase matched. During each pulse disturbance, the forest lost on average 18.3% and 438	
  

18.7% biomass in ZELIG-TROP and CLM respectively, and gained 16.5% and 15.4% biomass 439	
  

during the recovery phase. Both CLM and ZELIG-TROP predicted that the recovering forest 440	
  

biomass, on average, was less than the amount lost in each large-scale disturbance event, 441	
  

therefore generating a negative total ΔAGB (-0.15 and -0.46 Mg C ha-1 yr-1 for ZELIG-TROP and 442	
  

CLM respectively, Table 4). The negative total ΔAGB was less in ZELIG-TROP, and was likely 443	
  

attributed to ZELIG-TROP predicting growth rates to significantly increase (by 0.20 Mg C ha-1 444	
  

yr-1, two sample t-test, t(99,1.97) = 2.14, p<0.05), most likely due to the open gaps from disturbance, 445	
  

therefore losses were damped in ZELIG-TROP. In contrast CLM had growth rates that on average 446	
  

decreased, due to the sharp decrease in growth rates following each large-scale disturbance event 447	
  

(Fig. 7b). Both models also showed that each subsequent recovery period was always greater than 448	
  

the previous period, up to a point where re-growth matched the biomass lost in the disturbance 449	
  

event (Fig. 7c).    450	
  

  There were discrepancies with the response of ANPP to the periodic large-scale forest 451	
  

mortality and recovery events between CLM and ZELIG-TROP. The immediate decrease in 452	
  

ANPP following the large-scale disturbance event was significantly greater in CLM compared to 453	
  

ZELIG-TROP (4.7 vs. 0.6 Mg C ha-1 yr-1, Fig. 7a). The subsequent shape of ANPP during the 50-454	
  

year recovery was also different between the two models. CLM predicted that within 455	
  

approximately two years after the disturbance, ANPP returned to pre-disturbance levels and 456	
  

stayed relatively constant until the next disturbance. However, ZELIG-TROP did not display a 457	
  

fast return to pre-disturbance levels, but instead predicted a gradual increase in ANPP after each 458	
  

disturbance. Comparing the no-disturbance scenario and the periodic treatment, both models 459	
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predicted that overall ANPP significantly decreased with periodic disturbances (two sample t-test, 460	
  

p<0.001 and p=0.002 for ZELIG-TROP and CLM respectively), however the gap model 461	
  

predicted a greater percent difference in average ANPP; a 6.1% decrease vs. 3.5% decrease in 462	
  

CLM.  463	
  

  To answer our last research question, what are the differences after increasing disturbance 464	
  

rates in ZELIG-TROP vs. CLM for the Central Amazon, we did find other discrepancies. While 465	
  

the magnitude of change between AGB was similar between the two models, CLM differs greatly 466	
  

from ZELIG-TROP in that it did not captured the inter-annual variability in carbon stocks, while 467	
  

ZELIG-TROP did (Fig. 5b). Therefore, the demographic forest model captured large fluctuations 468	
  

in annual forest biomass and carbon stocks as a result of either gap dynamics, changes in 469	
  

competition for resources, and/or varying size class and age class structure of the forest. In 470	
  

addition, CLM did not produce pulses of coarse litter in response to tree mortality representative 471	
  

of a heterogeneous landscape (Fig. 5d, 7d). While the relative change in AGB was consistent 472	
  

between the two models, there was a large overestimation in the absolute values. With the 473	
  

inclusion of the high disturbance treatment CLM predicted that average AGB net carbon loss was 474	
  

134 Mg C ha-1 (from 269 to 135 Mg C ha-1) vs. 74 Mg C ha-1 in ZELIG-TROP.   475	
  

    476	
  

4 Discussion 477	
  

4.1  Elevated forest disturbance and long-term impacts 478	
  

  Disturbance is likely to increase in Amazon forests. Since the mid-1970’s observed tree 479	
  

mortality and recruitment rates have been increasing in the Amazon (Phillips et al., 2004), and 480	
  

higher than usual mortality rates have also been associated with droughts and strong windstorm 481	
  

events (Nepstad et al., 2007; Chambers et al., 2009; Phillips et al, 2009; Negron-Juarez et al., 482	
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2010; Lewis et al., 2011), each of which could increase with human-induced climate change. In 483	
  

addition, reported mortality rates might be underestimated as 9.1-16.9% of tree mortality was 484	
  

missing from plot-based estimates in the Amazon (Chambers et al., 2013). We first investigated 485	
  

the impact of continual high disturbance (100 years) in a Central Amazonian forest using a 486	
  

demographic forest model as a benchmark model due to operating at finer scales and having 487	
  

mechanistic mortality algorithms. The elevated disturbance resulted in a decrease in AGB by 488	
  

41.9%, with essentially no change in ANPP (1.0% decrease), and an increase in recruitment rates 489	
  

by 69.1%. As a result of higher proportion of smaller stems (20.7% increase in the 10-30cm DBH 490	
  

size classes), and decrease in large stems, there was a significant decrease in coarse litter 491	
  

production rate by 8.3%. 492	
  

  We compared empirical data from the higher disturbed ‘west and south’ Amazon plots 493	
  

(‘fast dynamics’), to the modeled Central Amazon forest with mirrored tree mortality to evaluate 494	
  

if the models used in this study could predict similar forest dynamics and characteristics. Only 495	
  

one attribute that is tightly linked with disturbances (i.e., increase in recruitment) followed the 496	
  

same pattern when shifting from low disturbance to high disturbance. The models were not 497	
  

successful in predicting the shift in growth rates and specific wood density; forest processes and 498	
  

traits that have been shown to differ with varying turnover rates (Baker et al., 2004a; Lewis et al., 499	
  

2004; Phillips et al., 2004). Therefore, results showed that the disturbance regime alone might not 500	
  

explain all of the differences in forest dynamics between the two regions, or the models do not 501	
  

accurately capture all disturbance and recovery processes. Furthermore, the net loss in biomass 502	
  

was assumed to be a ‘false-positive’ in the models because in ZELIG-TROP AGB loss was driven 503	
  

by basal area loss, and in CLM AGB loss was driven by LAI loss. Basal area and LAI are not 504	
  

found to be drivers of AGB loss, or patterns of biomass, in empirical datasets (Baker et al., 2004a; 505	
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Malhi et al., 2006). In contrast basal area varied only slightly across the Amazon plot network 506	
  

(27.5 vs. 29.9 m2 ha-1, Baker et al., 2004a). This indicates that wood density, which is a strong 507	
  

indicator of functional traits (Whitmore, 1998); along with patterns of family composition are 508	
  

strong drivers in steady-state AGB variation. 509	
  

  One study using the RAINFOR network found that variation in wood density drives the 510	
  

pattern in regional-scale AGB (Baker et al., 2004a), a trend that was not captured in ZELIG-511	
  

TROP. While wood density is typically found to be higher in the central Amazon and lower in the 512	
  

‘west and south’ (Baker et al., 2004a; ter Steege et al., 2006; Saatchi et al., 2009), high wood 513	
  

density is also found in northern Peru (Patino et al., 2009; Saatchi et al., 2009). Next we 514	
  

compared the same disturbance scenario in CLM-CN 4.5 and found with regards to AGB 515	
  

response to disturbance, CLM performed in a very similar behavior to the gap model. CLM did 516	
  

not reproduce the temporal variability in coarse litter inputs, and instead remained constant over 517	
  

time. We also compared the response of large-scale periodic disturbances in the two models, and 518	
  

found that CLM captured similar disturbance and recovery patterns as the gap model. 519	
  

  After applying continual and periodic higher disturbance treatments, we did not observe a 520	
  

continual decrease in forest structure or biomass that lead to a new forest successional trajectory. 521	
  

Instead, we found that the Amazon forest shifted to a new equilibrium state. The outcome of a 522	
  

continual higher disturbance rate generated a stable forest but with less biomass, faster turnover, 523	
  

higher stem density consisting of smaller stems, as well as less emergent species, less ANPP, and 524	
  

less contribution of coarse litter inputs. Inventory studies have reported that with increased 525	
  

turnover, there is a change in community composition, less wood density, and when these traits 526	
  

are taken into account there is also less AGB (Baker et al., 2004a). We conclude that including 527	
  

wood density in dynamic vegetation models is needed. While we have shown that terrestrial 528	
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biomass will decrease with increased disturbances, the interacting affects from potential CO2 529	
  

fertilization should be explored.  530	
  

 531	
  

4.1.1 Disturbance, biomass accumulation, and CO2 fertilization 532	
  

  Demographic vegetation models are useful tools at predicting long-term temporal trends 533	
  

related to changes in carbon stocks and fluxes. The offsetting interactions between possible CO2 534	
  

fertilization and disturbances are an important next step to evaluate. Based on observational 535	
  

studies from permanent plots there has been an increase in tree biomass in Amazonian forests by 536	
  

~0.4-0.5 t C yr-1 over the past three decades (Lewis et al., 2004; Phillips et al., 1998; 2008). CO2 537	
  

fertilization effects might be an explanation (Fan et al., 1998; Norby et al., 2005), but this is 538	
  

unknown or refuted (Canadell et al., 2007, Norby et al. 2010), and manipulation experiments of 539	
  

enhanced CO2 in the tropics is untested (Zhou et al., 2013). Due to the magnitude of forest 540	
  

growth, CO2 fertilization may not be a causal factor but instead driven by interacting agents such 541	
  

as biogeography and changing environmental site conditions (Lewis et al., 2004; Malhi and 542	
  

Phillips, 2004). The role of widespread recovery from past disturbances still needs to be explored 543	
  

as an explanation for biomass accumulation.  544	
  

  In a study evaluating the risk of Amazonian forest dieback, Rammig et al. (2010) used 545	
  

rainfall projections from 24 GCMs and a dynamic vegetation model (LPJmL) and predicted that 546	
  

Amazon forest biomass is increasing due to strong CO2 fertilization effects (3.9 to 6.2 kg C m-2), 547	
  

and out ways the biomass loss due to projected precipitation changes, however larger 548	
  

uncertainties are associated with the effect of CO2 compared to uncertainties in precipitation. 549	
  

Increasing evidence from an ensemble of updated global climate models are predicting that 550	
  

tropical forests are at a lower risk of forest dieback under climate change, in that they can still 551	
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retain carbon stocks until 2100 due to fertilization effects of CO2 (Cox et al., 2013; Huntingford et 552	
  

al., 2013), however there is still large uncertainties between models and how tropical forests will 553	
  

respond to interacting effects of increasing CO2 concentrations, warming temperatures, and 554	
  

changing rainfall patterns (Cox et al., 2013).   555	
  

  In this study over the period of 100 years there was no significant change in biomass 556	
  

accumulation in both ZELIG-TROP and CLM (Fig. 5b), and the forest did not act as a carbon 557	
  

sink as predicted by empirical studies across a network of Amazon inventory plots (Phillips et al., 558	
  

