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Abstract 19 

The carbon dioxide (CO2) exchange of five different peatland systems across Europe with a 20 

wide gradient in landuse intensity, water table depth, soil fertility and climate was simulated 21 

with the process oriented CoupModel. The aim of the study was to find out to what extent 22 

CO2 fluxes measured at different sites, can be explained by common processes and 23 

parameters implemented in the model. The CoupModel was calibrated to fit measured CO2 24 

fluxes, soil temperature, snow depth and leaf area index (LAI) and resulting differences in 25 

model parameters were analysed. Finding site independent model parameters would mean that 26 



2 

differences in the measured fluxes could be explained solely by model input data: water table, 1 

meteorological data, management and soil inventory data.  2 

The model, utilizing a site independent configuration for most of the parameters, captured 3 

seasonal variability in the major fluxes well. Parameters that differed between sites included 4 

the rate of soil organic decomposition, photosynthetic efficiency, and regulation of the mobile 5 

carbon (C) pool from senescence to shooting in the next year.  6 

The largest difference between sites was the rate coefficient for heterotrophic respiration. 7 

Setting it to a common value would lead to underestimation of mean total respiration by a 8 

factor of 2.8 up to an overestimation by a factor of 4. Despite testing a wide range of different 9 

responses to soil water and temperature, rate coefficients for heterotrophic respiration were 10 

consistently lowest on formerly drained sites and highest on the managed sites. Substrate 11 

decomposability, pH and vegetation characteristics are possible explanations for the 12 

differences in decomposition rates. 13 

Applying common parameter values for the timing of plant shooting and senescence, and a 14 

minimum temperature for photosynthesis, had only a minor effect on model performance, 15 

even though the gradient in site latitude ranged from 48°N (South-Germany) to 68°N 16 

(northern Finland). This was also true for common parameters defining the moisture and 17 

temperature response for decomposition. 18 

CoupModel is able to describe measured fluxes at different sites or under different conditions, 19 

providing that the rate of soil organic decomposition, photosynthetic efficiency, and the 20 

regulation of the mobile carbon (C) pool are estimated from available information on specific 21 

soil conditions, vegetation and management of the ecosystems. 22 

 23 

1 Introduction 24 

In recent years, many datasets have been collected from a number of sites and across multiple 25 

years, containing detailed and high resolution measurements of carbon (C) fluxes, plant and 26 

soil characteristics, meteorological and water table data (Baldocchi et al., 2001; Baldocchi, 27 

2007). Several of the measured sites are peatlands, which have accumulated vast amount of C 28 

since the last deglaciation. Under drained conditions, peatlands have a high carbon dioxide 29 

(CO2) emission potential (e.g. van den Bos, 2003; Lohila, 2004; Drösler et al., 2008; 30 
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Maljanen et al., 2010). Understanding the processes driving CO2 emissions is essential in the 1 

development of management practices to reduce greenhouse gas emissions.  2 

Direct comparison of measured data can be used to explore the effect of single variables if the 3 

site conditions are similar or differ only in few variables, e.g. in manipulation experiments 4 

(Chivers et al., 2009; Ward et al., 2013) or different vegetation types at the same site (e.g. 5 

Chojnicki et al., 2010). However, the sites in this study have very different characteristics 6 

with respect to climate, hydrology, current and former land management, vegetation and soils. 7 

Direct site comparisons of measured flux data (e.g. Alm et al., 1999; Humphreys et al., 2006; 8 

Lund et al., 2009; Drewer et al., 2010) are often uninformative when trying to distinguish 9 

between responses of several individual factors. Typically, multiple factors are linked and 10 

interact with each other complicating the analysis. Therefore, important drivers at one site 11 

might not play a significant role on another site (e.g. Lafleur et al., 2005). Process oriented 12 

modelling provides a method to identify to what extent observations at different sites can be 13 

described by the same processes, while accounting for such interactions. 14 

Process oriented modelling requires (1) that the model can describe the observations and (2) 15 

that the parameters used in the model to describe the observations can be estimated from 16 

available data. Typically, studies focus on demonstrating how well the model can describe a 17 

certain set of data (e.g. van Huissteden et al., 2009; Calanca et al., 2007; Frolking et al., 2001; 18 

St-Hilaire et al., 2010). In contrast, the focus of this study was exploring differences between 19 

the sites while model performance was subordinate. Process oriented models often require a 20 

large number of input parameters which are usually difficult to estimate based on available 21 

data from less intensively investigated sites (Juston et al., 2010). Parameters may interact with 22 

each other and the available information does not allow a single or unambiguous 23 

mathematical solution (Beven and Freer; 2001, Beven, 2006; van Oijen et al., 2013). 24 

However, for all sites in this study, accurate gas flux measurements in combination with 25 

detailed measurements of soil and plant conditions were available. Such extensive 26 

measurements have been demonstrated to be useful in identifying the governing properties for 27 

specific sites. For example the modelling of CO2 from forest sites has shown that dynamics of 28 

CO2 fluxes are restricted to a certain range of parameter values (Wu and Jansson, 2013; Wu et 29 

al., 2013). 30 
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A systematic evaluation of one model against data from multiple sites with a common set of 1 

parameters will allow a better understanding of processes not only at the individual sites but 2 

also on the site-specific differences which control the resulting fluxes (e.g. Calanca et al., 3 

2007; van Huissteden et al., 2006; van Huissteden et al., 2009). This is a necessary 4 

precondition for accurate predictions of CO2 fluxes under different climate scenarios or at 5 

different locations. On peatlands, some attempts have been made to consider site differences 6 

using simplified process models on national (e.g. ECOSSE, Bell et al., 2012) and global 7 

scales (e.g. InTec, Ju and Chen, 2005; McGill, St-Hilaire et al., 2010) and up to millennial 8 

timescale (Schuldt et al., 2013). 9 

Many carbon ecosystem models have been run on site scale such as Biome-BC (Feng et al., 10 

2011),  DNDC (Li et al., 1992a; Li et al., 1992b; Dietiker et al., 2010), PaSim (Calanca et al., 11 

2007), PIXGRO (Adiku et al., 2006), CANDY (Franko et al., 1997), or DAYCENT 12 

(CENTURY) (Del Grosso et al., 2005). Some models were explicitly created or adapted to 13 

peatlands such as PDM (Frolking et al., 2001), PCARS (Frolking et al., 2002), CASA (Potter 14 

et al., 2001), NASA-CASA (Del Grosso et al., 2005),  ecosys (Grant et al., 2012), wetland-15 

DNDC (Zhang et al., 2002),  peatland DOS-TEM (Fan et al., 2013),  PEATLAND-VU (van 16 

Huissteden et al., 2006) or GUESS-ROMUL (Yurova et al., 2007). 17 

In this work the CoupModel was used, which is a detailed process oriented model coupling 18 

heat and mass transfer for soil-plant-atmosphere systems (Jansson and Karlberg, 2010). The 19 

model was designed for a wide range of soil types and different ecosystems and applications 20 

(see Jansson, 2012 for review). It is capable of simulating CO2 (Klemedtsson et al., 2008), 21 

nitrous oxide (N2O) (Norman et al., 2008) and methane (CH4) fluxes (Ravina, 2007). The 22 

