
BGD
11, 9813–9852, 2014

Methane related
changes in

prokaryotic activity

I. Bar Or et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Biogeosciences Discuss., 11, 9813–9852, 2014
www.biogeosciences-discuss.net/11/9813/2014/
doi:10.5194/bgd-11-9813-2014
© Author(s) 2014. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Biogeosciences (BG).
Please refer to the corresponding final paper in BG if available.

Methane related changes in prokaryotic
activity along geochemical profiles in
sediments of Lake Kinneret (Israel)
I. Bar Or1, E. Ben-Dov2,3, A. Kushmaro2,5,6, W. Eckert4, and O. Sivan1

1Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev,
Be’er-Sheva, P.O. Box 653, 8410501, Israel
2Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion
University of the Negev, Be’er-Sheva, P.O. Box 653, 8410501, Israel
3Department of Life Sciences, Achva Academic College, Achva, M.P. Shikmim 79800, Israel
4Israel Oceanographic and Limnological Research, The Yigal Allon Laboratory, P.O. Box 447,
14950 Migdal, Israel
5National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev,
P.O. Box 653, Beer-Sheva 8410501, Israel
6School of Materials Science and Engineering, Nanyang Technological University, Singapore

Received: 27 May 2014 – Accepted: 5 June 2014 – Published: 24 June 2014

Correspondence to: A. Kushmaro (arielkus@bgu.ac.il)

Published by Copernicus Publications on behalf of the European Geosciences Union.

9813

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/9813/2014/bgd-11-9813-2014-print.pdf
http://www.biogeosciences-discuss.net/11/9813/2014/bgd-11-9813-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
11, 9813–9852, 2014

Methane related
changes in

prokaryotic activity

I. Bar Or et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Abstract

Microbial methane oxidation process (methanotrophy) is the primary control on the
emission of the greenhouse gas methane (CH4) to the atmosphere. In terrestrial envi-
ronments, aerobic methanotrophic bacteria are mainly responsible for oxidizing the
methane. In marine sediments the coupling of the anaerobic oxidation of methane5

(AOM) with sulfate reduction, often by a consortium of anaerobic methanotrophic ar-
chaea (ANME) and sulfate reducing bacteria, was found to consume almost all the up-
ward diffusing methane. Recently, we showed geochemical evidence for AOM driven
by iron reduction in Lake Kinneret (LK) (Israel) deep sediments and suggested that
this process can be an important global methane sink. The goal of the present study10

was to link the geochemical gradients found in the porewater (chemical and isotope
profiles) with possible changes in microbial community structure. Specifically, we ex-
amined the possible shift in the microbial community in the deep iron-driven AOM zone
and its similarity to known sulfate driven AOM populations. Screening of archaeal 16S
rRNA gene sequences revealed Thaumarchaeota and Euryarchaeota as the dominant15

phyla in the sediment. Thaumarchaeota, which belongs to the family of copper con-
taining membrane-bound monooxgenases, increased with depth while Euryarchaeota
decreased. This may indicate the involvement of Thaumarchaeota, which were discov-
ered to be ammonia oxidizers but whose activity could also be linked to methane, in
AOM in the deep sediment. ANMEs sequences were not found in the clone libraries,20

suggesting that iron-driven AOM is not through sulfate. Bacterial 16S rRNA sequences
displayed shifts in community diversity with depth. Proteobacteria and Chloroflexi in-
creased with depth, which could be connected with their different dissimilatory anaer-
obic processes. The observed changes in microbial community structure suggest pos-
sible direct and indirect mechanisms for iron-driven AOM in deep sediments.25
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1 Introduction

Chemical profiles in the porewater of aquatic sediments reflect the sequence of micro-
bial mediated redox reactions that are driven by the availability both of organic matter
as an energy source and of suitable electron acceptors. The latter are depleted in the
order of decreasing chemical potential, beginning with oxygen and proceeding through5

nitrate, manganese and iron oxides, and then sulfate. Below the main zone of sulfate
reduction, the fermentation of organic carbon leads to the formation of methane (CH4)
by the process of methanogenesis (Froelich et al., 1979).

The methane produced is isotopically depleted in 13C, with values of ∼ −50 to
−110 ‰ (Schoell, 1988), and the residual dissolved inorganic carbon (DIC) pool is10

enriched by an isotopic fractionation factor (ε) of 50 to 70 ‰ (e.g., Borowski et al.,
2000; Whiticar, 1999). When the produced methane diffuses into contact with an avail-
able electron acceptor, it can be consumed by microbial oxidation (methanotrophy), the
main process by which the important greenhouse methane is prevented from escap-
ing into the atmosphere. In the terrestrial environment, bacteria are mainly responsible15

for oxidizing methane to CO2 using O2 as the electron acceptor (Chistoserdova et al.,
2005). In marine sediments, where its mainly anaerobic environments, archaea are
found to consume the majority of upward diffusing methane coupled to sulfate reduc-
tion (Knittel and Boetius, 2009; Thauer, 2010; Valentine, 2002).

Evidence from lipids and from fluorescence in situ hybridization (FISH) showed that20

a consortium of archaea and sulfate reducing bacteria are involved in this anaerobic
methane oxidation (AOM) (Boetius et al., 2000; Hinrichs et al., 1999; Orphan et al.,
2001). To date, three groups of anaerobic methanotrophic archaea (ANME), named
ANME-1, ANME-2, and ANME-3, are known to perform sulfate driven AOM (Niemann
et al., 2006; Orphan et al., 2002). However Milucka et al. (2012) demonstrated AOM25

mediated solely by archaea, where the archaea was shown to oxidize the methane and
reduce the sulfate to elemental sulfur. Disproportionating bacteria, also involved in this
mechanism, oxidize and reduce this elemental sulfur to sulfate and sulfide, respectively.
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The carbon isotopic fractionation factor (ε) for this methanotrophic process was shown
to be in the range of 4–30 ‰ (Kinnaman et al., 2007; Whiticar, 1999). Enrichment cul-
tures of ANME from different environments showed a carbon isotopic fractionation of
12–39 ‰ (Holler et al., 2009).

Other electron acceptors were recently shown to drive AOM. Nitrite driven AOM by5

oxygenic bacteria was observed in two different freshwater ecosystems in the Nether-
lands (Ettwig et al., 2009; Raghoebarsing et al., 2006) and in peatlands (Zhu et al.,
2012). Beal et al. (Beal et al., 2009) showed the potential of manganese and iron-
driven AOM in marine sediments. In our recent study (Sivan et al., 2011), we provided
in situ geochemical evidence for AOM coupled to microbial iron reduction, which oc-10

curs below the main methanogenesis zone in Lake Kinneret (LK) sediments where
dissolved sulfate and nitrate are no longer available.

