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Abstract 1 

The forest, savanna, and grassland biomes, and the transitions between them, are 2 

expected to undergo major changes in the future, due to global climate change. 3 

Dynamic Global Vegetation Models (DGVMs) are very useful to understand vegetation 4 

dynamics under present climate, and to predict its changes under future conditions. 5 

However, several DGVMs display high uncertainty in predicting vegetation in tropical 6 

areas. Here we perform a comparative analysis of three different DGVMs (JSBACH, 7 

LPJ-GUESS-SPITFIRE and aDGVM) with regard to their representation of the 8 

ecological mechanisms and feedbacks that determine the forest, savanna and grassland 9 

biomes, in an attempt to bridge the knowledge gap between ecology and global 10 

modelling. Model outcomes, obtained including different mechanisms, are compared to 11 

observed tree cover along a mean annual precipitation gradient in Africa. By drawing 12 

on the large number of recent studies that have delivered new insights into the ecology 13 

of tropical ecosystems in general, and of savannas in particular, we identify two main 14 

mechanisms that need an improved representation in the compared DGVMs. The first 15 

mechanism includes water limitation to tree growth, and tree-grass competition for 16 

water, which are key factors in determining savanna presence in arid and semi-arid 17 

areas. The second is a grass-fire feedback, which maintains both forest and savanna 18 

occurrences in mesic areas. Grasses constitute the majority of the fuel load, and at the 19 

same time benefit from the openness of the landscape after fires, since they recover 20 

faster than trees. Additionally, these two mechanisms are better represented when the 21 

models also include tree life stages (adults and seedlings), and distinguish between fire-22 

prone and shade-tolerant forest trees, and fire-resistant and shade-intolerant savanna 23 

trees. Including these basic elements could improve the predictive ability of the 24 

DGVMs, not only under current climate conditions but also and especially under future 25 

scenarios. 26 

 27 

1 Introduction 28 

Savannas cover about a fifth of the Earth land surface, and have wide socioeconomic 29 

importance regarding land use and biodiversity (Scholes, 2003). Savannas are the 30 

central biome in the transition between grasslands and forests, and they are 31 

characterized by the coexistence of two types of vegetation: trees (i.e. woody 32 
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vegetation), and grasses (i.e. grasses and herbs). In most of the savanna ecosystems, we 1 

observe highly shade intolerant and fire tolerant C4 grasses and C3 trees. This savanna 2 

definition is generally valid, with the exception of a few regions (e.g. the Neotropical 3 

cerrado where C3 grasses dominate, see Lloyd et al., 2008, Ratnam et al. 2011). For a 4 

long time ecologists have been fascinated by savannas, because trees and grasses 5 

coexist, while competing mainly for the same resource, namely water, which is the main 6 

limiting factor (Sankaran et al., 2004; Scholes and Archer, 1997; Walter, 1971). 7 

Classical ecological theory, such as the competitive exclusion principle, predicts that 8 

only one vegetation type can survive in these conditions (Hutchinson, 1961; Tilman, 9 

1982). To solve this conundrum, numerous experimental and modeling studies explored 10 

the nature of tree-grass competition and coexistence (e.g. Higgins et al., 2000; House et 11 

al., 2003; Sankaran et al., 2004; Scholes and Walker, 1993; Walker and Noy-Meir, 12 

1982). Grasses can outcompete trees in the driest environments, where tree growth is 13 

water-limited (Higgins et al., 2012), and they have a particularly strong competitive 14 

effect on tree seedlings, as grasses and tree seedlings compete for water in the same 15 

surface layer (Baudena et al., 2010; Bond, 2008; February et al., 2013; Sankaran et al., 16 

2004; Wakeling et al., 2011; Yin et al., 2014b). In less arid conditions, however, adult 17 

trees can potentially grow deeper roots and reach deeper water than grasses (Kulmatiski 18 

and Beard, 2013; Walter, 1971; Ward et al., 2013), although overlap between grass and 19 

tree roots can be high in some savannas (e.g. February and Higgins, 2010; Higgins et 20 

al., 2000; House et al., 2003).  21 

In addition to water availability, fire is an important driver of tree-grass dynamics. C4 22 

grass biomass enhances fire spread in open ecosystems, due to its high flammability. At 23 

the same time, grasses benefit from fire because they recover faster than trees, and 24 

profit of the open spaces after fire, thus originating a positive feedback mechanism that 25 

enhances savanna formation and presence (as shown by e.g. long term fire-exclusion 26 

experiments, Higgins et al., 2007, or model studies, e.g. Higgins et al., 2008; van 27 

Langevelde et al., 2003; see also Hoffmann et al., 2012). Fires may also limit tree 28 

seedling recruitment and growth, thus reducing tree dominance further (e.g. Hanan et 29 

al., 2008; Higgins et al., 2000). This grass-fire feedback is characteristic of tropical 30 

savannas and grasslands, while in most of the other biomes woody species produce 31 

most fuel for fires (e.g. boreal forests, Bonan and Shugart, 1989). Fire is essential to 32 

savanna persistence in wetter areas, which would be forested otherwise. The grass-fire 33 
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feedback is reinforced by the differences between savanna and forest trees. In contrast 1 

to savanna trees and grasses, forest trees are fire prone and shade tolerant, adapted to 2 

persist in conditions of low light availability and in absence of fire (Ratnam et al., 2011; 3 

Rossatto et al., 2009). Thus, when fires are absent and water supply is sufficient, forest 4 

trees outcompete grasses and savanna trees because of light limitation, while if fires are 5 

active, savanna trees persist but fires and shade intolerance limit their cover, keeping 6 

savannas open (Hoffmann et al., 2012). This feedback, which we define as “vegetation-7 

fire feedback”, and which is an extended description of the abovementioned grass-fire 8 

feedback, possibly leads to bistability of forest and savanna in mesic regions (e.g. van 9 

Nes et al., 2014; Staver and Levin, 2012).  10 

Savannas are expected to undergo major changes in the future due to increasing 11 

temperature and CO2 concentration, modified rainfall patterns, and subsequently 12 

changed variability in fire regimes (Intergovernmental Panel on Climate Change - 13 

IPCC, 2007). In recent years, an increase in woody cover has been observed in savannas 14 

all over the world (e.g. Bowman et al., 2010; Buitenwerf et al., 2012; Donohue et al., 15 

2013; Ward, 2009; Wigley et al., 2010). Several studies tried to explain wood expansion 16 

by overgrazing or decreasing fire frequency, which would enhance grass mortality and 17 

thus favor woody vegetation (Scholes and Archer, 1997). However, CO2 increase is 18 

probably one of the main causes of woody encroachment, leading to savanna 19 

expansions (e.g. at the expense of grasslands). As water use efficiency increases with 20 

CO2 (e.g. de Boer et al., 2011), thus decreasing the water need for grow, increased CO2 21 

concentration leads to a shift in tree-grass competition for water, possibly favoring C3 22 

trees over C4 grasses (Bond and Midgley, 2000; Bowman et al., 2010; Kgope et al., 23 

2010; Polley et al., 1994; Wigley et al., 2010). In African savannas, paleo-ecological 24 

evidence of the last glacial period, as well as observations of the last 50-100 years, 25 

suggests that increasing CO2 coincides with an increase in savanna woody plant growth 26 