CoupModel combines the advantages of an hourly time step, necessary for analysing e.g. 23 

chamber flux data and detailed sub modules for predicting plant growth and respiration, soil 24 

nitrogen (N) and C processes, energy and heat fluxes, soil temperature, soil frost and snow 25 

depth. The CoupModel also allows the user to select between different sub models and access 26 

all parameters via a user interface. An extensive model description can be found in Jansson 27 

and Karlberg (2010). 28 

The main aim of this study was to find out to what extend the large differences in measured 29 

CO2 fluxes between five data rich European flux measurement sites can be solely explained 30 

by the differences in meteorology, water table and management. Therefore the process 31 
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oriented CoupModel was applied using an uncertainty based Monte Carlo approach. Specific 1 

objectives were: 2 

(I) to identify differences and similarities between various sites in CO2 related processes, 3 

corresponding parameters and responses to forcing data. 4 

 (II) to identify and discuss the impact of available data for estimating key parameters in CO2 5 

flux models in general.  6 

(III) to identify problems related to the model representation of the different ecosystem 7 

processes for open peatlands.  8 

 9 

2 Methods 10 

2.1 Description of sites and investigations 11 

The CoupModel was applied to five treeless peatland sites with a wide gradient in land use 12 

intensity, water level, soil nutrient status and mean annual temperature (Tab. 1). Together with 13 

the climatic gradient from North-Finland to South-Germany and a different growing season, 14 

this leads to great differences in amplitude and dynamics of gross primary productivity (GPP), 15 

ecosystem respiration (Reco) and different amounts of biomass. This is reflected in the annual 16 

accumulated net ecosystem exchange (NEE) based on measurements, ranging from −395 g C 17 

m-2 to 636 g C m-2 (Fig. 1). 18 

Dynamic forcing data for model input (water table and meteorology) was available from 19 

measurements at all sites (Tab. S1 in the supplement). Data used for model parameter 20 

constraint included measurements of LAI, soil temperature and NEE (Tab. S2 in the 21 

supplement). Measured NEE was partitioned into Reco and GPP by the use of empirical 22 

models based on Reco from night time NEE respectively opaque chambers at FsA and FsB. 23 

The empirical Reco models are based on temperature (Lloyd and Taylor, 1994), while light 24 

level based functions were used for GPP according Falge et al. (2001). Corrections and gap 25 

filling at flux tower sites was done according the methods described in Reichstein et al. 26 

(2005). A detailed description is given in the references listed in Table S2 in the supplement. 27 

Though Reco and GPP are not explicitly measured, this will be called measured data in the 28 

following for simple distinction from the simulated fluxes by the CoupModel. 29 



6 

The northernmost site, Lompolojänkkä fen (Lom), located in Finland is a nutrient rich natural 1 

mire with sedges, shrubs and mosses. Mean air temperature from 2006 to 2010 was −1.4 °C 2 

and the mean groundwater table during the snow-free season was close to the peat surface. 3 

Data for model calibration were available from 2006 to 2010 and consisted of eddy 4 

covariance (EC) and automatic chamber data of CO2 fluxes, snow depth and leaf area index 5 

(LAI) measurements. A detailed description of the site and measurement methods can be 6 

found in Aurela et al. (2009), Drewer et al. (2010) and Lohila et al. (2010). 7 

The Scottish site, Auchencorth Moss (Amo) is an ombrotrophic bog, with vegetation 8 

consisting of grasses, sedges and soft rushes, covering a primarily Sphagnum base layer. The 9 

site is managed for low intensity sheep grazing with less than one livestock unit per hectare, 10 

but this was not accounted for in the model. Amo encompasses a small area of peat extraction 11 

in the south west of the catchment, which is unlikely to fall within the flux footprint of the EC 12 

system. The site was drained over a century ago, however, the drains are no longer considered 13 

to be in operation. The mean water table was −12.5 cm between 2006 and 2010. Mean 14 

temperature during this period was 10 °C, CO2 data from EC during the same period was used 15 

for model calibration. A detailed description of the site and measurements can be found in 16 

Helfter et al. (in review), Drewer et al. (2010) and Dinsmore et al. (2010). 17 

Horstermeer fen (Hor) is located in the Netherlands in a drained natural lake. It used to be 18 

agricultural land, but was abandoned more than 15 years ago. The water table was raised 19 

during restoration leading to a mean value of −10 cm during the simulation period from 2004 20 

to 2010. It became a semi-natural grassland, a nature reserve without any mowing 21 

management. The vegetation is very heterogeneous with reed, grass and small shrubs 22 

(Hendriks, 2009). The mean temperature during the simulation period was 10 °C. CO2 fluxes 23 

were measured half hourly by EC and biweekly with opaque chambers between 2004 and 24 

2010. A detailed description of the site and measurements methods can be found in Hendriks 25 

et al. (2007). 26 

Freisinger Moos (FsA and FsB) is a drained nutrient rich fen in the south of Germany. The 27 

two sites FsA and FsB lie next to each other in a drained sedge meadow which was cut once 28 

per year. The mean annual hay yield was 4.19 or 4.07 t dry weight ha−1 a−1 for FsA and 5.67 29 

or 6.17 t dry weight ha−1 a−1 for FsB for the years 2010 and 2011, respectively. FsB is located 30 

in a small depression with a mean water level of −20 cm compared to −25 cm for FsA during 31 

the years 2007 to 2011. Mean temperature during this period was 7.5 °C. FsB contains mainly 32 
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tall sedges with little reed while FsA is vegetated by a mixture of sedges, grasses and herbs. 1 

Manual transparent and opaque chamber data of CO2 fluxes (n=3 for each plot), measured 2 

several times a day every 3 to 4 weeks and half hourly meteorological data were available for 3 

the time period of 2007 to 2011. A detailed description of chamber configuration, 4 

measurement technique and empirical model approach were given in Drösler (2005), Beetz et 5 

al. (2013) and Leiber-Sauheitl et al. (2014). Measured Reco and empirical modelled GPP 6 

during measurement period of each measurement day were used for parameter constraint, 7 

empirically modelled values between measurement days were only used for visualisation and 8 

comparison. 9 

2.2 Model description 10 

CoupModel v4 from 12th April 2013 was used for simulations. The current version can be 11 

downloaded from KTH, 2014. A detailed description can be found in Jansson and Karlberg 12 

(2010). The model represents the ecosystem by a description of C and N fluxes in the soil and 13 

in the plant. It includes all main abiotic fluxes, such as soil heat and water fluxes that 14 

represent the major drivers for regulation of the biological components of the ecosystem. The 15 

most important equations with the corresponding parameters and switches differing from the 16 

default setup in the used version can be found in Tables S3, S4, S5 and S6 in the supplement. 17 

The major model assumptions relating to the model application to peatlands are described 18 

below. 19 

2.2.1 Meteorological driving variables and integration time step of the model 20 

Hourly values of global radiation, relative humidity, precipitation, wind speed, and air 21 

temperature, measured at each site were used as input. Data was gap filled by simple linear 22 

interpolation for gaps < 6 hours. Larger gaps were filled by values from other adjacent climate 23 

stations. At Hor the station used for gap filling provided only daily values. Hourly values 24 

were retrieved assuming uniform distribution over 24 hours for precipitation, wind speed and 25 

relative humidity and sinusoidal distribution for temperature and global radiation. 26 

Model performance was only evaluated for the years when meteorological data was available. 27 