The changes with depth in available electron acceptors and in type of organic mate-
rial coincide with microbial community shifts. Combined geochemical gradients found in
the porewater (chemical and isotope profiles) and prokaryotic sediment profiles, there-15

fore, can shed light on the mechanisms of the microbial processes involved in AOM in
LK sediments. This study comprised a microbial survey of the sediment depths in LK
based on the main electron acceptors at the different depths to track the microbial sys-
tem involved in the methane cycle in this environment. Specifically, the study examined
the possible shift in the microbial communities in the deep iron-driven AOM zone and20

their similarities to known sulfate driven AOM populations.

2 Material and methods

2.1 Study site

Located in northern Israel, Lake Kinneret (LK, Fig. 1) is a warm monomictic subtropi-
cal lake. Typical concentrations of major electron acceptors in the water column during25

the mixed period are 35–50 µM nitrate and 600 µM sulfate (Adler et al., 2011; Serruya
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et al., 1974). In the spring, the newly formed epilimnion is characterized by increasing
temperatures and enhanced phytoplankton development, while in the hypolimnion het-
erotrophic microorganisms gradually deplete oxygen and then nitrate. Organic matter
degradation by bacterial iron and manganese reduction takes place below the thermo-
cline in the summer. At the end of the stratification period, sulfate reduction occurs in5

the bottom water. In the upper part of the sediment, sulfate reduction is the dominant
microbial process year round, and below depths of 5 cm sulfate reduction processes
are mainly replaced by methanogenesis (Adler et al., 2011; Eckert and Conrad, 2007).
Total iron content (Fe(tot)) is around 3 % in the upper 40 cm of the sediment (Eckert,

2000) and the manganese concentration is about 700 µg g−1 (Serruya, 1971). The or-10

ganic matter carbon content is about 3 % (dry weight) at the top and decreases to 2 %
at a depth of 40 cm (Serruya, 1978).

2.2 Sampling

Sediment cores were collected from the center of the lake (Station A, Fig. 1) at a water
depth of ∼ 42 m (maximum lake water column depth) at different times using Perspex15

tubes, measuring 55 cm long by 5 cm in diameter, with a gravity corer. The cores were
stored in the dark at 4 ◦C until they were sliced later on the same day or the day after.
Core sampling for the microbial community study took place in December 2009. The
methane profile presented was taken two weeks before this sampling for the microbial
communities (also December 2009). The δ13CCH4

and δ56Fe profiles were performed20

four months before the microbial sampling (August 2009). Sampling for Fe(II), Mn(II)
and SO−2

4 profiles was done from 2007 to 2011 and that for sulfide is from June 2013
(sulfide profiles from 2007 are presented in Sivan et al., 2011). Over a dozen porewater
chemical and isotope profiles were generated seasonally from 2007 to 2013. The slight
seasonal changes we found allowed us to use typical geochemical profiles (shown25

here) in order to sample for the microbiology communities in the different electron ac-
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ceptors zones and to correlate between the microbial sampling and the geochemical
profiles.

2.3 Geochemical analyses

Cores were cut into 2 cm slices under a constant flow of N2 using a slicing device. About
1.5 mL of each sediment slice was transferred into N2-flushed crimp bottles containing5

5 mL of 1.5 N NaOH for the headspace measurements of CH4 and δ13CCH4
(after Sivan

et al., 2011). CH4 concentrations were measured on a SHIMADZU gas chromatograph
equipped with a FID detector at a precision of 2 µmol L−1.

Porewater was extracted immediately from each slice by centrifugation at 27 000 g
at 4 ◦C in a N2 atmosphere, and the supernatant was filtered through 0.45 µm filters.10

A 1 mL subsample was fixed with Ferrozine and analyzed for dissolved Fe(II) (Stookey,
1970). Four millimeters of subsample were poured into an acidified vial (1 mL of 0.5N
nitric acid) to measure dissolved manganese. The sample was analyzed via an In-
ductively Coupled Plasma Mass Spectrometer (ICP-MS, Elan DRC II, Perkin Elmer)
at a precision of ±10 %. For sulfide profiles, 1 mL of subsample was added to zinc15

acetate and hydrogen sulfide concentrations were determined by the methylene blue
method (Cline, 1969). For sulfate measurements, 5 mL of subsample were analyzed
with a Dionex DX500 high pressure liquid chromatograph with a precision of ±3 %. Iron
isotope analysis was done by acidifying the subsamples with 10 % HCl for one week (to
dissolve any precipitated iron) and then purifying them by anion exchange chromatog-20

raphy (Borrok et al., 2007). δ56Fe was measured on a Neptune multi-collector ICP-MS
in high resolution mode according to standard methods and standardized against iso-
topic reference material (IRMM-014) with a precision of ±0.1 ‰ (John and Adkins,
2010). Total lipids were extracted using the Bligh–Dyer procedure (Bligh and Dyer,
1959) with solvent mixture of 2 : 1 : 0.8 (methanol : dichloromethane : buffer). δ13C of25

the total lipid extraction (TLE) was measured on an Elemental Analyzer Isotopic Ratio
Mass Spectrometer (EA-IRMS) with a precision of 0.1 %.
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2.4 DNA extraction and amplification from sediment samples

Some of the sediment slices were kept frozen for the microbial work. Samples from
three different depths (0–3 cm representing the sulfate reduction zone, 6–9 cm rep-
resenting the methanogenesis zone, and 29–32 cm representing the deep AOM zone)
were defrosted. Total genomic DNA was extracted from the sediment samples using the5

MoBio Power Soil DNA isolation kit (MoBio Laboratories, Solana Beach, CA). Genomic
DNA was eluted using 60 µL of elution buffer and stored at −20 ◦C. Concentrations
of DNA were determined via UV-Vis spectrophotometry (ND-1000 NanoDrop Tech-
nologies, Wilmington, DE) (sulfate reduction zone 22 ng µL−1, methanogenesis zone
35.8 ng µL−1 and AOM zone 14 ng/µL).10

16S rRNA gene fragments were amplified by PCR using a Biometra T Gradient ther-
mocycler (Biometra, Göttingen, Germany) with the common universal bacterial primer
pair (8F, 907R) (Ben-Dov et al., 2006) and universal archaeal pair (21F, 915R) (De-
Long, 1992; Stahl and Amann, 1991) targeting 16S rRNA genes. All primer sets were
used in PCR amplifications in parallel with Dream Taq (PCR Master mix containing15

1.5 mM MgCl2 and a 0.2 mM concentration of each deoxynucleoside triphosphate) (Fer-
mentas, Litvania). An initial denaturizing step of 4 min at 95 ◦C was followed by 30 cy-
cles of the following incubation pattern: 94 ◦C for 30 s, 54 ◦C for 30 s, and 72 ◦C for
60–90 s. A final extension at 72 ◦C for 20 min completed the reaction.