(Bond et al., 2003; Scheiter and Higgins, 2009). These transformations could have 27 

larger effects on global biogeochemical cycles and precipitation than for any other 28 

biome, due to the large extent and productivity of savannas (IPCC, 2007; Snyder et al., 29 

2004). 30 

Dynamic Global Vegetation Models are an important tool to understand large scale 31 

vegetation dynamics, and they are considered important also to study the forest, 32 
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savanna, and grassland biomes, and their interactions within past, current and future 1 

climates (Higgins and Scheiter, 2012; Murphy and Bowman, 2012). Some DGVMs are 2 

part of Earth System Models (ESMs), where they describe the interactive role of the 3 

Earth land surface in the climate system. Given their global application, DGVMs 4 

necessarily keep the descriptions of vegetation dynamics simple. For example, they 5 

represent the enormous plant trait diversity of tropical regions through distinguishing 6 

only one or two plant functional types (PFTs). Nevertheless, they realistically reproduce 7 

the distribution of the majority of the world biomes (Fisher et al., 2010; Sitch et al., 8 

2003). However, projections of vegetation distribution by DGVMs are often uncertain, 9 

especially for the forest, savanna, and grassland biomes (Bonan et al., 2003; Cramer et 10 

al., 2001; Hely et al., 2006; Hickler et al., 2006; Sato et al., 2007; Sitch et al., 2008). 11 

This is probably a consequence of the fact that most DGVMs were not specifically 12 

designed for these tropical systems (House et al., 2003), and thus they do not include 13 

the specific internal feedbacks typical of these biomes (Moncrieff et al., 2013). 14 

Improving the DGVM representation of ecological processes under present climatic 15 

conditions is essential for projecting biome boundary shifts and climate change impacts 16 

into the future (Beerling and Osborne, 2006; Murphy and Bowman, 2012; Sitch et al., 17 

2008). 18 

To evaluate why DGVMs may have difficulties predicting the distribution and 19 

dynamics of savannas, we will analyze three DGVMs, with a particular emphasis on the 20 

representation of what in the following we call the “ecological interactions” between 21 

grasses and trees, i.e. the most important tree-grass competition mechanisms, and the 22 

feedbacks with their environment. While physiological processes are often included in 23 

detail into DGVMs, the ecological interactions are not represented with the same 24 

accuracy in many models, despite their potentially large influence on the DGVM 25 

outcomes (e.g. Fisher et al., 2010; Scheiter et al., 2013). Reflecting on the current 26 

ecological understandings about savannas, we will describe whether and how the key 27 

mechanisms are included in current DGVMs. We chose to analyze three different 28 

DGVMs: JSBACH (Brovkin et al., 2009; Raddatz et al., 2007; Reick et al., 2013), LPJ-29 

GUESS-SPITFIRE (Smith et al., 2001; Thonicke et al., 2010) and aDGVM (Scheiter 30 

and Higgins, 2009). JSBACH represents a DGVM as typically used in ESMs (and 31 

representative for most models included in the current IPCC coupled model inter-32 

comparison project, CMIP5). LPJ-GUESS additionally includes the demography of 33 
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PFTs, which is likely to affect competition dynamics, and it includes SPITFIRE, i.e. a 1 

new specific module to represent fire dynamics. Finally, aDGVM represents a new class 2 

of DGVMs, including functional variation within PFTs (e.g., phenology, allocation and 3 

physiology adapt to changing environmental conditions). The aDGVM was specifically 4 

designed for African vegetation and savannas. In the following, we will focus on the 5 

African continent, where savannas occupy large areas, and where all of the three models 6 

have been applied (Brovkin et al., 2009; Hickler et al., 2009; Higgins and Scheiter, 7 

2012; Lehsten et al., 2009; Scheiter and Higgins, 2009). Focusing on one continent has 8 

also the advantage that the mechanisms driving the dynamics are more likely to be 9 

similar (Lehmann et al., 2014). We will compare the model outputs with observations 10 

from field and remote sensing data (Hirota et al., 2011; Sankaran et al., 2005; Staver et 11 

al., 2011). We attempt to bridge the knowledge gap between our ecological 12 

understanding and the representations of vegetation in global vegetation models. Our 13 

aim is to determine which mechanisms need to be included or improved in the 14 

representation of ecological interactions of existing DGVMs in the forest, savanna, and 15 

grassland biomes, to ameliorate the current vegetation model predictions, as well as 16 

their projections under future (e.g. climate change) scenarios. 17 

 18 

2 Methods 19 

2.1 Model descriptions 20 

DGVMs were developed to quantify transient responses of terrestrial ecosystems to 21 

past, present and future climates, and this required an inclusion of modeling vegetation 22 

dynamics in addition to biogeochemical processes (Cramer et al., 2001; Pitman, 2003; 23 

Prentice et al., 2007). To account for processes at subgrid-scale, DGVMs often assume 24 

fractional vegetation cover within the model grid cell (tiling, or mosaic approach). 25 

Vegetation description is based on PFTs, which aggregate and represent species with 26 

similar functions. Biomes are then represented by a mixture of PFTs, such as evergreen 27 

and deciduous, broadleaved and needleleaved trees, shrubs, C3 and C4 grasslands, which 28 

dominate in a particular climate. Savannas are typically simulated as a mixture of 29 

tropical, broadleaved, deciduous trees (“savanna trees” here after), and mostly C4 30 
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grassland, while forests have mostly tropical, broadleaved, evergreen trees (“forest 1 

trees” here after). 2 

DGVMs in general have a quite standard set of assumptions to represent plant 3 

physiology, including photosynthesis and biomass production. Most of them calculate 4 

Gross Primary Production (GPP) by a coupled photosynthesis-transpiration scheme and 5 

estimate autotrophic respiration as a function of temperature. Net Primary Production 6 

(NPP) is dependent on the climate and CO2, and scaled up to the plant or PFT level by 7 

building up below and above ground carbon and leaf area (e.g., Sitch et al., 2003). 8 

Processes affecting PFT composition, such as competition for resources, mortality, and 9 

demography (i.e. what we call here the ecological interactions) are included into 10 

DGVMs as separate modules that interact with the physiological and phenological 11 

modules.  12 

For the purpose of this paper, we will focus on the description of how the ecological 13 

processes relevant for tropical vegetation dynamics are included in the three selected 14 

DGVMs (JSBACH, LPJ-GUESS-SPITFIRE and aDGVM). Only the physiological 15 

aspects relevant for the difference in PFT composition in grasslands, savannas and 16 

forests will be described. JSBACH is part of an ESM, and was designed to represent the 17 

interactive role of vegetation and land surface in the climate system. While LPJ-GUESS 18 

has been included in an ESM in several studies, LPJ-GUESS-SPITFIRE has never been 19 

used in such contest, and the same holds for aDGVM. Both models are so far used only 20 