The simulations were started two years prior to the evaluation period, so the system (in 28 

particular the plant) could adapt to the site conditions and become more independent of initial 29 
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values. Data from the available years was copied to previous years if not available from an 1 

adjacent climate station. 2 

The model internal time step was half-hourly for abiotic processes and hourly for nitrogen and 3 

carbon related processes.  4 

2.2.2 Dynamic coupled heat and water model for above soil surface conditions 5 

An interception model for both, radiation and precipitation, a snow model and a surface pool 6 

model was used to provide boundary conditions at the soil surface. Interception and plant 7 

evaporation was dependent on the simulated leaf area index of the plant as well as the degree 8 

of coverage, while transpiration depended additionally on the simulated water uptake of the 9 

plant. Cloud fraction was calculated from global radiation input and latitude. Incoming 10 

radiation was partitioned between one part, which was absorbed by the plant canopy and 11 

another part, which reached the soil. Surface temperature was simulated based on an energy 12 

balance approach, where the radiation reaching the soil equals the sum of sensible and latent 13 

heat flux to the air and heat flux to the soil. Soil evaporation was derived from an iterative 14 

solution of the soil surface energy balance of the soil surface, using an empirical parameter 15 

for estimating the vapour pressure and temperature at the soil surface. Vapour pressure deficit 16 

was calculated from the relative humidity input. Snow fall was simulated from precipitation 17 

and air temperature, snow melt from global radiation, air temperature and simulated soil heat 18 

flux. Surface runoff is controlled by a surface pool of water that covers various fractions of 19 

the soil surface. Under over saturated periods the flow of water in the upper soil compartment 20 

can be directed up-wards, towards the surface pool.  Surface runoff is calculated as a function 21 

of the amount of water in the surface pool. 22 

 23 

2.2.3 Dynamic heat and water model for the soil  24 

The soil profiles were divided into 12 layers with an increasing layer depth from 5 cm for the 25 

upper layer to 100 cm in the lowest layer. Heat flow between adjacent soil layers were 26 

calculated based on thermal conductivity functions accounting for the content of ice and 27 

water. The heat flow equation is based on a coupled equation accounting for the freezing and 28 

thawing in the soil (Jansson and Halldin, 1979). Convection was not accounted for. The lower 29 

boundary was calculated as temperature based on a sine variation at the soil surface and a 30 

damping depth for the whole soil profile as well as a parameter for the annual mean 31 
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temperature Tamean and annual amplitude of temperature Taamp at the site (a list of symbols and 1 

abbreviations can be found in Table 2). 2 

Soil water depended on infiltration to the soil, soil evaporation, water uptake by plant roots 3 

and ground water flow. The ground water level was defined by assuming a continuous zone of 4 

saturation from water table level down to the lower boundary of the considered soil profile. To 5 

force saturation at the measured ground water level, water was added to or removed from the 6 

corresponding layer. Water flows between adjacent soil layers were calculated based on 7 

Richards equation (1931), considering hydraulic conductivity, water potential gradient and 8 

vapour diffusion. Soil water characteristics were described by the Brooks & Corey (1964) 9 

equation and unsaturated conductivity by the Mualem (1976) function. 10 

 11 

2.2.4 Vegetation 12 

Vegetation was simulated according to the explicit big leaves concept (e.g. Dai et al., 2004) 13 

but only one plant canopy layer, representing the complete plant community was defined. 14 

Albedo, LAI, vegetation height and vegetation cover were simulated. Permanent, perennial 15 

vegetation was configured with maximal plant height of 0.6 m, a lowest root depth of −0.6 m 16 

and a maximal plant cover of 100%. Grain development was assumed to play a minor role 17 

and was therefore disabled. Plant respiration was assumed to be depended on growth and 18 

maintenance (e.g. Hansen and Jensen, 1977). 19 

For leaf assimilation, the light use efficiency approach (Monteith, 1972; Monteith and Moss, 20 

1977, see e.g. Hilker et al., 2008 for review) was used, at which total plant growth is 21 

proportional to the global radiation absorbed by canopy but limited by unfavourable 22 

temperature and limited soil water. For simplicity plant assimilation was simulated 23 

independent of dynamics in N availability. This might be justified as none of the sites was 24 

fertilized in the recent years and the vegetation community was assumed to be adapted to the 25 

nutrient conditions at each site. Differences in N availability between sites are included in the 26 

radiation efficiency (εL). Plants were assumed to be well adapted to wet conditions (Keddy 27 

1992, Steed et al. 2002), including aerenchyma to tolerate water saturated soil conditions 28 

(Jackson & Armstrong 1999). Plant stress due to high water saturation was therefore disabled. 29 
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Plant development started every spring when the accumulated sum of air temperatures above 1 

a threshold value (TEmergeTth) reached the value of TEmergeSum. Both parameters were calibrated 2 

(Tab. S4, in the supplement). The accumulation of temperatures started when the day length 3 

exceeds 10 hours. Snow cover hindered shooting by reducing the radiation passing through to 4 

the plant, while low soil temperatures reduced plant water uptake. Five consecutive days in 5 

the autumn with day lengths shorter than 10 hours and with temperatures below TDormTth 6 

terminated the growing season and plants went to dormancy.  7 

Beside a small amount of litter fall occurring during the whole plant growth period (Robson, 8 

1973; Duru and Ducrocq, 2000; Fulkerson and Donaghy, 2001), senescence was assumed to 9 

start after the plant reached maturity and therefore depended on growth stage (e.g. Thomas 10 

and Stoddart, 1980) and temperature sums (e.g. Davidson and Campbell, 1983). As this was 11 

not yet directly supported by the model, the stem pool was used for brown, senescent, 12 

standing biomass. Therefore new assimilates were constantly allocated to roots and leaf only, 13 

while existing leaf biomass was reallocated after maturity to the stem pool. A third stage of 14 

litter fall was configured depending on a minimum threshold temperature sum for dormancy. 15 

During litter fall part of the C is stored in a mobile pool, which can be then reused for 16 

shooting in the next year (e.g. White, 1973; Wingler, 2005).  17 

Harvest took place at FsA and FsB. Based on observations in the field, 85% of the above 18 

ground plant material was removed at harvest. Harvest dates were known and implemented in 19 

the model. After harvest the growth stage was allowed to be reset to a lower value (e.g.  20 

Thomas and Stoddart, 1980). Reallocation of C from root to leaves could take place like 21 

reported for e.g. Festuca pratensis (Johansson, 1992; 1993). 22 

2.2.5 Soil carbon and nitrogen 23 

The organic substrate was represented by two C and N pools for each of the 12 soil layers: 24 

one with a slow and one with a high turnover rate coefficient. Decomposition products from 25 

the fast pools are partitioned into CO2 which is released to the atmosphere and C which is 26 

partly moved to the slow pools and partly returned to the fast pools. Decomposition products 27 

from the slow pools are partly released as CO2 and partly returned to the slow pools. The 28 

initial values for the amount of C and N per layer was given by measurements and partitioned 29 

into the two pools for each layer according the measured C:N ratio as described in section 30 

2.2.5 and Table 3. Beside the turnover rate coefficients and amount of substrate in each pool 31 
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per layer, decomposition rates depended on the response to soil moisture and temperature in 1 

the corresponding layer.  2 

As the rate coefficients for decomposition were expected to strongly affect each other, only 3 

the coefficient for the fast decomposition pools were calibrated. The coefficient for the slow 4 

pools (kh) was kept constant at a low value of 2∙10-8 d-1 during the calibration runs which 5 

might be justified as decomposition of resistant carbon is less responsible for the variation in 6 

soil respiration (e.g. Whalen et al., 2000).  7 

Nitrogen and methane related processes were considered by a model including the most 8 

important pathways and fluxes. However no emphasize on the calibration of these processes 9 

were made in this study since the current objective was on CO2 fluxes from the peatlands. 10 