2.5 Clone library construction and sequencing20

Polymerase chain reaction (PCR) products were purified by electrophoresis via a 0.8 %
agarose gel (Sigma) stained with ethidium bromide and visualized on a UV transillu-
minator. The amplified 16S rRNA gene bands were excised from the gel and the DNA
was purified from the gel slice using the Wizard PCR Prep kit (Promega, Madison,
Wis.). The gel-purified PCR products were cloned into the pCRII-TOPO-TA cloning25

vector as specified by Invitrogen (Carlsbad, CA) and transformed into calcium chloride-
competent HD5α E. coli cells according to the manufacturer’s instructions and stan-
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dard techniques. The transformed cells were spread onto an LB agar medium. White
colonies harboring plasmids with inserts were used for amplification of the inserts with
M13-F and M13-R primers annealing to the plasmid. Sequencing was performed by an
ABI PRISM dye terminator cycle sequencing ready reaction kit with an AmpliTaq DNA
polymerase FS and DNA sequencer ABI model 373A system (Perkin–Elmer).5

2.6 Sequence analysis

Sequences were first screened for chimeras using the Bellerophon server (Huber et al.,
2004). An additional chimera check was then run by manually cutting sequences in half
and aligning them with the ARB database (Ludwig et al., 2004). When the two halves
did not align, the original sequence was considered to be a chimera sequence. In10

this study, all 16S rRNA gene sequences were phylogenetically classified by the SINA
classifier program (Pruesse et al., 2012) with ≥ 70 % similarity. Sequences that were
unidentified by SINA were aligned in ARB (Ludwig et al., 2004) and were classified
to phyla according to their alignment within the ARB phylogenetic database. In addi-
tion, sequences were grouped into operational taxonomic units (OTUs) on the basis15

of rRNA gene sequences of 97 % similarity using different programs. First, a distance
matrix was generated using the MEGA5 package (Tamura et al., 2011). This matrix
was then fed into the DOTUR computer program with all default options (Schloss and
Handelsman, 2005). Diversity indexes (Chao and Ace) were calculated by Dotur, and
the homologous coverage (biodiversity coverage) C was determined using the following20

equation: C= 1− (N/n), where N is the number of phylotypes and n is the total number
of analyzed clones (Good, 1953). The Morisita–Horn similarity index (Magurran, 1988)
was calculated using the EstimateS statistical program, software version 8.1 (Colwell
et al., 2012). All of the sequences and their closest relative matches with similarity
of > 96 % to uncultured and > 90 % to cultured microbial sequences were obtained25

from NCBI BLAST and were aligned using the MEGA5 package (Tamura et al., 2011).
Neighbor-joining phylogenetic trees were created using the MEGA5 package. The rel-
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ative confidence of the tree topologies was evaluated by performing 1000 boot-strap
replicates.

2.7 Nucleotide sequence accession numbers

The nucleotide sequences obtained in this study were deposited in the NCBI GenBank
database under accession numbers HQ636112–HQ636255 for the bacterial 16S rRNA5

genes and HQ636257–HQ636418 for the archaeal 16S rRNA genes.

3 Results

3.1 Porewater profiles

This study focused on microbial community shifts along porewater profiles of electron
acceptor gradients related to the methane cycle in porewater profiles. Over dozen of10

geochemical profiles of the porewater at station A (Fig. 1) were performed seasonally
to characterize shifts in main electron acceptors with depth. The profiles shown (Fig. 2)
are typical representatives of the geochemical seasonal profiles of The similarities be-
tween samples at all depths indicate only slight seasonal changes (Adler et al., 2011;
Sivan et al., 2011). Based on these profiles, we divided the sediment into three main15

redox zones and their corresponding microbial populations.
Oxygen and nitrate during the stratified period of the lake (when the sediment was

collected for this work) were already depleted in the water column below the thermo-
cline. Even during the mixing period of the lake, oxygen was completely depleted in
the sediment below depths of 0.4 cm and nitrate was not detected (Eckert et al., 2002).20

Sulfate reduction was the main process in the upper few centimeters of the sediment
throughout the year (Eckert and Conrad, 2007; Hadas and Pinkas, 1992), and in the
upper 15 cm of sediment, sulfate was depleted during both the stratified and the mixed
periods of the lake. The typical concave-down curvature of the profiles of sulfate and
sulfide in porewater up to its depletion around 15 cm depth (Fig. 2c) suggests bacterial25
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utilization of the sulfate. A typical LK methane concentration profile (Fig. 2a) shows
that methane concentrations increased from 250 µM at the water–sediment interface
to a maximum of about 1.5 mM in the depth range of 7 to 15 cm. The methane concen-
tration was usually decreased below 15 cm depth, suggesting its oxidation in the deep
sediments. The profile of δ13CCH4

(Fig. 2a) showed a decrease from −60 ‰ at a depth5

of 1 cm to about −65 ‰ at a depth of 7 cm and then an increase in the deeper sedi-
ments to a maximum value of −53.5 ‰ at a depth of 25 cm. Also, the profile of δ13CTLE
(Fig. 2d) showed that it decreased in the deepest part of the sediment, implying the
production of biomass from a light source.

These profiles results suggest that below depths of about 20 cm (below the methano-10

genesis peak) there is a methane sink coupled to electron acceptors other than dis-
solved sulfate and nitrate, which are depleted at such depths. Thus, the most probable
electron acceptors are manganese and iron oxides. Indeed, the dissolved Mn(II) con-
centration (Fig. 2b) increased from 5 µM at the top of the sediment to a plateau of
about 23 µM from depths of 23 to 36 cm. Although the Fe(II) concentration profile also15

showed an increase with depth (Fig. 2b), that occurred in a manner that differed from
that of the manganese profile. In the upper 15 cm, dissolved Fe(II) concentrations were
below the detection limit. Dissolved Fe(II) probably reacted with sulfide and precipi-
tated as iron sulfide minerals in the sulfide zone, but then gradually increased below
15 cm to about 90 µM at a depth of 36 cm. This dramatic increase in Fe(II) below the20

sulfate zone suggests the involvement of Fe(III) reduction to Fe(II) in the deep sedi-
ments. Mild acid extractions of highly reactive iron minerals in the sediment yielded at
least 40 µmol g dry wt−1 sediment of easily accessible Fe(III) throughout the sediments,
which can support the amount of iron reduction observed to occur in the sediment.
Moreover, the δ56Fe profile (Fig. 2d) was also consistent with active Fe(III) reduction25

(Sivan et al., 2011). The precipitation of ferrous iron with sulfides would cause heavier
values in the dissolved isotopic δ56Fe (Butler et al., 2005), as was shown in the up-
per sediments. However, in the zone of apparent AOM, the δ56Fe values were lighter
(−1.7 % to −2.3 %) than in the upper part of the sediment and similar to those ob-
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served in active Fe(III) reduction zones in porewater (Severmann et al., 2006). This
iron-driven AOM process was further confirmed by a set of incubation experiments on
LK cores [23]. Our model calculations suggest maximum sulfate reduction rates at the
water sediment interface of 1.4×10−12±0.2×10−12 mol cm−3 s−1, maximum methano-
genesis rates at 5–12 cm of 2.5×10−13±1.5×10−13 mol cm−3 s−1 and AOM rates below5

20 cm of 5×10−14 ±1×10−14 mol cm−3 s−1 (Adler et al., 2011).

