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Abstract 17 

Terrestrial biospheric models (TBMs) are used to extrapolate local observations and process-18 

level understanding of land-atmosphere carbon exchange to larger regions, and serve as a 19 

predictive tool for examining carbon-climate interactions. Understanding the performance of 20 

TBMs is thus crucial to the carbon cycle and climate science. In this study, we propose a 21 

statistical model selection present and assess an approach for evaluating the spatiotemporal 22 

patterns, rather than aggregated magnitudes, of net ecosystem exchange (NEE) simulated by 23 

TBMs using atmospheric CO2 measurements. WeThe approach is based on statistical model 24 

selection implemented within a high-resolution atmospheric inverse model.  Using synthetic data 25 

experiments, we find that current atmospheric observations are sensitive to the underlying 26 

spatiotemporal flux variability at sub-biome scales for a large portion of the North American 27 

continentAmerica, and that atmospheric observations can therefore be used to evaluate simulated 28 

spatiotemporal flux patterns, rather than focusing solely on flux magnitudes at aggregated scales. 29 

Results show that the proposed approach can be used to assess whether a TBM represents a 30 

substantial portion of the underlying flux variability as well as to differentiate among multiple 31 

competing TBMs. When applying the proposed approach to Experiments using real atmospheric 32 

observations and four prototypical TBMs, we find further confirm the applicability of the 33 

method, and demonstrate that the performance of TBMs in simulating the spatiotemporal 34 

patterns of NEE varies substantially across seasons, with best performance during the growing 35 

season and more limited skill during transition seasons.  This seasonal difference in the result is 36 

consistent with previous work showing that the ability of TBMs to represent the spatiotemporal 37 

flux variability may reflect the models’ capability to represent themodel flux magnitudes is also 38 

seasonally-varying influence of environmental drivers of flux. While none of the TBMs 39 

consistently outperforms the others, differences among the examined models are at least partially 40 
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attributable to their internal structures.dependent.  Overall, the proposed approach provides a 41 

new avenue for evaluating TBM performance based on sub-biome scale flux patterns, presenting 42 

an opportunity for assessing and informing model development using atmospheric observations.  43 

  44 
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1 Introduction 45 

A key question in the carbon cycle science is how terrestrial carbon sinks will evolve within the 46 

context of a rapidly changing climate. Such projections of future carbon-climate interactions 47 

largely depend on the accuracy of current terrestrial biospheric models (TBMs), the main tool 48 

used to simulate the processes controlling the biospheric carbon cycle. Thus, understanding and 49 

evaluating the performance of current TBMs is an essential step toward improving the state of 50 

carbon cycle research. 51 

TBM predictions of carbon flux can be directly evaluated against eddy covariance tower 52 

measurements at various time scales ranging from hourly to interannual (Baker et al., 2003; 53 

Balzarolo et al., 2013; Keenan et al., 2012; Raczka et al., 2013; Richardson et al., 2012; Sasai et 54 

al., 2005; Schaefer et al., 2012; Schwalm et al., 2010)(Baker et al., 2003; Balzarolo et al., 2014; 55 

Keenan et al., 2012; Raczka et al., 2013; Richardson et al., 2012; Sasai et al., 2005; Schaefer et 56 

al., 2012; Schwalm et al., 2010), but the information provided by flux towers is only 57 

representative of small spatial scales (~1km
2
) relative to the scales of interest for global 58 

simulationsanalyses.  On the other end of the spectrum, TBM predictions aggregated to large 59 

spatial and/or temporal scales (e.g., continental/monthly to global/annual) are routinely 60 

intercompared with flux estimates obtained from inverse-modeling estimates based on observed 61 

atmospheric CO2 mixing ratios (Canadell et al., 2011; Gourdji et al., 2012; Hayes et al., 2012; 62 

McGuire et al., 2012; Turner et al., 2011)(Canadell et al., 2011; Gourdji et al., 2012; Hayes et al., 63 

2012; McGuire et al., 2012; Turner et al., 2011), but such large-scale comparisons make it 64 

difficult to provide directly usable information regarding the processes driving carbon exchange.  65 

In addition, differences among TBMs exist across a full range of spatiotemporal scales, including 66 

inter-annual variability, the timing of phenology, and the spatiotemporal distribution of 67 
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biospheric carbon fluxes within regions (Gourdji et al., 2012; Huntzinger et al., 2012; Keenan et 68 

al., 2012; Raczka et al., 2013; Richardson et al., 2012; Schaefer et al., 2012; Schwalm et al., 69 

2010)(Gourdji et al., 2012; Huntzinger et al., 2012; Keenan et al., 2012; Raczka et al., 2013; 70 

Richardson et al., 2012; Schaefer et al., 2012; Schwalm et al., 2010).  These differences reflect 71 

the fact that processes controlling carbon-climate feedbacks are manifested differently across 72 

TBMs. 73 

Assessing the spatial and/or temporal variability of carbon fluxes as a method for evaluating 74 

TBMs, therefore, offers the potential to examine the environmental processes driving carbon 75 

exchange, and hence provides a novelan alternative path forward in the assessment of TBM 76 

predictions. For example, evaluating the timing of modeled phenology can highlight issues 77 

associated with a model’s representation of Light Use Efficiency (LUE), temperature response, 78 

and GPP response under various conditions (Richardson et al., 2012; Schwalm et al., 79 

2010)(Richardson et al., 2012; Schwalm et al., 2010).  Examining the interannual variability of 80 

TBM output can identify problems with the representation of interannual variability in spring 81 

phenology, soil thaw, snowpack melt and lagged response to extreme climatic events (Keenan et 82 

al., 2012)(Keenan et al., 2012).  83 

The majority of previous studies examining carbon flux variability are still based on spatially 84 

and/or temporally aggregated carbon fluxes, however.  An evaluation of flux variability, or flux 85 

patterns, at the fine native spatiotemporal scales of TBM simulations would make it possible to 86 

more directly target the fine-scale spatiotemporal patterns of carbon fluxes that have been shown 87 

to directly relate to environmental/climatic factors, such as precipitation, radiation and nighttime 88 

temperature (Beer et al., 2010; Mueller et al., 2010; Yadav et al., 2010)(Beer et al., 2010; 89 
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Mueller et al., 2010; Yadav et al., 2010).  Such evaluations could therefore inform model 90 

improvements at the process level. 91 

Observations of atmospheric CO2 can potentially be used to assess such fine-scale 92 

spatiotemporal flux patterns. VariationsOn one hand, atmospheric CO2 observations are sensitive 93 

to fine-scale NEE spatial and temporal variability (Huntzinger et al., 2011). On the other hand, 94 

variations in atmospheric CO2 measurements are routinely used in inverse modeling frameworks 95 

to infer upwind sources and sinks of CO2, and recent studies suggest that atmospheric 96 

observations contain information about flux patterns at spatial and temporal resolutions 97 

comparable to those of TBMs run for regional to continental to global domains (Broquet et al., 98 