1998; 2004). One explanation could be due to atmospheric CO2 being held constant. Upon 559	
  

applying the disturbance treatment, the forest became more stable. With regards to periodic 560	
  

disturbances and sudden tree mortality events both models predicted a negative ΔAGB, -0.15 and 561	
  

-0.46 Mg C ha-1 yr-1 for ZELIG-TROP and CLM respectively, therefore the forest acting as a 562	
  

carbon source (Table 4). CLM predicted a larger decrease in biomass under periodic disturbances, 563	
  

which offsets the current observed biomass accumulation (lower empirical estimates at 0.20-0.39 564	
  

Mg C ha-1 yr-1 (Phillips et al., 1998; Chambers and Silver, 2004)).  565	
  

 566	
  

4.2  Lessons Learned from Modeling Tropical Forest Disturbance 567	
  

4.2.1 Model comparison to field data and additional sites 568	
  

  We found that using a dynamic vegetation gap model that operates at the species level was 569	
  

successful at replicating the Central Amazon forest. ZELIG-TROP has also been validated for the 570	
  

subtropical dry forest of Puerto Rico (Holm et al., 2012), but this is the first application of a 571	
  

dynamic vegetation model of this kind (i.e., gap model) for the Amazon Basin. As a result of 572	
  

using species-specific traits, the values reported by ZELIG-TROP for average basal area, AGB, 573	
  

stem density, LAI, and ANPP were all close to observed values (e.g., ranging from 1.7 to 17.1 % 574	
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difference between ZELIG-TROP and observed field results). Field measurements of AGB from 575	
  

the Central Amazon transects averaged ± SD: 169 ± 27.6 Mg C ha-1, and additional field-based 576	
  

measurements from nearby sites in the Central Amazon (FLONA Tapajós plots) range from 132 577	
  

to 197 Mg C ha-1 (Miller et al., 2003; Keller et al., 2001). ZELIG-TROP predicted very similar 578	
  

estimates of AGB: 178 ± 10.5 Mg C ha-1, therefore model results were within the expected range. 579	
  

From a single-point grid cell, located in the same latitude and longitude coordinates as 580	
  

observational plots, CLM predicted higher levels of AGB (269 Mg C ha-1). In a study comparable 581	
  

to ours, Chambers et al. (2004) found that upon doubling turnover rates in an individual based 582	
  

stand model, forest biomass for a Central Amazon forest decreased by slightly more than 50%.  583	
  

This decrease in forest biomass was similar to the response reported in this study (41.9% and 584	
  

49.9%). Unlike the Chambers et al. (2004) study, we did not impose an increase in growth rates in 585	
  

the model parameters in conjunction with elevated turnover rates. Instead, annual growth rates 586	
  

were determined internally within ZELIG-TROP based on species-specific parameters and 587	
  

environmental conditions. 588	
  

 589	
  

4.2.2 Growth rates and wood density 590	
  

  Our prediction of average growth rate was higher than field data found in the Central 591	
  

Amazon BDFFP inventory plots (3.1 vs. 1.7 Mg C ha-1 yr-1, Table 4), but similar to other values 592	
  

found in the Central and Eastern Amazon. For example, using a process-based model, Hirsch et 593	
  

al. (2004) found above-ground stem growth to be 3.6 Mg C ha-1 yr-1, and field measurements were 594	
  

2.9 Mg C ha-1 yr-1 at the Seca Floresta site in the Tapajós National Forest (Rice et al., 2004). 595	
  

During the high disturbance treatment, we did not observe an increase in average growth rates 596	
  

compared to the no-disturbance treatment. In fact, there was a slight decrease in annual growth 597	
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(Table 4, Fig. 4e). This non-significant change in growth rates could have been due to the 598	
  

nonoccurrence of large increases in available light and resources after each additional death, a 599	
  

result of a continual disturbance treatment as opposed to a dramatic disturbance event. 600	
  

Alternatively the Western Amazon plots, counterparts to the high disturbance treatment, did 601	
  

exhibit an increase in growth rates (Fig. 4e). Differences in environmental gradients between 602	
  

regions, such as higher total phosphorous, less weathered, and more fertile soils in the Western 603	
  

Amazon (Quesada et al., 2010) could be a stronger controlling factor. In the periodic disturbance 604	
  

treatment, growth and productivity did increase directly following each large-scale disturbance 605	
  

(i.e., removing 20% of stems). After each pulse disturbance ANPP increased by 14% over the 50-606	
  

year recovery phase. The change in community composition under the high disturbance treatment 607	
  

was also representative of what wou,ld be expected (i.e. emergent species decreased by the largest 608	
  

percent in basal area, and canopy and subcanopy species increased), however by not capturing 609	
  

expected changes in wood density the model might be missing some shifts in species composition 610	
  

response to disturbance.  611	
  

  Wood density is a robust indicator of life history strategies, growth rates, and/or 612	
  

successional status of a forest (Whitmore, 1998; Suzuki, 1999; Baker et al., 2004a). Upon 613	
  

modeling a Central Amazon forest with disturbance rates similar to the ‘west and south’, the 614	
  

higher disturbance did not create a community composition dominated by pioneer species or 615	
  

lower the average wood density, but instead created a forest of less emergent species, more 616	
  

canopy species, and higher wood density. Our results further confirm that environmental and/or 617	
  

stand factors explain the regional variation of AGB and wood density. Even with elevated 618	
  

disturbance in the central Amazon the species that persisted and increased in basal area had on 619	
  

average high wood density (0.7 g cm-3). The growth rate scaling coefficients, G, used in ZELIG-620	
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TROP were inversely correlated with wood density, matching the robust signal observed from 621	
  

inventory data, but was not correlated (R2=0.13), leading to a possible explanation of the opposite 622	
  

pattern in wood density shifts with increased disturbance. Wood density is not a main 623	
  

parameterization variable in ZELIG-TROP, and other factors in the gap model (e.g., drought or 624	
  

light tolerances, maximum age, availability of light) could be a stronger driver of community 625	
  

composition shifts over wood density.  626	
  

  It should be noted that wood density is difficult to measure accurately in the field, varies 627	
  

between and within species (Chave et al., 2006), varies within a tree across diameter and from the 628	
  

base of the tree to the top (Nogueira et al., 2005), and the Chambers et al. (2001) AGB model 629	
  

without wood density shows that variation of the data explained by the model is strong (r2 = 630	
  

0.973). Including wood density in AGB allometric equations is not required, but beneficial for 631	
  

accounting for differences in carbon stocks due to changes in species composition, gradients in 632	
  

soil fertility (Muller-Landau, 2004) as opposed to disturbance regimes, and can be a key variable 633	
  

in greenhouse gas emission mitigation programs. 634	
  

 635	
  

4.2.3 CLM 4.5 vs. dynamic vegetation model   636	
  

  Simulating vegetation demography is beneficial to tracking community shifts, plant 637	
  

competition, and dynamic changes in carbon stocks and fluxes, and should be considered being 638	
  

incorporated into CLM. The version of CLM used here does not take into account differences 639	
  

between plant size, plant age, or all biotic and abiotic stressors. Using demography typical of a 640	
  

gap model will account for these missing factors, will aid in capturing annual carbon variability as 641	
  

a result of heterogeneous mortality across the landscape, and can help improve global land surface 642	
  

models. The exact causes and processes leading to plant mortality are difficult to quantify 643	
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(Franklin et al., 1987; McDowell et al., 2008; 2011), and additional field research is required in 644	
  

this area, especially in the tropics. However, the gap model approach can quantify the 645	
  

contribution due to natural death, stress related death, or disturbance related death under no-646	
  

disturbance and high-disturbance scenarios.  647	
  

  The major differences between the gap model ZELIG-TROP and CLM in response to 648	
  

higher disturbance rates was, 1) the average AGB net carbon loss was 74 Mg C ha-1 in ZELIG-649	
  

TROP versus 134 Mg C ha-1 in CLM as a result of doubling background mortality, and 2) the 650	
  

temporal variability in carbon stock and fluxes was not replicated in CLM. While the absolute 651	
  

values in AGB net carbon loss were different between the two models (Fig. 5b), this was due to 652	
  

the fact that ZELIG-TROP was calibrated for a specific location in the Central Amazon and CLM 653	
  

using initial conditions representative of the entire Amazon basin. As a result of this distinction, 654	
  

relative differences should be used as a comparison tool. The two models were consistent in that 655	
  

they both reached new equilibrium steady-states with both continual and periodic disturbances, 656	
  

and therefore the relative change in biomass was analogous between ZELIG-TROP and CLM. 657	
  

Temporal variability in carbon stocks and fluxes over time were also absent from the CLM model 658	
  

due to the inexistence of plant demography (i.e., changes in plant size, structure, and age). 659	
  

Regarding the response to periodic disturbances, the major difference between ZELIG-TROP and 660	
  

CLM was the rapid return to pre-disturbance ANPP levels in CLM after each large-scale 661	
  

disturbance event, while in ZELIG-TROP the recovery of ANPP was gradual.  662	
  

  With the inclusion of higher disturbance rates, the two models tested here do predict a 663	
  

~40-50% reduction in carbon stocks, however the drivers that lead to biomass reduction are 664	
  

inconsistent with the empirical driver. Additionally, ZELIG-TROP predicted lower coarse litter 665	
  

production rates, and gains that exceeded losses. CLM predicted higher coarse litter production 666	
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rates, and losses that exceeded gains (Table 4), but these differences were minimal. However, 667	
  

these differences that we found in gains minus losses between ZELIG-TROP and CLM can lead 668	
  

to inaccurate predictions of carbon response to increasing disturbance rates in integrated 669	
  

assessment models that use CLM. When taking into account the entire Amazon Basin over many 670	
  

years, this discrepancy can significantly affect predictive outcomes when using the global CLM 671	
  

for mitigation strategies.  672	
  

 673	
  

4.3  Future Directions and Summary 674	
  

  To constrain the future concentration of CO2 into the atmosphere, current mitigation 675	
  

strategies rely heavily on tropical forests to maintain, or increase, as a carbon sink. In order to 676	
  

accurately develop and impose mitigation strategy targets, the land components of earth system 677	
  

models need to more accurately simulate plant mortality, coarse litter inputs, carbon fluxes, and 678	
  

accelerated growth processes associated with disturbance-recovery events. CLM 4.5 has been the 679	
  

model of focus here, however multiple versions of the Lund-Potsdam-Jena Dynamic Global 680	
  

Vegetation Model (LPJ-DGVM; Sitch et al., 2003), such as LPJmL and LPJ-GUESS-SPITFIRE, 681	
  

are notable models to evaluate changes to forest biomass in the Amazon (Rammig et al., 2010), 682	
  

and changes to stand structure, plant mortality, and emissions due to fire (Thonicke et al., 2010). 683	
  