3.2 Sediment microbial communities

To study sediment-depth-dependent microbial community shifts, 16S rRNA gene se-
quences of the prokaryotic community from three different depth zones (0–3, 6–9 and
29–32 cm, see arrows in Fig. 2a) were extracted and analyzed. Those depth zones10

were chosen based on the geochemical profiles and the geochemical experiments on
sediments sampled at different times, which support this division (partly described in
(Sivan et al., 2011)). Therefore, microbial community sampling of the three depth zones
at a single time point should represent the different microbial habitats as they pertain to
the respective geochemical zones. The diverse bacterial and archaeal communities at15

these depth zones varied in composition and richness throughout the sediment. A to-
tal of 127 and 153 bacterial and archaeal sequences representing 85 and 112 OTUs
(cut-off value of 97 %), respectively, were identified. Estimates of phylotype richness,
diversity coverage and similarity were calculated according to the abundance-based
coverage estimate (ACE), Chao’s estimator (Chao, 1984; Chao and Ma, 1993), the20

Shannon diversity index, Good’s coverage and the Morisita–Horn similarity index (Ta-
bles 1 and 2, Supplementary Tables S1 and S2). Because clone library coverage shows
that the microbial communities in the sediment were not fully sampled, the sequences
percentages in the libraries are only rough estimations instead of actual relative com-
munity percentages in this environment.25

All the estimators indicated a high degree of richness in the bacteria communities
throughout all of the sediments (Table 1). The highest bacterial richness calculated
was at depths of 6–9 cm. However, the bacterial coverage (Good, 1953) estimations
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(∼ 26 % coverage) showed that sediment depth intervals were not completely sampled,
and therefore, they failed to capture the total estimated richness and diversity at each
depth (Table 1). The Shannon index and richness estimators (Chao and Ace) returned
high values that were higher than those for archaea (Table 2), indicating a highly diverse
community.5

Most of the sequences of LK were very similar to those of uncultured environmental
microorganisms retrieved from freshwater lakes. About 62 % of the bacterial sequences
in the upper 10 cm of the sediment were more than 90 % similar to sequences from pre-
vious studies conducted in LK (Nüsslein et al., 2001; Schwarz et al., 2007a, b). The
bacterial diversity and richness in the sediment show much more complex communi-10

ties than those of the archaea, which complicated estimating the functionality of those
microorganisms. Our Shannon index values (3.19–3.94) in the bacteria are lower than
those of previous studies (Schwarz et al., 2007a; Wobus et al., 2003) as a result of the
low coverage of the communities in the sample. Yet the abundant communities were
probably still represented in the clone libraries.15

Although the bacterial OTUs were distributed over 21 phyla, only Proteobacteria,
Chloroflexi, Nitrospirae, Bacteroidetes and Planctomycetes were over 10 % in one of
the clone libraries (Fig. 3a). The percentages in the clone libraries of the two dominant
phyla members, Proteobacteria and Chloroflexi, increased with depth: Proteobacteria
from 25 % to 34 % and Chloroflexi from 16 % to 29 %. The Nitrospirae phylum was not20

detected in the upper part of the sediment, but in the bottom section they were found
at a relatively high percentage (∼ 11 %). The rest of the phyla showed different and
variable patterns.

When focusing on the classes of all the bacterial sequences, the phylogenetic linage
of the dominant phyla exhibits a distinctive pattern (Fig. 3b). From the Proteobacteria,25

the Gammaproteobacteria increased with depth while Deltaproteobacteria were found
at the same percentage in the clone libraries throughout the sediment. Alpha, Beta
and Epsilonproteobacteria were recovered from at least one sample, but at different
depths. In the Chloroflexi phyla, Caldilineae and Anaerolineae showed approximately
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the same percentages throughout the two lower samples. The Nitrospirae phyla in the
middle sample were divided between OPB95 and Nitrospiraceae, and in the lower part
only Nitrospira were found. The bacterial phylogenetic tree from the deep part of the
sediment (Fig. 5a) showed that Gammaproteobacteria sequences were similar to se-
quences that have already been found in LK and to aerobic methanotrophic bacteria.5

Our Deltaproteobacteria sequences were similar to those found in varied environments,
which include iron reducing bacteria. The sequences of the Chloroflexi phylum com-
prised a few close reference sequences that are mostly unknown. In our clone library,
the Nitrospirae phylum had one sequence closely affiliated with bacteria investigated
in the degradation of phenanthrene and pyrene in freshwater sediments in a fuel cell10

environment with added amorphous ferric hydroxide (Zheng et al., 2014).
The bacterial Morisita–Horn similarity index (Table S1) together with the Venn dia-

gram (Fig. S1) showed low correlation between the different depths. Only two OTUs
were shared between the upper and lower sections, while five were shared in the mid-
dle and lower sections. No overlap was detected between the upper and the middle15

sections of the sediment.
Archaeal coverage estimations of about 65 % (Table 2) indicated a much higher sam-

pling coverage than for the bacterial communities. The Shannon index and richness
estimators (Chao and Ace), which showed lower values than the bacterial indexes at
all depths, indicated less diversity. The diversity and richness in the middle section was20

only slightly higher than in the other parts, despite the gaps in the sampling record
(Table 2).

The archaeal 16S rRNA gene sequences (Fig. 4a) were mostly affiliated with the Eu-
ryarchaeota or Thaumarchaeota phyla while Crenarchaeota were found in the upper
and lower parts of the sediment at low percentages. About 17 % of the sequences in the25

clone libraries, unclassified by SINA, were instead classified by ARB similarity at the
phylum level. Euryarchaeota was found to be the dominant phylum, but its percentage
decreased with depth (from 80 % to 54 %), while the sequences belonging to Thaumar-
chaeota increased (from 15 % to 43 %). Thaumarchaeota sequences were classified
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into five different classes (Fig. 4b): miscellaneous Crenarchaeotic Group (MCG), which
was the dominant class (13 % to 40 % from the top to bottom part respectively), Soil
Crenarchaeotic Group (SCG) at a low percentage in the upper part, Marine Benthic
Group B (MBG-B) at low percentages in the upper and middle parts, Group C3 at a low
percentage in the middle part, and AK59 at a low percentage in the deep part.5

Euryarchaeota was mostly divided between Thermoplasmata, which was the domi-
nant class (78 % at the top to 51 % at the bottom), Methanomicrobia at a low percent-
age in the upper part, and Halobacteria at low percentages in the middle and bottom
parts. No ANME sequences were detected even though specific primers (ANME2C-
AR468F, ANME3-1249, ANME1-395F, ANME1-1417, ANME3-140F, ANME3-1249,10

ANME2a-426 and ANME2a-1242R) were tried (Miyashita et al., 2009). The archaeal
phylogenetic tree for the deep part of the sediment (Fig. 5b) also shows that repre-
sentative ANME (AB461389-AB461393) sequences are not close related to any of
our sequences. In addition, different levels of classification and similar reference se-
quences from different environments are shown. Euryarchaeota sequences affiliated15

to our sequences show that they are found in very diverse environments. In contrast,
the environments typical for Thaumarchaeota representatives associated with our se-
quences are associated to the methane cycle.

