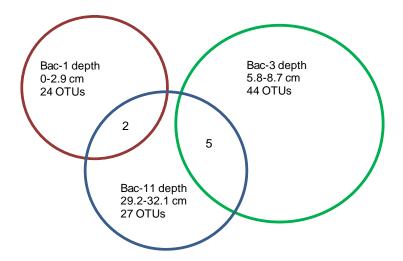
Supplement of Biogeosciences Discuss., 11, 9813–9852, 2014 http://www.biogeosciences-discuss.net/11/9813/2014/doi:10.5194/bgd-11-9813-2014-supplement © Author(s) 2014. CC Attribution 3.0 License.

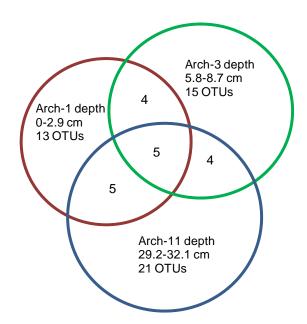
Supplement of

Methane related changes in prokaryotic activity along geochemical profiles in sediments of Lake Kinneret (Israel)

I. Bar Or et al.


Correspondence to: A. Kushmaro (arielkus@bgu.ac.il)

Supplementary Table S1. Bacterial Morisita-Horn similarity indexes between the different depths. Class values are followed by phyla values in parentheses. Sequences with unknown classifications were not counted in the statistic analysis.


Bacteria	Depth 0-3 cm	Depth 6-9 cm	Depth 29-32 cm
Depth 0-3 cm		0.413 (0.652)	0.501 (0.56)
Depth 6-9 cm	0.413 (0.652)		0.89 (0.925)

Supplementary Table S2. Archaeal Morisita-Horn similarity indexes between the different depths. Class values are followed by phyla values in parentheses. Sequences with unknown classifications were not counted in the statistic analysis.

Archaea	Depth 0-3 cm	Depth 6-9 cm	Depth 29-32 cm
Depth 0-3 cm		0.982(0.997)	0.857 (0.872)
Depth 6-9 cm	0.982(0.997)		0.924 (0.954)

Supplementary Fig. 1. Venn diagram showing bacterial OTU overlap between the different depths. The red circle represents the top sample (0-2.9 cm), the green circle represents the middle sample (5.8-8.7 cm) and the blue circle represents the bottom sample (29.2-32.1 cm).

Supplementary Fig. 2. Venn diagram showing archaeal OTU overlap between the different depths. The Red circle represents the top sample (0-2.9 cm), the green circle represents the middle sample (5.8-8.7 cm) and the blue circle represents the bottom sample (29.2-32.1 cm).