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Abstract

Terrestrial biospheric models (TBMs) are used to extrapolate local observations and
process-level understanding of land–atmosphere carbon exchange to larger regions,
and serve as a predictive tool for examining carbon-climate interactions. Understand-
ing the performance of TBMs is thus crucial to the carbon cycle and climate science.5

In this study, we propose a statistical model selection approach for evaluating the spa-
tiotemporal patterns of net ecosystem exchange (NEE) simulated by TBMs using atmo-
spheric CO2 measurements. We find that current atmospheric observations are sen-
sitive to the underlying spatiotemporal flux variability at sub-biome scales for a large
portion of the North American continent, and that atmospheric observations can there-10

fore be used to evaluate simulated spatiotemporal flux patterns, rather than focusing
solely on flux magnitudes at aggregated scales. Results show that the proposed ap-
proach can be used to assess whether a TBM represents a substantial portion of the
underlying flux variability as well as to differentiate among multiple competing TBMs.
When applying the proposed approach to four prototypical TBMs, we find that the per-15

formance of TBMs varies substantially across seasons, with best performance during
the growing season and limited skill during transition seasons. This seasonal differ-
ence in the ability of TBMs to represent the spatiotemporal flux variability may reflect
the models’ capability to represent the seasonally-varying influence of environmental
drivers on fluxes. While none of the TBMs consistently outperforms the others, differ-20

ences among the examined models are at least partially attributable to their internal
structures. Overall, the proposed approach provides a new avenue for evaluating TBM
performance based on sub-biome scale flux patterns, presenting an opportunity for
assessing and informing model development using atmospheric observations.
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1 Introduction

A key question in the carbon cycle science is how terrestrial carbon sinks will evolve
within the context of a rapidly changing climate. Such projections of future carbon-
climate interactions largely depend on the accuracy of current terrestrial biospheric
models (TBMs), the main tool used to simulate the processes controlling the biospheric5

carbon cycle. Thus, understanding and evaluating the performance of current TBMs is
an essential step toward improving the state of carbon cycle research.

TBM predictions of carbon flux can be directly evaluated against eddy covariance
tower measurements at various time scales ranging from hourly to interannual (Baker
et al., 2003; Balzarolo et al., 2013; Keenan et al., 2012; Raczka et al., 2013; Richard-10

son et al., 2012; Sasai et al., 2005; Schaefer et al., 2012; Schwalm et al., 2010), but
the information provided by flux towers is only representative of small spatial scales
(∼ 1 km2) relative to the scales of interest for global simulations. On the other end
of the spectrum, TBM predictions aggregated to large spatial and/or temporal scales
(e.g., continental/monthly to global/annual) are routinely intercompared with flux esti-15

mates obtained from inverse-modeling estimates based on observed atmospheric CO2
mixing ratios (Canadell et al., 2011; Gourdji et al., 2012; Hayes et al., 2012; McGuire
et al., 2012; Turner et al., 2011), but such large-scale comparisons make it difficult to
provide directly usable information regarding the processes driving carbon exchange.
In addition, differences among TBMs exist across a full range of spatiotemporal scales,20

including inter-annual variability, the timing of phenology, and the spatiotemporal dis-
tribution of biospheric carbon fluxes within regions (Gourdji et al., 2012; Huntzinger
et al., 2012; Keenan et al., 2012; Raczka et al., 2013; Richardson et al., 2012; Schae-
fer et al., 2012; Schwalm et al., 2010). These differences reflect the fact that processes
controlling carbon-climate feedbacks are manifested differently across TBMs.25

Assessing the spatial and/or temporal variability of carbon fluxes as a method for
evaluating TBMs, therefore, offers the potential to examine the environmental pro-
cesses driving carbon exchange, and hence provides a novel path forward in the as-
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sessment of TBM predictions. For example, evaluating modeled phenology can high-
light issues associated with a model’s representation of Light Use Efficiency (LUE),
temperature response, and GPP response under various conditions (Richardson et al.,
2012; Schwalm et al., 2010). Examining the interannual variability of TBM output can
identify problems with the representation of interannual variability in spring phenology,5

soil thaw, snowpack melt and lagged response to extreme climatic events (Keenan
et al., 2012).

The majority of previous studies examining carbon flux variability are still based on
spatially and/or temporally aggregated carbon fluxes, however. An evaluation of flux
variability, or flux patterns, at the fine native spatiotemporal scales of TBM simulations10

would make it possible to more directly target the fine-scale spatiotemporal patterns of
carbon fluxes that have been shown to directly relate to environmental/climatic factors,
such as precipitation, radiation and nighttime temperature (Beer et al., 2010; Mueller
et al., 2010; Yadav et al., 2010). Such evaluations could therefore inform model im-
provements at the process level.15

Observations of atmospheric CO2 can potentially be used to assess such fine-scale
spatiotemporal flux patterns. Variations in atmospheric CO2 measurements are rou-
tinely used in inverse modeling frameworks to infer upwind sources and sinks of CO2,
and recent studies suggest that atmospheric observations contain information about
flux patterns at spatial and temporal resolutions comparable to those of TBMs run for20

continental to global domains (Broquet et al., 2013; Göckede et al., 2010; Gourdji et al.,
2010, 2012). Those studies demonstrate the possibility of comparing spatiotemporal
patterns of biospheric models to those of high-resolution inverse models.