“offline”, i.e. they are driven by external forcing, such as climate and CO2 changes, 21 

without being coupled to a general circulation model, and thus without feeding back to 22 

the climate. The models used in this study have their intrinsic limitations, for example 23 

they all neglect nutrient cycling. A summary of the ecological interactions important in 24 

the tropical areas and included into the models is presented in Table 1. 25 

2.1.1 JSBACH (DYNVEG) 26 

DYNVEG (Brovkin et al., 2009; Reick et al., 2013) is the submodel for vegetation 27 

dynamics implemented in the land surface component JSBACH (Raddatz et al., 2007) 28 

of the Max Planck Institute - Earth System Model (MPI-ESM, (Giorgetta et al., 2013). 29 

DYNVEG groups its various PFTs into a grass class (C3 and C4 grasses), and a woody 30 

class (trees and shrubs). Within the woody class, DYNVEG distinguishes between two 31 
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PFTs for tropical trees, with different photosynthetic abilities, which nonetheless do not 1 

have different fire or shade tolerances, so they do not correspond to what we call 2 

savanna and forest tree in this paper. DYNVEG assumes dominance of the woody over 3 

the grass class, i.e., trees have competitive advantage and typically outcompete grasses. 4 

Within a class, the competition among PFTs is indirect via NPP: a PFT with higher NPP 5 

outcompetes PFTs with lower NPP. All PFTs share the same soil water bucket, and 6 

there is no separation of root zones between woody and grass classes. Woody and grass 7 

classes compete for newly available habitable space, with woody types outcompeting 8 

grasses in the absence of disturbances. The space available for colonization can be only 9 

part of the total area, i.e. some parts of the habitat are considered inhospitable. This 10 

fraction constitutes a sort of resource limitation to tree development, since it is 11 

calculated as a function of the average NPP over the last years of simulations, which in 12 

turn depends on water (and other resource) availability (Reick et al., 2013). JSBACH 13 

overestimates GPP and NPP in water-stressed conditions (Dalmonech and Zaehle, 14 

2013), which partly explains an overestimation of tree cover fraction in drylands 15 

(Brovkin et al., 2013). Elevated CO2 concentration increases water use efficiency of all 16 

PFTs.  17 

DYNVEG includes a simple representation of fire disturbance. The fraction of burned 18 

area increases with higher amount of litter (i.e. fuel), mostly produced by woody 19 

vegetation, and decreasing air humidity (a substitute of litter moisture). As a result, 20 

savannas in North Africa with relatively low air humidity and high productivity are 21 

frequently burned. After the fire, the burned area is quickly occupied by grasses, while 22 

woody cover is recovering slowly. Thus, in these transient dynamics, grasses are 23 

indirectly slowing down tree growth. Fire disturbance is the main process that keeps a 24 

mixture of trees and grasses in drylands.  25 

2.1.2 LPJ-GUESS-SPITFIRE  26 

LPJ-GUESS (Smith et al., 2001) was developed to incorporate forest age structure into 27 

LPJ (Sitch et al., 2003), thus simulating gap model behavior and including the 28 

competition of different age cohorts for light and water. For each grid cell, LPJ-GUESS 29 

simulates a number of replicate patches. For the tropical regions, LPJ-GUESS results in 30 

one type of (C4) grasses, and two types of tree PFTs, savanna and forest trees, where the 31 

former are fire tolerant and shade intolerant, and the latter are fire intolerant and shade 32 
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tolerant. In LPJ-GUESS, trees and grasses use common water in a superficial soil layer 1 

(0.5 m deep), but trees have part of their roots in a deeper soil layer (1 m). At high water 2 

availability, trees outcompete grasses by limiting light availability. 3 

The fire module SPITFIRE (SPread and InTensity of FIRE, Lehsten et al., 2009; 4 

Thonicke et al., 2010) was coupled to LPJ-GUESS to include the role of vegetation 5 

fires. The effect of fire, simulated by SPITFIRE, varies for the different demographic 6 

stages (or height classes). For each fire, fuel load, wind speed and a proxy for fuel 7 

moisture are used to calculate the rate of spread of a potential fire. The fuel load 8 

depends on NPP and decomposition rates, which are both related to climate. Grassy 9 

fuels are more flammable (due to their lower fuel bulk density), but trees can 10 

accumulate more fuel over years without fire, since they decompose more slowly. 11 

Hence if burned at high to medium fire frequency, grasslands provide more fuel than 12 

forests, while if forests are allowed to accumulate fuel over longer time periods, they 13 

result in higher fuel loads than grasslands. All fires remove the above ground biomass 14 

of all grasses. Low intensity fires can cause high mortality of all young trees, while the 15 

effects on tall trees are limited for savanna trees, and more pronounced for forest trees. 16 

In general, damage to trees may be underestimated by SPITFIRE in the current 17 

parameterization. In fact, frequent fires lead to high mortality of young (small) age 18 

cohorts, while the direct effects on old age cohorts are very limited, and only large fires 19 

can cause a high mortality even for highly resistant savanna trees. Further details on the 20 

implementation of fire effects on vegetation can be found in Lehsten et al. (2009).  21 

2.1.3 aDGVM 22 

The aDGVM (Scheiter and Higgins 2009) is explicitly designed to study tree-grass 23 

dynamics in savannas. While the original version of the model only simulates savanna 24 

trees and C4 grasses (Scheiter and Higgins, 2009), an updated version, used for the 25 

current paper, simulates C4 grasses, C3 grasses, fire-resistant, shade intolerant, savanna 26 

trees and fire-sensitive, shade tolerant forest trees (Scheiter et al., 2012). The model 27 

uses an individual-based structure to represent trees. Tree recruitment occurs from seed, 28 

and tree seedlings compete with grasses more directly than adult trees. 29 

Plants compete mostly for water and light. Light competition is modeled by considering 30 

the light available to grasses below and between canopies. Hence, once a vegetation 31 
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stand attains a high tree LAI, grass-growth is light-limited. In addition, seedlings and 1 

small trees are shaded by grasses and by adult trees. Savanna trees suffer more from 2 

light limitation than forest trees, which are more shade tolerant. Plants extract water 3 

from different soil layers, depending on their rooting depth, which increases with the 4 

individual root biomass, until reaching maximum value, typically parameterized as 5 

being deeper for trees than for grasses. This allows trees to have exclusive access to 6 

water in deep soil layers. A simple bucket scheme is used to simulate water extraction 7 

and percolation into deeper soil layers. The extent to which soil moisture limits 8 

photosynthesis is calculated as a function of soil moisture in the layers in which the 9 

plant has roots. Hence, rooting depth, the amount of water transpired, and drought 10 

tolerance (i.e. the ability to withstand a low soil water content) determine the outcome 11 

of competition for soil moisture.  12 

Fire intensity in the aDGVM is a function of the grass fuel load, its moisture content 13 

and wind-speed (following Higgins et al., 2008). Fire spreads when the fire intensity 14 

exceeds a minimum intensity, when a fire ignition event (for example lightning strike) 15 

occurs, and when ignition probability is exceeded. Days when ignitions occur are 16 

random, the number of ignition events per year is linked to tree cover. Fire is assumed 17 

to consume a large proportion of above ground grass biomass. Aboveground grass 18 

biomass burns as a function of the fire intensity. The aDGVM models the probability of 19 

stem biomass combustion of individual trees (so-called “topkilled” trees, which remain 20 

alive after fire and can resprout from their roots) as being a logistic function of stem 21 

height and fire intensity (following Higgins et al., 2000). This function varies with tree 22 

type. Topkill rates are higher for forest than for savanna trees, and savanna trees have 23 

higher re-sprouting rates than forest trees, which can be killed by a sequence of fires. 24 