The archaeal Morisita–Horn similarity index for the different depths (Table S2)
showed that the communities in the upper and middle parts of the sediment were highly20

similar, but between the upper and bottom parts the level of similarity declined. How-
ever, the numbers of shared OTUs shown by Venn diagram (Fig. S2) between the dif-
ferent depths were limited (only five OTUs overlapped between all the depths), and half
of the OTUs at the different depths were not shared. No archaeal 16S rRNA sequence
clustering was observed, and no distinct group was formed at any depth. Most of the25

best matched sequences were from lake sediment environments while some others
were also related to environments enriched with sulfur, iron and nitrogen compounds.
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4 Discussion

In this study of LK sediments we investigated changes in microbial diversity associated
with porewater geochemistry and the transition of the dominant electron acceptors
with depth (0–40 cm). The geochemical porewater profiles in LK (Fig. 2) suggest that
the sediment can be roughly divided to three different regimes of microbial processes:5

the upper 5 cm dominated by sulfate reduction, the methanogenesis zone between 5
to 17 cm, and the deepest sediments, which are dominated by the anaerobic oxidation
of methane coupled to iron reduction. This division of the sediment and the deep iron-
driven AOM process were confirmed by in situ profiles of methane, δ13CCH4

, sulfate,
and ferrous and subsequent use of a numerical mass conservation model (based on10

the geochemical profiles of DIC and δ13CDIC (Adler et al., 2011)) and a set of geo-
chemical incubation experiments conducted in our previous work (Sivan et al., 2011).

The mechanisms that enable the novel process of AOM via iron reduction could be
tracked by the existing prokaryotic population at this depth and its resemble to similar
environments with a distinct characterization. The size of the clone libraries cannot fully15

represent the prokaryotic diversity at the different depths. As shown by the coverage,
the sequences represent the major communities in the different depth zones. There-
fore, calculations of the diversity index and comparisons of the sequences between the
different zones can then be related to earlier studies in LK and similar environments as
additional tools to interpret the relations between the prokaryotes and the geochemi-20

cal processes. There are few studies which had analyzed microbial communities rela-
tive to geochemical zones in fresh water sediments. Therefor this study deepens the
knowledge about microbial communities shift in different electron acceptors conditions,
especially that related to methane cycle.

Proteobacteria and Chloroflexi were the most abundant bacterial phyla in LK and25

represented diverse functional groups that increased with depth. Proteobacteria is
also among the abundant phyla (Schwarz et al., 2007a) in other freshwater sediments
(Tamaki et al., 2005; Wobus et al., 2003). Several large classes of Proteobacteria
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were observed, among which Deltaproteobacteria were the most abundant (∼ 20 %)
throughout all sediment samples. They were aligned to strictly anaerobic and sulfate
reducing organisms (Desulfobacteraceae and Syntrophobacteraceae), some of which
have been found in iron rich environments. Schwarz et al. (2007a) showed in the upper
part of LK that Deltaproteobacteria was one of the dominant classes, most of which5

were affiliated with acetate oxidizing sulfate reducing bacteria, which outcompete the
acetoclastic methanogens.

The second abundant phylum was Chloroflexi, which also increased with depth and
whose most abundant class was Anaerolineae, which although found in a variety of
anaerobic environments, only a few representatives have been cultivated so far (Ya-10

mada and Sekiguchi, 2009). The metabolisms of those representatives showed that
they utilized organic matter, but no specific electron acceptor was found (Yamada et al.,
2006). Because Chloroflexi members were found throughout the entire core, Anaero-
lineae representatives could be the main organic matter decomposers in LK.

Sequences of Bacteroidetes were only retrieved in the upper part (0–3 cm) of the LK15

sediment core, which confirms similar findings by Schwarz et al. (2007a). Known as hy-
drolytic fermentative bacteria, they are major utilizers of high-molecular-mass dissolved
organic matter in marine ecosystems (Cottrell and Kirchman, 2000). Their presence in
the upper part of the sediment, therefore, was correlated with their metabolic prefer-
ence, as they can utilize the fresh organic matter that descents from the water column.20

It should be noted that the upper sediment may contain denitrifying bacteria that arrived
from the water column.

Archaeal communities are responsible for many environmental processes. In LK,
archaeal communities represent a small percentage of the prokaryotic communities
(Schwarz et al., 2007a), their community compositions changed with depth and their25

diversity was very high compared to the findings of other studies (e.g., Lehours et al.,
2007 in Lake Pavin sediment, Hansel et al., 2008 in a soil profile from the vadoze
zone, and Siboni et al., 2008 in corals). However, the similarity index showed a strong
resemblance between the different depths at the higher phylogenetic order (phyla and
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class). Nevertheless, it should be noted that at the OTU level, there was a small overlap
and a large difference between the depths (S1).

About 35 % of the archaeal sequences were similar (cut-off 90 %) to those found
in previous studies conducted in LK (Nüsslein et al., 2001; Schwarz et al., 2007a, b).
The dominant archaeal phylum was Euryarchaeota (∼ 80 %), which decreased with5

depth. Among the Euryarchaeota, the majority were Thermoplasmata (97 %), which
included 16S rRNA sequences of the Thermoplasmatales order. The MBG-D clade
was affiliated with the order Thermoplasmatales and was also detected in our libraries.
Members of the MBG-D have been shown to exist in a variety of freshwater and marine
environments (Beal et al., 2009; Borrel et al., 2012), and it is the most widely encoun-10

tered, uncultured lineage in freshwater lake sediments. Even though their metabolism
is unknown, hypotheses about their functionalities are based on the environments in
which they were found. Methanogenesis was suggested, as they were found in deep
lake sediments with high methane concentrations (Borrel et al., 2012), and they were
also hypothesized to be involved in AOM, as they were found in AOM zones (Schubert15

et al., 2011) and in marine seep sediment (Beal et al., 2009). However, in other envi-
ronments, in which methane concentrations were low, the utilization of waste products,
intermediates, or dead cells by MBG-D was also suggested (Smith et al., 1975). Re-
cently, a single cell genomics study showed that members of MBG-D were capable of
exogenous protein degradation in cold anoxic environments (Lloyd et al., 2013). The20

other archaeal phyla were Thaumarchaeota, which increased with depth, and Crenar-
chaeota, whose representation in the clone library was very low. Thaumarchaeota has
a specific functionality (see below) while that of Crenarchaeota is for the most part
unknown.