Cramer et al. (2001) showed the varying range and uncertainties in ecosystem response and 684	
  

magnitude of the terrestrial carbon sink as a function of rising CO2 and climate change using six 685	
  

DGVMs with varying degrees of functionalities.  Including transient changes in vegetation 686	
  

structure while accounting for changes due to elevated disturbance rates requires models to 687	
  

include vegetation dynamics, succession processes, and biogeochemical processes. With the 688	
  

varying degree of capabilities and functionality within vegetation models this study has 689	
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benchmarked mortality and disturbance processes in CLM and will benefit the iESM project 690	
  

(Integrated Earth System Model; Jones et al., 2013), which combines CLM with a fully integrated 691	
  

human system component. The capability of tropical forests to act as a carbon sink with and 692	
  

without the inclusion of disturbances needs to be corrected in some models. If not, incorrect 693	
  

predictions of the land uptake could either diminish the effect of mitigation policy, or force more 694	
  

stringent changes in energy infrastructure in order to meet the same climate stabilization targets. 695	
  

Ultimately the contributions to iESM will create the capabilities to test the carbon market and 696	
  

energy market responses to changes in forest mortality and increased disturbances in the Amazon 697	
  

and on a global scale.  698	
  

  It is predicted that disturbances will increase in the future, and this modeling study was 699	
  

unique in that we: 1) showed that the drivers that lead to the net loss in carbon stocks in two 700	
  

models are different compared to drivers in empirical datasets, 2) predicted that not all differences 701	
  

in tropical forest attributes (e.g., AGB, basal area growth, stem density, and wood density) can be 702	
  

explained by the disturbance regime alone, and also 3) highlighted some inconsistencies between 703	
  

a detailed gap model and the global community land surface model used in CESM. It was also 704	
  

unique in that we simulated a continual high disturbance rate, in addition to background mortality 705	
  

during each time step. This set it apart from the majority of disturbance studies that have 706	
  

simulated a one-time total deforestation of the Amazon (Shukla et al., 1990; Henderson-Sellers et 707	
  

al., 1993; Hahmann and Dickinson, 1997; Gedney and Valdes, 2000; Avissar and Werth, 2005). 708	
  

We conclude the following two possibilities in addressing the variations in carbon stocks across 709	
  

the Amazon, but disentangling the contribution of each was beyond the scope of this study. The 710	
  

two models used here incorrectly captured the loss in AGB associated with elevated disturbance, 711	
  

because they attributed the reduced biomass to changes in either basal area or LAI, which is not 712	
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well supported in the literature. A second possibility is that disturbance is not a strong indicator of 713	
  

regional variation in AGB, but environmental, community composition, and/or stand structure 714	
  

factors are stronger contributors to regional variation in biomass. Our results showed that a 715	
  

simulated Central Amazon forest that mirrored the turnover of the west and south Amazon 716	
  

continued to differ in multiple forest attributes.  717	
  

 718	
  

 719	
  

	
  720	
  

 721	
  

 722	
  

Acknowledgements 723	
  

We would like to thank Edgard Tribuzy for data collection near the ZF2 research station, and 724	
  

support from the Instituto Nacional de Pesquisas da Amazonia, INPA. We would also like to 725	
  

thank the CESM project, sponsored by the National Science Foundation (NSF) and the U.S. 726	
  

Department of Energy (DOE), and the administration team that is maintained at the National 727	
  

Center for Atmospheric Research (NCAR). This research was supported by the Director, Office 728	
  

of Science, Office of Biological and Environmental Research of the U.S. Department of Energy 729	
  

under contract No. DE-AC02-05CH11231 as part of the Terrestrial Ecosystem Science (TES) 730	
  

Program, and as part of the Earth System Modeling Program (KP170302). This research used 731	
  

resources of the National Energy Research Scientific Computing Center, which is supported by 732	
  

the Office of Science of the U.S. Department of Energy under contract DE-AC02-05CH11231.  733	
  



	
   33	
  

References 734	
  

 735	
  

Anderegg, W. R. L., Kane, J. M., Anderegg, L. D. L.: Consequences of widespread tree mortality 736	
  

triggered by drought and temperature stress, Nature Climate Change, 3, 30-36, 2013. 737	
  

Avissar, R. and Werth, D.: Global hydroclimatological teleconnections resulting from tropical 738	
  

deforestation. J. of Hydrometer, 6, 134-145, 2005. 739	
  

Baker, T. R., Phillips, O. L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Killeen, T. J., 740	
  

Laurance, S. G., Laurance, W. F., Lewis, S. L., Lloyd, J., Monteagudo, A., Neill, D. A., Patino, 741	
  

S., Pitman, N. C. A., Macedo Silva, J. N., Vasquez Martinez, R.: Variation in wood density 742	
  

determines spatial patterns in Amazonian forest biomass. Global Change Biology, 10, 545–562, 743	
  

2004a. 744	
  

Baker, T. R., Phillips, O. L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Higuchi, 745	
  

N., Killeen, T. J., Laurance, S. G., Laurance, W. F., Lewis, S. L., Monteagudo, A., Neill, D. A., 746	
  

Nunez Vargas, P., Pitman, N. C. A., Silva, J. N. M., Vasquez Martinez, R.: Increasing biomass in 747	
  

Amazonian forest plots. Philosophical Transactions of the Royal Society of London, B359, 353–748	
  

365, 2004b.  749	
  

Baraloto, C., Rabaud, S., Molto, Q., Blanc, L., Fortunel, C., Herault, B., Davila, N., Mesones, I., 750	
  

Rios, M., Valderrama, E. and Fine, P. V. A.: Disentangling stand and environmental correlates of 751	
  

aboveground biomass in Amazonian forests, Global Change Biology, 17, 2677–2688. 752	
  

doi: 10.1111/j.1365-2486.2011.02432., 2011. 753	
  

Bonan, G. B.: Forests and climate change: forcings, feedbacks, and the climate benefits of forests. 754	
  

Science, 320, 1444-1449, 2008.  755	
  

Botkin, D. B., Janak, J. F., and Wallis, J. R.: Some Ecological Consequences of a Computer 756	
  

Model of Forest Growth, J. of Ecology, 60, 849-872, 1972. 757	
  

Brokaw, N. V. L.: Gap-Phase Regeneration in a Tropical Forest, Ecology, 66, 682–687, 1985. 758	
  

Busing, R. T. and Solomon, A. M.: A comparison of forest survey data with forest dynamics 759	
  

simulators FORCLIM and ZELIG along climatic gradients in Pacific Northwest, Scientific 760	
  

Investigation Report 2004-5078, U.S. Geological Survey, Reston Virginia, USA, 2004. 761	
  

Canadell,  J. G., Le Quere, C., Raupach, M. R., Field, C. B., Buitenhuis, E. T., Ciais, P., Conway, 762	
  

T. J., Gillett, N. P., Houghton, R. A., and Marland, G.: Contributions to accelerating atmospheric 763	
  



	
   34	
  

CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks, Proc Natl 764	
  

Acad Sci USA, 104, 18866–18870, 2007. 765	
  

Canham, C. D. and Marks, P. L.: The response of woody plants to disturbance: patterns of 766	
  

establishment and growth. The Ecology of Natural Disturbances and Patch Dynamics, Academic 767	
  

Press, New York, NY, 1985.  768	
  

Chambers, J. Q., Higuchi, N., and Schimel, J. P.: Ancient trees in Amazonia, Nature, 391, 135–769	
  

136, 1998. 770	
  

Chambers, J.Q., Schimel, J. P., and Nobre, A. D.: Respiration from coarse wood litter in central 771	
  

Amazon forests, Biogeochem, 52, 115-131, 2001. 772	
  

Chamber, J. Q., and Silver, W. L.: Some aspects of ecophysiological and biogeochemical 773	
  

responses of tropical forests to atmospheric change, Phil. Trans. R. Soc. Lond. B, 359, 463-476, 774	
  

2004.  775	
  

Chambers, J.Q., Higuchi, N., Teixeira, L. M., dos Santos, J., Laurance, S. G., Trumbore, S. E.: 776	
  

Response of tree biomass and wood litter to disturbance in a Central Amazon forest, Oecologia, 777	
  

141, 596-614, 2004. 778	
  

Chambers, J. Q., Robertson, A., Carneiro, V., Lima, A., Smith, M.-L., Plourde, L., and Higuchi, 779	
  

N.: Hyperspectral remote detection of niche partitioning among canopy trees driven by blowdown 780	
  

gap disturbances in the central Amazon, Oecologia, 160, 107–117, 2009. 781	
  

Chambers, J. Q., Negron-Juarez, R. I., Marra, D. M., Di Vittorio, A., Tews, J., Roberts, D., 782	
  

Ribeiro, G. H. P. M., Trumbore, S. E., and Higuchi, N.: The steady-state mosaic of disturbance 783	
  

and succession across an old-growth Central Amazon forest landscape, PNAS, 110, 3949-3954, 784	
  

2013. 785	
  

Clark, D. A.: Detecting tropical forests’ responses to global climatic an atmospheric change: 786	
  

current challenges and a way forward, Biotropica 39, 4–19, 2007. 787	
  

Chave, J., Riera, B., and Dubois, M. A.: Estimation of biomass in a neotropical forest of French 788	
  

Guiana: spatial and temporal variability, J. of Trop. Ecol., 17, 79–96, 2001. 789	
  

Chave, J., Muller-Landau, Baker, T. R., Easdale, T. A., ter Steege, H., and Webb, C. O.: Regional 790	
  

and phylogenetic variation of wood density across 2456 neotropical tree species, Ecol. Appl., 16, 791	
  

2356-2367, 2006. 792	
  

Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B., Bretherton, C. S., Carton, J. A., 793	
  

Chang, P., Doney, S. C., Hack, J. J., Henderson, T. B., Kiehl, J. T., Large, W. G., McKenna, D. 794	
  



	
   35	
  

S., Santer, B. D.,  and Smith, R. D.: The Community Climate System Model version 3 (CCSM3), 795	
  

J. Climate, 19, 2122–2143, 2006. 796	
  

Cox, P. M., Betts, R. A., Jones, C. D., Spall, S.A., Totterdell, I. J.: Acceleration of global 797	
  

warming due to carbon-cycle feedbacks in a coupled climate model, Nature, 408, 184-187, 2000. 798	
  

Cox, P. M., Betts, R. A., Collins, M., Harris, P. P., Huntingford, C., and Jones, C. D.: Amazonian 799	
  

forest dieback under climate-carbon cycle projections for the 21st century, Theoretical and 800	
  

Applied Climatology, 78, 137–156, 2004. 801	
  

Cox, P. M., Pearson, D., Booth, B. B., Friedlingstein, P., Huntingford, C., Jones, C. D., and Luke, 802	
  