Fire affects tree mortality only indirectly, by influencing the carbon balance of topkilled 25 

trees. The fire sub-model and the topkill model together determine whether trees remain 26 

trapped in a cycle of topkill and resprouting, or whether they can attain larger, fire-27 

resistant sizes. Scheiter and Higgins (2009) illustrated that the aDGVM simulates the 28 

current distribution of African biomes well, and that it can simulate biomass observed in 29 

a longterm fire manipulation experiment in the Kruger National Park, South Africa 30 

(Higgins et al., 2007). 31 
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2.2 The model experiment setups 1 

To simulate current conditions, transient simulations were performed where CO2 2 

increased to 390 ppm. The JSBACH run used here was a pre-existing CMIP5 historical 3 

simulation under transient forcing from 1850 to 2005, with horizontal resolution of 4 

1.9x1.9o (Giorgetta et al., 2013). LPJ-GUESS-SPITFIRE was driven by a combination 5 

of TRMM (Tropical Rainforest Measuring Mission) data for precipitation and NCEP 6 

data (Kalnay et al., 1996) for temperature and radiation (for details see Weber et al., 7 

2009). The simulation was run with a spin up of 1000 years, and afterwards the 8 

simulation was performed from 1960 to 2007, with resolution of 1x1o. Fire frequency 9 

was prescribed at each simulated cell using the MODIS MCD45A burned area product 10 

MCD 45 (Roy et al., 2005). LPJ-GUESS-SPITFIRE simulated 100 replicate patches for 11 

each of the 1o cells, and each patch had a probability to burn related to the proportion of 12 

burned area calculated from the MODIS burned area product. If the fire is supposed to 13 

start but the fuel moisture is high, the fire starts instead on the driest day within a 10-14 

day period. Fires spread only if their potential rate of spread was above a certain 15 

threshold.  Since the patch sizes of each of the replicates were below the average fire 16 

size, we simulated the burning of the whole replicate (see Lehsten et al., 2009, for 17 

further details). All 100 replicates of the patch were finally averaged to get a 18 

representative value for the fractional tree cover. The aDGVM used monthly mean 19 

climate data from the CRU database (Climatic Research Unit, New et al., 2000), and 20 

model resolution was 1x1o. A 100 year model spin-up was conducted first, to ensure 21 

that the model was in equilibrium with the environmental conditions, then vegetation 22 

was simulated until 2010. Tree cover was calculated as the sum of the canopy areas of 23 

all trees higher than 0.5 m, without neighbouring trees that shade (and hide) the tree 24 

itself. Tree cover in aDGVM could reach 100% because of the individual canopy 25 

overlaps. 26 

2.3 Observational datasets 27 

For the comparison between data and models, we used two different types of tree cover 28 

observational datasets that have been recently used to study savanna dynamics. One 29 

dataset is a collection of tree cover data from savanna field sites from Africa (Sankaran 30 

et al., 2005), while the other is derived from remote sensing (MODIS, as used e.g. in 31 
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Hirota et al., 2011; Staver et al., 2011b). In both cases, we selected only the data points 1 

between 35° S and 15° N (following Hirota et al., 2011). 2 

The dataset from Sankaran et al. (2005) includes data from 854 field sites across Africa. 3 

They gathered data from several sources, with no recent human influence, not situated 4 

in riparian or seasonally flooded areas, and where vegetation was sampled on a 5 

sufficiently large area (> 0.25 ha for plot measurements and > 100m for transect 6 

sampling). Here, we used projected woody cover and mean annual precipitation. The 7 

latter included estimates from field measurements and regional rainfall maps, and from 8 

fitted climatic grids (see Sankaran et al., 2005 for details). See Fig. 1A for a 9 

visualization of the tree cover as a function of mean annual rainfall. 10 

The tree cover dataset, derived from remote sensing data, was the result of two 11 

combined databases. Tree cover data were obtained from the MODIS woody cover 12 

product (MOD44B), developed by Hansen et al. (2003). This product used MODIS 13 

images between Oct 2000 and Dec 2001 to calculate the fraction of tree cover, with a 14 

spatial resolution of 500m. To exclude areas highly influenced by humans, we 15 

combined this data with the global land cover map (GlobCover 2009) with a high 16 

spatial resolution (300m). We excluded land cover types that were classified as “Post-17 

flooding or irrigated croplands”, “Rainfed croplands”, “Mosaic Cropland (50-70%) / 18 

Vegetation (grassland, shrubland, forest) (20-50%)”, “Mosaic Vegetation (grassland, 19 

shrubland, forest) (50-70%) / Cropland (20-50%)”, “Artificial surfaces and associated 20 

area (urban areas > 50%)”, “Water Bodies” and “Permanent snow and ice”. The mean 21 

annual precipitation was obtained by averaging 42-year (1961-2002) precipitation 22 

record from the CRU project (CRU TS 2.1) with 0.5o resolution. See Fig. 1B for an 23 

illustration of the resulting natural woody cover as a function of mean annual 24 

precipitation. We must note here that despite its wide use, this dataset for tree cover has 25 

received some criticism, since: maximum tree cover never reaches 100%, even for 26 

tropical forests, shrub and small woody plants are under-detected (Bucini and Hanan, 27 

2007), and the observed bimodality between forest and savanna in certain precipitation 28 

ranges (Hirota et al., 2011; Staver et al., 2011) might possibly be induced by the 29 

algorithm used for vegetation classification (Hanan et al., 2014).  30 
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2.4 Model comparison to observations 1 

As for the data, for the three models we analyzed the simulated tree cover output (i.e. all 2 

woody vegetation) as a function of the corresponding mean annual rainfall conditions, 3 

and we select only the points in the African continent between 35° S and 15° N. We 4 

masked land use, and we used both vegetation and precipitation averaged over thirty 5 

years. To evaluate the effect of rainfall on the upper limit of tree cover, following e.g. 6 

Sankaran et al. (2005), we used nonlinear quantile regression (Koenker and Park, 1996), 7 

as implemented in the ‘quantreg’ library of the R program. We used 0.90 to 0.99 8 

quantiles and we chose the following nonlinear function: 9 

y = a x2

b+ x2
,          (1) 10 

where x is the mean annual rainfall, y the estimated quantile regression for percent tree 11 

cover, a the maximum tree cover (setting a=100%, while b was estimated by the 12 

regression). 13 

In the models, the precipitation ranges where grasslands, savannas and forests were 14 

simulated resulted not only from the different representations of vegetation dynamics, 15 

but also from the way climate was included. aDGVM and LPJ-GUESS-SPITFIRE were 16 

forced with (different) climate data, while JSBACH was coupled to an atmospheric 17 

model. Both the rainfall (NCEP, CRU and TRMM) datasets and the simulated climate 18 

have inevitable biases, and are hard to compare with each other. Therefore, precipitation 19 

estimations were not totally comparable, and for this reason, we will compare the 20 

models in the parameter space (i.e., vegetation cover versus mean annual rainfall) and 21 

not in the geographical space. Also, we will not discuss the exact mean annual rainfall 22 

values at which forest, savanna and grassland are observed, but we mostly refer to 23 

ranges of low, medium or high mean annual rainfall. For these ranges, we will perform 24 

a qualitative comparison of the modeled and observed data in the parameter space (i.e. 25 

maximum values, spread, distribution). 26 

In addition to mean annual rainfall, other factors such as temperature (Higgins and 27 