In this paper, we propose a statistical model selection approach for using atmo-
spheric CO2 measurements to evaluate the spatiotemporal variability of simulated Net25

Ecosystem Exchange (NEE) at relatively fine scales (1◦ ×1◦ and 3 hourly resolution),
in order to target scales at which the link between environmental drivers and sim-
ulated fluxes can inform TBM improvements. This fine scale variability is evaluated
here across seasons (monthly) and biomes over North American, thus providing an
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approach for evaluating the seasonal and biome-specific differences in model per-
formance. The distinguishing feature of the proposed approach is that it targets the
evaluation of flux patterns at fine scales, rather than flux magnitudes at aggregated
scales, thereby potentially providing a closer link to process-based understanding of
TBM performance. The approach is evaluated using a series of synthetic data exper-5

iments, followed by an application to a prototypical small set of TBM simulations from
the North American Carbon Program (NACP) Regional Interim Synthesis (RIS) effort
(Huntzinger et al., 2012).

The remainder of the paper is organized as follows. We describe the data used in the
case studies in Sect. 2. The proposed statistical model selection approach is introduced10

in Sect. 3. The experimental case studies are listed in Sect. 4. In Sect. 5, we evaluate
the feasibility of the proposed approach within the context of the information content
of available atmospheric observations using synthetic data experiments. In Sect. 6, we
present the prototypical application to evaluate four TBMs participating in the NACP
RIS activities. Final conclusions are presented in Sect. 7.15

2 Data description

2.1 Atmospheric CO2 measurements

We use continuous, high-precision atmospheric CO2 concentration measurements
from 35 towers for the year 2008 (Shiga et al., 2014) to evaluate the simulated NEE spa-
tiotemporal variability over North American land. The year 2008 is used as it includes20

the expansion of continuous measurement locations from the Mid-Continent Intensive
(MCI) project (Miles et al., 2012; Ogle et al., 2006). Atmospheric CO2 measurements
are processed as in Gourdji et al. (2012) and are sub-selected as in Shiga et al. (2014).
To remove the effect of boundary conditions, we pre-subtract the GLOBALVIEW-CO2
boundary condition from atmospheric measurements as in Gourdji et al. (2012). This25

earlier study suggested that GLOBALVIEW-CO2 gives more realistic estimate of CO2
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boundary conditions for North America relative to boundary conditions taken from Car-
bonTracker. We further remove the impact of fossil fuel emissions by pre-subtracting
concentrations modeled based on the VULCAN-ODIAC fossil fuel emissions inventory
(Shiga et al., 2014).

2.2 Sensitivity footprints from atmospheric transport model5

The sensitivity of the available atmospheric observations (Sect. 2.1) to underlying
CO2 fluxes (in units of ppmv (µmol m−2 s−1)−1) is quantified as described in Gourdji
et al. (2012). In brief, footprints are derived from the Stochastic Time-Inverted La-
grangian Transport (STILT) model (Lin et al., 2003), driven by meteorological fields from
the Weather Research and Forecast (WRF) model (Skamarock and Klemp, 2008). The10

STILT transport model has been used and examined extensively at regional and con-
tinental scales (Chatterjee et al., 2012; Gourdji et al., 2010, 2012; Huntzinger et al.,
2011b; Kort et al., 2008; McKain et al., 2012). Footprints can also be used to generate
synthetic observational time series based on TBM flux simulations.

2.3 Terrestrial Biospheric Models (TBMs)15

We evaluate simulations from four TBMs, namely CASA-GFED (van der Werf et al.,
2006), SiB3 (Baker et al., 2008), ORCHIDEE (Krinner et al., 2005) and VEGAS2
(Zeng et al., 2005), using the runs submitted to the NACP RIS activity. These four
models were selected for analysis because of the availability of 3 hourly NEE flux out-
put. While CASA-GFED and VEGAS2 have a coarser native temporal resolution, their20

NEE fluxes have been downscaled to a 3 hourly resolution as described in Huntzinger
et al. (2011b). A comparison and summary of these simulations can be found in Ta-
ble S1 in the Supplement material. Further details on the NACP RIS simulations can
be found in Huntzinger et al. (2012).
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3 Model selection based on Bayesian Information Criterion (BIC)

The overall goal of the proposed approach is to evaluate the spatiotemporal variability
of NEE as simulated by various TBMs using atmospheric CO2 measurements. To do
so, we first formulate a multi-linear regression framework that relates atmospheric ob-
servations to NEE spatiotemporal variability. Statistical model selection is then applied5

to determine whether, when, and where the spatiotemporal variability of simulated NEE
is consistent with that evident from variability in atmospheric CO2. Here, the NEE spa-
tiotemporal variability is defined at a 1◦ ×1◦ spatial and 3 hourly temporal resolution,
and the TBMs are evaluated for specific biome-month combinations. The examined
North American biomes are shown in Fig. 1.10