2013; Göckede et al., 2010; Gourdji et al., 2010; Gourdji et al., 2012)(Broquet et al., 2013; 99 

Göckede et al., 2010; Gourdji et al., 2010; Gourdji et al., 2012). ThoseDespite the uncertainties 100 

existing in regional inversions due to uncertainties in atmospheric transport, fossil fuel 101 

emissions, fire disturbance, and boundary conditions, these studies demonstratedo point to the 102 

possibility of comparingevaluating the spatiotemporal patterns of fluxes from biospheric models 103 

to thosethrough the use of high-resolution inverse models.  104 

InWith this paper, we propose a statistical model selection approach for usinggoal in mind, what 105 

is needed is an atmospheric-inversion-based method that can use variations in atmospheric CO2 106 

measurements to evaluateassess the spatiotemporal variability of patterns of surface carbon 107 

fluxes simulated by TBMs. The purpose of this paper is to present, evaluate, and demonstrate the 108 

application of such an approach, applied here to the evaluation of the 1° 1° and 3-hourly 109 

spatiotemporal variability of Net Ecosystem Exchange (NEE) at relatively fine scales (1° 1° and 110 

3-hourly resolution), in order to target scales at which the link between environmental drivers 111 

and simulated fluxes can inform TBM improvements. by TBMs using atmospheric CO2 112 
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measurements. This fine scale variability is evaluated here across seasons (monthly)within each 113 

month and biomesbiome over North AmericanAmerica, thus providing an approach for 114 

evaluatinga way to evaluate the seasonal and biome-specific differences in model performance.  115 

The distinguishing feature of the proposed approach is that it targets the evaluation of flux 116 

patterns at fine scales, rather than flux magnitudes at aggregated scales, thereby potentially 117 

providing a closer link to process-based understanding of TBM performance.  The approach is 118 

first evaluated usingwith a series of synthetic data experiments, followed by an where the 119 

underlying flux patterns affecting the atmospheric CO2 signals are known. The application toof 120 

this approach is further tested and demonstrated using actual atmospheric measurements and a 121 

prototypical small set of extensively studied TBM simulations from the North American Carbon 122 

Program (NACP) Regional Interim Synthesis (RIS) effort (Huntzinger et al., 2012)(Huntzinger 123 

et al., 2012). 124 

The remainder of the paper is organized as follows.  We describe the data used in the case 125 

studies in Section 2.  The proposed statistical model selection approach is introduced in Section 126 

3.  The experimental case studies are listed in Section 4.  In Section 5, we evaluate the feasibility 127 

of the proposed approach within the context of the information content of available atmospheric 128 

observations using synthetic data experiments. In Section 6, we present the prototypical 129 

application to evaluate four TBMs participating in the NACP RIS activities.  Final conclusions 130 

are presented in Section 7.  131 

 132 
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2 Data description 133 

2.1 Atmospheric CO2 measurements  134 

We use continuous, high-precision atmospheric CO2 concentration measurements from 35 135 

towers for the year 2008 (Shiga et al.) to evaluate the simulated NEE spatiotemporal variability 136 

over North American land. The year 2008 is used as it includes the expansion of continuous 137 

measurement locations from the Mid-Continent Intensive (MCI) project (Miles et al., 2012; Ogle 138 

et al., 2006). Atmospheric CO2 measurements are processed as in Gourdji et al. (2012) and are 139 

sub-selected as in Shiga et al. (submitted). To remove the effect of boundary conditions, we pre-140 

subtract the GLOBALVIEW-CO2 boundary condition from atmospheric measurements as in 141 

Gourdji et al. (2012).  This earlier study suggested that GLOBALVIEW-CO2 gives more 142 

realistic estimate of CO2 boundary conditions for North America relative to boundary conditions 143 

taken from CarbonTracker.  We further remove the impact of fossil fuel emissions by pre-144 

subtracting concentrations modeled based on the VULCAN-ODIAC fossil fuel emissions 145 

inventory (Shiga et al., submitted). 146 

2 Data description 147 

2.1 Atmospheric CO2 measurements  148 

We use continuous, high-precision atmospheric CO2 concentration measurements from 35 149 

towers for the year 2008 to evaluate the simulated NEE spatiotemporal variability over North 150 

American land. Figure 1 shows the location of these towers along with the geographic coverage 151 

of seven North American biomes as modified from Olson et al. (2001).  A majority of towers are 152 

located in Temperate Broadleaf and Mixed Forests, Temperature Grasslands, Savannas and 153 

Shrublands, Temperature Coniferous Forests and Boreal Forests and Taiga, while very few 154 

towers are located in the other biomes (Tundra, Desserts and Xeric, and Tropical and Subtropical 155 



 

10 

 

biomes). This distribution of towers is expected to affect the sensitivity of atmospheric CO2 data 156 

to NEE within those biomes. The year 2008 is used as it includes the expansion of continuous 157 

measurement locations from the Mid-Continent Intensive (MCI) project (Miles et al., 2012; Ogle 158 

et al., 2006). Atmospheric CO2 measurements are processed and averaged to 3-hourly intervals 159 

as described in Gourdji et al. (2012). Data from all hours of the day are used for tall towers with 160 

a height over 300m while afternoon data are used for most short towers (lower than 100m) and 161 

nighttime data are used for sites with complex topography (e.g. Niwot Ridge - NWR), as detailed 162 

in Shiga et al. (2014). We further remove data that are strongly influenced by only a few 1° 1° 163 

grid cells, in order to exclude data that are likely subject to systematic transport model errors 164 

(Göckede et al., 2010; Gourdji et al., 2012; Peters et al., 2007). The total number of resulting 165 

observations is         .  166 

To remove the effect of boundary conditions, we pre-subtract the GLOBALVIEW-CO2 167 

boundary condition (GLOBALVIEW-CO2, 2010) from atmospheric measurements as in Gourdji 168 

et al. (2012). We further remove the impact of fossil fuel emissions by pre-subtracting 169 

concentrations modeled based on the VULCAN-ODIAC fossil fuel emissions inventory (Shiga 170 

et al., 2014). 171 

2.2 Sensitivity footprints from atmospheric transport model 172 

The sensitivity of the available atmospheric observations (Section 2.1) to underlying CO2 fluxes 173 

(in units of ppmv/(μmol m
-2

s
-1

)) is quantified as described in Gourdji et al. (2012).  In brief, 174 

footprints are derived from the Stochastic Time-Inverted Lagrangian Transport (STILT) model 175 