2.2.6 Independent approach to find values of site specific parameters 11 

Dry and wet N deposition, latitude and thickness of the organic layer were used as constant 12 

site specific input. 13 

Water retention, hydraulic conductivity and pH parameters were assigned to each soil layer 14 

according to soil data from each site. Measured total soil organic carbon (SOC) per layer was 15 

partitioned to the two SOC pools per layer on the basis of the measured total C:N ratio per 16 

layer whereas the initial C:N ratios of the slow decomposing pools were assumed to be 10, 17 

while for the fast pools 27.5 was chosen according to measured C:N of leaf tissues at FsA and 18 

FsB (Tab. 3).  19 

2.3 Parameter calibration approach 20 

The aim of the calibration was to find out to what extent the same parameter values could be 21 

used for all sites compared to a site specific representation. A stepwise approach was carried 22 

out starting with finding the best site specific parameter representations and then trying to 23 

merge them to common values valid for all sites. Finally the common representation was 24 

revised to some few parameters showing great site specific effect on model performance. An 25 

overview of the different steps can be found in Figure 2, details on the calibration procedures 26 

are presented as supplementary material. 27 

For the basic calibration (step I, Fig. 2) 350’000 to 700’000 runs were performed for each 28 

site. 45 parameters which were suspicious of eventually being site specific were selected and 29 
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calibrated with an assumed uniform random range (Tab. S4 in the supplement). Parameter 1 

ranges were then constrained based on selected runs (step I and II, Fig. 2), showing acceptable 2 

performance to multiple variables (Tab. S7 in the supplement), measured at the sites. 3 

Several additional multiple calibration runs were performed, with few selected parameters 4 

each, to unravel parameter interactions (step III, Fig. 2). A number of simulations were also 5 

made by single value representations of parameters (step IV, Fig. 2) to visualize the impact of 6 

certain parameter values on interacting parameters and on performance. These runs are called 7 

single runs in the following, numbered with C1 to C7 and described in Tab. S8 in the 8 

supplement. 9 

Selection of runs and evaluation of performance was based on three indices: coefficient of 10 

determination (R2) asses how well the dynamics in the measurement derived values are 11 

represented by the model. Mean error (ME), also called y-intercept (Willmott, 1982) indicates 12 

a lag or lead between model predictions and measured data (Moriasi et al., 2007). Nash-13 

Sutcliff efficiency (NSE) (Nash and Sutcliffe, 1970) accounts for both, deviation of dynamics 14 

and magnitude. It ranges from −∞ to 1, whereas 1 means the best fit of modelled to measured 15 

data and values < 0 indicate that the mean measured value is a better predictor than the 16 

simulated value, which indicates an unacceptable performance (Moriasi et al., 2007). 17 

3 Results 18 

3.1 Model performance – results of basic calibration and selected common 19 

configuration 20 

Model performance showed distinct differences between the sites, depending on the 21 

investigated variable and on the number of considered runs (Tab. 4). Figure 3 shows the 22 

differences between measurements and model C1.  23 

3.1.1 Fluxes 24 

At all sites dynamics in Reco fluxes were simulated considerably better than GPP (Tab. 4). 25 

Performances for NEE were worse as simulation errors in GPP and Reco are summed up.  26 

In respect to Reco and GPP the selected single runs represent a parameter configuration close 27 

to the best ones possible in the tested range: their R2 value did not differ more than 0.05 from 28 

the best result achieved in the multiple calibration, while ME values were smaller |0.1| g C 29 

m−2 day−1. Clearly lower R2 and higher ME values in single runs for biomass and LAI 30 
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simulation, indicates that none of the runs could give best results for all variables at the same 1 

time. E.g., best values for GPP can only be achieved if poorer performance would have been 2 

accepted for other parameters like winter Reco or LAI (see criteria for accepted runs in Table 3 

S7 in the supplement).  4 

The ME values in Table 4 show a clear overestimation of winter fluxes by 3.21 and 2.11 g C 5 

m−2 day−1 for the single runs at FsA and FsB, respectively, and a weaker overestimation for 6 

the accepted runs. The overestimation was less pronounced at Amo (0.13 g C m−2 day−1) and 7 

Lom (0.01 g C m−2 day−1). At Hor winter fluxes were underestimated with a ME of −0.26 g C 8 

m−2 day−1. This was reflected in the accumulated NEE (Fig. 3) leading to a much higher CO2 9 

loss compared to the CO2 balance estimated by the empirical model approach at FsA and FsB. 10 

At Lom higher accumulated NEE due to the overestimation of winter Reco was visible in the 11 

first months of each year. It was nearly compensated due to the underestimated spring Reco, or 12 

overcompensated due to GPP overestimation, as e.g. in summer 2006, which was very dry. 13 

3.1.2 Explanatory variables 14 

Of all variables, the highest R2 values were achieved for soil temperature at all sites. 15 

Temperatures in deeper soil layers (−50 or −60 cm) had better fits than in upper layers with R² 16 

values close to 0.9 or higher. The fit of modelled vs. measured snow depth, which was only 17 

available at Lom, had a R2 value of 0.75 with a mean error of less than 10 cm.  18 

Simulation of LAI represented the measurements quite well with R2 values between 0.53 and 19 

0.76 and mean error of maximum 0.12 m2 m−2. An exception was Hor, where LAI was 20 

underestimated by ME of −0.61 and 1.49 m2 m−2 in the accepted 75 runs and in the selected 21 

single run C1, respectively. At Hor, root biomass was underestimated in the single run by ME 22 

of −281 g C m−2 and living leaf biomass by −122 g C m−2. 23 

In most of the runs of the basic calibration at Hor, either GPP was overestimated or leaf 24 

biomass and LAI was underestimated. Therefore, beside the common configuration C1, a 25 

different configuration was tested where plant respiration and litter fall parameters for Hor 26 

were set to much lower values than in the tested range to fit to GPP and LAI at the same time. 27 

However, this reduced performance for Reco R
2 to 0.66 compared to 0.75 in C1 and led to an 28 

overestimation of winter Reco with a ME of 0.75 g C m−2 day−1. 29 
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3.2 Parameter constraint 1 

Site specific calibration was needed for the speed at which the maximum surface cover is 2 

reached (pck), the mean value in the analytical air temperature function (Tamean), temperature 3 

sum for reaching plant maturity (TMatureSum), coefficient for determining allocation to mobile 4 

internal storage pool (mretain), decomposition rate of the fast SOC pools (kl) and radiation use 5 

efficiency (εL).  6 

Activity under saturated conditions (pθSatact), threshold temperature for plant dormancy 7 

(TDormTh), response to a 10 °C soil temperature change on the microbial activity (tQ10) and base 8 

temperature for the microbial activity (tQ10bas) covary with performance indices but showed 9 

different patterns for different validation variables and for different sites.  10 

Most of the parameters did not show any influence on performance indices within the tested 11 

range (Fig. S1 in the supplement), demonstrating that either the relatively low effect of the 12 

parameter was overcompensated by the effect of more sensitive parameters, or the range used 13 

for calibration is sufficiently constraining. Each of these parameters did not reduce model 14 

performance indicated by R² by more than 0.05 for GPP or Reco after setting them to a 15 

common value. 16 

3.3 Correlations between parameters 17 

In the basic calibration, the following parameters were identified to interact with other 18 

parameters: pck covaried with the extinction coefficient in the Beer law (krn) which is used to 19 

calculate the partitioning of net radiation between canopy and soil surface. Strong linear 20 

negative correlation between coefficients for growth (kgresp) and maintenance respiration 21 