To link atmospheric measurement to surface fluxes we first define the observed at-
mospheric CO2 concentrations, with the influence of boundary conditions and fossil
fuel emissions pre-subtracted, as:

z = Hs+ε (1)
15

where z is an n×1 vector of atmospheric CO2 observations, s is an m×1 vector of
the “true” NEE fluxes at 1◦ ×1◦ and 3 hourly resolution, H (n×m) are the sensitivity
footprints, namely a Jacobian matrix representing the sensitivity of each observation to
each underlying flux (i.e., ∂zi

∂sj
) as quantified using an atmospheric transport model (see

Sect. 2.2), and ε (n×1) is the model-data mismatch term that represents any discrep-20

ancies between observed (z) and modeled (Hs) CO2 mixing ratios. The model-data
mismatch term encompasses the influence of errors in the boundary conditions, errors
in the fossil fuel inventory, representation errors, aggregation errors, transport model
errors, and measurement errors. These errors are assumed to have zero mean and
be uncorrelated across measurements, with their variances represented by a diagonal25

covariance matrix R (n×n).
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The spatiotemporal NEE distribution s is represented as a linear model of NEE as
predicted by various TBMs within specific biome-month combinations:

s = Xβ+ ξ (2)

where X is a m×p matrix with each column representing NEE spatiotemporal variability5

in a specific biome-month from specific TBM, such that a given column is populated by
the modeled NEE from a given TBM for a given biome-month for those rows (i.e. ele-
ments of s) corresponding to that specific biome-month combination, while the remain-
der of the column is filled with zeros. These individual columns of X are thus predictor
variables for the dependent variable s. With 7 biomes (Fig. 1) and 12 months, there are10

a total of 84 possible predictor variables for each TBM. The p×1 vector β represents
the drift coefficient describing the relationship between X and s, and Xβ together thus
represents a statistical model of the trend of NEE. The m×1 vector ξ represents the
portion of the variability of s that cannot be explained by the predictor variables in X,
and these deviations are modeled as having a mean of zero and a covariance matrix Q15

(m×m) that represents how the flux deviations from the model of the trend (i.e., s−Xβ)
are correlated in time and space.

Combining these two equations, we represent the atmospheric observations z in
terms of the NEE predictor variables X:

z = HXβ+Hξ +ε (3)20

where z is seen to have a spatiotemporally variable mean HXβ and, assuming inde-
pendence between ξ and ε, a residual covariance of:

Σ = HQHT +R (4)
25

where T is the matrix transpose operation. From a statistical standpoint, our goal then
becomes to select a subset of TBM biome-month combinations that optimally repre-
sent the CO2 variability as observed in z. This constitutes a classical statistical model
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selection problem, in which we examine which predictor variables (candidate columns
in X) are useful in explaining the atmospheric CO2 measurements (z).

A widely applied approach for statistical model selection is the Bayesian Information
Criterion (BIC) (Schwarz, 1978). BIC takes into account both the goodness of fit, i.e.,
the residual sum of squares (RSS), and the numbers of auxiliary variables (k) in each5

candidate model, and can be used to compare non-nested candidate models. BIC
has also been adapted for use with spatiotemporally autocorrelated residuals (Hoeting
et al., 2006; Mueller et al., 2010) and within the context of atmospheric inversions where
atmospheric observations are used to inform underlying surface fluxes (Gourdji et al.,
2012), making it ideal for the application presented here. The standard expression for10

BIC is:

BIC = ln |Σ|+RSS︸ ︷︷ ︸
log likelihood

+ k ln(n)︸ ︷︷ ︸
penalty term

(5)

where RSS represents the residual sums of squares of a given candidate model Xc, Σ is
the n×n covariance matrix of the residuals (Eq. 4), | | denotes the matrix determinant,15

and k is the number of parameters in a particular candidate model. For the specific
application presented here (Eqs. 1–4) and factoring out the unknown drift coefficients,
β and RSS become as in Gourdji et al. (2012):

β =
(

(HXc)TΣ−1 (HXc)
)−1

(HXc)TΣ−1z (6)

RSS =
[
zT

(
Σ−1 −Σ−1 (HXc)

(
(HXc)TΣ−1 (HXc)

)−1
(HXc)TΣ−1

)
z

]
(7)20

The parameters needed to define Q and R, which are themselves needed to define Σ,
vary between experiments and are obtained as described in the Supplement.

The “best” model is defined as that with the minimum BIC value, thus providing an
optimal balance between model complexity and model fit. To identify this model, BIC is25

9223

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/9215/2014/bgd-11-9215-2014-print.pdf
http://www.biogeosciences-discuss.net/11/9215/2014/bgd-11-9215-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
11, 9215–9247, 2014

Evaluating the
spatiotemporal

variability of
simulated terrestrial

CO2 fluxes

Y. Fang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

compared across all possible combinations of predictor variables (i.e. 84 NEE biome-
months per TBM). Due to the large number of candidate predictor variables considered
here, we implement the branch-and-bound algorithm of Yadav et al. (2013) to improve
computational efficiency.