C. M.: Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability, 803	
  

Nature, 494, 341-344, 2013. 804	
  

Cramer, W., Bondeau, A., Woodward, F. I., Prentice, I. C., Betts, R. A., Brovkin, V., Cox, P. M., 805	
  

Fisher, V., Foley, J. A., Friend, A. D., Kucharik, C., Lomas, M. R., Ramankutty, N., Sitch, S., 806	
  

Smith, B., White, A., and Young-Molling, C.: Global response of terrestrial ecosystem structure 807	
  

and function to CO2 and cli- mate change: results from six dynamic global vegetation models, 808	
  

Global Change Biol., 7, 357–373, 2001. 809	
  

Cumming, S. G. and Burton, P. J.: A Programmable Shell and Graphics System for Forest Stand 810	
  

Simulation, Environ. Software, 8, 219-230, 1993. 811	
  

Dale, V.H., Joyce, L. A., McNulty, S., Neilson, R. P., Ayers, M. P., Flannigan, M. D., Hanson, P. 812	
  

J., Irland, L. C., Lugo, A. E., Peterson, C. J., Simberloff, D., Swanson, F. J., Stocks, B. J., and 813	
  

Wotton, B. M.: Climate change and forest disturbances, Bioscience, 51, 723-734, 2001. 814	
  

DeFries, R. S., Houghton, R. A., Hansen, M. C., Field, C. B., Skole, D., and Townshend, J.: 815	
  

Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 816	
  

1980s and 1990s, PNAS, 99, 14256-14261, 2002.  817	
  

Denslow J. S.: Tropical rainforest gaps and tree species diversity, Annu. Rev. Ecol. Syst, 18, 431-818	
  

451, 1987. 819	
  

Fan, S., Gloor, M., Mahlman, J., Pacala, S., Sarmiento, J., Takahashi, T., Tans, P.: A Large 820	
  

Terrestrial Carbon Sink in North America Implied by Atmospheric and Oceanic Carbon Dioxide 821	
  

Data and Models, Science, 282, 442 446, 1998. 822	
  

Fearnside, P. M.: Deforestation in Brazilian Amazonia: History, rates, and consequences, Con- 823	
  

serv. Biol., 19, 680–688, 2005. 824	
  



	
   36	
  

Franklin, J.F., Shugart, H. H., and Harmon, M. E.: Tree Death as an Ecological Process, 825	
  

BioScience, Vol. 37, No. 8, Tree Death: Cause and Consequence (Sep., 1987), pp. 550-556, 1987. 826	
  

Gedney, N. and Valdes, P. J.: The effect of Amazonian deforestation on the northern hemisphere 827	
  

circulation and climate, Geo. Resear. Lett, 27, 3053-3056, 2000. 828	
  

Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., hunke, E. C., Jayne, S. R., 829	
  

Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M., Worley, P. H., Yang, Z.-L., and 830	
  

Zhang, M.: The Community Climate System Model version 4, J. Climate, 24, 4973–4991, 2011.  831	
  

Hahmann, A. N., and Dickinson, R. E.: RCCM2-BATS model over tropical South America: 832	
  

Applications to tropical deforestation, J. Climate, 10, 1944–1963, 1997. 833	
  

Henderson-Sellers, A., Dickinson, R.E., Durbidge, T.B., Kennedy, P.J., McGuffie, K., Pitman, 834	
  

A.J.: Tropical deforestation: modelling local to regional-scale climatic change, J. Geophys. Res. 835	
  

98, 7289–7315, 1993. 836	
  

Hirsch, A. I., Little, W. S., Houghton, R. A., Scott, N. A., and White, J. D.: The net carbon flux 837	
  

due to deforestation and forest re-growth in the Brazilian Amazon: analysis using a process-based 838	
  

model, Glob. Change Biol., 10, 908-24, 2004. 839	
  

Holm, J. A., Shugart, H. H., Van Bloem, S.J., and Larocque, G. R.: Gap model development, 840	
  

validation, and application to succession of secondary subtropical dry forests of Puerto Rico, 841	
  

Ecol. Model., 233, 70-82, 2012. 842	
  

Huntingford, C., Zelazowski, P., Galbraith, D., Mercado L. M., Sitch, S., Fisher, R., Lomas, M., 843	
  

Walker, A. P., Jones, C. D., Booth, B. B. B., Malhi, Y., Hemming, D., Kay, G., Good, P., Lewis, 844	
  

S. L., Phillips, O. L., Atkin, O. K., Lloyd, J., Gloor, E., Zaragoza-Castells, J., Meir, P., Betts, R., 845	
  

Harris, P. P., Nobre, C., Marango, J., and Cox. P. M.: Simulated resilience of tropical rainforests 846	
  

to CO2-induced climate change, Nature Geosci, 6, 268-273, 2013.  847	
  

IPCC, Intergovernmental Panel on Climate Change, Climate change 2014: Mitigation of Climate 848	
  

Change. Contribution of working group III to the fifth assessment report of the IPCC, 2014. 849	
  

Jones, A. D., Collins, W. D., Edmonds, J., Torn, M. S., Janetos, A., Calvin, K. V., Thomson, A., 850	
  

Chini, L. P., Mao, J., Shi, X., Thornton, P., Hurtt, G. C., and Wise, M.: Greenhouse gas policies 851	
  

influence climate via direct effects of land use change, J. Clim., 26, 3657–3670, 2013. 852	
  

Keane, R. E., Austin, M., Field, C., Huth, A., Lexer, M. J., Peters, D., Solomon, A., and Wyckoff, 853	
  

P.: Tree Mortality in Gap Models: Application to Climate Change, Clim. Change 51, 509–540, 854	
  

2001. 855	
  



	
   37	
  

Keller, M., Palace, M., and Hurtt. G.: Biomass estimation in the Tapajos National Forest, Brazil. 856	
  

Examination of sampling and allometric uncertainties, For. Ecol. and Manage., 154, 371–382, 857	
  

2001. 858	
  

Larocque, G. R., Archambault, L., and Delisle, C.: Modelling forest succession in two 859	
  

southeastern Canadian mixedwood ecosystem types using the ZELIG model, Ecol. Model., 199, 860	
  

350-362, 2006. 861	
  

Larocque, G. R., Archambault, L., and Delisle, C.: Development of the gap model ZELIG-CFS to 862	
  

predict the dynamics of North American mixed forest types with complex structures, Ecol. 863	
  

Model, 222, 2570-2583, 2011.  864	
  

Laurance, W. F. and Williamson, G. B.: Positive feedbacks among forest fragmentation, drought, 865	
  

and climate change in the Amazon, Conser. Bio., 15, 1529-1535, 2001. 866	
  

Laurance, W. F., Fearnside, P. M., Laurance, S. G., Delamonica, P., Lovejoy, T. E., Rankin-de 867	
  

Merona, J. M., Chambers, J. Q., and Gascon, C.: Relationship between soils and Amazon forest 868	
  

biomass: a landscape-scale study, For. Ecol. and Manage., 118, 127-138, 1999. 869	
  

Laurance, W.F., Nascimento, H. E. M., Laurance, S. G., Condit, R., D’Angelo, S., Andrade, A.: 870	
  

Inferred longevity of Amazonian rainforest trees based on a long-term demographic study, For. 871	
  

Ecol. and Manage., 190, 131-143, 2004. 872	
  

Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson, S. C., Lawrence, P. 873	
  

J., Zeng, X., Yang, Z.-L., Levis, S., Sakaguchi, K., Bonan, G. B., and Slater, A. G.: 874	
  

Parameterization improvements and functional and structural advances in version 4 of the 875	
  

Community Land Model, J. Adv. Model. Earth Syst., 3, M03001, 2011. 876	
  

Le Page, Y., Hurtt G., Thomson A.M., Bond-Lamberty B., Patel P., Wise M., Calvin K., Kyle P., 877	
  

Clarke L., Edmonds J., Janetos A.: Sensitivity of climate mitigation strategies to natural 878	
  

disturbances, Environ. Res. Lett., 8, 015018, 2013. 879	
  

Lewis, S. L. Phillips, O. L., Baker, T. R., Lloyd, J., Malhi, Y., Almeida, S., Higuchi, N., 880	
  

Laurance, W. F., Neill, D. A., Silva, J. N. M., Terborgh, J., Torres Lezama, A., Vasquez 881	
  

Martinez, R., Brown, S., Chave, J., Kuebler, C., Nunez Vargas P., and Vinceti, B.: Concerted 882	
  

changes in tropical forest structure and dynamics: evidence from 50 South American long-term 883	
  

plots, Phil. Trans. R. Soc. Lond. B., 359, 421–436, 2004. 884	
  

Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F., and Nepstad, D.: The 2010 885	
  

Amazon drought, Science, 331, 554, 2011. 886	
  



	
   38	
  

Lieberman, D., Lieberman, M., Peralta, R., and Hartshorn, G. S.: Mortality Patterns and Stand 887	
  

Turnover Rates in a Wet Tropical Forest in Costa Rica, J. of Ecology, 73, 915-924, 1985. 888	
  

Lutz, D. A., Shugart, H. H., White, M. A.: Sensitivity of Russian forest timber harvest and carbon 889	
  

storage to temperature increase, Forestry, 86, 283-293, 2013. 890	
  

Mailly, D., Kimmins, J. P., Busing, R. T.: Disturbance and succession in a coniferous forest of 891	
  

northwestern North America: simulation with DRYADES, a spatial gap model, Ecol. Model, 127, 892	
  

183–205, 2000. 893	
  

Malhi, Y., and Phillips, O. L.: Tropical forests and global atmospheric change: a synthesis, Philos. 894	
  

Trans. R. Soc. Lond. B. Biol. Sci., 359, 549–555, 2004. 895	
  

Malhi, Y., Phillips, O. L., Lloyd, J., Baker, T., Wright, J., Almeida, S., Arroyo, L., Frederiksen, 896	
  

T., Grace, J., Higuchi, N., Killeen, T., Laurance, W. F., Leaño, C., Lewis, S., Meir, 897	
  

P., Monteagudo, A., Neill, D., Núñez Vargas, P., Panfil, S. N., Patiño, S., Pitman, N.,Quesada, C. 898	
  

A., Rudas-Ll, A., Salomão, R., Saleska, S., Silva, N., Silveira, M., Sombroek, W. G., Valencia, 899	
  

R., Vásquez Martínez, R., Vieira, I. C. G. and Vinceti, B.: An international network to monitor 900	
  

the structure, composition and dynamics of Amazonian forests (RAINFOR). J. of Veg. 901	
  

Sci. 13, 439–450, 2002. 902	
  

Malhi, Y., Wood, D., Baker, T. R., Wright, J., Phippips, O. L., Cochrane, T., Meir, P., Chave J., 903	
  