In the upper layer of sediment (0–3 cm), sulfate concentrations are the highest and25

are gradually consumed with depth (Hadas and Pinkas, 1992) as particulate organic
matter from the water column accumulates, making organic carbon degradation avail-
able. Adler et al. (2011) calculated that the bulk of bacterial sulfate reduction occurs in
the top 1 cm of sediment, a finding that was supported by the microbial work of Hadas
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et al. (1992). Using sulfide and particulate organic carbon measurements, Eckert and
Conrad (2007) also showed that sulfate reduction accounts for most of the mineraliza-
tion of organic matter in the upper 15 cm of sediment. Methane concentrations in the
upper layer are relatively low and mainly come from diffusion as methanogens are out-
competed by sulfate reducers (Lovley and Klug, 1983). The depletion in methane con-5

centrations and declining δ13CTLE values and the heavier isotopic values of δ13CCH4

in the upper layer compared to the methanogenic zone may be explained by AOM via
sulfate reduction, although no ANME sequences were found using specific primers or
by phylogenetic alignment (Fig. 5b) at any depth in the sediment. Our finding in this
depth of the lowest bacterial diversity between the sediment depths could be caused10

by the dominant bacterial communities, which utilized the easily degradable organic
substrates coming from the water column with the available electron acceptors.

In the middle layer of sediment (6–9 cm), methane production was the highest
(Fig. 2a) because methane production (the lowest energy yield process) begins at
low sulfate concentrations (Martens and Berner, 1974). The low values of δ13CCH4

in15

the methanogenesis zone are typical due to the large carbon isotope fractionation that
occurs during methane production, thereby leaving the methane that is produced iso-
topically light and the DIC isotopically heavy. Dissolved organic carbon increased and
sulfate concentration decreased, which could create an opportunity for a shift in the
dominant microorganisms.20

The highest bacterial diversity was found in the methanogenesis zone (6–9 cm).
Comparisons of sequences from previous studies (Nüsslein et al., 2001; Schwarz et al.,
2007a) to those in our study showed low similarity. Moreover, this level of similarity was
also the lowest (52 %) compared to the other depths we sampled. Proteobacteria and
Chloroflexi percentages increased at this depth. Deltaproteobacteria sequences from25

this depth were remotely related to those of the upper part of the sediment. Even
though Deltaproteobacteria are best known for their sulfate reduction metabolism, they
can shift their metabolism in response to depleted sulfate concentrations (Plugge et al.,
2011).
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At the sediment depth of 6–9 cm, archaeal similarity (cut-off 90 %) to previous stud-
ies was 31 %. The earlier studies on microbial communities in LK (Nüsslein et al.,
2001; Schwarz et al., 2007a) showed that about 60 % of the detected archaeal 16S
rRNA genes sequences could be linked to the known process of hydrogenotrophic
methanogensis (methane production from H2 and CO2) dominated by the family5

Methanomicrobiaceae and 15–22 % were affiliated with acetoclastic methanogenesis
(methane production from acetate) dominated by Methanosaetaceae (Schwarz et al.,
2007b). Both of those families belong to the Methanomicrobia.

In our clone libraries the class Methanomicrobia was represented by only small per-
centage in the upper part of the sediment (0–3 cm) (Fig. 4b), which could indicate the10

methanogenesis activity of other microbial populations. Thermoplasmata and MBG-D
of the Euryarchaeota at this depth were also classified in our library. Thermoplasmata
exploit a wide range of habitats, from soil and lake sediment (Teske and Sørensen,
2008) to bovine rumen (Poulsen et al., 2013), and that class contains a clade of methy-
lotrophic methanogens found in the bovine rumen, which may indicate that Thermo-15

plasmata can function as methanogens in diverse environments. The characteristics of
Thermoplasmata and MBG-D as novel methanogens may contribute to the methane
production in the top (0–15 cm) part of the sediment. Moreover, their ability to utilize the
methanogenic metabolic pathway indicates they may be among the archaea capable
of AOM via reverse methanogensis (Hallam et al., 2004).20

Below the maximum methane production zone (around 20 cm), methane concentra-
tions began to decrease while δ13CCH4

values increased (Fig. 2a), an outcome that
may be due to the AOM process, which leaves residual methane isotopically heavier.
Depleted δ13CTLE (Fig. 2d) in the deep part of the sediment also supports the pres-
ence of AOM with the production of light biomass from methane oxidation. In addition,25

although all the suitable electron acceptors at this depth were depleted, both Fe(II)
and Mn(II) increased (Fig. 2b). Also, δ56Fe values (Fig. 2d) of dissolved iron in the
deep sediment were isotopically negative, similar to sediments with active dissimila-
tory bacterial iron reduction (Severmann et al., 2006) and are an indication of active
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iron reduction in the deep sediments and not just diffusion. The increase in Fe(II) con-
centrations below a depth of 15 cm was probably supported by the absence of sulfide.
The potential of highly reactive Fe(III) oxides to drive AOM in LK was also supported by
our set of mesocosm incubation studies (Sivan et al., 2011). Since manganese oxide
concentrations were very low (∼ 0.04 %) throughout the LK sediment column (Serruya5

et al., 1974), iron oxide seemed to play a bigger role in this AOM process.
A few possible mechanisms for the finding of AOM in the deep part of the sediment

can be suggested based on the geochemical profiles and the microbial communities
(as explained below). A possible direct process could be through new, currently un-
known bacteria/archaea that reduce iron and utilize methane. Possible indirect pro-10

cesses include: (1) reduction of Fe(III) by sulfide to elemental sulfur and other sulfur
intermediates, which produces sulfate (disproportionation) for sulfate driven AOM (such
as in Holmkvist et al., 2011). (2) Reduction of Fe(III) by utilizing H2 (Lovley, 1991), which
creates a low concentration of H2 and drives “reverse methanogenesis(Hallam et al.,
2004)” by the archaea in the deep sediment. (3) An aerobic methane oxidation path-15

way in an anaerobic environment as described by Ettwig et al. (2010), utilizing methane
while using iron oxides to generate the oxygen needed to oxidize the methane.