The final selected subset of TBM biome-months represents those biomes and5

months within which a given TBM exhibits spatiotemporal variability that explains a sub-
stantial portion of the variability observed in the observations z (see Eq. 3). For a given
TBM biome-month distribution to be “selected” as part of the “best” model of the
trend, therefore, (1) the available atmospheric observations must be sensitive to the
spatiotemporal variability of fluxes within that biome-month (as represented through10

H), i.e., the information contained in atmospheric data sufficiently constrains the spa-
tiotemporal variability within that biome-month, and (2) the variability within a particular
biome-month as represented by a particular TBM must explain a sufficient portion of
the variability in the atmospheric observations to offset the penalty term in Eq. (5), i.e.
the reduction in RSS must outweigh the penalty term. On the contrary, if a given TBM15

biome-month distribution is “not selected” then, either (1) or (2) as given above is not
satisfied. We henceforth refer to the TBM biome-month combinations included in the
final selected subset as the “selected” combinations or elements, or alternately as the
TBM biome-month combinations “identified” using the atmospheric data.

4 Synthetic data and real data experiments20

In this Section, we design a series of Synthetic Data (SD) experiments (Fig. 2), in
which the underlying fluxes are prescribed, to test the proposed approach and assess
the degree to which current atmospheric observations are sensitive to, and informative
of, the spatiotemporal variability of NEE. We further introduce two Real Data (RD)
experiments to evaluate the spatiotemporal variability of NEE as simulated by the four25

prototypical TBMs described in Sect. 2.3.
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In the SD experiments, synthetic atmospheric observations (z) are generated as
described in Eq. (1) using fluxes (sTBM) that include NEE as simulated by one of the
TBMs and, in some cases, spatiotemporally-correlated flux residuals (ξ) and model-
data mismatch errors (ε), i.e., z = H (sTBM + ξ)+ε. The superset of candidate ancillary
variables (Fig. 2, X) includes NEE from one or more TBMs. TBMs included in sTBM and5

X are denoted as the “truth” and the “candidate (s)” respectively henceforth.
The first SD case study, SD-one-ØØ (Fig. 2), is designed to investigate whether,

when, and where the information contained in current atmospheric data enables the
identification of the correct candidate TBM for a case where it is the only TBM con-
sidered in the model selection, where this TBM fully represents the variability in the10

synthetic atmospheric observations (ξ = 0), and where no model-data mismatch errors
are included in the simulation (ε = 0). Given that in this case the candidate TBM ex-
plains all of the variability in the synthetic atmospheric observations, it should always
be selected if the atmospheric data are sufficiently sensitive to NEE across all biome-
months; hence, biome-months for which the TBM is not selected are ones to which the15

atmospheric CO2 observations are not sufficiently sensitive to offset the penalty term
in Eq. (5).

The second and third SD case studies, SD-one-Øε and SD-one-ξε (Fig. 2), are
analogous to SD-one-ØØ, but include model-data mismatch errors (ε 6= 0, denoted by
ε) and/or spatially correlated flux residuals (ξ 6= 0, denoted by ξ). These case studies20

are designed to test the degree to which current atmospheric observations can inform
the spatiotemporal variability of NEE in cases with realistic model-data mismatch er-
rors and where the candidate TBM only represents a portion of the true underlying
NEE variability. The details of the model-data mismatch errors and flux residuals are
described in the Supplement.25

The final SD case study, SD-all-ξε, builds on SD-one-ξε (Fig. 2), but is designed
to test whether the correct TBM can be identified when all four TBMs are used as
candidate variables. This case study therefore explores whether current atmospheric
observations can be used to differentiate among candidate TBMs. No constraints are
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placed on the model selection, such that more than one TBM can be selected for the
same biome-month, but only the dominant TBM (i.e. the one with the largest β, Eq. 6)
is discussed in analyzing this case.

Finally, two RD case studies, RD-one-ξε and RD-all-ξε, are defined analogously to
SD-one-ξε and SD-all-ξε, to examine the actual performance of the four prototypical5

TBMs based on available atmospheric observations. The observations (z) here are the
actual atmospheric measurements, which by definition encompass model-data mis-
match errors, and the flux residuals are also inherently present as no TBM is expected
to perfectly reflect the true underlying fluxes. In each RD-one-ξε experiment, one of
the four prototypical TBMs is used as the candidate TBM in order to assess individual10

TBM performance. In RD-all-ξε, all four TBMs are included, analogously to SD-all-ξε,
to identify the TBM (if any) that best represents the spatiotemporal variability of NEE
within a given biome-month, based on the information provided by the atmospheric
measurements.