Almeida, S., Arroyo, L., Higuchi, N., Killeen, T. J., Laurance, S. G., Laurance, W. F., Lewis, S. 904	
  

L., Monteagudo, A., Neill, D. A., Vargas, P. N., Pitman, N. C. A., Quesada, C. A., Salomao, R., 905	
  

Silva, J. N. M., Lezama, A. T., Terborgh, J., Martinez, R. V. and Vinceti, B.: The regional 906	
  

variation of aboveground live biomass in old-growth Amazonian forests, Global Change Biology, 907	
  

12, 1107–1138. doi: 10.1111/j.1365-2486.2006.01120.x, 2006. 908	
  

Malhi, Y., Timmons Roberts, J., Betts, R. A., Killeen, T. J., Li, W., Nobre, C. A.: Climate change, 909	
  

deforestation, and the fate of the Amazon, Science, 319, 169-172, 2008. 910	
  

Malhi, Y., Aragão, L. E. O. C., Galbraith, D., Huntingford, C., Fisher, R., Zelazowski, P., Sitch, 911	
  

S., McSweeney, C., and Meir, P.: Exploring the likelihood and mechanism of a climate-change-912	
  

induced dieback of the Amazon rainforest, Proc. Nat. Acad. Sci. USA, 106, 20610–20615, 2009. 913	
  

McDowell, N. G.: Mechanisms linking drought, hydraulics, metabolism, and vegetation mortality, 914	
  

Plant Phys., 155, 1051-1059, 2011. 915	
  

McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T., Plaut, J., 916	
  

Sperry, J., West, A., Williams, D. G., and Yepez, E. A.: Mechanisms of plant survival and 917	
  



	
   39	
  

mortality during drought: Why do some plants survive while others succumb to drought?, New 918	
  

Phytol.. 178, 719–739, 2008. 919	
  

Miller, S. D., Goulden,  M. L., Menton, M. C., Da Rocha, H. R., De Freitas, H. C., Silva Figueira, 920	
  

A. M. E., and Dias de Sousa, C. A.: Biometric and micrometeorological measurements of tropical 921	
  

forest carbon balance, Ecol. App., 14, S114-S126, 2003. 922	
  

Morton, D. C., DeFries, R. S., Shimabukuro, Y. E., Anderson, L. O., Arai, E., del Bon Espirito-923	
  

Santo, F., Freitas, R., and Morisette, J.: Cropland expansion changes deforestation dynamics in 924	
  

the southern Brazilian Amazon, Proc. Nat. Acad. Sci. USA, 103, 14637-14641, 2006. 925	
  

Muller-Landau, H. C.; Interspecific and intersite variation in wood specific gravity of tropical 926	
  

trees, Biotropica, 36, 20-32, 2004. 927	
  

Nakayama, T.: Shrinkage of shrub forest and recovery of mire ecosystem by river restoration in 928	
  

northern Japan, For. Ecol. and Manage., 256, 1927-1938, 2008. 929	
  

Negrón-Juárez, R. I., Chambers, J. Q., Guimaraes, G., Zeng, H., Raupp, C. F. M., Marra,  D. M.,  930	
  

Ribeiro, G. H. P. M., Saatchi, S. S., Nelson, B. W., and Higuchi, N.: Widespread Amazon forest 931	
  

tree mortality from a single cross-basin squall line event, Geo. Res. Letters 37, L16701, 2010. 932	
  

Nepstad, D. C., Tohver, I. M., Ray, D., Moutinho, P., and Cardinot, G.: Mortality of large trees 933	
  

and lianas following experimental drought in an Amazon forest, Ecology, 88, 2259–2269, 2007. 934	
  

Nogueira, E. M., Nelson, B. W., Fearnside, P. M.: Wood density in dense forest in central 935	
  

Amazonia, Brazil, For. Ecol. Manage., 208, 261-286, 2005.  936	
  

Norby, R. J., DeLucia, E. H., Gielen, B., Calfapietra, C., Giardina, C. P., King, J. S., Ledford, J., 937	
  

McCarthy, H. R., Moore, D. J. P., Ceulemans, R., De Angelis, P., Finzi, A. C., Karnosky, D. F., 938	
  

Kubiske, M. E., Lukac, M., Pregitzer, K. S., Scarascia-Mugnozza, G. E., Schlesinger, W. H., and 939	
  

Oren, R.: Forest response to elevated CO2 is conserved across a broad range of productivity, Proc. 940	
  

Natl. Acad. Sci., 102, 18052–18056, 2005.  941	
  

Norby. R. J., Warren, J. M., Iverson, C. M., Medlyn, B. E., and McMurtrie, R. E.: CO2 942	
  

enhancement of forest productivity constrained by limited nitrogen availability, Proc. Natl. Acad. 943	
  

Sci., 107, 19368-19373, 2010. 944	
  

O'Brien, S. T., Hayden, B. P., and Shugart, H. H.: Global change, hurricanes and a tropical Forest, 945	
  

Climatic Change, 22, 175-190, 1992. 946	
  



	
   40	
  

Oleson, K. W., Lawrence, D. M., Bonan, G. B., Flanner, M. G., Kluzek, E., Lawrence, P. J., 947	
  

Levis, S., Swenson, S. C., and Thornton, P. E.: Technical description of version 4.0 of the 948	
  

Community Land Model (CLM), NCAR Tech. Note NCAR/TN-478+STR, 257 pp., 2010. 949	
  

Overpeck, J. T., Rind, D., and Goldberg, R.: Climate-induced changes in forest disturbance and 950	
  

vegetation, Nature, 343, 51-53, 1990. 951	
  

Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W.A., Phillips, O. 952	
  

L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, 953	
  

A. D., Piao, S., Rautiainen, A., Sitch, S., and Hayes, D.: A large and persistent carbon sink in the 954	
  

world’s forests, Science 333, 988–993, 2011. 955	
  

Patiño, S., Lloyd, J., Paiva, R., Baker, T. R., Quesada, C. A., Mercado, L. M., Schmerler, J., 956	
  

Schwarz, M., Santos, A. J. B., Aguilar, A., Czimczik, C. I., Gallo, J., Horna, V., Hoyos, E. J., 957	
  

Jimenez, E. M., Palomino, W., Peacock, J., Peña-Cruz, A., Sarmiento, C., Sota, A., 958	
  

Turriago, J. D., Villanueva, B., Vitzthum, P., Alvarez, E., Arroyo, L., Baraloto, C., Bonal, D., 959	
  

Chave, J., Costa, A. C. L., Herrera, R., Higuchi, N., Killeen, T., Leal, E., Luizão, F., Meir, P., 960	
  

Monteagudo, A., Neil, D., Núñez-Vargas, P., Peñuela, M. C., Pitman, N., Priante Filho, N., 961	
  

Prieto, A., Panfil, S. N., Rudas, A., Salomão, R., Silva, N., Silveira, M., Soares deAlmeida, S., 962	
  

Torres-Lezama, A., Vásquez-Martínez, R., Vieira, I., Malhi, Y., and Phillips, O. L.: Branch xylem 963	
  

density variations across the Amazon Basin, Biogeosciences, 6, 545-568, doi:10.5194/bg-6-545-964	
  

2009, 2009. 965	
  

Phillips, O. L., Malhi, Y., Higuchi, N., Laurance, W. F., Nuñez, P. V., Vásquez, R. M., Laurance, 966	
  

S. G., Ferreira, L. V., Stern, M., Brown, S., and Grace, J.: Changes in the carbon balance of 967	
  

tropical forests: evidence from long-term plots, Science, 282, 439–442, 1998. 968	
  

Phillips, O. L., Baker, T. R., Arroyo, L., Higuchi, N., Killeen, T. J., Laurance, W. F., Lewis, S. L., 969	
  

Lloyd, J., Malhi, Y., Monteagudo, A., Neill, D. A., Vargas, P. N., Silva, J. N., Terborgh, J., 970	
  

Martínez, R. V., Alexiades, M., Almeida, S., Brown, S., Chave, J., Comiskey, J. A., Czimczik, C. 971	
  

I., Di Fiore, A., Erwin, T., Kuebler, C., Laurance, S. G., Nascimento, H. E., Olivier, J., Palacios, 972	
  

W., Patiño, S., Pitman, N. C., Quesada, C. A., Saldias, M., Lezama, A. T., and Vinceti, B.: Pattern 973	
  

and process in Amazon tree turnover, 1976–2001, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 359, 974	
  

381–407, 2004. 975	
  

Phillips, O. L., Lewis, S. L., Baker, T. R., Chao, K.-J., and Higuchi, N.: The changing Amazon 976	
  

forest, Phil. Trans. R. Soc. B., 363,1819-1827, 2008. 977	
  



	
   41	
  

Phillips, O. L., Aragão, L. E. O. C., Lewis, S. L., Fisher, J. B., Lloyd, J., López-González, G., 978	
  

Malhi, Y., Monteagudo, A., Peacock, J., Quesada, C. A., van der Heijden, G., Almeida, S., 979	
  

Amaral, I., Arroyo, L., Aymard, G., Baker, T. R., Ba´nki, O., Blanc, L., Bonal, D., Brando, P., 980	
  

Chave, J., Alves de Oliveira, A´. C., Dávila Cardozo, N., Czimczik, C. I., Feldpausch, T. R., 981	
  

Freitas, M. A., Gloor, E., Higuchi, N., Jiménez, E., Lloyd, G., Meir, P., Mendoza, C., Morel, A., 982	
  

Neill, D. A., Nepstad, D., Patiño, S., Peñuela, M. C., Prieto, A., Ramίrez, F., Schwarz, M., Silva, 983	
  

J., Silveira, M., Sota Thomas, A., ter Steege, H., Stropp, J., Vásquez, R., Zelazowski, P., Alvarez 984	
  

Dávila, E., Andelman, S., Andrade, A., Chao, K., Erwin, T., Di Fiore, A., Honorio, C., Keeling, 985	
  

E.,  Killeen, H., Laurance, T. J., Peña Cruz, W. F., Pitman, A., Núñez Vargas, N. C. A., Ramίrez-986	
  

Angulo, P., Rudas, H., Salamão, A., Silva, R., Terborgh, N., Torres- Lezama, J. A.: Drought 987	
  

sensitivity of the Amazon rainforest, Science, 323, 1344–1347, 2009. 988	
  

Quesada, C. A., Lloyd, J., Schwarz, M., Patiño, S., Baker, T. R., Czimczik, C., Fyllas, N. M., 989	
  

Martinelli, L., Nardoto, G. B., Schmerler, J., Santos, A. J. B., Hodnett, M. G., Herrera, R., 990	
  

Luizão, F. J., Arneth, A., Lloyd, G., Dezzeo, N., Hilke, I., Kuhlmann, I., Raessler, M., 991	
  