(Lin et al., 2003)(Lin et al., 2003), driven by meteorological fields from the Weather Research 176 

and Forecast (WRF) model (Skamarock and Klemp, 2008)(Skamarock and Klemp, 2008). The 177 

STILT transport model has been used and examined extensively at regional and continental 178 
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scales (Chatterjee et al., 2012; Gourdji et al., 2010; Gourdji et al., 2012; Huntzinger et al., 2011b; 179 

Kort et al., 2008; McKain et al., 2012)(Chatterjee et al., 2012; Gourdji et al., 2010; Gourdji et al., 180 

2012; Huntzinger et al., 2011; Kort et al., 2008; McKain et al., 2012). Footprints canare also be 181 

used to generate synthetic observational time series based on TBM flux simulations.  182 

2.3 Terrestrial Biospheric Models (TBMs)  183 

We evaluateuse simulations from four TBMs to evaluate the proposed approach, namely CASA-184 

GFED (van der Werf et al., 2006)(van der Werf et al., 2006), SiB3 (Baker et al., 2008), 185 

ORCHIDEE , SiB3 (Baker et al., 2008), ORCHIDEE (Krinner et al., 2005)(Krinner et al., 2005) 186 

and VEGAS2 (Zeng et al., 2005)(Zeng et al., 2005), using the runs submitted to the NACP RIS 187 

activity.  These four models were selected for analysis because of the availability of 3-hourly 188 

NEE flux output.  While CASA-GFED and VEGAS2 have a coarser native temporal resolution, 189 

their NEE fluxes have been downscaled to a 3-hourly resolution as described in Huntzinger et al. 190 

(2011b).Huntzinger et al. (2011). Our evaluation is based on the overall NEE simulated by each 191 

TBM, although model definitions of NEE differ: CASA-GFED includes fire disturbance while 192 

other models do not; ORCHIDEE exclude crop harvest while others do not. A comparison and 193 

summary of these simulations can be found in Table S1 in the supplementary material. Further 194 

details on the NACP RIS simulations can be found in Huntzinger et al. (2012)(2012).  195 

3 Model selection based on Bayesian Information Criterion (BIC) 196 

3 Regression framework linking atmospheric CO2 to NEE  197 

The overall goal of the proposed approach is to evaluate the spatiotemporal variability of NEE as 198 

simulated by various TBMs using atmospheric CO2 measurements. Such an approach must be 199 

based on an inverse model that can infer NEE from atmospheric CO2 measurements.  It must 200 

also include a statistical model selection component to evaluate the degree to which NEE 201 
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patterns predicted by TBMs are useful in explaining the observed atmospheric CO2 variability.  202 

Rather than quantifying the magnitude of NEE, the primary goal here is to evaluate the 203 

spatiotemporal NEE patterns (at a 1° 1° and 3-hourly resolution) within specific biomes of 204 

North America and for specific months.  The approach presented here builds on the geostatistical 205 

inverse modeling (GIM) framework (Gourdji et al., 2010; Gourdji et al., 2012; Michalak et al., 206 

2004), but is presented here in the form of a regression analysis to simplify the presentation and 207 

emphasize the introduction of model selection aspect of the proposed approach.   208 

To do sothis end, we first formulate a multi-linear regression framework that relates atmospheric 209 

observations to NEE spatiotemporal variability.  Statistical model selection is then applied to 210 

determine whether, when, and where the spatiotemporal variability of simulated NEE is 211 

consistent with that evident from variability in atmospheric CO2. Here, the NEE spatiotemporal 212 

variability is defined at a 1° 1° spatial and 3-hourly temporal resolution, and the TBMs are 213 

evaluated forwithin specific biome-month combinations. The examined North American biomes 214 

are shown in  Figure 12 shows the distribution of NEE in one specific biome-month combination 215 

(i.e., Boreal Forests and Taiga in July) as an example.  216 

To link atmospheric measurement to surface fluxes we first define the observed atmospheric CO2 217 

concentrations, with the influence of boundary conditions and fossil fuel emissions pre-218 

subtracted, as: 219 

       
(1)  

where   is an     vector of atmospheric CO2 observations,   is an     vector of the 220 

“true”underlying NEE fluxes at 1° 1° and 3-hourly resolution,   (   ) are the sensitivity 221 

footprints, namely a Jacobian matrix representing the sensitivity of each observation to each 222 
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underlying flux (i.e., 
   

   
) as quantified using an atmospheric transport model (see Section 2.2), 223 

and   (   ) is the model-data mismatch term that represents any discrepancies between 224 

observed ( ) and modeled (  ) CO2 mixing ratios. The model-data mismatch term encompasses 225 

the influence of errors in the boundary conditions, errors in the fossil fuel inventory, 226 

representation errors, aggregation errors, transport model errors, and measurement errors.  These 227 

errors are assumed to have zero mean and be uncorrelated across measurements, with their 228 

variances represented by a diagonal covariance matrix   (   ).  The dimensions of the 229 

matrices and vectors are based on the total number of observations,         , and the total 230 

number of fluxes at a 1° 1° (2635 such grid cells within the domain used here) and 3-hourly 231 

resolution (          ) such periods within the span of the one-year inversion),   232 

                   .  233 

The spatiotemporal NEE distribution of   is represented as a linear model of NEE as predicted 234 

by various TBMs within specific biome-month combinations:  235 

        
(2)  

where   is a      matrix with each column representing NEE 1° 1° 3-hourly spatiotemporal 236 

variability inwithin a specific biome-month combination from a specific TBM, such that a given 237 

column is populated by the modeled NEE from a given TBM for a given biome-month for those 238 

rows (i.e. elements of  ) corresponding to that specific biome-month combination, while the 239 

remainder of the column is filled with zeros.  These individual columns of X are thus predictor 240 

variables for the dependent variable  .  With 7 biomes (Figure 1) and 12 months, there are a total 241 

of 84 possible predictor variables for each TBM. (i.e.,      for one TBM). The     vector   242 

represents the drift coefficient describing the relationship between   and  , and    together thus 243 
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represents a statistical model of the trend of NEE. The     vector   represents the portion of 244 

the variability of   that cannot be explained by the predictor variables in X, and these deviations 245 

are modeled as having a mean of zero and a covariance matrix   (   ) that represents how 246 

the flux deviations from the model of the trend (i.e.,     ) are correlated in time and space. 247 

Combining these two equations, we represent the atmospheric observations   in terms of the 248 

NEE predictor variables  :  249 

           
(3)  

where   is seen to have a spatiotemporally variable mean     and, assuming independence 250 

between   and  , a residual covariance of:  251 

         
(4)  

where T is the matrix transpose operation.  From a statistical standpoint, our goal then becomes 252 

to select a subset of TBM biome-month combinations that optimally representcapture a 253 

substantial portion of the CO2 variability as observed in  .  This constitutes a classical statistical 254 

model selection problem, in which we examine which predictor variables (candidate columns in 255 