In the deep methanotrophic zone (sample from 29–32 cm), bacterial diversity was
lower than in the methanogenesis zone but higher than in the upper layer (6–9 cm) of
the sediment. At 68 %, bacterial similarity (cut-off 90 %) to previous studies was the20

highest. The changes in bacterial diversity with depth could be related to the avail-
ability of different electron acceptors and of organic matter (Nam et al., 2008). In the
deep sediment Proteobacteria and Chloroflexi have the highest percentages (Fig. 3b).
Our sequences of Proteobacteria and Nitrospirae phyla were the bacterial candidates
for a direct mechanism of iron reduction in a consortia with archaea (e.g., ANME) or25

for indirect mechanisms of disproportionation or “reverse methanogenesis”. Deltapro-
teobacteria is one of the main candidate of AOM via iron reduction (Niemann and
Elvert, 2008), because of their presence in the ANME consortium that performs AOM
via sulfate reduction. Sequences of the SVa485 order (Deltaproteobacteria) (Fig. 4a)
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from the bottom part of the sediment were similar to those found in different aquatic en-
vironments, but the metabolic functions of members of this order are not clear. Pelobac-
ter carbinolious (Lovley et al., 1995), a member of SVa485 capable of Fe(III) and sulfur
reduction, had a high similarity (> 90 %) to a few of the SVa485 sequences in our
samples. Additionally, the presence of the Deltaproteobacteria at the deepest sedi-5

ment depth sampled and the observed accumulation of acetate with depth (acetate
increases with depth to 5 µM at around 30 cm; Adler et al., unpublished) could indicate
their exploitation of a different metabolic path in the deep sediment than in the upper
part of the sediment.

Another hypothesized participant in direct/indirect AOM via iron reduction belongs to10

the Nitrospirae phylum, which increased with depth (from no detection in the upper part
to 11 % in the sample from 29–32 cm). Schwarz et al. (2007b) showed by SIP-RNA not
only that Nitrospirae was present, but also that it was functionally bioactive. Although
Nitrospirae is a known nitrate oxidizer (Ehrich et al., 1995), the conditions of this envi-
ronment suggest that it utilized another metabolic pathway. Nitrospirae also include the15

iron reducing candidates Magnetobacterium bavaricum (Spring et al., 1993) and sulfur
reducers (Sonne-Hansen and Ahring, 1999). The aligned reference sequence (Fig. 4a)
shows that iron reduction could be the main mechanism in that environment, a hint that
this clade may be responsible for the iron reduction in the deep LK sediment.

The finding that our Gammaprotobacteia sequences were similar (> 90 %) to Methy-20

localdum szegediense (Bodrossy et al., 1997), an aerobic methanotrophic bacteria
(Fig. 4a), was an indication of the possible existence of the third indirect mechanism
of anaerobic methane oxidation via an oxygenic pathway. In addition to this aerobic
methanotrophic bacterium, our archaeal sequences in the deep sediment were affili-
ated with ammonia oxygenating archaea (see below), which also indicated an oxygenic25

pathway in this anaerobic zone.
In the bottom part of the sediment the similarity (cut-off 90 %) of the archaeal se-

quences to those in previous studies was the lowest (18 %). Moreover, 16S rRNA
sequences affiliated with Thaumarchaeota were at the highest percentage. The ob-
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served increase in Thaumarchaeota may indicate the significance in the sediment of
this novel phylum, which comprises not only all known archaeal ammonia oxidizers, but
also several clusters of environmental sequences representing microorganisms with
unknown energy metabolisms (Pester et al., 2011). The main known characteristic of
Thaumarchaeota is the enzyme ammonia monooxygenase, which belongs to the en-5

zyme family of copper containing membrane bound monooxgenases that possess wide
substrate ranges. Closely related enzymes, which can often perform the same func-
tion but with different substrates, include ammonia oxidizing bacteria with ammonia
(in Gammaproteobacteria) and methane as a substitute (Lontoh et al., 2000). How-
ever, a microorganism’s metabolic energy is mainly defined by its downstream enzyme10

machinery (Tavormina et al., 2011). Members of Thaumarchaeota phylum could have
enzymes that are able to capture methane due to the enzymes’ phylogenetic proximi-
ties to methane monooxgenases, but that activity requires the necessary downstream
metabolic pathway, which, if they have that ability, renders them good candidates for
group of methanotrophic archaea. This indirect pathway can be similar to that found in15

the NC10 phylum (Zhu et al., 2012), which produces oxygen via the reduction of nitrite
and the oxidation of methane, but with iron oxides.

The Miscellaneous Crenarchaeotic Group (MCG) is a cosmopolitan class (Fig. 4b)
assigned to the Thaumarchaeota phylum whose members are found mostly in anoxic
habitats and have the capability to take up organic carbon (Biddle et al., 2006). Be-20

cause of their huge environmental range and their complex phylogeny, the MCG col-
lectively possess great metabolic diversity(Jiang et al., 2008). Current evidence for
members of the MCG lineage suggests that they may obtain energy from the anaerobic
oxidation of methane, but they do so via a dissimilatory methane-oxidizing process and
they do not assimilate its carbon (Biddle et al., 2006). Our own sequences (Fig. 5b)25

were very similar (> 96 %) to the reference sequences from those types of environ-
ments. Therefore, the MCG may also be responsible for the unknown microorganism
with a direct mechanism for methane oxidation in the LK profile.
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The Euryarchaeota phylum has diverse metabolic mechanisms in various environ-
ments. The sequences affiliated to our clone library (Fig. 5b) show that methanogene-
sis could be one of the mechanisms functioning in the deep sediment. Those archaea
could perform “reverse methanogenesis” while bacterial iron reducers utilize the H2
produced, which drives this mechanism.5

To summarize, this study attempted to correlate between geochemical and microbial
profiles in lake sediments. Geochemical and microbial analyses of the deep sediment
of LK were performed. The geochemical data suggest three main zones of electron
acceptor activities: sulfate reduction, methanogenesis and a novel, deep iron-driven
AOM. The prokaryotic analysis provided clues about the microorganisms that are in-10

volved in this novel process and the metabolic paths that occur throughout the micro-
bial assemblage. For AOM via iron reduction to occur, a number of potential pathways
and their combinations have been suggested. Phyla that become enriched (Thaumar-
chaeota, Proteobacteria and Nitrospirae) with depth can be assumed to participate in
the AOM process either directly or indirectly. A possible direct process could be through15

new, currently unknown bacteria/archaea that reduce iron and utilize methane, which
may be carried out by a MCG as a methanotroph in consortium with an iron reducer like
Nitrospirae. Possible indirect processes could be Fe(III) reduction by sulfide, oxidation
of the sulfide to elemental sulfur and other sulfur intermediates and then dispropor-
tionation to sulfide and sulfate and sulfate driven AOM (such as in (Holmkvist et al.,20

2011)). It could be also reduction of Fe(III) by utilizing H2, which creates a low con-
centration of H2 and drives “reverse methanogenesis”. This could occur by Nitrospirae
and/or Deltaproteobacteria. Both Nitrospirae and/or Deltaproteobacteria could reduce
the iron while in a consortium with methanogenic MBG-D or reduce the iron with sulfur
minerals to create sulfate that Deltaproteobacteria could utilize while in a consortium25

with a MCG as a methanotrophic archaea. Anaerobic oxidation of the methane cou-
pled to nitrite reduction pathway as described by Ettwig et al. (2010) could occur by
Thaumarchaeota with a monooxygenase enzyme that can utilize methane while using
iron oxides to generate the oxygen needed to oxidize the methane.
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Our findings suggest these possible mechanisms in the deep part of LK sediment.
However, further research involving a larger sample of the microbial community and
characterization of the relevant functional genes will provide better indications as to the
compositions of the microbial communities at the different depths. Lab experiments to
identify the microorganisms involved in this novel process by enrichment and cultivation5

by slurry incubation together with geochemical analyses will improve our understanding
of the specific mechanism of AOM via iron reduction. Together a better understanding
of the biogeochemical makeup of this sediment and of the microbial communities that
drive it will be achieved.