Brand, W. A., Geilmann, H., Moraes Filho, J. O., Carvalho, F. P., Araujo Filho, R. N., 992	
  

Chaves, J. E., Cruz Junior, O. F., Pimentel, T. P., and Paiva, R.: Variations in chemical and 993	
  

physical properties of Amazon forest soils in relation to their genesis, Biogeosciences, 7, 1515-994	
  

1541, 2010. 995	
  

Rammig, A., Jupp, T., Thonicke, K., Tietjen, B., Heinke, J., Ostberg, S., Lucht, W., Cramer, W., 996	
  

and Cox, P.: Estimating the risk of Amazonian forest dieback, New Phytologist, 187, 694-706, 997	
  

2010.  998	
  

Rice, A. H., Pyle, E. H., Saleska, S. R., Hutyra, L. R., Palace, M., Keller, M., De Camargo, P. B., 999	
  

Portilho, K., Marques, D. F., and Wofsy, S. C.: Carbon balance and vegetation dynamics in an 1000	
  

old-growth Amazonian forest, Ecol. Appl., 14, S55–S71, 2004. 1001	
  

Saatchi, S., Malhi, Y., Zutta, B., Buermann, W., Anderson, L. O., Araujo, A. M., Phillips, O. L., 1002	
  

Peacock, J., ter Steege, H., Lopez Gonzalez, G., Baker, T., Arroyo, L., Almeida, S., Higuchi, N., 1003	
  

Killeen, T., Monteagudo, A., Neill, D., Pitman, N., Prieto, A., Salomão, R., Silva, N., 1004	
  

Vásquez Martínez, R., Laurance, W., and Ramírez, H. A.: Mapping landscape scale variations of 1005	
  

forest structure, biomass, and productivity in Amazonia, Biogeosciences Discuss., 6, 5461-5505, 1006	
  

doi:10.5194/bgd-6-5461-2009, 2009. 1007	
  



	
   42	
  

Sanford, R. L. Jr.: Fine root biomass under light gap openings in an amazon rain forest, 1008	
  

Oecologia, 83, 541-545, 1990. 1009	
  

Seagle, S. W., and Liang, S.: Application of a forest gap model for prediction of browsing effects 1010	
  

on riparian forest succession, Ecol. Model., 144, 213-229, 2001. 1011	
  

Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., Levis, S., 1012	
  

Lucht, W., Sykes, M. T., Thonicke, K., and Venevsky, S.: Evaluation of ecosystem dy- namics, 1013	
  

plant geography and terrestrial carbon cycling in the LPJ Dynamic Global Vegetation Model, 1014	
  

Global Change Biol., 9, 161–185, 2003. 1015	
  

Shugart, H. H.: A theory of forest dynamics, Springer-Verlag, New York, USA, 1984. 1016	
  

Shugart, H. H.: Forest Gap Models. Vol. 2, The Earth system: biological and ecological 1017	
  

dimensions of global environmental change, Eds. H. A. Mooney and J. C. Canadell in 1018	
  

Encyclopedia of Global Environmental Change, John Wiley & Sons, pp. 316- 323, 2002. 1019	
  

Shugart, H. H. and West, D. C.: Development of an Appalachian Deciduous Forest Succession 1020	
  

Model and its Application to Assessment of the Impact of the Chestnut Blight, J. of Environ. 1021	
  

Manage., 5, 161-179, 1977. 1022	
  

Shugart, H. H., Smith, T. M. and Post, W. M.: The potential for application of individual-based 1023	
  

simulation models for assessing the effects of global change, Ann. Rev. of Eco. and Systematics, 1024	
  

23, 15-38, 1992. 1025	
  

Shukla, J., Nobre, C., and Sellers, P.: Amazon deforestation and climate change, Science, 247, 1026	
  

1322-1325, 1990. 1027	
  

Shuman, J. K., Shugart, H. H., and O’Halloran, T. L.: Sensitivity of Siberian larch forests to 1028	
  

climate change, Glob. Change Biol., 17, 2370–84, 2011. 1029	
  

Smith, J. B., and Tirpak, D. A.: Eds. The potential effects of global climate change on the U.S.: 1030	
  

Appendix D – Forest. Off. Policy, Planning Eval. Washington, DC: US Environ. Protection 1031	
  

Agency, 1989. 1032	
  

Smith, T. M. and Urban, D. L.: Scale and the resolution of forest structural pattern, Vegetatio, 74, 1033	
  

143-150, 1988. 1034	
  

Solomon, A. M.: Transient response of forests to CO2-induced climate change: Simulations 1035	
  

experiments in eastern North America, Oecologia, 68, 567-579, 1986. 1036	
  

Suzuki, E.: Diversity in specific gravity and water content of wood among Bornean tropical 1037	
  

rainforest trees, Ecol. Res., 14, 211–224, 1999. 1038	
  



	
   43	
  

ter Steege, H., Pitman, N. C. A., Phillips, O. L., Chave, J., Sabatier, D., Duque, A., Molion, J.-F., 1039	
  

Prevost, M.-F., Spichiger, R., Castellanos, H., von Hildebrand, P., and Vasquez, R.: Continental-1040	
  

scale patterns of canopy tree composition and function across Amazonia, Nature, 443, 444-447, 1041	
  

2006. 1042	
  

Tribuzy, E. S.: Variacoes da temperature foliar do dossel e o seu efeito na taxa assimilatoria de 1043	
  

CO2 na Amazonia Central, Master’s Thesis, Escola Superior de Agricultura “Luiz de Queiroz”, 1044	
  

Universidade de Sao Paulo, 2005. 1045	
  

Thonicke, K., Spessa, A., Prentice, I. C., Harrison, S. P., Dong, L., and Carmona-Moreno, C.: The 1046	
  

influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas 1047	
  

emissions: results from a process-based model, Biogeosci., 7, 1991-2011, 2010.  1048	
  

Thornton, P. E., Law, B. E., Gholz, H. L., Clark, K. L., Falge, E., Ellsworth, D. S., Goldstein, A. 1049	
  

H., Monson, R. K., Hollinger, D., Falk, M., Chen, J., and Sparks, J. P.: Modeling and measuring 1050	
  

the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf 1051	
  

forests, Agric. For. Meteor., 113, 185-222, 2002. 1052	
  

Thornton, P. E., Lamarque, J.-F., Rosenbloom, N. A., and Mahowald, N. M.: Influence of carbon-1053	
  

nitrogen cycle coupling on land model response to CO2 fertilization and climate variability, Glob. 1054	
  

Biogeochem. Cyc., 21, GB4018, 2007. 1055	
  

Uhl  C.: Tree dynamics in a species rich forest tierra firme forest  in  Amazonia,  Venezuela, Acta  1056	
  

Cientifica Venezolana, 33, 72-77, 1982. 1057	
  

Urban, D. L.: A Versatile Model to Simulate Forest Pattern: A User’s Guide to ZELIG Version 1. 1058	
  

0, University of Virginia, Charlottesville, Virginia, 1990. 1059	
  

Urban, D. L.: Using model analysis to design monitoring programs for landscape management 1060	
  

and impact assessment, Ecol. Appl., 10, 1820-1832, 2000. 1061	
  

Urban, D. L., Bonan, G. B., Smith, T. M., Shugart, H. H.: Spatial applications of gap models, For. 1062	
  

Ecol. Manage., 42, 95–110, 1991. 1063	
  

Urban, D. L., Harmon, M. R., and Halpern, C. B.: Potential Response of Pacific Northwestern 1064	
  

Forests to Climatic Change, Effects of Stand Age and Initial Composition, Clim. Change, 23, 1065	
  

247-266, 1993. 1066	
  

U.S. DOE: Research Priorities for Tropical Ecosystems Under Climate Change Workshop Report, 1067	
  

DOE/SC-0153, U.S. Department of Energy Office of Science. science.energy.gov/ber/news-and-1068	
  

resources/, 2012. 1069	
  



	
   44	
  

Van Daalen, J. C., and Shugart, H. H.: OUTENIQUA – A computer model to simulate succession 1070	
  

in the mixed evergreen forests of southern Cape, South Africa, Landscape Ecology, 2, 255-267, 1071	
  

1989. 1072	
  

Whitmore, T. C.: An introduction to tropical rain forests, Oxford University Press, NewYork, 1073	
  

1989. 1074	
  

Wirth, R., Weber, B., and Ryel, R. J.: Spatial and temporal variability of canopy structure in a 1075	
  

tropical moist forest, Acta Oecologia, 22, 235-244, 2001. 1076	
  

Yang, X., Thornton, P. E., Ricciuto, D. M., and Post, W. M.: The role of phosphorus dynamics in 1077	
  

tropical forests – a modeling study using CLM-CNP, Biogeoscience Discuss., 10, 14439-14473, 1078	
  

2013.  1079	
  

Zhou, X., Fu, Y., Zhou, L., and Luo, Y.: An imperative need for global change research in 1080	
  

tropical forests, Tree Physiol., 33, 903-912, 2013. 	
   	
  1081	
  



	
   45	
  

Table 1. Species-specific allometric and ecological parameters for the 90 tree species used in 1082	
  

ZELIG-TROP, representing species found in central Amazonian (Laurance et al. 2004). All 1083	
  

species were assigned a probability factor of stress mortality of 0.369, probability factor of natural 1084	
  

mortality of 2.813, zone of seed influence of 200, relative seedling establishment rate (RSER) of 1085	
  

0.9, a crown shape value of 4.0, tolerance to drought a ranking of 3, tolerance to low soil nutrients 1086	
  

a ranking of 2, minimum growing degree-day of 5000, and a maximum growing degree-day of 1087	
  

12,229.50. 1088	
  

Species Growth 
Form 

AGE-
MAX 
(yr) 

DBH 
max 
(cm) 

HT 
max 
(cm) 

G. L. Stock 
(%) 

Wood 
Density 
(g cm-3) 