Scheiter, 2012), or temporal distribution of rainfall, are known to be important for 28 

tropical grasslands, savannas and forests too. Rainfall heterogeneity, intermittency, and 29 

seasonality affect water availability (D’Onofrio et al., 2014) and fire return times, and 30 
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are very important predictors of savanna/forest distribution (Lehmann et al., 2011), with 1 

rainfall seasonality reducing growth rates (e.g. limiting water availability, Sarmiento, 2 

1984), influencing root-shoot biomass ratio and local cover (Yin et al., 2014a) and 3 

increasing fire frequency (Archibald et al., 2009). Nevertheless, these factors have not 4 

yet been thoroughly examined in many ecological studies, possibly also because of lack 5 

of accurate rainfall datasets in these areas. Therefore, in the following, we will focus 6 

only on mean annual rainfall, whose importance has extensively been studied. We 7 

separately evaluate arid and semi-arid savannas (Sect. 3.1) and humid savannas and 8 

forests (Sect. 3.2), analyzing also whether and how the ecological interactions are 9 

included in the different models. Finally, we discuss the effect of expected future 10 

climatic changes on the outcome of tree-grass competition in the three models (Sect. 11 

3.3). 12 

 13 

3 Results and Discussion  14 

3.1 Arid and semi-arid savannas and grasslands: the role of water 15 

limitation 16 

In the drier African savanna regions, i.e. with mean annual precipitation lower than a 17 

value estimated between 650 mm y-1 (Sankaran et al., 2005, see also Fig. 1A) and 1000 18 

mm y-1 (Staver et al., 2011, see Fig. 1B), observed tree cover displays a maximum value 19 

that is lower than full cover. In this range, for a given annual rainfall, multiple values of 20 

tree cover are observed, representing either grasslands or more or less closed savannas, 21 

but full cover is never reached. The maximum tree cover increases with mean annual 22 

rainfall (see 90th quantile regression lines in fig. 1; similar results are obtained with the 23 

99th quantile regression lines, not shown), i.e. it depends on water availability. Indeed, 24 

the main mechanisms governing the ecological interactions include: i) water limitation 25 

on tree growth (Higgins et al., 2012); ii) tree competition with grasses, which have an 26 

especially strong competitive impact on tree seedlings (February et al., 2013; Salazar et 27 

al., 2012); iii) fires further reducing woody cover, although savannas are observed 28 

anyway, even if fires were excluded, as shown e.g. with fire exclusion experiments 29 

(Higgins et al., 2007). 30 
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At a first glance, the relation between tree cover and mean annual rainfall simulated by 1 

the models (Fig. 2) is similar to that observed in the data (Fig. 1). In JSBACH output, 2 

the maximum tree cover increases between zero and 800 mm y-1 approximately, where 3 

it reaches its largest cover (see 90th quantile regression curve in Fig. 2A; similar results 4 

are obtained with the 99th quantile regression lines, not shown). This increase is mostly 5 

due to the fact that all the PFTs can colonize only a part of the space, which is 6 

calculated dynamically and increased with water availability (although indirectly, via 7 

NPP). In addition, fire related mortality increases with decreasing air humidity, thus 8 

representing another source of water-related limitation in drier areas. At the same time, 9 

the limitation to tree maximum cover is not likely to be the result of competition with 10 

grasses, since trees are assumed to outcompete grasses, and they are affected by some 11 

sort of grass competition at low water availability only temporarily after e.g. a fire (see 12 

also Fig. 3B). JSBACH has a tendency to overestimate maximum tree cover at very low 13 

values of mean annual rainfall (<100 mm y-1), as this model is known to overestimate 14 

GPP and NPP (Brovkin et al., 2013). 15 

In the LPJ-GUESS-SPITFIRE model output (Fig. 2B), almost no tree cover is observed 16 

until mean annual rainfall is about 300 mm y-1. In this precipitation range, modeled 17 

trees are water limited and outcompeted by grasses. Compared to the observations, this 18 

model seems to limit tree cover in this precipitation range too strongly. Between about 19 

300 and 900 mm y-1 annual rainfall, the maximum vegetation cover in LPJ-GUESS-20 

SPITFIRE increases until it reaches a maximum value (about 90% tree cover, see 90th 21 

quantile regression line in Fig. 2B), partly due to water limitation that allows tree-grass 22 

coexistence (between about 350 and 650 mm y-1, Arneth et al., 2010), and partly due to 23 

fires, which further limit tree cover. 24 

In the aDGVM output, the tree cover displays a maximum value that grows with 25 

precipitation between zero and about 500 mm y-1 (Fig 2C). In this range, modeled trees 26 

are water limited, while grasses are better competitors in these drier conditions, thus 27 

further reducing the tree cover, which would be higher if the model were run without 28 

grasses (not shown). The aDGVM and LPJ-GUESS-SPITFIRE include differential 29 

rooting depths for individuals, depending on their root biomass, and therefore both 30 

models also represent water competition between grasses and tree seedlings. This 31 

competition is known to be important for tree-grass coexistence (Hanan et al., 2008; 32 
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Sankaran et al., 2004), while adult trees have deeper roots that make them better 1 

competitors in more humid environments (see Fig 3A and 3C respectively). 2 

3.2 Humid savannas and forests: the role of fire 3 

In more humid conditions, bimodality of vegetation cover below and above 60% is 4 

observed in the MODIS data for precipitation in a range between around 1000 and 2000 5 

mm y-1 (e.g. Hirota et al., 2011; Staver et al., 2011b, see also Fig 1B), i.e. clusters with 6 

low and high tree cover values are observed, corresponding to a bimodality of savanna 7 

and forest cover. Although the validity of this result still needs further investigation 8 

(Hanan et al., 2014), this bimodality has been related to the vegetation-fire feedback, 9 

possibly leading to bistability of savanna and forest in this range, as shown using simple 10 

models (e.g. van Nes et al., 2014; Staver and Levin, 2012). In brief, grass, particularly 11 

abundant in these wet areas, becomes an extremely good fuel in the dry season, which 12 

promotes fire occurrence (i.e. the grass-fire feedback, Higgins et al., 2008; Trollope, 13 