(kmrespleaf) was detected.  22 

The effect of the different parameter in the water response function pθSatact, pθUpp and pθ 23 

compensated each other. They could not be constrained without a very high measurement 24 

resolution of fluxes and water table combined with high water table fluctuation at the same 25 

time. Therefore pθUpp and pθ were set to default values and pθSatact constrained by additional 26 

multiple runs together with kl. Differences between sites in kl are reduced with higher pθSatact 27 

(Fig. 4), however, higher pθSatact increase overestimation of winter Reco at FsA and FsB (Fig. 5 28 

and Fig. 6 d). A wider range of pθSatact was acceptable for summer Reco (Fig. 5). 29 
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Beside moisture response, decomposition rate (kl) and temperature response (tQ10, tQ10bas) 1 

control soil respiration. The effect on Reco was cofounded by plant respiration. Different 2 

patterns for different sites and variables for each of the parameters were even more 3 

pronounced when only kl, tQ10 and kmrespleaf were in calibration (Fig. 5). 4 

Single runs with different configurations (Fig. 6) revealed that higher plant respiration as well 5 

as steeper temperature response can lead to less overestimation of respiration in winter  (Fig. 6 

6 d) but lead to reduced performance (Fig. 6 c). In all single runs, despite the different 7 

configurations, FsA always showed the highest kl while Amo had the lowest (Fig. 6 a). A 8 

higher saturation activity reduces the difference in kl values, but leads to higher 9 

overestimation of winter fluxes.  10 

4 Discussion 11 

4.1 Model performance 12 

The best achieved performance highly differed between the different validation variables and 13 

between the different sites. This was not only caused by the models ability to simulate the 14 

different output parameters but also due to measurement quality, measurement uncertainty, 15 

measurement methods (temporal and spatial resolution) and heterogeneity of the sites.  16 

GPP was simulated markedly poorer as compared to Reco at all sites and not only in the single 17 

runs, but also in the complete set of performed multiple runs. An explanation might be that in 18 

the model the whole plant community consisting of different individuals, species and even 19 

functional types, with different life cycles and adaptations to light availability and temperature 20 

was simplified to only one plant. Especially mosses differ largely from vascular plants in 21 

respect to their ecology and response to water, temperature and light conditions (Gaberščik 22 

and Martinčič, 1987; Harley et al., 1989; Murray et al., 1993; Turetsky, 2003), which might be 23 

important at the moss rich Lom and Amo. The vegetation at Hor consists of species with very 24 

different strategies and requirements for nutrient and water. At FsB, reed, which is known for 25 

a late emerge, was well present in some of the years while it did hardly appear in other years.  26 

FsA is relatively species rich and several of these species are abundant only during parts of 27 

the vegetation period. Also, using a more complex photosynthesis model like e.g. Farquhar et 28 

al. (1980, 2001) and testing a wider range of parameters might lead to a better fit. Including 29 

plant stress due to high water levels and nutrient limitation might improve the performance on 30 
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some sites. E.g. Sagerfors et al. found 2008 photosynthesis to be limited also by too high 1 

water levels, so that the McGill wetland model assumes reduced photosynthesis if the water 2 

level is higher than −10 cm (Wu et al., 2013).  Furthermore, GPP cannot be measured directly 3 

neither by the chamber nor the EC method. Instead it was derived from NEE and Reco or night 4 

time NEE, including the uncertainty of two different measurements and empirical modelling.  5 

Heterogeneity of vegetation was very distinct at Hor, which might explain the difficulties to 6 

simulate the right amounts of GPP and biomass at the same time. The biomass and LAI taken 7 

into account for this study might not be fully representative of the whole EC fetch for all wind 8 

directions. Hor is also a site which deviates strongly with respect to other sites, with recent 9 

large changes in management. It is in successional transition from intensively used dairy 10 

farming meadow (approximately 20 years ago) towards reed fen with willow thickets. Soil 11 

and vegetation still show the imprint of high nutrient level derived from manuring practices 12 

(e.g. patches with abundant Urtica dioca). This likely still affects GPP. These features could 13 

be a better explanation of the deviating GPP than the additionally tested configuration with 14 

strongly reduced litter fall and plant respiration rates.  15 

Even though the winter fluxes are small compared to the summer fluxes they have a marked 16 

role in the annual NEE balances (Fig. 3). Overestimation of winter Reco in combination with 17 

slightly underestimated winter GPP lead to high overestimation of annual accumulated NEE, 18 

emphasising the importance of winter flux dynamics in the annual balances. At all sites except 19 

Hor, winter Reco was overestimated in the selected single run. For FsB and especially FsA, 20 

this was also true for all multiple runs. As Reco at Lom and Amo are typically relative low, the 21 

effect was less pronounced. 22 

Several different reasons for the winter Reco overestimation are possible: explanations due to 23 

model setup and parameterisation are discussed in the sections 4.7, 4.8 and 4.9. Additionally, 24 

gases might be trapped within the snow and under the ice (Bubier et al., 2002; Maljanen et al., 25 

2010) and therefore be seen by the measurement instruments only in spring time, when they 26 

are released. A gastight ice cover was not realised in the current model setup. Frozen or ice 27 

covered soils are quite common at the boreal Lom, but also at FsA and FsB which have a 28 

more continental climate than the other sites.  29 
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4.2 Soil temperature dynamics 1 

Due to the isolating impact of the snow cover (e.g. Zhang, 2005), the value of mean annual 2 

soil temperature (Tamean) was expected to be slightly higher than the mean annual air 3 

temperature. Constrained values of soil temperature were 1.5 to 5 °C higher than the mean 4 

annual air temperature at all sites. If the model was run under different conditions without 5 

further fitting, factors causing differences between mean annual soil temperatures and 6 

corresponding air temperature need to be considered.  7 

4.3  The role of soil temperature and GPP to constrain the plant cover 8 

Accepted fits for soil temperature in the uppermost measured soil layer led to pck values, close 9 

to the measured coverage of vascular plants for each sites. Therefore the measured coverage 10 

could directly be used in the configuration C1 (Fig. 5 a). Setting pck to a common value of 11 

100% reduced the differences in εL between the sites C7 (Fig. 5 e), but led to underestimation 12 

of soil temperature in the uppermost soil layer by at most −0.45 °C in ME at Amo. An 13 

explanation could be that mosses are contributing to the plant coverage in respect to GPP but 14 

not to temperature, especially at sites where they are the main peat forming material. 15 

4.4 Start of senescence 16 

Site specific calibration was needed for the temperature sum initiating the start of senescence 17 

(TMatureSum). However, if the resulting day of the year was plotted instead, the differences 18 

between sites became small (Fig. 5) and setting it to the mean value of all sites did not reduce 19 

model performance in GPP R2 by more than 0.05. Induction of senescence with graminoids is 20 

known to depend on both, temperature and day length (Nuttonson, 1958; Proebsting et al., 21 

1976; Thomas and Stoddart, 1980; Davidson and Campbell, 1983). However the differences 22 

between the sites in this study could be explained solely by the relative day length.   23 

4.5 Seasonal and management control of mobile plant pool for regrowth 24 

The proportion of C in the plant which does not become litter, but instead is stored for 25 

shooting in the next year (mretain), differed largely between sites. At Lom, a value of at least 26 