5 Sensitivity of atmospheric observations to NEE flux spatiotemporal15

variability

The SD-one-ØØ experiment examines the sensitivity of atmospheric observations to
underlying flux variability under idealized conditions where the true flux field is perfectly
represented by the candidate TBM model, and where no model-data mismatch errors
are included in the synthetic atmospheric observations.20

Results indicate that the candidate TBM is selected for over 90 % of all biome-months
(Fig. 3, top row), demonstrating that atmospheric observations are sensitive to NEE
spatiotemporal variability, and that the proposed model selection approach leverages
this sensitivity to correctly identify the TBM model as being representative of the flux
variability. The only notable exception is for the Tundra biome for which, other than dur-25

ing the height of the growing season, the atmospheric data do not provide a sufficient
constraint on the flux variability, due to the poor data coverage and the weak biospheric
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signal. Because this biome plays an important role in the global carbon cycle and cli-
mate (Belshe et al., 2013; Ping et al., 2008; Schuur et al., 2009; Tarnocai et al., 2009)
and large uncertainties remain in quantifying its role and evolution with time (McGuire
et al., 2012), this result highlights the need for strategic placement of additional CO2
monitoring stations in the vicinity of this biome to constrain its carbon flux distribution.5

The SD-one-Øε and SD-one-ξε case studies examine the degree to which the pres-
ence of model-data mismatch errors and a portion of flux variability not represented by
the candidate TBM limit the ability to observe the spatiotemporal flux variability under
more realistic conditions.

Results of SD-one-Øε show that including realistic model-data mismatch errors de-10

creases the information content of atmospheric observations to the point where a TBM
that in reality represents the full spatiotemporal flux variability is not selected for many
month-TBM combinations in the Tropical and Subtropical biome, as well as the Desert
and Xeric Shrublands biome, in addition to the Tundra biome that was not well con-
strained even under idealized conditions (Fig. 3, middle row). The identification of15

a TBM as correctly representing the flux variability also becomes more challenging
during winter and spring over the Boreal Forests and Taiga biome, and the Temperate
Coniferous Forests biome (Fig. 3, middle row), especially when VEGAS2 is used as the
true flux distribution. This is related to the fact that the magnitude and the spatiotempo-
ral variability of NEE simulated by VEGAS2 over those biome-months are much smaller20

than other TBMs. For example, the standard deviation of NEE simulated by VEGAS2
is less than a half of that of other TBMs. Overall, the inclusion of realistic model-data
mismatch, combined with the coverage of the monitoring network, make the identifi-
cation of TBMs that represent the spatiotemporal variability of fluxes unreliable over
three of the seven biomes considered here, namely the Tundra, Tropical and Subtrop-25

ical, and Desert and Xeric Shrublands biomes. Subsequent analyses therefore focus
on the remaining four better-constrained biomes, namely the (i) Boreal Forests and
Taiga, (ii) Temperate Coniferous Forests, (iii) Temperate Grasslands, Savannas, and
Shrublands, and (iv) Temperate Broadleaf and Mixed Forests biomes.
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SD-one-ξε is designed as the most realistic single-TBM synthetic data experiment,
as it includes not only model-data mismatch errors, but also variability in the spatiotem-
poral flux distribution that is not represented by the candidate TBM. Results for the
better-constrained biomes indicate that the ability to identify a model as correctly rep-
resenting a portion of the true flux variability deteriorates in the winter months for the5

Boreal Forests and Taiga, but remains largely unchanged in the other biomes (Fig. 3,
bottom row). For the winter in the Boreal Forests and Taiga biome, the TBM is only iden-
tified when the fluxes are based on SiB3, likely because this TBM has a stronger flux
signal in this biome during the winter relative to the other TBMs, thereby overcoming
the confounding impacts of model-data mismatch errors and additional flux variability10

unexplained by the TBM. Overall, however, results of SD-one-ξε indicate that, under
realistic conditions, the proposed approach combined with the available atmospheric
observations are able to identify a TBM that correctly represents a portion of the true
underlying flux variability for much of the year over four of the seven biomes considered
here.15

The final SD case, SD-all-ξε, is designed to explore whether atmospheric observa-
tions can be used to differentiate among several competing TBMs to identify the TBM
that best represents the underlying flux variability. Results indicate that across the ma-
jority of the examined biomes, months, and TBMs, the proposed approach combined
with the available atmospheric data are able to discriminate among models for a similar20

fraction of TBM-biome-month combination (Fig. 4) as when only the “correct” TBM was
offered as a candidate model (SD-one-ξε, Fig. 3, bottom row).

One noticeable difference, however, occurs during the growing season in the Boreal
Forests and Taiga when VEGAS2 or CASA-GFED is used to represent a substan-
tial portion of the true flux variability. In these cases, the other of these two models25

is often identified in the model selection procedure. This is not surprising, because
these two models yield fluxes that are highly spatiotemporally correlated to one another
(Fig. 5), and because biospheric signals simulated by VEGAS2 are particularly weak
(Huntzinger et al., 2011b). Overall, therefore, for the four better-constrained biomes,
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the information content of the atmospheric data is sufficient to identify a TBM that
represents a substantial portion of the true underlying variability even when multiple
competing TBMs are available. In other words, atmospheric observations can be used
to differentiate among competing TBMs. The exception, not surprisingly, is when the
competing TBMs have fluxes that are highly correlated (R > 0.8), which, for the four5

TBMs examined here, occurs most often over the Boreal Forests and Taiga and Tem-
perate Coniferous Forests biomes (where biospheric signals are relative weak and at-
mospheric data are less sensitive), for the VEGAS2 and CASA-GFED as well as SiB3
and ORCHIDEE model pairs (Fig. 5).