1984). When fire occurs, above ground biomass of all plants is removed. Established 14 

savanna trees and grasses can resprout after fire, but tree seedlings are subject to high 15 

mortality rates and many forest tree species cannot resprout. Together with grasses, 16 

which regrow quickly in the open space after fires, savanna trees benefit from removal 17 

of forest tree competitors, (Ratnam et al., 2011; Hoffmann et al., 2012) leading to a 18 

stable savanna biome at intermediate rainfall values. Yet, environmental conditions 19 

would allow forests in the absence of fire (e.g. Staver and Levin, 2012). Fig. 3A 20 

provides a schematic diagram of this feedback. At the highest end of the rainfall range, 21 

fires are totally suppressed and only forests are observed, since grass growth is inhibited 22 

by tree shade.  23 

The role of fire in maintaining savannas in humid environments is included in all of the 24 

models, although in different ways. At high precipitation, JSBACH tree cover output 25 

displays a constant maximum value (above about 800 mm y-1), but the data display 26 

considerable scattering below full tree cover (Fig 2A). In other words, the model 27 

predicts savannas and forests in this range, but the data do not display bimodality of 28 

high and low tree cover values (see Supplementary material, Appendix 1). This is a 29 

consequence of the fact that in this model fire is triggered more by trees than by grasses, 30 

since trees produce larger amounts of litter and thus of fuel. Fire favors grasses because 31 
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it opens the landscape by reducing the tree cover and generates space for them. Thus, 1 

fire creates a negative feedback because fewer fires occur when tree cover is lower (Fig. 2 

3B), thus preventing hysteresis and bistability in this model. 3 

LPJ-GUESS-SPITFIRE simulation results do not show any low tree cover value (e.g. 4 

below 50% cover) for rainfall higher than about 900 mm y-1(Fig. 2B). Therefore, quite 5 

surprisingly, this model does not predict any savanna in mesic environments. In the 6 

model, though fire frequency is prescribed from the satellite data, fire spread depends 7 

on fuel load (Fig. 3C) and fuel moisture, and thus unfavorable conditions might still 8 

prevent fires. Both grass and tree presence increases fire intensity, opening up space, 9 

and thus favoring grasses. This is not strictly a positive grass-fire feedback, because also 10 

grass-free areas can burn. Thus, as grasses are not fostered by a positive feedback with 11 

fire, they are always outcompeted by trees in LPJ-GUESS-SPITFIRE when water 12 

availability is high, and they do not survive above approximately 900 mm y-1. At the 13 

same time, this issue is also likely to be connected to fire intensity depending on fuel 14 

moisture. In this model, fire occurrence in a patch is calculated probabilistically from 15 

the proportion of burned area as determined from the remote sensing product. If fire 16 

occurs in a period of high fuel moisture, the intensity will be limited, thus having little 17 

effect on vegetation. This probabilistic approach is necessary because the temporal 18 

extent of the remote sensed data (now only ca. 10 years), used to generate the 19 

probability of burned area for each pixel, is much shorter than the extent of the climate 20 

data for which the model was run (ca. 100 years). 21 

In aDGVM, maximum tree cover values can reach full cover above about 500 mm y-1, 22 

but the points are still very scattered, and display some clustering at cover around 30-23 

60% for intermediate rainfall values (Fig. 2C). If we only select points in such rainfall 24 

range (e.g. between 800 mm and 1200 mm y-1), we observe that the tree cover 25 

distribution is bimodal (see Appendix 1; note that this conclusion is robust to different 26 

choices for the limits of the rainfall range). aDGVM includes explicitly the grass-fire 27 

feedback, which is reinforced by the difference between fire tolerant savanna trees and 28 

fire sensitive forest trees (Fig 3 A). When the forest trees suppress the savanna trees and 29 

the grasses through light competition, the result is a forest biome with low fire 30 

frequency or even fire suppression, primarily due to scarcity of (grass) fuel. At sites 31 

with regular fire, forest trees cannot persist, resulting in low forest tree cover and 32 
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intermediate savanna tree cover, with grasses colonizing the open spaces and fostering 1 

fire occurrence. This vegetation state represents a savanna biome. In a certain range of 2 

environmental (e.g. rainfall) conditions, a system initialized as a forest will not shift to a 3 

savanna, unless fire ignition probability is high, while a system initialized as a savanna 4 

will persist in the same state unless fire ignition probability is very low. As a 5 

consequence of including this positive feedback, experiments with the aDGVM show 6 

that fire suppression can lead to transitions and hysteresis between savanna and forest 7 

states (Higgins and Scheiter, 2012; Moncrieff et al., 2013).  8 

Finally, we note that at extremely high rainfall values, when water is not limiting and 9 

tree canopies close into a forest, both in LPJ-GUESS-SPITFIRE and in aDGVM trees 10 

exclude grasses through light competition (Fig. 2B-C). This mechanism is included only 11 

implicitly in JSBACH, and it acts along the whole precipitation gradient giving 12 

competitive advantage to trees in general.  13 

3.3 Effects of future climatic changes  14 

Hereafter we discuss results from two simple conceptual experiments (namely, 15 

increasing CO2 concentrations, and decreasing precipitation) to illustrate how the 16 

different representations of the ecological interactions in the three DGVMs could lead 17 

to different predictions of the state of the grassland-savanna-forest transition under 18 

future climatic changes.  19 

Expected increase in CO2 concentration in the future is likely to affect the outcome of 20 

tree-grass competition, mediating both important mechanisms we discussed so far, i.e. 21 

competition for water, and fires. Fire is expected to decrease under increased CO2 level 22 

because of the decrease in grass fuel load, given that C3 woody plants are favored over 23 

C4 grasses under elevated CO2 levels (Ehleringer et al., 1997). In JSBACH, higher CO2 24 

leads to higher productivity of grasses and trees, which in turn increases fire spread and 25 

hence introduces a negative feedback, dampening the increase of tree biomass. In 26 

aDGVM, CO2 fertilization promotes tree growth, and thus tree establishment in 27 

grasslands, transforming them into savannas or woodlands (with or without fire, 28 

respectively). So in contrast to JSBACH, aDGVM includes a positive feedback, leading 29 

to tree canopy closure in savannas, which, suppressing grass growth, reduces also fire 30 

activity, transforming them into woodlands and forests (Scheiter and Higgins 2009). 31 
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Due to this positive feedback, CO2 concentration can induce hysteresis effects on the 1 

vegetation states (Higgins and Scheiter 2012). LPJ-GUESS-SPITFIRE has an 2 

intermediate behavior between the other two models, because grass and woody 3 

vegetation contribute similarly to fuel formation. Also, since in this model fire 4 

frequency is prescribed from remotely sensed data, any effect of changes of CO2 levels 5 

on fire occurrence would be very limited, though there might be pronounced effects on 6 

resulting vegetation composition. 7 

Another consequence of climate change is a possible decrease in precipitation. This 8 

scenario also leads to different model behavior. In JSBACH and LPJ-GUESS-9 

SPITFIRE, drier conditions would lead to lower (woody) biomass productivity, but the 10 

impact on fire spread differs between these two models. JSBACH predicts no major 11 

effect on fire, as drier conditions would lead to higher fuel flammability, thus 12 

compensating for the impacts of the woody biomass decrease. In LPJ-GUESS-13 

SPITFIRE the decrease in productivity is dominant, and hence a strong decrease of fire 14 

frequency is expected (Lehsten et al., 2010). In aDGVM the strong positive feedback 15 

would lead to a magnification of the woody vegetation decrease, as lower precipitation 16 

leads to increased grass productivity (because of less competition with woody 17 

vegetation) and lower humidity, increasing the likelihood of fire occurrence.  18 