40% led to accepted performance while a maximum of 3% was found for FsA and FsB; a 27 

mean value of 20% would reduce R2 of GPP by at least 0.04 for these sites. At Amo and Hor 28 
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neither a value of 3% nor 40% reduced R2 of GPP by more than 0.01. An explanation for low 1 

mretain at FsA and FsB could be that the same pool is used for regrowth after cut and therefore 2 

not available for shooting anymore, as the regrowth rate in both early spring and after cut 3 

depend on carbohydrate reserve (White, 1973; Davies, 1988; Klimeš and Klimešová, 2002). 4 

Steele et al. (1984) conclude that defoliation late in the year will affect spring regrowth.  5 

At Lom high mretain might be an adaption to the short vegetation period (Kistritz et al., 1983). 6 

Evergreen parts of the vegetation like dwarf shrubs, lower leaf parts of gramnoides and 7 

mosses were not accounted for which also affects regrowth in spring. Saarinen (1998) found 8 

that 60-70% of shoots and 20% of green biomass in a Carex rostrata fen survived the winter 9 

and hypothesised based on comparison with other studies that the proportion increase with 10 

increasing latitude.  11 

The storage pool is an important parameter needing site specific calibration but can be fitted if 12 

several measurements during spring and early summer of either GPP, biomass or LAI are 13 

available.  14 

4.6 Radiation use efficiency 15 

As plants were not nutrient limited in the model setup, lowest values for εL were expected 16 

under the most nutrient poor conditions (Longstreth and Nobel, 1980; Reich et al., 1994; 17 

Haxeltine and Prentice, 1996; Gamon et al., 1997; Wohlfahrt et al., 1999). The opposite was 18 

true if site specific values were used for pck. However, a common value for pck reduced the 19 

differences in εL and led to low εL at the ombrotrophic Amo site, but to an even lower value at 20 

the minerotrophic Lom. The assumption of plants being well adapted to nutrient and water 21 

stress might not be true for the restored Hor site, where parts of the vegetation still consists of 22 

species which are not typical for wetlands. This might explain the low productivity at that site. 23 

Additionally, εL is known to be species specific (Sinclair and Horie, 1989; Reich et al., 1998; 24 

Wohlfahrt et al., 1999).  25 

Radiation use efficiency is an important parameter needing site specific calibration. If 26 

common values were used for εL, pck and mretain, mean GPP would be underestimated by a 27 

factor of 2.4 (FsB) or overestimated by a factor of 3 (Lom). If site specific values were used 28 

for pck and mretain the discrepancy would be even higher. However εL can easily be fitted if 29 

either GPP, biomass or LAI is known.  30 
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4.7 The control of decomposition and plant respiration by soil temperature 1 

The whole year Reco, which was dominated by summer Reco could be described by a single 2 

temperature response function at all sites. However, it was not possible to find an equal good 3 

fit to both summer and winter Reco, using the same tQ10 value. Higher tQ10 would decrease 4 

overestimation of winter Reco especially at the southern sites FsA and FsB, but also reduce 5 

model performance for whole year Reco. Different temperature responses for different sites 6 

(e.g. Jacobs et al., 2007), seasons (e.g. Lipson et al., 2002) and temperature ranges (e.g. Lloyd 7 

and Taylor, 1994; Paul, 2001; Atkin et al., 2003) are reported in the literature. This is partly 8 

explained by multiplicative effects of several temperature sensitive processes (Davidson et al., 9 

2006; Kirschbaum, 2006) but still, a constant tQ10 might be a wrong assumption (Atkin et al., 10 

2005).  11 

More sophisticated temperature responses like the Ratkowsky-function (Ratkowsky et al., 12 

1982) might improve the performance for individual sites. This might also be true for separate 13 

temperature response functions for plant and soil, as summer Reco includes autotrophic and 14 

heterotrophic respiration, while winter Reco is strongly dominated by heterotrophic respiration. 15 

4.8 The control of decomposition by soil moisture 16 

The activity under saturated conditions in respect to unsaturated conditions is described by 17 

pθSatact and was strongly negative correlated with decomposition rate kl. Patterns for pθSatact 18 

differed between sites and variables. At all sites a minimum value of around 5% led to 19 

acceptable performance in whole year Reco, while also quite high values did not reduce the 20 

performance except at FsB. At Lom only winter Reco was considered, as conditions were 21 

always saturated during summer. For acceptable winter Reco, pθSatact needed to be very low. 22 

This was not true for Lom, where water in the upper soil layer partly froze in the model and 23 

led to high winter respiration.  24 

As the soil at FsA and FsB was saturated during winter, a common lower value for pθSatact 25 

would decrease overestimation of winter fluxes. However it would also reduce model 26 

performance at all sites and increase the site specific differences in kl (Fig. 6). 27 

Permanently saturated soils contain less O2 than temporally saturated ones (e.g. Kettunen et 28 

al., 1999), which effects decomposition (e.g. Reddy and Patrick, 1975; DeLaune et al., 1981; 29 
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Holden et al., 2004). Therefore lower pθSatact would be justified for wetter sites. If kl was 1 

constant between sites and instead pθSatact fitted, this would lead to the value of pθSatact to 2 

decrease in the order FsB > FsA >  Lom > Hor > Amo (Fig. 4) which cannot be justified by 3 

the differences in water levels which increase in FsA < FsB << Amo < Hor << Lom. 4 

Therefore a different pθSatact cannot explain differences in soil respiration between sites. 5 

However, amount of aerenchymous plants, leading to soil aeration (e.g. Armstrong, 1980; 6 

Bendix et al., 1994; Grosse et al., 1996) were not taken into account. They reach the highest 7 

coverage at FsB (90%), followed by FsA (62%), Hor (50%), Lom (around 10%) and Amo 8 

(around 6%). Modelling water response depending on soil O2 and redox potential, including 9 

O2 conductance from plants, might help to analyse the differences in decomposition rate and 10 

reduce winter overestimation. E.g. in the Wetland-DNDC model, the water response function 11 

depends on redox potential: decomposition under saturated condition is reduced by a factor of 12 

0.6 if redox potential is high, but by a factor of 0.2 if redox potential is low (Zhang et al., 13 

2002).  14 

4.9 The control of decomposition by substrate  15 

The largest differences of parameters between sites appeared for the maximum decay rate of 16 

the fast C pools kl. Setting it to a common value would lead to an underestimation of mean 17 

Reco by a factor of 2.8 at FsB or an overestimation by a factor of 4 at Amo. 18 

Despite different temperature and water response curves being tested, kl values at FsA and 19 

FsB are substantially higher than at Amo (Fig. 4 and Fig. 6). Higher tQ10 values lead to two 20 

groups of kl values: similar high ones for Lom, FsA and FsB and substantially lower ones for 21 

Hor and Amo (Fig. 6). 22 

The partitioning into SOC pools strongly effects the differences, as can be shown by 23 

calculating decomposition rates for the total SOC (ktot) based on kl, kh and SOC in the pools of 24 

the upper 30 cm as used in the C1 scenario (Fig. 7). However, FsB and FsA still have much 25 

higher rates than Amo. Resulted values and ranges of ktot (0.02-0.16 a−1) are comparable with 26 

reported values from laboratory incubation studies of peat cores (0.03-1.66 a−1, Moore and 27 