 ) are useful in explaining the atmospheric CO2 measurements ( ). 256 

A widely applied approach for statistical model selection is the Bayesian Information Criterion 257 

(BIC) (Schwarz, 1978). BIC takes into account both the goodness of fit, i.e., the residual sum of 258 

squares (   ), and the numbers of auxiliary variables ( ) in each candidate model, and can be 259 

used to compare non-nested candidate models. BIC has also been adapted for use with 260 

spatiotemporally autocorrelated residuals (Hoeting et al., 2006; Mueller et al., 2010)(Hoeting et 261 

al., 2006; Mueller et al., 2010) and within the context of atmospheric inversions where 262 

atmospheric observations are used to inform underlying surface fluxes (Gourdji et al., 263 
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2012)(Gourdji et al., 2012), making it ideal for the application presented here.  The standard 264 

expression for BIC is:  265 

      | |     ⏟        
             

    ( )⏟  
       
    

 
(5)  

where     represents the residual sums of squares of a given candidate model   ,   is the      266 

covariance matrix of the residuals (Eq. 4), | | denotes the matrix determinant, and   is the number 267 

of parameters in a particular candidate model.  For the specific application presented here (Eq. 1-268 

4) and factoring out the unknown drift coefficients,   and     become as in Gourdji et al. 269 

(2012)Gourdji et al. (2012):  270 

  ((   )
    (   ))

  
(   )

      
(6)  

    [  (       (   )((   )
    (   ))

  
(   )

    )  ] 
(7)  

The specific covariance parameters needed to define   and  , which are themselves needed to 271 

define  , vary between experiments and are obtained as described in the supplementary 272 

materials.  273 

TheModel selection built on this framework aims to identify the “best” model of the trend based 274 

on a tradeoff between model size and the model’s power in explaining the variations in observed 275 

atmospheric CO2. Here, the “best” model is specially defined as thatone with the minimum BIC 276 

value, thus providing an optimal balance between model complexity and model fit. To identify 277 

this model, BIC is compared across all possible combinations of predictor variables (i.e. 84 NEE 278 

biome-months per TBM).  Due to the large number of candidate predictor variables considered 279 

here, we implement the branch-and-bound algorithm of Yadav et al. (2013)(2013) to improve 280 

computational efficiency.  281 
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The final selected subset of TBM biome-months represents those biomes and months within 282 

which a given TBM exhibits spatiotemporal variability that explains a substantial portion of the 283 

variability observed in the observations   (see Eq. 3). For a given TBM biome-month 284 

distribution to be “selected” as part of the “best” model of the trend, therefore, (1) the available 285 

atmospheric observations must be sensitive to the spatiotemporal variability of fluxes within that 286 

biome-month (as represented through  ), i.e., the information contained in atmospheric data 287 

sufficiently constrains the spatiotemporal variability within that biome-month, and (2) the 288 

variability within a particular biome-month as represented by a particular TBM must explain a 289 

sufficient portion of the variability in the atmospheric observations to offset the penalty term in 290 

Eq. (5), i.e. the reduction in     must outweigh the penalty term.  On the contrary, if a given 291 

TBM biome-month distribution is “not selected” then, either (1) or (2) as given above is not 292 

satisfied., i.e., either that atmospheric observations are not sensitive to the NEE variability within 293 

that biome-month, or that the NEE variability as represented in the model is inconsistent with 294 

atmospheric observations.  In other words, selecting or not selecting a TBM biome-month 295 

combination directly reflects on the performance of the TBM in that biome and month, as long as 296 

we have fulfilled the requirement in (1) above. If the condition in (1) is not met, we are not able 297 

to use the model selection results to examine model performance, due to the insufficient 298 

coverage of the network. We henceforth refer to the TBM biome-month combinations included 299 

in the final selected subset as the “selected” combinations or elements, or alternately as the TBM 300 

biome-month combinations “identified” using the atmospheric data.  301 

4 Synthetic data and real data experiments 302 

In this Section, we design a series of Synthetic Data (SD) experiments (Figure 23), in which the 303 

underlying fluxes are prescribed, to test the proposed approach and assess the degree to which 304 
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currentsensitivity of atmospheric observations are sensitive to, and informative of, theCO2 305 

measurements to NEE flux spatiotemporal variability of NEE.patterns within all biome-month 306 

combinations, and identify when and where results from the proposed approach reliably reflect 307 

model performance in simulating NEE spatiotemporal variability. We further introduce two Real 308 

Data (RD) experiments as a proof-of-concept demonstration of our approach. In those RD 309 

experiments, we use actual atmospheric CO2 measurements to evaluate the spatiotemporal 310 

variability of NEE as simulated by the four prototypical TBMs described in (Section 2.3.).  311 

In the SD experiments, synthetic atmospheric observations ( ) are generated as described in Eq. 312 

(1) using fluxes (    ) that include NEE as simulated by one of the TBMs and, in some cases, 313 

spatiotemporally-correlated flux residuals ( ) and model-data mismatch errors ( ), i.e.,   314 

 (      )   .  The superset of candidate ancillary variables (Figure 23,  ) includes NEE 315 

from one or more TBMs. TBMs included in      and   are denoted as the “truth” and the 316 

“candidate (s)” respectively henceforth.  317 

The first SD case study, SD-one-ØØ (Figure 23), is designed to investigate whether, when, and 318 

where the information contained in current atmospheric data enables the identification of the 319 

correct candidate TBM for a case where it is the only TBM considered in the model selection, 320 

where this TBM fully represents the variability in the synthetic atmospheric observations ( =0), 321 

and where no model-data mismatch errors are included in the simulation ( =0). Given that in this 322 

case the candidate TBM explains all of the variability in the synthetic atmospheric observations, 323 

it should always be selected if the atmospheric data are sufficiently sensitive to NEE across all 324 

biome-months; hence, biome-months for which the TBM is not selected are ones to which the 325 

atmospheric CO2 observations are not sufficiently sensitive to offset the penalty term in Eq. (5).  326 
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The second and third SD case studies, SD-one-Ø  and SD-one-   (Figure 23), are analogous to 327 

SD-one-ØØ, but include model-data mismatch errors (  0, denoted by  ) and/or spatially 328 

correlated flux residuals (  0, denoted by  ).  These case studies are designed to test the degree 329 

to which current atmospheric observations can inform the spatiotemporal variability of NEE in 330 

cases with realistic model-data mismatch errors and where the candidate TBM only represents a 331 

portion of the true underlying NEE variability. The details of the model-data mismatch errors 332 

and flux residuals are describedIn these case studies, noise ( ) is added to observations, 333 

generated as a random vector of independent normally-distributed values with variances 334 

corresponding to the diagonal elements of  , which are inferred from the RD-all-   experiment 335 