6 Evaluation of NACP RIS simulations in representing NEE spatiotemporal10

variability

Section 5 confirms that the proposed model selection approach, combined with avail-
able CO2 measurements, is able to identify TBMs representing a substantial portion
of the underlying NEE spatiotemporal variability over 4 better-constrained biomes of
North America largely throughout a year. In this Section, by focusing on the RD exper-15

iment results, we examine the performance of four prototypical TBMs.

6.1 Performance of TBMs in simulating the spatiotemporal variability of NEE,
as assessed using atmospheric CO2 measurements

The RD-one-ξε case study includes 4 experiments, each evaluating one prototypi-
cal TBM. As a general indication of individual TBM performance across biomes and20

months, we sum the number of candidate TBMs selected across the four RD-one-
ξε cases (Fig. 6). Overall, we find that the capability of TBMs to simulate the NEE
spatiotemporal variability varies strongly across biomes and seasons. TBMs are most
frequently identified over the Temperate Broadleaf and Mixed Forests biome (7 out of
12 months with at least one TBM identified), and least frequently identified over the25
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Boreal Forests and Taiga biome (3 out of 12 months with at least one TBM identi-
fied). Across seasons, TBMs are most frequently identified during the growing season
(May–September, 15 out of 20 biome-months with at least one TBM identified). TBMs
are least frequently identified during transition seasons (March–April and October–
November, with 2 out of 16 biome-months with at least one TBM identified), likely re-5

flecting known challenges of TBMs in representing the seasonal cycle of phenology
(Richardson et al., 2012; Schaefer et al., 2012; Schwalm et al., 2010). Specifically,
during October–November, none of the TBMs is identified as representing the flux spa-
tiotemporal variability in any of the biomes, in agreement with the finding in Gourdji
et al. (2012) that carbon fluxes simulated by over 70 % of the NACP TBMs are outside10

the 95 % confidence intervals of atmospheric inversion estimates in October.
Of all 48 biome-months examined, none of the four TBMs are identified as sub-

stantially representing the spatiotemporal variability in 27 biome-months, and only one
TBM is identified in 5 additional biome-months (Fig. 6). Multiple TBMs are identified
as representing a portion of the spatiotemporal variability in the remaining 16 biome-15

months (Fig. 6). Interestingly, SiB3 and ORCHIDEE are selected in almost all of these
16 biome-months, suggesting that they both have the potential to explain a substan-
tial portion of the observed variability in atmospheric CO2. This is consistent with the
similarity in NEE spatiotemporal series between SiB3 and ORCHIDEE shown in Fig. 5.

The RD-all-ξε case study identifies the TBM that best represents the underlying20

flux variability (Fig. 7). Over the 16 biome-months for which more than one TBM was
selected in the RD-one-ξε series of experiments, SiB3 is identified as the dominant
model explaining the observed atmospheric CO2 variability for 10 biome-months, OR-
CHIDEE is identified over 4 biome-months, while CASA-GFED2 is identified over the
remaining 2 biome-months (Fig. 7). For the 5 biome-months with only one TBM se-25

lected in the RD-one-ξε series of experiments, the selected TBM is consistent in the
RD-all-ξε experiment, with 3 biome-months best represented by SiB3 and 2 others by
ORCHIDEE. Furthermore, out of 27 biome-months for which no individual TBM was
selected in the RD-one-ξε experiments, 5 biome-months lead to models being se-
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lected when more than one model can be used in combination, with the dominant TBM
being ORCHIDEE over the Temperate Coniferous Forests biome in April and May and
the Temperate Broadleaf and Mixed Forests in February, SiB3 over the Boreal Forests
and Taiga in August, and VEGAS2 over the Temperate Grasslands, Savannas and
Shrublands in December5

Overall, SiB3 and ORCHIDEE are selected as the dominant TBM in explaining the
flux variability as observed through the atmospheric CO2 measurements more often
than VEGAS2 and CASA-GFED (Fig. 7). SiB3 appears most representative of flux pat-
terns over boreal biomes, whereas ORCHIDEE is most representative over temperate
biomes. Although SiB3 appears to be selected most often (13 biome-months), followed10

by ORCHIDEE (10 biome-months), none of the TBMs is consistently better than the
others across all biomes and seasons.