The Supplement related to this article is available online at10

doi:10.5194/bgd-11-9813-2014-supplement.
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Table 1. Bacterial sequence distributions using different richness and diversity indexes.

Depth No. of clones No. of OTUs Chao value Ace value Shannon index Coverage
sequenced (97 %) (min/max) (min/max) (min/max) (%)

Bac-1 32 26 68 79.76 3.19 34.38
(0–3 cm) (39.74–154.37) (43.1–195.02) (2.93–3.45)
Bac-3 57 53 461.33 574.902 3.94 12.28
(6–9 cm) (201.25–1177.68) (246.41–1719.86) (3.74–4.13)
Bac-11 38 33 134.5 162.5 3.44 23.68
(29–32 cm) (68.14–326.17) (74.64–435.74) (3.2–3.68)
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Table 2. Archaeal sequence distributions using different richness and diversity indexes.

Depth No. of clones No. of OTUs Chao value Ace value Shannon index Coverage
sequenced (97 %) (min/max) (min/max) (min/max) (%)

Arch-1 46 27 46.13 54.53 2.97 60.87
(0–3 cm) (33.16–86.41) (42.72–75.21) (2.66–3.28)
Arch-3 52 28 53.5 60.64 3.09 65.38
(6–9 cm) (36.05–108.79) (39.75–118.65) (2.85–3.33)
Arch-11 55 30 43.6 54.79 3.19 69.09
(29–32 cm) (34.29–73.09) (39.16–97.06) (2.97–3.42)
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clone libraries at the different depths. Note: unclassified sequences were classified by manual 868 

alignment with the ARB program.  869 

Figure 5: Neighbor joining phylogenetic tree from the bottom part of the core showing the 870 

affiliation of 16S rRNA gene OTUs. A. Bacterial phylogenetic tree, B. Archaeal phylogenetic tree. 871 

Bootstrap values greater than 50% of 1000 resampling are shown near nodes. The brackets near the 872 

sequence number indicate the number of sequences represented by this OTU. The SINA 873 

classification is shown by brackets: the braces represent the phylum, the thick black brackets 874 

represent the class, the dashed brackets represent the order and the normal brackets represent the 875 

family. Bar = 5% estimated sequence divergence. 876 

 877 
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 883 

Figure 1. 884 

  885 

Figure 1. Schematic location of Lake Kinneret. Numbers correspond to altitude measured in
meters from the level of Lake Kinneret. Cores were taken from station A (taken from Hambright
et al., 2004).
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A B C 

D 

Figure 2. Geochemical porewater profiles in LK sediment. (A) Headspace measurements of
methane (gray circles) and δ13CCH4

(black squares) in the sediments, (B) electron acceptor
profiles of dissolved Fe(II) (gray triangles) and Mn (II) (black squares) in the porewater, (C)
profile of SO−2

4 (black circles) and sulfide (gray diamonds) in the porewater, (D) δ13C of total
lipids extraction (TLE) (black diamonds) from the sediment, and δ56Fe (gray circles) of the
dissolved iron in the porewater. Black arrows indicate the sampled sections for 16S rRNA gene
analysis.
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Figure 3

Depth 29.2-32.1 cm

Depth 5.8-8.7 cm

Depth 0-2.9 cm

% Clone library

Proteobacteria Bacteroidetes Chloroflexi
Verrucomicrobia Chlorobi Acidobacteria
Firmicutes Gemmatimonadetes Candidate division OP3
Planctomycetes OD1 OC31
Deferribacteres TA06 Fusobacteria
Spirochaetes Cyanobacteria Actinobacteria
Armatimonadetes Nitrospirae Caldiserica

Depth 29.2-32.1 cm

Depth 5.8-8.7 cm

Depth 0-2.9 cm

% Clone library
Epsilonproteobacteria Gammaproteobacteria Deltaproteobacteria Alphaproteobacteria

Sphingobacteriia GIF9 MSBL5 Chlorobia

OPB35 soil group Holophagae SB-1 Gemmatimonadales

RB25 Planctomycetacia MBMPE71 LCP-89

FS118-62B Clostridia Chloroplast Anaerolineae

Deferribacteres OPB41 Spirochaetes Fusobacteria

Acidobacteria Caldilineae Ignavibacteria Caldithrix

ML635J OPB95 Nitrospiraceae TTA-B15

Betaproteobacteria Nitrospira S085 Pla4

Plycisphaerae BD7 Unclassified

Figure 3. Classification of bacterial sequences using the SINA program. (A) Phyla distribution
of sequences of the clone libraries at the different depths. (B) Class distributions of sequences
of the clone libraries at the different depths. Note: unclassified sequences were classified by
manual alignment with the ARB program.
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Figure 4

Depth 29.2-32.1 cm

Depth 5.8-8.7 cm

Depth 0-2.9 cm

% Clone library

Depth 29.2-32.1 cm

Depth 5.8-8.7 cm

Depth 0-2.9 cm

% Clone library

Thermoplasmata Methanomicrobia
Thermoprotei Miscellaneous Crenarchaeotic Group
Soil Crenarchaeotic Group(SCG) Marine Benthic Group B
Group C3 Halobacteria
AK59

Figure 4. Classification of archaeal sequences using the SINA program. (A) Phyla distributions
of sequences of the clone libraries at the different depths. (B) Class distributions of sequences
of the clone libraries at the different depths. Note: unclassified sequences were classified by
manual alignment with the ARB program.
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A

Figure 5a. Neighbor joining phylogenetic tree from the bottom part of the core showing the
affiliation of 16S rRNA gene OTUs. (A) Bacterial phylogenetic tree. Bootstrap values greater
than 50 % of 1000 resampling are shown near nodes. The brackets near the sequence number
indicate the number of sequences represented by this OTU. The SINA classification is shown
by brackets: the braces represent the phylum, the thick black brackets represent the class, the
dashed brackets represent the order and the normal brackets represent the family. Bar= 5 %
estimated sequence divergence.
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B

Figure 5b. Neighbor joining phylogenetic tree from the bottom part of the core showing the
affiliation of 16S rRNA gene OTUs. (B) Archaeal phylogenetic tree. Bootstrap values greater
than 50 % of 1000 resampling are shown near nodes. The brackets near the sequence number
indicate the number of sequences represented by this OTU. The SINA classification is shown
by brackets: the braces represent the phylum, the thick black brackets represent the class, the
dashed brackets represent the order and the normal brackets represent the family. Bar= 5 %
estimated sequence divergence.
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