(described below), and a mean of 0.  In addition for SD-one-  , the flux signal from the TBMs is 336 

augmented with additional spatially-correlated fluxes ( ) generated as a random vector of 337 

normally distributed values with a covariance structure equal to that inferred from the RD-all-   338 

experiment (described below). The details of the model-data mismatch errors and flux residuals 339 

are summarized in the supplementary materials. 340 

The final SD case study, SD-all-  , builds on SD-one-   (Figure 23), but is designed to test 341 

whether the correct TBM can be identified when all four TBMs are used as candidate variables.  342 

This case study therefore explores whether current atmospheric observations can be used to 343 

differentiate among candidate TBMs.  No constraints are placed on the model selection, such that 344 

more than one TBM can be selected for the same biome-month, but only the dominant TBM (i.e. 345 

the one with the largest  , Eq. 6) is discussed in analyzing this case. 346 

Finally, two RD case studies, RD-one-   and RD-all-  , are defined analogously to SD-one-   347 

and SD-all-   , to examinefurther test the applicability of our approach by examining the actual 348 

performance of the four prototypical TBMs based on available atmospheric observations.  The 349 
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observations ( ) here are the actual atmospheric measurements, which by definition encompass 350 

model-data mismatch errors, and the flux residuals are also inherently present as no TBM is 351 

expected to perfectly reflect the true underlying fluxes.  In each RD-one-   experiment, one of 352 

the four prototypical TBMs is used as the candidate TBM in order to assess individual TBM 353 

performance.  In RD-all-  , all four TBMs are included, analogously to SD-all-  , to identify the 354 

TBM (if any) that best represents the spatiotemporal variability of NEE within a given biome-355 

month, based on the information provided by the atmospheric measurements.  356 

5 Sensitivity of atmospheric observations to NEE flux spatiotemporal 357 

variability and evaluation of the proposed approach 358 

The SD-one-ØØ experiment examines the sensitivity of atmospheric observations to underlying 359 

flux variability and evaluates the proposed approach under idealized conditions where the true 360 

flux field is perfectly represented by the candidate TBM model, and where no model-data 361 

mismatch errors are included in the synthetic atmospheric observations.   362 

Results indicate that the candidate TBM is selected for over 90% of all biome-months (Figure 363 

34, top row), demonstrating that atmospheric observations are sensitive to NEE spatiotemporal 364 

variability, and that the proposed model selection approach leverages this sensitivity to correctly 365 

identify the TBM model as being representative of the flux variability. within the vast majority 366 

of biomes and months.  The only notable exception is for the Tundra biome for which, other than 367 

during the height of the growing season, the atmospheric data do not provide a sufficient 368 

constraint on the flux variability, due to the poor data coverage and the weak biospheric signal.  369 

Because this biome playsis expected to play an important role in thefuture global carbon cycle 370 

and climate (Belshe et al., 2013; Ping et al., 2008; Schuur et al., 2009; Tarnocai et al., 371 

2009)(Belshe et al., 2013; Ping et al., 2008; Schuur et al., 2009; Tarnocai et al., 2009) and large 372 

uncertainties remain in quantifying its role and evolution with timein carbon cycling (McGuire et 373 
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al., 2012)(McGuire et al., 2012), this result highlights the need for strategic placement of 374 

additional CO2 monitoring stations in the vicinity of this biome to constrain its carbon flux 375 

distribution.   376 

The SD-one-Ø  and SD-one-   case studies examine the degree to which the presence of model-377 

data mismatch errors and a portion ofadditional flux variability not represented by the candidate 378 

TBM limit the information content of available observations, and the ability of the proposed 379 

approach to observe the spatiotemporal flux variability under more realistic conditionsidentify 380 

the consistency between the true underlying NEE patterns and those simulated by TBMs.  381 

Results of SD-one-Ø  show that including realistic model-data mismatch errors decreases the 382 

information content of atmospheric observations to the point where a TBM that in reality 383 

represents the full spatiotemporal flux variability is not selected for many month-TBM 384 

combinations inmonths and TBMs within the Tropical and Subtropical biome, as well as the 385 

Desert and Xeric Shrublands biome, in addition to the Tundra biome that was not well 386 

constrained even under idealized conditions (Figure 34, middle row).  The identification of a 387 

TBM as correctly representing the flux variabilitypatterns also becomes more challenging during 388 

winter and spring overwithin the Boreal Forests and Taiga biome, and the Temperate Coniferous 389 

Forests biome (Figure 34, middle row), especially when VEGAS2 is used as the true flux 390 

distribution.  This result is related to the fact that the magnitude and the spatiotemporal 391 

variability of NEE simulated by VEGAS2 overwithin those biome-months are much smaller than 392 

for other TBMs.  For example, the standard deviation of NEE simulated by VEGAS2 is less than 393 

a half of that of other TBMs.  Overall, the inclusion of realistic model-data mismatch, combined 394 

with the coverage of the monitoring network, make the identification of TBMs that represent the 395 

spatiotemporal variability of fluxes within biomes unreliable overfor three of the seven biomes 396 
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considered here, namely the Tundra, Tropical and Subtropical, and Desert and Xeric Shrublands 397 

biomes.  Subsequent analyses therefore focus on the remaining four better-constrained biomes, 398 

namely the (i) Boreal Forests and Taiga, (ii) Temperate Coniferous Forests, (iii) Temperate 399 

Grasslands, Savannas, and Shrublands, and (iv) Temperate Broadleaf and Mixed Forests biomes.  400 

SD-one-   is designed as the most realistic single-TBM synthetic data experiment, as it includes 401 

not only model-data mismatch errors, but also variability in the spatiotemporal flux distribution 402 

that is not represented by the candidate TBM.  Results for the better-constrained biomes indicate 403 

that the ability to identify a model as correctly representing a portion of the true flux variability 404 

deteriorates in the winter months for the Boreal Forests and Taiga, but remains largely 405 

unchanged in the other biomes (Figure 34, bottom row).  For the winter in the Boreal Forests and 406 

Taiga biome, the TBM is only identified when the fluxes are based on SiB3, likely because this 407 