Anacardium spruceanum Canopy 175 69.1 3620.4 75.2 2 0.8 0.46 
Aniba canelilla Canopy 226 37.8 2032.8 38.7 2 0.5 0.94 
Aspidosperma marcgravianum Emergent 544 90.0 4680.4 30.8 4 0.5 0.72 
Aspidosperma oblongum Emergent 331 80.0 4173.2 59.5 4 0.5 0.87 
Astronium le-cointei Canopy 335 50.0 2651.6 34.7 2 0.5 0.77 
Bocageopsis multiflora Canopy 152 33.1 1794.5 51.3 2 0.5 0.65 
Brosimum acutifolium Canopy 264 58.3 3072.6 36.2 2 0.5 0.62 
Brosimum guianense Canopy 477 60.0 3158.8 22.3 2 0.5 0.89 
Brosimum parinarioides Canopy 483 60.0 3158.8 24.9 2 0.5 0.62 
Brosimum rubescens Canopy 450 60.0 3158.8 27.1 2 0.5 0.84 
Cariniana micrantha Emergent 223 80.0 4173.2 76.5 4 0.5 0.60 
Caryocar glabrum Canopy 527 110.0 5694.8 32.1 2 0.5 0.71 
Casearia arborea Canopy 91 20.1 1135.1 39.1 2 0.8 0.57 
Casearia sylvestris Canopy 201 25.5 1409.0 23.7 2 0.5 0.71 
Clarisia racemosa Canopy 323 80.0 4173.2 44.7 2 0.5 0.57 
Cordia sagotli Subcanopy 260 26.3 1449.6 14.6 1 0.8 0.43 
Corythophora rimosa Canopy 235 50.0 2651.6 48.1 2 0.5 0.81 
Couepia longipendula Canopy 260 46.6 2479.2 37.7 2 0.5 0.94 
Couma macrocarpa Canopy 233 51.8 2742.9 56.8 2 0.8 0.50 
Couratari stellata Emergent 592 53.5 2829.1 13.4 4 0.5 0.63 
Dipteryx odorata Emergent 323 78.4 4092.1 47.7 4 0.5 0.92 
Drypetes variabilis Subcanopy 252 30.0 1637.2 23.7 1 0.5 0.73 
Duckeodendron cestroides Emergent 818 140.0 7216.4 18.8 4 0.5 0.63 
Ecclinusa guianensis Canopy 448 69.7 3650.8 28.5 2 0.5 0.63 
Endopleura uchi Canopy 223 57.6 3037.1 52.5 2 0.5 0.79 
Eriotheca globosa Canopy 135 20.1 1135.1 28.3 2 0.8 0.41 
Eschweilera amazoniciformis Emergent 369 56.1 2961.0 30.5 4 0.5 0.82 
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Eschweilera coriacea Canopy 767 110.0 5694.8 25.7 2 0.5 0.84 
Fusaea longifolia Subcanopy 413 26.5 1459.7 11.5 1 0.5 0.74 
Glycydendron amazonicum Canopy 386 44.0 2347.3 23.8 2 0.5 0.67 
Goupia glabra Emergent 398 100.0 5187.6 44.7 4 0.5 0.72 
Guatteria olivacea Canopy 54 30.0 1637.2 126.4 2 0.8 0.47 
Gustavia elliptica Subcanopy 301 24.7 1368.4 16.8 1 0.5 0.67 
Helicostylis tomentosa Canopy 311 44.7 2382.8 24.0 2 0.5 0.63 
Hevea guianensis Canopy 288 45.7 2433.5 29.3 2 0.5 0.55 
Inga capitata Pioneer 162 26.4 1454.6 27.6 3 0.7 0.60 
Inga paraensis Pioneer 78 40.0 2144.4 95.2 3 0.7 0.82 
Inga splendens Pioneer 52 38.2 2053.1 157.6 3 0.7 0.58 
Iryanthera juruensis Subcanopy 569 26.9 1480.0 8.8 1 0.5 0.66 
Iryanthera laevis Subcanopy 331 27.2 1495.2 15.4 1 0.5 0.63 
Jacaranda copaia Pioneer 225 30.0 1637.2 21.0 3 0.8 0.35 
Lecythis barnebyi Subcanopy 336 28.7 1571.3 19.9 1 0.5 0.82 
Lecythis poiteaui Canopy 747 34.4 1860.4 7.7 2 0.5 0.80 
Lecythis zabucajo Emergent 628 130.0 6709.2 27.0 4 0.5 0.86 
Licania apetala Canopy 199 38.4 2063.3 37.8 2 0.5 0.76 
Licania oblongifolia Canopy 196 54.2 2864.6 65.7 2 0.5 0.88 
Licania octandra Subcanopy 339 35.0 1890.8 21.7 1 0.5 0.81 
Licania cannella Canopy 359 56.5 2981.3 29.0 2 0.5 0.79 
Macrolobium angustifolium Canopy 335 40.0 2144.4 27.7 2 0.5 0.68 
Manilkara bidentata Emergent 773 90.0 4680.4 20.6 4 0.5 0.87 
Manilkara huberi Emergent 349 100.0 5187.6 55.9 4 0.5 0.93 
Maquira sclerophylla Emergent 420 60.0 3158.8 24.0 4 0.5 0.53 
Mezilaurus itauba Canopy 684 44.0 2347.3 12.9 2 0.5 0.74 
Micropholis guyanensis Canopy 248 55.5 2930.6 45.9 2 0.5 0.66 
Micropholis venulosa Canopy 491 60.0 3158.8 22.9 2 0.5 0.67 
Minquartia guianensis Emergent 490 70.0 3666.0 30.4 4 0.5 0.77 
Myrciaria floribunda Subcanopy 490 29.1 1591.6 11.7 1 0.5 0.77 
Onychopetalum amazonicum Canopy 195 29.9 1632.1 33.0 2 0.5 0.61 
Parkia multijuga Emergent 206 119.0 6151.3 101.7 4 0.8 0.39 
Peltogyne paniculata Canopy 251 40.0 2144.4 28.0 2 0.5 0.80 
Pourouma bicolor Pioneer 48 29.8 1627.1 124.6 3 0.8 0.38 
Pourouma guianensis Pioneer 58 31.3 1703.2 112.8 3 0.8 0.38 
Pouteria ambelaniifolia Canopy 296 38.0 2043.0 21.0 2 0.5 0.70 
Pouteria anomala Emergent 452 70.0 3666.0 31.6 4 0.5 0.78 
Pouteria caimito Canopy 240 43.2 2306.7 36.4 2 0.5 0.82 
Pouteria eugeniifolia Canopy 329 44.1 2352.4 25.8 2 0.5 1.10 
Pouteria guianensis Canopy 720 80.0 4173.2 17.5 2 0.5 0.94 
Pouteria macrophylla Canopy 387 29.6 1616.9 13.2 2 0.5 0.86 
Pouteria manaosensis Canopy 981 50.0 2651.6 8.4 2 0.5 0.64 
Pouteria multiflora Canopy 547 35.5 1916.2 9.5 2 0.5 0.75 



	
   47	
  

Pouteria oppositifolia Canopy 277 35.8 1931.4 21.7 2 0.5 0.65 
Pouteria venosa Canopy 702 45.8 2438.6 10.0 2 0.5 0.92 
Protium altsonii Emergent 238 70.0 3666.0 56.4 4 0.5 0.68 
Protium decandrum Canopy 158 32.8 1779.2 40.3 2 0.5 0.52 
Protium heptaphyllum Canopy 96 26.2 1444.5 60.0 2 0.8 0.62 
Protium tenuifolium Canopy 170 38.2 2053.1 49.1 2 0.5 0.57 
Qualea paraensis Emergent 379 70.0 3666.0 31.9 4 0.5 0.67 
Scleronema micranthum Emergent 353 90.0 4680.4 50.3 4 0.5 0.60 
Sloanea guianensis Subcanopy 179 28.5 1561.1 26.8 1 0.5 0.82 
Swartzia corrugata Subcanopy 407 21.1 1185.8 7.7 1 0.5 1.06 
Swartzia recurva Canopy 177 38.4 2063.3 45.5 2 0.5 0.97 
Swartzia ulei Canopy 293 50.0 2651.6 39.1 2 0.5 1.00 
Tachigali paniculata Canopy 91 27.7 1520.6 60.1 2 0.8 0.56 
Tapirira guianensis Canopy 54 41.6 2225.6 188.0 2 0.8 0.45 
Tetragastris panamensis Canopy 320 38.4 2063.3 25.1 2 0.5 0.72 
Vantanea parviflora Canopy 205 69.6 3645.7 65.1 2 0.5 0.84 
Virola calophylla Subcanopy 293 30.8 1677.8 18.6 3 0.8 0.51 
Virola multinervia Canopy 373 32.0 1738.7 14.0 2 0.8 0.45 
Virola sebifera Canopy 161 30.2 1647.4 44.4 2 0.8 0.46 
Vochysia obidensis Canopy 92 47.4 2519.7 109.1 2 0.8 0.50 

Key: AGEMAX, maximum age for the species (yr); DBHmax, maximum diameter at breast 1089	
  
height (cm); HTmax, maximum height (cm); G, growth rate scaling coefficient (unitless); Light 1090	
  
(L): light/shade tolerance class (ranking 1-5); Stock, regeneration stocking (%), wood density (g 1091	
  
cm-3); (full parameter explanation found in original ZELIG paper: Urban 1990). 1092	
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Table 2. Environmental parameters used in ZELIG-TROP for the central Amazon basin. Values 1093	
  

reported in a range were monthly low and high averages. *Lawrence et al., (1999). 1094	
  

Lat./Long./Alt. 
(m) 

Plot 
Area 
(m2) 

Mean monthly 
temperature 

(˚C) 

Mean 
monthly 

precipitation 
(cm) 

Soil 
field 

capacity 
(cm)* 

Soil 
wilting 
point 
(cm)* 

Relative 
direct and 

diffuse 
solar 

radiation 
(%) 

 -2.3/-
60.0/100.0 400.0 25.18 - 27.47 8.01 - 45.16 52.0 32.9 0.6/0.4 

  1095	
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Table 3. Averages (and standard deviations) of five forest attributes for the observed values 1096	
  

recorded from sites near Manaus, Brazil, averaged over 5 ha, and the modeled ZELIG-TROP 1097	
  

results. ZELIG-TROP results are averaged for the final 100 years, after an initial spin up of 400 1098	
  

years. The remaining values correspond to the percent differences between the observed and 1099	
  

simulated values, and the minimum and maximum range of a ZELIG-TROP simulation. 1100	
  

  

Avg. Basal 
Area  (m2 

ha-1) 

Avg. Biomass 
(Mg C ha-1) 

Avg. Stem 
Density 
(ha-1) 

Avg. LAI 
Avg. 