Dalva, 1997; 0.01-0.35 a−1, Glatzel et al., 2004; 0.008 a−1, Kechavarzi et al., 2010; a SOC 28 

content of 30% was assumed for conversion from dry mass). 29 

Lower decomposability is often associated with higher C:N ratios (e.g. Zeitz and Velty, 2002; 30 

Limpens and Berendse, 2003; Bragazza et al., 2006; Zhang et al., 2008), which might be 31 
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important especially for the moss rich Amo and Lom. Assuming a C:N ratio of 60 for the fast 1 

pools (Fig. 6, C6) leads to a decomposition rate at Lom which is close to those at FsA and 2 

FsB, while those of Hor and Amo remain substantially lower.  3 

Low pH might be one reason for the low kl at Amo (e.g. DeLaune et al., 1981; Bergman et al., 4 

1999). Despite being nutrient rich and having a high pH and high biomass production, leading 5 

to large amounts of labile carbon added to the soil, kl values at Hor were very low. This might 6 

be connected to land use history and the origin of the peat from partly clayey-lake sediment. 7 

Most of the labile C in the parent peat in the upper, formerly drained soil layers might have 8 

been decomposed before and therefore stabilised. 9 

In the current setup the slow pools were almost inert. A higher decay rate for the slow pools 10 

would result in a lower kl for sites with high C stock in the slow pools (cf Tab. 3). This would 11 

decrease the differences between FsA and FsB compared to Lom and Amo, but increase the 12 

differences between FsA compared to FsB and compared to Hor.  13 

Substrate quality is known to effect decomposition rates (e.g. Raich and Schleisinger, 1992; 14 

Belyea, 1996; Fang and Moncrieff, 2005; Yeloff and Mauquoy, 2006). Therefore, many other 15 

SOC models use several different SOC pools (e.g. Franko et al., 1997; Smith et al., 1997; Cui 16 

et al., 2005; Del Grosso et al., 2005; van Huissteden et al., 2006) to account for differences in 17 

substrate quality. This leads to the problem of partitioning total SOC into the pools (e.g. 18 

Helfrich et al., 2007; Zimmermann et al., 2007). In some models, the various SOC pools 19 

differ also in their response functions (e.g. Smith et. al, 2010). 20 

The highest decomposition rates occurred at sites with highest biomass production. A 21 

correlation of productivity with soil respiration was found in several comparison studies (e.g. 22 

Janssens et al., 2001; Reichstein et al., 2003). Fresh material provided by the plants might 23 

lead to higher microbial activity and priming effect (e.g. Kuzyakov, 2002; Fontaine et al., 24 

2007). Higher plant to soil respiration ratio reduced the differences in kl between the sites and 25 

lowered winter Reco, especially at the highly productive FsA and FsB, but also reduced the 26 

model performance at all sites except Amo. 27 

Vegetation at Amo and Lom consist largely of mosses which are more resistant to 28 

decomposition then vascular plants (Rudolph and Samland, 1985; Verhoeven and Toth, 1995; 29 

Limpens and Berendse, 2003; Moore et al., 2007) and might further explain the low kl value 30 
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at Amo. Despite the lower biomass production, higher moss cover and higher C:N ratio 1 

compared to Hor, FsA or FsB, Lom has a relative high decomposition rate. This can be 2 

explained by the very low dry bulk density, resulting in low amount of C in the upper soil 3 

layers (Tab. 3) which are most exposed to decomposition (e.g. Fang and Moncrieff, 2005). 4 

Also, a low dry bulk density accompanies with low degree of degradation and therefore high 5 

amounts of labile carbon (e.g. Grosse-Brauckmann, 1990).  6 

Despite the large differences in accumulated NEE (Fig. 1) between FsA and FsB, they almost 7 

do not differ in their decomposition rates. This confirms the expectations that the differences 8 

in NEE between FsA and FsB can be fully explained by the differences in water table, 9 

biomass and carbon stocks.   10 

5 Conclusions 11 

Differences between sites in respect to CO2 fluxes could be explained if beside air 12 

temperature, water table and soil C- & N- stocks, also site specific plant productivity and 13 

decomposition rates were taken into account. Substrate quality, litter input, as well as pH 14 

values were likely explanations for the differences in decomposition rates.  15 

The model parameters which strongly affected model performance were successfully 16 

constrained by the available long term measurement data on NEE, partitioned into GPP and 17 

Reco, LAI and biomass, including rooting depth and root biomass at one site, water table, soil 18 

temperature and soil C and N stocks as well as meteorological data and snow data at one site. 19 

It would have been useful if additional information was available about root biomass at all 20 

sites, root litter fall and soil water content to validate the model performance in the 21 

corresponding processes. A second measurement of C and N stocks, several years after the 22 

first, as well as information about the degree of decomposition on all sites would have been 23 

very helpful to constrain decomposition rates and partitioning between SOM pools.   24 

Some improvements in the model and its configuration were identified to obtain a better 25 

performance for simulations of GHG fluxes from treeless peatlands. Examples include 26 

separate temperature responses for plant and soil heterotrophic respiration. The static response 27 

to water saturated conditions needs to be replaced by a function that considers the change of 28 

O2 in the soil. 29 
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Tables 1 

Table 1. Site characteristics 2 

Code Lom Amo Hor FsA and FsB 

Country Finland UK Netherlands Germany 
Site name Lompolojänkkä Auchencorth moss Horstermeer Freisinger Moos 
Area [m²] 120000 250000 120000 400 

Latitude; longitude 
67°59'83''N; 
24°12'55''E 

55°47'34''N; 3°14'35''W 
52°14'25''N 
5°4'17''E 

48°22'50''N 11°41'12''E 

Peatland type fen  bog fen fen 

Dominant vegetation 
mosses, sedges, 
shrubs 

grasses, sedges, soft 
rush, mosses 

grass, reeds, small 
shrubs 

sedges, herbs, grasses (A), 
tall sedges (B) 

Landuse and 
management 

natural mire restored; grazed 
restored; nature 
reserve 

drained, 1 cut a−1  

Mean temperature / 
rangea [°C] 

−1.4/−15-13 10/4-15  9.8/3-17  7.5/−2-17  

Mean water table [cm] + 1.2 −12.5 ~ −10 
−25 (A) 

−20 (B) 
Annual precipitation 
[mm] 

484 1155 797 788 

N deposition [kg ha−1 
a−1] 

8.13 1.59  7.1 

Peat depth [m] 2-3 0.5-5 2 3 
pH 5.5-6.0 4.4 4.8-6.0 5.5-6.7 
a annual range of mean monthly temperatures 3 

 4 
 5 
 6 
  7 
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Table 2. Abbreviations and symbols 1 

Abbreviation Description

C carbon 
CO2 carbon dioxide 
EC eddy covariance 
GHG greenhouse gas 
GPP gross primary production 
kgresp growth respiration coefficient 
kh rate coefficient for the decay of the slow C pools

kl rate coefficient for the decay of the fast C pools

kmrespleaf maintenance respiration coefficient for leaves

krn 
extinction coefficient in the Beer law used to calculate the partitioning of net radiation between plant 
canopy and soil surface 

LAI leaf area index 
ME mean error

mretain coefficient for determining allocation to mobile internal storage pool

N nitrogen 
NSE Nash-Sutcliff efficiency 
pck speed at which the maximum surface cover of plants is reached

pθLow 
water content interval in the soil moisture response function for microbial activity, mineralisation-
immobilisation, nitrification and denitrification

pθUpp 
water content interval in the soil moisture response function for microbial activity, mineralisation-
immobilisation, nitrification and denitrification