TBM has a stronger flux signal in this biome during the winter relative to the other TBMs, 408 

thereby overcoming the confounding impacts of model-data mismatch errors and additional flux 409 

variability unexplained by the TBM.  Overall, however, results  410 

Results of SD-one-   indicate that, under realistic conditions, the proposed approach combined 411 

with the available atmospheric observations are is able to correctly identify a TBM that correctly 412 

represents a portion of the true underlying flux variability for much of the year over within four 413 

of the seven biomes considered here. , given the monitoring network used here.  The magnitude 414 

of the model data mismatch used here was derived from the real-data experiments (RD-one-   ), 415 

and includes the impact of errors in the transport model, boundary conditions, fossil fuel 416 

emissions, and fire emissions, as well as measurement and aggregation errors. Therefore, results 417 

suggest that conclusions over the four considered biomes are robust in spite of the influences of 418 

those uncertainties. We acknowledge that the errors applied do not fully address the complexity 419 
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of uncertainties in the real world, as we assume that errors are independent and follow a 420 

Gaussian distribution.  However, the results presented here, together with evidence from the 421 

literature (e.g., Gourdji et al., 2012; Pillai et al., 2012), support the ability to infer flux patterns 422 

despite the many sources of uncertainty in regional inversions.   423 

The final SD case, SD-all-  , is designed to explore whether atmospheric observations can be 424 

used to differentiate among several competing TBMs to identify the TBM that best represents the 425 

underlying flux variability.  Results indicate that across the majority of the examined biomes, 426 

months, and TBMs, the proposed approach combined with the available atmospheric data are 427 

able to discriminate among models for a similar fraction of TBM-biome-month combination 428 

(Figure 45) as when only the “correct” TBM was offered as a candidate model (SD-one-  , 429 

Figure 34, bottom row).  430 

One noticeable difference, however, occurs during the growing season in the Boreal Forests and 431 

Taiga when VEGAS2 or CASA-GFED is used to represent a substantial portion of the true flux 432 

variability.  In these cases, the other of these two models is often identified in the model 433 

selection procedure.  This is not surprising, because these two models yield fluxes that are highly 434 

spatiotemporally correlated to one another (Figure 56), and because biospheric signals simulated 435 

by VEGAS2 are particularly weak (Huntzinger et al., 2011b).(Huntzinger et al., 2011).  Overall, 436 

therefore, for the four better-constrained biomes, the information content of the atmospheric data 437 

is sufficient to identify a TBM that represents a substantial portion of the true underlying 438 

variability using the proposed approach, even when multiple competing TBMs are available.  In 439 

other words, atmospheric observations can be used to differentiate among competing TBMs.  440 

The exception, not surprisingly, is when the competing TBMs have fluxes that are highly 441 

correlated (R>0.8), which, for the four TBMs examined here, occurs most often over the Boreal 442 
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Forests and Taiga and Temperate Coniferous Forests biomes (where biospheric signals are 443 

relative weak and atmospheric data are less sensitive), for the VEGAS2 and CASA-GFED as 444 

well as SiB3 and ORCHIDEE model pairs (Figure 56).  445 

6 EvaluationDemonstration of NACP RIS simulations in representing NEE 446 

spatiotemporal variability  447 

6 Section 5 confirms that the proposed model selection approach, combined 448 

with available CO2 measurements, using atmospheric observations 449 

The results presented in Section 5 confirm that, given the coverage of atmospheric data available 450 

in 2008, the proposed approach is able to identify TBMs representing a substantial portion of the 451 

underlying NEE spatiotemporal variability over 4four better-constrained biomes of North 452 

America largely throughout amost of the year.  In this Section, by focusing on the RD 453 

experiment results, we examine the performance of demonstrate the application of the proposed 454 

approach using “real” data, by evaluating four prototypical TBMs participating in the NACP 455 

RIS.  456 

6.1 Performance of TBMs in simulating the spatiotemporal variability of NEE, as 457 

assessed using atmospheric CO2 measurements 458 

The RD-one-    case study includes 4four experiments, each evaluating one prototypical TBM. 459 

As a general indication of individual TBM performance across biomes and months, we sum the 460 

number of candidate TBMs selected across the four RD-one-   cases (Figure 6).  Overall, we7).  461 

We find that the capability of TBMs to simulate the NEE spatiotemporal variability varies 462 

strongly across biomes and seasons.  TBMs are most frequently identified over the Temperate 463 

Broadleaf and Mixed Forests biome (7 out of 12 months with at least one TBM identified), and 464 

least frequently identified over the Boreal Forests and Taiga biome (3 out of 12 months with at 465 

least one TBM identified). Across seasons, TBMs are most frequently identified during the 466 

growing season (May-Sept, 15 out of 20 biome-months with at least one TBM identified). TBMs 467 
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are least frequently identified during transition seasons (Mar-Apr and Oct-Nov, with 2 out of 16 468 

biome-months with at least one TBM identified), likely reflecting known challenges of TBMs in 469 

representing the seasonal cycle of phenology (Richardson et al., 2012; Schaefer et al., 2012; 470 

Schwalm et al., 2010)(Richardson et al., 2012; Schaefer et al., 2012; Schwalm et al., 2010). 471 

Specifically, during Oct-Nov, none of the TBMs is identified as representing the flux 472 

spatiotemporal variability in any of the biomes, in agreement with the finding in Gourdji et al. 473 

(2012)Gourdji et al. (2012) that carbon fluxes simulated by over 70% of the NACP TBMs are 474 

outside the 95% confidence intervals of atmospheric inversion estimates in October.  475 

Of all 48 biome-months examined, none of the four TBMs are identified as substantially 476 

representing the spatiotemporal variability inwithin 27 biome-months, and only one TBM is 477 

identified in 5 additional biome-months (Figure 67).  Multiple TBMs are identified as 478 

representing a portion of the spatiotemporal variability inwithin the remaining 16 biome-months 479 

(Figure 67). Interestingly, SiB3 and ORCHIDEE are selected in almost all of these 16 biome-480 

months, suggesting that they both have the potential to explain a substantial portion of the 481 

observed variability in atmospheric CO2.  This is consistent with the similarity in NEE 482 

spatiotemporal series between SiB3 and ORCHIDEE shown in Figure 56.  483 

The RD-all-    case study identifies the TBM that best represents the underlying flux variability 484 

(Figure 7). Over the 16 biome-months for which more than one TBM was selected in the RD-485 

one-    series of experiments, SiB3 is identified as the dominant model explaining the observed 486 

atmospheric CO2 variability for 10 biome-months, ORCHIDEE is identified over 4 biome-487 

months, while CASA-GFED2 is identified over the remaining 2 biome-months (Figure 7). For 488 

the 5 biome-months with only one TBM selected in the RD-one-    series of experiments, the 489 

selected TBM is consistent in the RD-all-    experiment, with 3 biome-months best represented 490 
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by SiB3 and 2 others by ORCHIDEE.  Furthermore, out8). Out of 27 biome-months for which 491 

no individual TBM was selected in the RD-one-   experiments, 5 biome-months lead to models 492 

being selected when more than one model can be used in combination, with the dominant TBM 493 

being ORCHIDEE over the Temperate Coniferous Forests biome in Apr and May and the 494 