6.2 Discussion of the performance of the examined TBMs

We find distinctive seasonal differences in TBM performance in simulating spatiotem-
poral flux variability (Figs. 6 and 7), consistent with the previously noted model misrep-15

resentation of phenology based on site-level measurements (Richardson et al., 2012;
Schaefer et al., 2012; Schwalm et al., 2010). These model limitations may be due to
seasonal differences in environmental drivers controlling the NEE spatiotemporal vari-
ability. For example, Mueller et al. (2010) found that site-level NEE measurements at
one location were best explained by radiation, nighttime temperature and vegetative20

radiation indices (i.e., fPAR) during the growing, non-growing and leaf-out seasons, re-
spectively. We hypothesize that the seasonal difference in model performance is likely
related to the models’ ability to represent the seasonally-varying influence of such en-
vironmental drivers. As our results are based on the NEE spatiotemporal variability,
which has been showed to be directly related to environmental processes (Beer et al.,25

2010; Mueller et al., 2010; Yadav et al., 2012; Gourdji et al., 2012), our work allows
a potential further link between model performance and environmental processes to
test this hypothesis.
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We also find that SiB3 and ORCHIDEE are identified more often as representing the
spatiotemporal flux variability than VEGAS2 and CASA-GFED. Overall, SiB3 and OR-
CHIDEE can both explain a substantial portion of the observed variability over almost
all of the 16 biome-months for which multiple TBMs are selected in the RD-one-ξε
experiments (Fig. 6). Given that the simulated NEE spatiotemporal variability is more5

similar between SiB3 and ORCHIDEE, and between VEGAS2 and CASA-GFED, rel-
ative to across these two model pairs (Fig. 5), this finding suggests that aspects of
the model internal structure common within the pairs likely contribute to similarities
in simulated fluxes and associated performance. As shown in Table S1 in the Sup-
plement, those features include: (1) SiB3 and ORCHIDEE use Enzyme Kinetic (EK)10

models while CASA-GFED2 and VEGAS use Light Use Efficiency (LUE) models to
formulate their photosynthesis processes; (2) the native model time step of SiB3 and
ORCHIDEE is shorter than a day while that of CASA-GFED and VEGAS2 varies from
daily to monthly; and (3) SiB3 and ORCHIDEE have substantially more plant functional
types (PFTs) than CASA-GFED and VEGAS2. Schaefer et al. (2012) suggested that15

EK and LUE models can perform equally well in simulating fluxes, making this differ-
ence a less likely differentiating factor for performance between the two model pairs.
Native model time step, on the other hand, has been shown by Schwalm et al. (2010)
to be an important factor affecting model performance. Finally, using fewer PFTs limits
flux variability to larger scales, as indicated in Huntzinger et al. (2011a) who found that20

NEE simulated by SiB3 has greater variance and smaller correlation length scales than
CASA-GFED. Model biases may arise from using uniform parameters within a limited
number of PFTs that leads to flux variability at larger scales, while actual processes
may vary strongly within each PFT and the actual fluxes vary at small scales (Schae-
fer et al., 2012; Schwalm et al., 2010). Therefore, we hypothesize that the fewer PFTs25

and daily-monthly time steps in CASA-GFED and VEGAS2 may explain their relatively
poorer performance in simulating NEE spatiotemporal variability relative to SiB3 and
ORCHIDEE.
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7 Concluding remarks

In this paper, we develop a statistical model selection approach using the Bayesian
Information Criterion to evaluate the spatiotemporal variability of net ecosystem ex-
change (NEE) as simulated by TBMs, against atmospheric CO2 concentration mea-
surements from 35 towers in North America in 2008. We apply this method to evaluate5

4 prototypical TBMs participating in the North American Carbon Program Regional
Interim Synthesis (NACP RIS).

We first design a series of synthetic data experiments in which the underlying fluxes
are prescribed, to test the proposed approach and examine whether, when, and where
atmospheric measurements are sensitive to, and hence can constrain, the spatiotem-10

poral variability simulated by different TBMs. We find that due to the poor data coverage
and weaker biospheric signals, current atmospheric observations cannot be used to re-
liably assess the flux spatiotemporal variability in the Tundra, Desert and Xeric Shrub-
lands, and Tropical and Subtropical biomes. The remaining four biomes (i.e., Temper-
ate Broadleaf and Mixed Forests, Temperate Grasslands, Savannas and Shrublands,15

Boreal Forests and Taiga, and Temperate Coniferous Forest), however, are found to
be well constrained by atmospheric data. Over these four biomes, the synthetic data
experiments suggest that the proposed model selection approach, combined with the
available atmospheric data, are able to identify the TBMs that represent a substantial
portion of the underlying flux variability, as well as differentiate among multiple compet-20

ing TBMs.
When evaluating the performance of four prototypical TBMs using available atmo-

spheric observations, we find that TBM performance in simulating NEE spatiotemporal
variability varies strongly across seasons and biomes. TBMs represent fine-scale flux
spatiotemporal variability best during the growing season (May–September) and least25

consistently with atmospheric observations during the transition seasons, especially in
October and November. Regionally, TBMs appear to perform best over the Temper-
ate Broadleaf and Mixed Forests biome, and least well over the Boreal Forests and
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Taiga biome. None of the TBMs evaluated is consistently better than the other TBMs
across biomes and seasons, although SiB3 and ORCHIDEE appear to represent the
flux variability across more biome-months relative to CASA-GFED and VEGAS2.