R2 coefficient of determination 
Reco ecosystem respiration 
SOC soil organic carbon 
Tamean assumed value of mean air temperature for the lower boundary condition for heat conduction 

Taamp 
assumed value of the amplitude of the sine curve , representing the lower boundary condition for heat 
conduction 

TMatureSum temperature sum beginning from grain filling stage for plant reaching maturity stage 
TDormTh critical air temperature that must be undershoot for temperature sum calculation 
TEmergeSum air temperature sum that is the threshold for start of plant development

TEmergeTh critical air temperature that must be exceeded for temperature sum calculation

tQ10 
response to a 10 °C soil temperature change on the microbial activity, mineralisation-immobilisation, 
nitrification, denitrification and plant respiration

tQ10bas 
base temperature for the microbial activity, mineralisation-immobilisation, nitrification and denitrification 
at which the response is 1 

εL radiation use efficiency 

 2 

 3 

 4 
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Table 3. Partitioning of measured SOC to the pools. The data in the table is aggregated into 3 1 

soil layers, however 12 layers were used in the model 2 

 depth [m] Lom Amo Hor FsA FsB 

Measured total C 
[kg m−3] 

0-0.1 24 190 72 107 88 

 0.1-0.3 30 187 79 104 90 
 > 0.3 51 175 156 70 61 
       

Measured C:N 
[kg m−3] 

0-0.1 27 23 13 11 12 

 0.1-0.3 20 22 13 14 13 
 > 0.3 20 21 22 17 17 
       

Estimated 
fraction of fast 
pool / total C 

0-0.1 95% 72% 18% 3% 9% 

 0.1-0.3 56% 73% 20% 20% 16% 
 > 0.3 55% 68% 62% 35% 41% 
       

Dry bulk density 
[g cm−3] 

0-0.1 0.06a 0.39 0.35 0.59 0.33 

 0.1-0.3 0.06 0.37 0.48 0.29 0.52 
 > 0.3 0.10 0.37b 0.50 0.18 0.17 
a no data available, value from lower layer used 3 
b no data available, value from upper layer used 4 
 5 
 6 
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Table 4.  Highest achieved values for selected performance indices 1 

Variable Index Lom Amo Hor FsA FsB 

  all/selec
ted runs 

single 
run 

all/selec
ted runs 

single 
run 

all/selec
ted runs 

single 
run 

all/selec
ted runs 

single 
run 

all/selec
ted runs 

single 
run 

NEE R2 0.61/0.6
0 

0.59 0.59/0.5
8 

0.55 0.53/0.5
1 

0.48 0.20/0.1
6 

0.15 0.25/0.2
1 

0.19 

 ME 0.00 0.05 0.00 0.04 0.00 0.02 0.00 1.43 0.00 −0.05 

GPP R2 0.66/0.6
6 

0.65 0.68/0.6
8 

0.66 0.58/0.5
7 

0.55 0.38/0.3
5 

0.34 0.40/0.3
9 

0.35 

 ME 0.00 0.05 0.00 −0.09 0.00 0.04 0.00 0.06 0.00 −0.03 

Reco EC R2 0.79/0.7
4 

0.69 0.71/0.7
1 

0.66 0.78/0.7
7 

0.75 n.a. n.a. n.a. n.a. 

 ME 0.00 0.00 0.00 −0.05 0.00 −0.06 n.a. n.a. n.a. n.a. 

Reco 
chamber 

R2 0.73/0.7
1 

0.64 0.67/0.5
7 

0.38 0.52/0.4
8 

0.45 0.73/0.6
6 

0.69 0.87/0.8
1 

0.85 

ME 0.00 −0.06 0.00 0.04 0.00/−4.
74 

−5.38 0.00 −0.01 0.00 −0.08 

Reco 
winter 

R2 0.67/0.
63 

0.63 0.14/0.
08 

0.06 0.28 0.28 0.51/0.
43 

0.32 0.92/0.
89 

0.89 

ME 0.00 0.01 0/0.04 0.13 0.00 −0.26 0/1.60 3.21 0.00/0.
73 

2.11 

upper 
soil 
temperat
ure 

R2 0.88/0.
87 

0.87 0.86 0.84 0.92 0.91 0.88/0.
86 

0.84 0.88/0.
86 

0.84 

ME 0.00 −0.01 −0.03 −0.08 −1.37/
−1.51 

−1.77 0.00/0.
58 

0.35 0/1.20 0.35 

lower 
soil 
temperat
ure 

R2 0.95 0.95 0.90 0.89 0.89 0.89 0.97/0.
96 

0.94 0.92/0.
91 

0.94 

ME 0.00 −0.03 0.00 0.02 0.00 −0.08 0.00 −0.15 0.00 −0.15 

Snow 
depth 

R2 0.75 0.75 n.a. n.a n.a. n.a. n.a. n.a. n.a. n.a. 

ME -0.1 -0.06 n.a. n.a n.a. n.a. n.a. n.a. n.a. n.a. 

LAI R2 0.65/0.
51 

0.53 n.a. n.a 0.36/0.
31 

0.33 0.75/0.
69 

0.61 0.82/0.
76 

0.61 

ME 0.00 0.11 n.a. n.a 0.00/ 
−0.61 

−1.49 0.00 0.12 0.00 0.05 

Above 
ground 
living 
biomass 

R2 n.a. n.a. n.a. n.a 0.02/0.

00 

0.00 0.31/0.
26 

0.24 0.47/0.
43 

0.32 

ME n.a. n.a. n.a. n.a 0 −112 0/−20 −21 0/−36 −48 

Root 
biomass 

 

R2 n.a. n.a. n.a. n.a 0.28/ 
0.07 

0.01 n.a. n.a. n.a. n.a. 

ME n.a. n.a. n.a. n.a 0.00 −282 n.a. n.a. n.a. n.a. 

n.a. not available 2 
 3 
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Figures 1 

 2 

Figure 1. Measured NEE from gapfilled time series. Positive values indicate CO2 emission, 3 

negative CO2 uptake by the ecosystem. 4 
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 1 

Figure 2. Stepwise parameter calibration. Boxes show the outcome of each step. Description 2 

for scenarios C1-C7 can be found in Table S8 in the supplement. 3 

 4 

 5 
  6 
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 1 

Figure 3. Simulated and measured Reco (positive) and GPP (negative) fluxes and accumulated 2 

NEE for one selected set of parameter values (C1) common between all sites. Note the 3 

different scales. 4 
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 1 
Figure 4. Dependencies between the parameters for decomposition rate and saturation activity 2 

for the different sites, based on additional multiple runs. 3 

 4 

 5 

Figure 5. Obtained distributions of parameter values as constrained by additional multiple 6 

runs (calibration step III). Ranges for kl1 and εL are not shown due to their interactions with 7 

several parameters. Coloured bars show the range of the 10 runs with the best performance for 8 
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each validation variable. Prior ranges are indicated by the frame around the bar. Black dash is 1 

the value chosen for the common configuration C1. 2 

 3 

Figure 6. Values for the parameters decomposition rate (a) and light use efficiency (b) and 4 

resulting model performance (c, d) when applying various single value representations of 5 

parameters (C1-C7, see Tab. S8 in the supplement).  6 

 7 

 8 

 9 

 10 

Figure 7. Decomposition rates of fast pools (kl) and calculated rates of total organic matter 11 

decomposition if only one pool was used (ktot) for each site and each layer 12 

 13 