In summary, we expect that in JSBACH, LPJ-GUESS-SPITFIRE and aDGVM, savanna 19 

systems have quite different sensitivities to climate change, and their predictions on the 20 

effect of climate change on fire occurrence diverge substantially. Given the importance 21 

of fires for estimating the global carbon budget (Le Quéré et al., 2013), this is 22 

remarkable, and it illustrates clearly how representing the ecological interactions more 23 

or less accurately can lead in some cases to similar results under present conditions 24 

(where the models have been tuned), but their predictions can diverge substantially 25 

when the models are used for future scenarios.  26 

3.4 Other mechanisms influencing tropical savannas, grasslands and 27 

forests 28 

Up to now we considered water limitation and fires as the main drivers of grassland, 29 

savanna and forest distribution. Several additional factors can be important for 30 

vegetation dynamics, especially at the local scale. The first factor is herbivory. 31 
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Browsing (particularly by mega-herbivores in Africa) is known to have an important 1 

limiting effect on tree cover, similar to the effect of fire (e.g. Scheiter and Higgins, 2 

2012; Staver et al., 2012), while grazing can favor trees because it limits grass 3 

expansion (e.g. Sankaran et al., 2008). However, large herbivores seem not to be critical 4 

in determining forest and savanna distributions (Murphy and Bowman, 2012). 5 

Secondly, although it has been observed that savannas can be associated with nutrient 6 

poor soils (Lloyd et al., 2008), it is generally accepted that nutrient limitation does not 7 

explain the savanna-forest transition (Bond, 2010; Favier et al., 2012; Murphy and 8 

Bowman, 2012). For these reasons, and to avoid inconsistencies while evaluating 9 

different models, we only used DGVMs that did not include nutrient cycling.  Thirdly, 10 

vegetation tends to have local spatial dynamics and to feed back to the environment at 11 

much smaller spatial scales than the DGVMs resolution. These local spatial water-12 

vegetation interactions are strictly connected to vegetation resilience in arid and 13 

semiarid ecosystems (e.g. Rietkerk et al., 2004), and they can also influence the 14 

coexistence of trees and grasses in the most arid savannas (Baudena and Rietkerk, 2013; 15 

Nathan et al., 2013). Although the local scale is partly taken into account in some 16 

DGVMs by including individual based dynamics or tiling schemes (that represent 17 

different vegetation types and bare soil next to each other within the same cell), these 18 

assume a common use of soil and hydrological resources within the grid cell, thus not 19 

allowing to represent local, sub-grid mechanisms, which are not at all trivial to up-scale 20 

(Rietkerk et al., 2011). Finally, on the African continent the vast majority of fires is 21 

ignited by humans (Archibald et al., 2009; Saarnak, 2001), although their decisions on 22 

when to burn an area, as well as the fire spread and intensity, are still related to fuel 23 

composition (Govender et al., 2006). Humans maintain the grass-fire feedback, since 24 

they aim at keeping the land free from woody vegetation, and also because fire spread is 25 

favored by grass presence (Ratnam et al., 2011). Changes in land use have therefore 26 

strong influences on the current and future outcomes of tree-grass competition. Also, 27 

humans are expected to change their application of fire as a land use tool, as a 28 

consequence of changed environmental conditions. These elements are partly taken into 29 

account in some DGVMs (e.g. in LPJ-GUESS-SPITFIRE), but we do not consider them 30 

here for the purpose of this paper. 31 

 32 
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4 Concluding remarks 1 

Current ecological understanding identifies water limitation and grass-fire feedback as 2 

dominant mechanisms driving the forest-savanna-grassland transition in Africa. In arid 3 

and semiarid savannas, trees are water-limited, and the water competition with grasses 4 

is the key factor determining savanna existence. In these conditions, grasses compete 5 

especially fiercely with tree seedlings. In wetter areas along the climatic gradient, 6 

savannas are maintained by the presence of a grass-fire positive feedback. Fire spread is 7 

increased by grasses, which provide fuel load. Grasses re-grow faster than trees after 8 

fires, while tree recruitment is limited. Thus, trees do not close their canopies, leaving 9 

more free space for grasses. On the other hand, when trees manage to close their 10 

canopies, grasses are outcompeted because of light limitations, and because fire is 11 

suppressed. This grass-fire feedback is reinforced by the higher flammability of forest 12 

trees with respect to savanna trees. Both water limitations and fires act differently on 13 

tree adults and seedlings, which compete more directly with grasses and are the most 14 

sensitive stage in tree life.  15 

These mechanisms are to varying extent included in the three DGVMs we analyzed 16 

(JSBACH, LPJ-GUESS-SPITFIRE and aDGVM). Indeed, the three models predict the 17 

main features of the current tree cover along the mean annual rainfall gradient in Africa, 18 

as derived from ground and satellite observations. aDGVM output matches the 19 

observations better than the other two models. This is perhaps to be expected since this 20 

model is specifically designed for African vegetation and it includes more detailed 21 

representations of ecological interactions, especially the vegetation-fire feedback. For 22 

the other two models, the main differences between observations and model outputs are: 23 

i) JSBACH overestimates tree cover in dry areas (see also Brovkin et al., 2013); ii) LPJ-24 

GUESS-SPITFIRE does not show any savanna at medium to high annual rainfall rates; 25 

iii) both these DGVMs do not show bimodality of savannas and forests in humid areas. 26 

This latter point might feed the debate about whether bimodality between savanna and 27 

forest cover actually exists (see e.g. Hanan et al., 2014). Despite their reasonably good 28 

performances, not all the mechanisms included in JSBACH and LPJ-GUESS-SPITFIRE 29 

are fully appropriate to represent vegetation in the tropics and the subtropics. In 30 

JSBACH, competition between trees and grasses favors the former irrespectively of 31 

water availability, which is one of the reasons behind JSBACH tree cover 32 
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overestimation. At the same time, in this model, fire is fostered disproportionately by 1 

woody vegetation as compared to grasses, resulting in a negative feedback. This is 2 

responsible for observing savannas in larger parts of the rainfall gradients, and no 3 

savannas would be simulated without them. Although the three models display 4 

comparable outcomes under the current climate, the presence of a negative fire-5 

vegetation feedback in JSBACH, a positive feedback in aDGVM, and an intermediate 6 

behavior in LPJ-GUESS-SPITFIRE, leads to different predictions of fire frequency and 7 

effects under climate change scenarios between the three models. In JSBACH, the 8 

initial increase in woody vegetation, due to higher CO2 concentrations, would get 9 

dampened by the consequent increase in fire spread. Interesting in this perspective is 10 

that the sensitivity to shifts between forests and savannas is low for JSBACH, as 11 

negative feedbacks are more important, while in aDGVM the positive grass-fire 12 

feedback mechanism results in a large sensitivity to shifts of the different tree-grass 13 

systems. LPJ-GUESS-SPITFIRE has an intermediate behavior between the other two 14 

models, since grass and woody vegetation foster fire in a similar way. Also, in this 15 

model fires seem to be suppressed too easily by high humidity conditions, which cause 16 

savannas to be absent at medium-high annual rainfall values.  17 

Tree seedlings are the bottleneck stage of tree life in the forest-savanna-grassland 18 

transition (Salazar et al., 2012; Sankaran et al., 2004), and the two most important 19 

mechanisms we identified here,  i.e. water competition and limitation, and fires, tend to 20 

affect tree seedlings particularly strongly. Thus, including tree demography as in LPJ-21 