Temperate Broadleaf and Mixed Forests in Feb, SiB3 over the Boreal Forests and Taiga in Aug, 495 

and VEGAS2 over the Temperate Grasslands, Savannas and Shrublands in Dec.   496 

Overall, SiB3 and ORCHIDEE are selected as the dominant TBM in explaining the flux 497 

variability as observed through the atmospheric CO2 measurements more often than VEGAS2 498 

and CASA-GFED (Figure 78).  SiB3 appears most representative of flux patterns over boreal 499 

biomes, whereas ORCHIDEE is most representative over temperate biomes. Although SiB3 500 

appears to be selected most often (13 biome-months), followed by ORCHIDEE (10 biome-501 

months), none of the TBMs is consistently better than the others across all biomes and seasons.   502 

6.2 DiscussionEvaluation of the TBMs and the proposed approach within the context of 503 

earlier studies 504 

To further evaluate the performance of, and value added provided by, the proposed approach, we 505 

assess the RD-one-    results within the context of the existing literature to determine whether 506 

(1) results are consistent with the literature wherever they are comparable, and (2) the proposed 507 

approach can provide insights that go beyond those provided by other model evaluation 508 

strategies.  Many of our findings are consistent with early work analyzing the examined TBMs 509 

We within the framework of the NACP RIS. For example, we find distinctive seasonal 510 

differences in TBM performance in simulating spatiotemporal flux variability (NEE (Figures 6 511 

and 7 and 8), consistent with the previously noted model misrepresentation of phenology 512 

seasonality based on site-level measurements (Richardson et al., 2012; Schaefer et al., 2012; 513 
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Schwalm et al., 2010)(Richardson et al., 2012; Schaefer et al., 2012; Schwalm et al., 2010).  514 

These model limitations . In addition, we find that models perform better for Temperate 515 

Broadleaf and Mixed Forests, and that SiB3 appears to be more consistent with observations than 516 

other models, both of which are consistent with existing literature evaluating NACP RIS models 517 

(Raczka et al., 2013; Schwalm et al., 2010). The consistency between our results and existing 518 

literature further supports the performance of the proposed approach. It also implies that, 519 

although the approach proposed here is subject to many of the same uncertainties in fossil fuel 520 

emissions, fire disturbance, boundary conditions and transport models that affect all regional 521 

inversions, the main conclusions regarding TBM performance for the four major biomes 522 

examined here are quite robust.   523 

The proposed approach also provides the opportunity to draw conclusions that go beyond the 524 

current literature.  We present two examples here.   525 

First, results indicate that model capability in simulating the spatiotemporal variability (i.e. 526 

patterns) of NEE varies strongly with seasons, with greater skill during the growing season than 527 

during the transition seasons.  In other words, even within specific biomes and months, the 528 

variability of NEE is better represented during the growing season.  This seasonal variability in 529 

model performance may be due to seasonal differences in the dominant environmental drivers 530 

controlling the NEE spatiotemporal variability of NEE.  For example, Mueller et al. 531 

(2010)Mueller et al. (2010) found that site-level NEE measurementsthe environmental drivers 532 

controlling NEE at one location were best explained bya hardwood forest vary across seasons, 533 

with radiation, nighttime temperature and vegetative radiation indices (i.e., fPAR) dominating 534 

during the growing, non-growing and leaf-out seasons, respectively. We hypothesize that the 535 

seasonal differencedifferences in model performance is likely related to the models’ ability to 536 
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represent the seasonally-varying influence of such environmental drivers.  As our results are 537 

based onBecause the NEE spatiotemporal variability, which has been showed to be is directly 538 

related to environmental processes and drivers (Beer et al., 2010; Mueller et al., 2010; Yadav et 539 

al., 2012; Gourdji et al., 2012), our work allows a potential further the proposed approach 540 

provides a close link between model performance and environmental processes to test this 541 

hypothesis..   542 

We alsoSecond, we find that SiB3 and ORCHIDEE are identified more often as representing the 543 

spatiotemporal flux variability than VEGAS2 and CASA-GFED.  Overall, SiB3 and 544 

ORCHIDEE can both explain a substantial portion of the observed variability over almost all of 545 

the 16 biome-months for which multiple TBMs are selected in the RD-one-    experiments 546 

(Figure 6).  Given that the simulated NEE spatiotemporal variability is more similar between 547 

SiB3 and ORCHIDEE, and between VEGAS2 and CASA-GFED, relative to across these two 548 

model pairs (Figure 56), this finding suggests that aspects of the model internal structure 549 

common within the pairs likely contribute to similarities in simulated fluxesflux patterns and 550 

associated performance. As shown in Table S1 in the supplementary material, thoseSuch features 551 

include: 1) SiB3 and ORCHIDEE use Enzyme Kinetic (EK) models while CASA-GFED2 and 552 

VEGAS use Light Use Efficiency (LUE) models to formulate their photosynthesis processes; 2) 553 

the native model time step of SiB3 and ORCHIDEE is shorter than a day while that of CASA-554 

GFED and VEGAS2 varies from daily to monthly; and 3) SiB3 and ORCHIDEE have 555 

substantially more plant functional types (PFTs) than CASA-GFED and VEGAS2.  Schaefer et 556 

al. (2012) suggested that EK and LUE models can perform equally well in simulating fluxes, 557 

making this difference a less likely differentiating factor for performance between the two model 558 

pairs.  Native model time step, on the other hand, has been shown by Schwalm et al. (2010) to be 559 
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an important factor affecting model performance. Finally, using fewer PFTs limits flux 560 

variability to larger scales, as indicated in Huntzinger et al. (2011a) who found that NEE 561 

simulated by SiB3 has greater variance and smaller correlation length scales than CASA-GFED. 562 

Model biases may arise from using uniform parameters within a limited number of PFTs that 563 

leads to flux variability at larger scales, while actual processes may vary strongly within each 564 

PFT and the actual fluxes vary at small scales (Schaefer et al., 2012; Schwalm et al., 2010).  565 

Therefore, we hypothesize that the fewer PFTs and daily-monthly time steps in CASA-GFED 566 

and VEGAS2 may explain their relatively poorer performance in simulating NEE spatiotemporal 567 

variability relative to SiB3 and ORCHIDEEAlthough it is not possible to draw definite 568 

conclusions about the links between model structure and model performance in simulating flux 569 

patterns based on the small number of TBMs examined here and the lack of a uniform simulation 570 

protocol, a future application of this approach to a larger ensemble of models following a 571 

uniform protocol would make it possible to explore these connection in more detail.  572 