The spatiotemporal variability of carbon fluxes can be related to model internal struc-
ture and environmental processes (Beer et al., 2010; Mueller et al., 2010; Yadav et al.,5

2012; Gourdji et al., 2012), and our work therefore highlights some potential linkages
between model performances and structure/processes. We find distinctive seasonal
differences in TBM performance, and hypothesize that these may reflect models’ ability
to represent the seasonal variability in the dominant environmental controls on fluxes.
Future work will be conducted to explore the connection between environmental pro-10

cesses and model performance. In addition, we find that models with more PFTs and
shorter native time steps may have an advantage in simulating fine scale flux pat-
terns. It must be noted, however, that the comparison conducted here only included
four TBMs, and that these TBMs were not run using a uniform experimental protocol
(Huntzinger et al., 2012), therefore making the link between model performance and15

model structure preliminary at this stage. Repeating the analysis across a larger en-
semble of models following a uniform protocol ensemble represents another logical
next step.

The Supplement related to this article is available online at
doi:10.5194/bgd-11-9215-2014-supplement.20
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27 

 

Figures 641 

Figure 1. North American biomes, modified from Olson (2001), as defined for the case studies; 642 
stars indicate the locations of atmospheric CO2 measurement towers used in the analysis 643 

  644 

Figure 1. North American biomes, modified from Olson (2001), as defined for the case studies;
stars indicate the locations of atmospheric CO2 measurement towers used in the analysis.
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28 

 

Figure 2. Illustration of Synthetic Data (SD) case studies as described in Section 4.  645 

  646 

Figure 2. Illustration of Synthetic Data (SD) case studies as described in Sect. 4.
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29 

 

Figure 3. Average numbers of months within each season for which the candidate TBM is 647 
selected for the SD-one-ØØ, SD-one-Ø𝛆 and SD-one-𝛏𝛆 case studies (Figure 2).  Grey shading 648 
in SD-one-𝛏𝛆 represents biomes that were determined not to be well constrained by available 649 
atmospheric data.  DJF: December, January, February; MAM: March, April, May; JJA: June, 650 
July, August; SON: September, October, November. 651 

  652 

Figure 3. Average numbers of months within each season for which the candidate TBM is
selected for the SD-one-ØØ, SD-one-Øε and SD-one-ξε case studies (Fig. 2). Grey shading
in SD-one-ξε represents biomes that were determined not to be well constrained by available
atmospheric data. DJF: December, January, February; MAM: March, April, May; JJA: June,
July, August; SON: September, October, November.
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30 

 

Figure 4. Average numbers of months within each season for which the candidate TBM is 653 
selected for the SD-all-𝛏𝛆 case study (Figure 2). Grey shading represents biomes that were 654 
determined not to be well constrained by available atmospheric data.  DJF: December, January, 655 
February; MAM: March, April, May; JJA: June, July, August; SON: September, October, 656 
November.  657 

  658 

Figure 4. Average numbers of months within each season for which the candidate TBM is
selected for the SD-all-ξε case study (Fig. 2). Grey shading represents biomes that were de-
termined not to be well constrained by available atmospheric data. DJF: December, January,
February; MAM: March, April, May; JJA: June, July, August; SON: September, October, Novem-
ber.
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31 

 

Figure 5. The correlation coefficient of NEE spatiotemporal series as simulated by different 659 
TBMs throughout 2008 for the four biomes better constrained by available atmospheric 660 
observations. TGSS: Temperate Grasslands, Savannas, Shrublands; Bore: Boreal Forests and 661 
Taiga; TCoF: Temperate Coniferous Forests; TBMF: Temperate Boradleaf and Mixed Forests. 662 

  663 

Figure 5. The correlation coefficient of NEE spatiotemporal series as simulated by different
TBMs throughout 2008 for the four biomes better constrained by available atmospheric ob-
servations. TGSS: Temperate Grasslands, Savannas, Shrublands; Bore: Boreal Forests and
Taiga; TCoF: Temperate Coniferous Forests; TBMF: Temperate Boradleaf and Mixed Forests.
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32 

 

Figure 6. Number of TBMs that are selected for each biome-month in the RD-one-𝛏𝛆 cases 664 
study. Grey shading represents biomes that were determined not to be well constrained by 665 
available atmospheric data.   666 

  667 

Figure 6. Number of TBMs that are selected for each biome-month in the RD-one-ξε cases
study. Grey shading represents biomes that were determined not to be well constrained by
available atmospheric data.
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Figure 7. The TBM that explains the most variability in atmospheric measurements for a given 668 
biome-month, as identified by the RD-all-𝛏𝛆 experiment. Grey shading represents biomes that 669 
were determined not to be well constrained by available atmospheric data.   670 

 671 

Figure 7. The TBM that explains the most variability in atmospheric measurements for a given
biome-month, as identified by the RD-all-ξε experiment. Grey shading represents biomes that
were determined not to be well constrained by available atmospheric data.

9247

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/9215/2014/bgd-11-9215-2014-print.pdf
http://www.biogeosciences-discuss.net/11/9215/2014/bgd-11-9215-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