ANPP (Mg 
C ha-1 yr-1) 

Empirical Data 30.06 (6.61) 169.84 (27.60) 656 (22) 5.7 (0.50) 6.5 
ZELIG-TROP 32.96 (1.22) 178.38 (10.53) 574 (70) 5.8 (0.24) 5.4 (0.22) 
Percent Diff. (%) 9.66 5.03 -12.49 1.75 -17.08 
ZELIG-TROP min./max. 31.14/35.97 167.97/189.26 472/688 5.26/6.48 5.08/5.92 

  1101	
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Table 4. Comparison of empirical data and stand model data from Chambers et al. (2004) unless 1102	
  

otherwise noted, ZELIG-TROP pre- and post-disturbance treatments, and CLM pre- and post-1103	
  

disturbance treatments for the pool of carbon in live trees, and the annual flux of carbon from 1104	
  

stem growth, coarse litter production rates from mortality, ANPP; and recruitment rate of stems, 1105	
  

mean DBH, and average ΔAGB.  1106	
  

Positive = sink 

Live 
Trees 
(Mg C 
ha-1) 

Growth 
(Mg C 

ha-1 yr-1) 

Coarse 
Litter 
(Mg C 

ha-1 yr-1) 

ANPP 
(Mg 

C ha-1 
yr-1) 

Recruit
ment (% 

yr-1) 

Mean 
DBH 
(cm) 

AGB 
change 
(Mg C 

ha-1 yr-1) 
Empirical§ 156 1.70 -2.10 6.50* 1.38** 21.1 NA 
Stand Model§ 160 1.60 -1.70 6.60 NA 20.4 NA 
ZELIG-TROP1 178 3.09 -3.03 5.39 2.33 22.3 0.02 
ZELIG-TROP2 104 2.89 -2.78 5.35 3.94 18.3 0.01 
ZELIG-TROP3 138 3.29 -3.49 5.06 3.41 26.9 -0.15 
CLM-CN1 269 4.88 -4.82 7.81 NA NA 0.04 
CLM-CN2 135 4.91 -4.93 7.83 NA NA 0.00 
CLM-CN3 230 4.71 -4.95 7.54 NA NA -0.46 
ZELIG Diff. (1&2) -74 -0.20 0.25 -0.04 1.61 -4.0 0.01 
ZELIG Diff. (1&3) -40 0.20 -0.46 -0.33 1.08 4.6 -0.17 
CLM Diff. (1&2) -134 0.03 -0.11 0.02 NA NA -0.04 
CLM Diff. (1&3) -39 -0.17 -0.15 -0.27 NA NA -0.50 

1 = No Disturbance, 2 = High Disturbance, 3 = Periodic Disturbance, § Chambers et al. (2004), * Chambers et al. (2001), ** 1107	
  

Phillips et al. (2004). 1108	
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  1109	
  

 1110	
  

Fig. 1. Comparison between observed field data from “transects” in Central Amazon, ZELIG-1111	
  

TROP model data from no-disturbance scenario, and ZELIG-TROP model data from high-1112	
  

disturbance treatment. (A) Average stem density (stems ha-1) and SD by DBH (cm) size class, (B) 1113	
  

stem density simulated over 500 years, (C) average above-ground biomass (Mg ha-1) and SD by 1114	
  

DBH (cm) size class, and (D) above-ground biomass simulated over 500 years. Average results 1115	
  

and t-test between two model results taken once the model reached a steady-state, or the final 100 1116	
  

years of simulation.   1117	
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 1118	
  

 1119	
  

 1120	
  

Fig. 2. (A) Model simulated successional development for all species modeled in ZELIG-TROP 1121	
  

for a Central Amazon forest, separated by canopy growth form (emergent, canopy, sub-canopy, or 1122	
  

pioneers). Species composition reported in individual basal area (m2 ha-1). (B) Model simulated 1123	
  

successional development for all species modeled in ZELIG-TROP after the high-disturbance 1124	
  

treatment.   1125	
  

A) No Disturbance 

B) High Disturbance 
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 1126	
  

 1127	
  

Fig. 3. Comparison of relative frequency of annual mortality rates (% stems year-1) from observed 1128	
  

data, ZELIG-TROP no-disturbance, and ZELIG-TROP high-disturbance model data after the 1129	
  

disturbance treatment. (Observed data: Chambers et al. 2004).   1130	
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 1131	
  

Fig. 4. Comparison between ‘central and east’ Amazon (“slow dynamics”) and ‘west and south’ 1132	
  

Amazon (“fast dynamics”) between the empirical (RAINFOR dataset, green columns) and 1133	
  

modeled ZELIG-TROP results for average (A) above-ground biomass (AGB, Mg C ha-1 yr-1) with 1134	
  

the observed dataset either including or not including wood density in the Chambers et al. (2001) 1135	
  

allometric equation, (B) recruitment rate (% yr-1), (C) average wood density (g cm-3), (D) stem 1136	
  

density (stems ha-1), and (E) stand-level basal area (BA) growth rate (m2 ha-1 yr-1), with 95% CIs 1137	
  

bars included. Different lower case letters represent significantly different values using Tukey’s 1138	
  

multiple comparison, following a one-way ANOVA.   1139	
  

A) 

C) D) 

E) 

B) 
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 1140	
  

Fig. 5. CLM-CN model evaluation and comparisons to ZELIG-TROP for a no-disturbance 1141	
  

scenario and a high disturbance treatment: (A) ANPP, (B) above-ground biomass, (C) stem 1142	
  

growth, (D) coarse litter production rates, all measured in Mg C ha-1, and (E) basal area from 1143	
  

ZELIG-TROP and observed data in green as reported by Baker et al. (2004a), and (F) leaf area 1144	
  

index (LAI) from CLM-CN4.5 and observed data in green as reported by McWilliams et al. 1145	
  

(1993) and Malhi et al. (2013). Statistical significance test in all panels are two-sample Student’s 1146	
  

t-test between the no-disturbance and high disturbance treatments, separately for each model.   1147	
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 1148	
  

 1149	
  

Fig. 6. (A) Relationship between above-ground biomass (Mg ha-1) and recruitment rates (% yr-1). 1150	
  

(B) Relationship between above-ground biomass (Mg ha-1) and coarse litter production rates as a 1151	
  

result of tree mortality (Mg C ha-1 yr-1), during a no-disturbance, high disturbance, and periodic 1152	
  

disturbance simulation in ZELIG-TROP for the last 100 years of simulation.   1153	
  

A)	
   B)	
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 1154	
  

 1155	
  

Fig. 7. CLM-CN model evaluation and comparisons to ZELIG-TROP for a periodic disturbance 1156	
  

treatment: (A) ANPP, (B) stem growth, (C) aboveground biomass (AGB), and (D) coarse litter 1157	
  

production rates, all measured in Mg C ha-1. Statistical significance test in all panels are two-1158	
  

sample Student’s t-test between the no-disturbance and high disturbance treatments, separately for 1159	
  

each model.1160	
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Supplemental Material 

Description of the Community Land Model (CLM): 

  The Community Land Model (CLM) is the land component of the Community Earth 

System Model (CESM) (Collins et al., 2006; Gent et al., 2011) that models global climate systems 

and makes projections of future climate change. In this study we used the stand-alone version of 

CLM4.5. This version used a data atmosphere model, a “stub” ocean, a stub sea-ice model, and 

the CLM-CN (carbon-nitrogen) version 4.5. Detailed descriptions of updates to version 4.0, 

algorithms used, and the general structure of CLM can be found in the CLM4.0 Technical 

Description  (www.cesm.ucar.edu/models/cesm1.0/clm/CLM4_Tech_Note; Oleson et al., 2010; 

and Lawrence et al., 2011). This CN model included a prognostic carbon and nitrogen cycle in 

vegetation, litter, and soil organic matter (description in Thornton et al., 2007). For model 

comparisons against the gap model ZELIG-TROP, and observed field data, we used CLM results 

from a single grid point located at 2°35’S, 60°W, close to exact coordinate as the Central Amazon 

field transects. (Additional definitions of terms and parameters used in CLM are defined below).  

  In CLM, disturbance rates and realistically calculated plant mortality rates are ill 

represented. Currently, CLM includes two independent mechanisms for plant mortality: fire and 

natural senescence. In this study, mortality caused by fire was turned off. Mortality rates 

(representing natural senescence) are calculated as a whole-plant mortality that is intended to 

represent death of plants from all causes other than fire. This annual whole-plant mortality is 

calculated by removing 2% yr-1 of global total vegetation mass, regardless of differences in plant 

age, size, regional location, distribution of individuals, competition, or plant functional types 

(PFTs) (Oleson et al., 2010). We believe CLM could benefit from a more mechanistic approach 

of calculating plant mortality and disturbance. Developing a platform for CLM and CESM to 
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model tropical disturbance in a dynamic approach greatly enhances our understanding of future 

changes to carbon fluxes and atmospheric carbon dioxide levels. Another benefit of this new 

development to CESM is the capability to address disturbance within the newly coupled 

Integrated Earth System Model (iESM) (Jones et al., 2013; description available at 

http://climatemodeling.science.energy.gov/sites/default/files/iESM_Fact_Sheet.pdf). The iESM 

model combines the natural-human system with the biophysical and climate system by coupling 

three models: (1) CESM with the (2) Global Change Assessment Model (GCAM), which focuses 

on an energy/economic framework, and the (3) Global Land-Use Model (GLM). Therefore, the 

iESM project creates the capabilities to test the carbon market and energy market response to 

changes in forest mortality and increased disturbances. 

 

Definition of the mortality algorithm in ZELIG-TROP and terms in each model 

 Plant mortality is determined in ZELIG-TROP by three separate means: age-related natural 

death, stress-related death, and external disturbance (evaluation of gap model mortality described 

in more detail in Keane et al. 2001). Natural mortality, or intrinsic death, is a tree level event that 

is stochastically determined, based on the assumptions that 1% of trees reach their maximum age, 

and that mortality was constant with respect to age (Botkin et al., 1972; Shugart, 1984). Stress 

related death, or growth-dependent mortality, is also a stochastic event in which death occurred to 

individuals that have a slow growth rate for two years or more due to suppression or 

environmental stressors. The model assumes that 1% of stressed individuals will live for 10 years 

(Shugart, 1984; Van Daalen and Shugart, 1989). 

Within ZELIG-TROP the production of new organic matter from interval t1 to t2 is prognostically 

determined and given by: growth = Mt2 – Mt1, where Mt is woody mass at time t. Growth is a 
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component needed to measure ANPP given by: ANPP = Mt2 – Mt1 + L, where L is both old and 

new litter loss. The annual loss of coarse woody material is given by: coarse litter production rate 

= WL1 + WL2 + WL3, where WL1 are losses from natural death, WL2 are losses from stress related 

death, and WL3 are losses from disturbance (all trunks and branches >10cm in diameter). All flux 

values given in Mg C ha-1 yr-1. 

Within CLM the production of new organic matter from interval t1 to t2, is also prognostic, 

responding to environmental differences and in this study was estimated using the wood carbon 

allocation variable: woodc_alloc, which is given by: growthCLM = carbon to liveStem + carbon to 

deadStem + liveStem to storage + deadStem to storage. In CLM, ANPP (leaf, live stem, and dead 

stem) is given by: ANPPCLM = GPP – AR where AR is autotrophic respiration and is the sum of 

maintenance and growth respiration. Lastly, the annual loss of coarse woody material was 

estimated by the wood loss variable: woodc_loss, which is given by: coarse litter production 

rateCLM = liveStem to litter + deadStem to litter. All flux values given in Mg C ha-1 yr-1.  

 