7 Concluding remarks 573 

In this paper, we developpresent, evaluate and demonstrate a statistical model selection approach 574 

usingbased on GIM and the Bayesian Information Criterion to evaluate the spatiotemporal 575 

variability of net ecosystem exchange (NEE) as simulated by TBMs, against atmospheric CO2 576 

concentration measurements from 35 towers in North America in 2008. We applyWe 577 

demonstrate the applicability of this method to evaluateapproach by evaluating 4 prototypical 578 

TBMs participating in the North American Carbon Program Regional Interim Synthesis (NACP 579 

RIS).  580 

We first design a series of synthetic data experiments in which the underlying fluxes are 581 

prescribed, to test the proposed approach and examine whether, when, and where atmospheric 582 
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measurements are sensitive to, and hence can constrain, the spatiotemporal variability simulated 583 

by different TBMs. We find that due to the poor data coverage and weaker biospheric signals, 584 

current atmospheric observations cannot be used to reliably assess the flux spatiotemporal 585 

variability in the Tundra, Desert and Xeric Shrublands, and Tropical and Subtropical biomes.  586 

The remaining four biomes (i.e., Temperate Broadleaf and Mixed Forests, Temperate 587 

Grasslands, Savannas and Shrublands, Boreal Forests and Taiga, and Temperate Coniferous 588 

Forest), however, are found to be well constrained by atmospheric data.  Over these four biomes, 589 

the synthetic data experiments suggest that the proposed model selection approach, combined 590 

with the available atmospheric data, are able to identify the TBMs that represent a substantial 591 

portion of the underlying flux variability, as well as differentiate among multiple competing 592 

TBMs.  593 

WhenWe further test and demonstrate the application of the approach by evaluating the 594 

performance of four prototypical TBMs that have been extensively assessed in literature using 595 

availableactual atmospheric observations, we. We find that TBMconclusions about model 596 

performance in simulating NEE spatiotemporal variability varies strongly across seasons and 597 

biomes.are consistent with existing literature for cases where results are comparable, further 598 

supporting the applicability of our approach. Those results include that 1) TBMs represent fine-599 

scale flux spatiotemporal variabilityfluxes best during the growing season (May-September) and 600 

least consistently with atmospheric observations during the transition seasons, especially in 601 

October and November.  Regionally,; and that 2) TBMs appear to perform best over the 602 

Temperate Broadleaf and Mixed Forests biome, and least well over.  The experiments performed 603 

here also lead to new conclusions about the Boreal Forests and Taiga biome.  None of 604 

theexamined TBMs evaluated is consistently better than the other TBMs across biomes and 605 
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seasons, although.  For example, results show that SiB3 and ORCHIDEE appear to represent the 606 

flux variability across more biome-within individual biomes and months better relative to 607 

CASA-GFED and VEGAS2.  608 

The spatiotemporal variability of carbon fluxes can be related toIn addition, this approach has the 609 

potential to link model internal structure andperformance with environmental processes (Beer et 610 

al., 2010; Mueller et al., 2010; Yadav et al., 2012; Gourdji et al., 2012), and our work therefore 611 

highlights some potential linkages between model performances and structure/processes. We 612 

find distinctive, making it possible to test the hypothesis that seasonal differences in TBM 613 

performance, and hypothesize that these may reflect models’ ability to represent the seasonal 614 

variability in the dominant environmental controls on fluxes.  Future work will be conducted to 615 

explore the connection between environmental processes and model performance.  In addition, 616 

we find that models with more PFTs and shorter native time steps may have an advantage in 617 

simulating fine scale flux patterns. It must be noted, however, that the comparison conducted 618 

here only included four TBMs, and that these TBMs were not run using a uniform experimental 619 

protocol (Huntzinger et al., 2012), therefore making the link between model performance and 620 

model structure preliminary at this stage.  Repeating the analysis across a larger ensemble of 621 

models following a uniform protocol ensemble represents another logical next step. 622 

The comparison conducted here only included four TBMs, and was intended primarily as a 623 

demonstration of the proposed approach.  Furthermore, these four TBMs were not run using a 624 

uniform experimental protocol (Huntzinger et al., 2012), precluding any conclusive results about 625 

linkages between model performance and model structure.  Applying the approach presented 626 

here to a larger ensemble of models, ideally following a uniform simulation protocol, therefore 627 

represents a logical next step. 628 
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Figures 823 

Figure 1. North American biomes, modified from Olson (2001), as defined for the case studies; 824 

starsgreen triangles indicate the locations of atmospheric CO2 measurement towers used in the 825 

analysis. 826 

Figure 2. Illustration of the 1° 1° and 3-hourly spatiotemporal variability of NEE simulated by 827 

CASA-GFED for Boreal Forests and Taiga in July.  A vector including these 1° 1° and 3-hourly 828 

fluxes corresponds to one ancillary variable (i.e. one column) in  ) 829 

Figure 3. Illustration of Synthetic Data (SD) case studies as described in Section 4.  830 

Figure 34. Average numbers of months within each season for which the candidate TBM is 831 

selected for the SD-one-ØØ, SD-one-Ø  and SD-one-   case studies (Figure 23).  Grey shading 832 

in SD-one-   represents biomes that were determined not to be well constrained by available 833 

atmospheric data.  DJF: December, January, February; MAM: March, April, May; JJA: June, 834 

July, August; SON: September, October, November. The criteria for grey areas includes: 1) no 835 

models are selected in one season; or 2) the overall model selection is less than 50% in a year. 836 

Figure 45. Average numbers of months within each season for which the candidate TBM is 837 

selected for the SD-all-   case study (Figure 23). Grey shading represents biomes that were 838 

determined not to be well constrained by available atmospheric data.  DJF: December, January, 839 

February; MAM: March, April, May; JJA: June, July, August; SON: September, October, 840 

November.  841 

Figure 56. The correlation coefficient of NEE spatiotemporal series as simulated by different 842 

TBMs throughout 2008 for the four biomes better constrained by available atmospheric 843 

observations. TGSS: Temperate Grasslands, Savannas, Shrublands; Bore: Boreal Forests and 844 

Taiga; TCoF: Temperate Coniferous Forests; TBMF: Temperate Boradleaf and Mixed Forests. 845 

Figure 67. Number of TBMs that are selected for each biome-month in the RD-one-   cases 846 

study. Grey shading represents biomes that were determined not to be well constrained by 847 

available atmospheric data.   848 

Figure 78. The TBM that explains the most variability in atmospheric measurements for a given 849 

biome-month, as identified by the RD-all-   experiment. Grey shading represents biomes that 850 

were determined not to be well constrained by available atmospheric data.   851 
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