GUESS and the aDGVM, improves the representation of ecological interactions in the 22 

models. Also, representing forest and savanna trees with different flammability and 23 

shade tolerances (as in LPJ-GUESS and aDGVM) is beneficial, and they reinforce the 24 

positive grass-fire feedback, if included (as in aDGVM).  25 

Having in mind that DGVMs need to be kept as simple as possible, we conclude that the 26 

most important mechanisms to better represent the forest-savanna-grassland transition 27 

are i) how water limits tree growth and regulates tree-grass competition, and ii) the 28 

grass-fire feedback. Distinguishing between tree life stages and representing the 29 

different responses of forest and savanna trees, are less important features for the 30 

models, although they can considerably ameliorate the representation of the two main 31 

mechanisms. As parts of these mechanisms are already included in most DGVMs, 32 
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extensions should be relatively simple, but they would substantially improve the 1 

predictions of vegetation dynamics and carbon balance under future climate change 2 

scenarios. 3 
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Table 1. Models and their specifics concerning the tree-grass transition 

Model Specific 
for 
tropical 
vegetation 

Variables 
representing 
vegetation  

Distinction 
between 
savanna 
and forest 
trees 

Tree age 
structure 

Limiting 
resources for 
vegetation  

Stable state(s) 
(in absence of 
fires) 

How is fire represented? Mechanisms 
driving 
savanna  

Mechanisms driving 
forests/grasslands 
occurrence 

 

Would a CO2 
increase modify the 
tree-grass transition 
and how? 

Reference 

JSBACH/
DYNVEG 

No LAI, PFT fractions, 
carbon in 
vegetation pools 

No No Uncolonized 
space, 
hospitable land 
(water, 
indirectly via 
NPP) 

Dominant  
woody (tree, 
shrub) PFTs 

Fire is a function of air 
humidity and litter. Fires 
are mainly fostered by 
trees, which are also 
damaged by fire (negative 
feedback)  

Fires  Forests occur in 
absence of fires (at 
any climate), while 
grasslands appear at 
high frequency of fire 
occurrence, i.e. at 
very intense dryness 

Only indirectly (by 
changing litter 
availability for 
wildfires) 

Brovkin et 
al 2009, 
Reick et al. 
2013 

LPJ-
GUESS-
SPITFIRE 

No Individual based 
model. LAI, PFT 
fractions, carbon in 
vegetation pools 

 

Yes Yes Water and 
light 

Depending on 
climate (mainly 
precipitation), 
either forest or 
grassland is the 
stable state. 
Savanna is 
observed in a 
relatively small 
precipitation 
range. 

Fire is prescribed from 
remote sensing but its 
effects on vegetation 
depend on fuel availability 
and environmental 
conditions. Fires are 
fostered by both woody 
and grass biomass  

Fires, water 
competition 

Forests occur given 
sufficient 
precipitation, while 
grasslands appear at 
high frequency of fire 
occurrence, or low 
precipitation.   

Higher CO2 would 
benefit C3 vegetation 
(trees) as compared to 
C4 grasses. At the 
same time though, 
grasses and trees 
would produce more 
litter, which would 
increase fire intensity 
and hence might have 
negative effects on 
trees.    

Smith et al. 
2001, 
Thonicke et 
al. 2010  

aDGVM Yes Individual based 
model. 
Plant level: LAI, 
height, basal area, 
canopy area, 
biomass in 
different pools 
Stand level: LAI, 
PFT fractions, 
carbon in 
vegetation pools of 
different PFTs, 
basal area, tree 
cover 

Yes Yes Water, light, 
(space, via 
light 
competition) 

Depending on 
climate (mostly 
defined by 
precipitation): 
desert, 
grassland, 
savanna, forest  

Fire intensity is defined by 
fuel moisture and fuel 
biomass; fire ignition 
probability is a constant; 
fire removes aboveground 
grass biomass and, 
depending on height, 
aboveground tree biomass 
(topkill); vegetation can 
re-sprout. Grasses foster 
fire spread and profit from 
recurrent fires (positive 
feedback). 

Competition 
for water, fires  

Forests occur at high 
rainfall levels (where 
fire is not possible) 
and at mesic 
conditions when fire 
is absent; grasslands 
occur at more arid 
conditions when 
precipitation does not 
allow tree growth, 
and at more mesic 
conditions in the 
presence of fire. 

CO2 fertilization 
promotes tree growth 
and: (1) grasslands are 
transformed into 
savannas (2) tree 
canopy closure in 
savannas suppresses 
grass growth and fire 
activity, such that 
savannas are 
transformed into 
forests 

Scheiter 
and 
Higgins, 
2009, 
Scheiter et 
al. 2012 



 

 

 

 

 

33 

Figure captions 1 

Figure 1 2 

Tree cover as a function of mean annual rainfall (mm y-1). A) Savanna field data, reprinted 3 

from Sankaran et al. (2005); B) tree cover obtained from MODIS woody cover product (as 4 

e.g. Hirota et al., 2011), where anthropogenic land use is masked as described in the text. For 5 

clarity of representation, we selected only 0.05% of the data. For both databases, we selected 6 

only the data points between 35° S and 15° N in Africa. The dots are data; the continuous 7 

lines are the 90th quantile nonlinear regression (99th quantile not shown; see values of b 8 

coefficients in Tab. B1 in the Supplement). Notice that the field data (A) correspond only to 9 

savanna sites, and thus encompass a smaller rainfall range than the satellite data (B). 10 

 11 

Figure 2 12 

Model outputs for tree cover as a function of mean annual rainfall  (mm y-1) in Africa 13 

between 35° S and 15° N: A) JSBACH; B) LPJ-GUESS-SPITFIRE; C) aDGVM. The dots are 14 

data, the continuous lines are the 90th quantile nonlinear regression (99th quantile not shown; 15 

see value of b coefficients in Table B1 in the Supplement). 16 

 17 

Figure 3 18 

Schematic diagram of the main ecological interactions that determine the forest-savanna-19 

grassland transition, according to: A) Ecological theory, and the aDGVM; B) JSBACH; C) 20 

LPJ-GUESS-SPITFIRE. Light blue arrows represent positive effects, dark blue arrows 21 

negative effects. The aDGVM (A) was designed to include the key ecological mechanisms 22 

known from theory, namely: grasses increasing fire spread (positive feedback), distinction 23 

between forest and savanna trees (with fires damaging forest tree mostly, shade intolerant 24 

savanna seedlings and shade tolerant forest seedlings), separate resource competition between 25 

trees and grasses depending on their size (grasses and tree seedlings compete for the same 26 
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water, while adult trees outcompete grasses for both water and light).  JSBACH (B) includes 1 

fires as mainly fostered by tree litter, which are also mainly damaged by fire (negative 2 

feedback). Trees competitively exclude grasses, although temporarily after disturbances 3 

grasses also compete with them for the same water. LPJ-GUESS-SPITFIRE (C) is on one 4 

hand similar to the aDGVM, since it distinguishes tree life stages and it separate between 5 

savanna and forest trees, with analogous representation of water and light tree-grass 6 

competition. On the other hand, it includes a similar effect of tree and grass biomass in 7 

fostering fires.   8 
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