

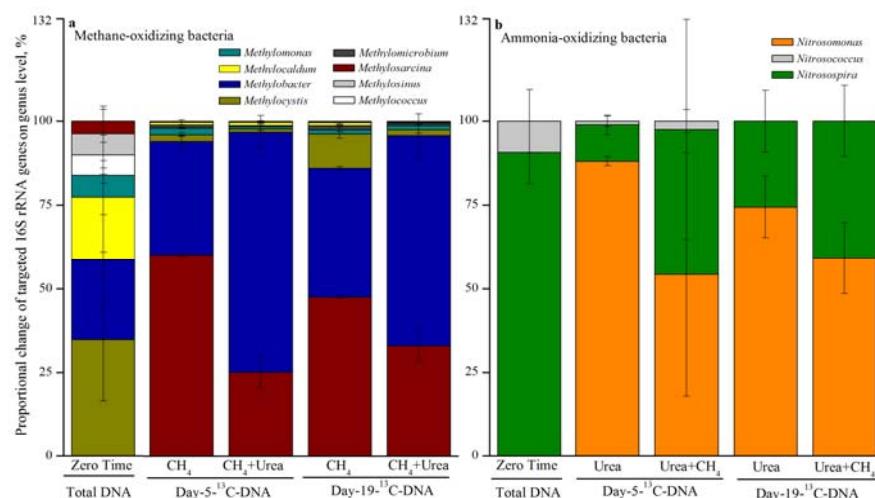
Point-by-point response to the comments of the referee #1

(Manuscript ID bg-2014-97)

General comments of the referee #1

The authors present an intriguing experiment that demonstrates that urea fertilization combined with a high methane concentration (~10,000 ppm) may inhibit ammonia oxidizers and ammonia oxidation. The authors provide hints that type I MOB were N-limited and outcompeted the obviously the much slower responding AOB when utilizing urea

Used methods (amplicon pyrosequencing, DNA stable isotope probing) are state of the art methods and all experiments were well conducted. The english is largely of good quality.


The reviewer has some major concerns

Reply: We are thankful to the referee for the positive comment. The major concerns are addressed in the following, and we are looking forward to further comments for manuscript improvement.

Major Concerns

1. It would be extremely helpful to present in figure 5 not only MOB identities based on the old fashioned classification system (type I or II), but name genera, as the authors do then finally in the discussion section and Fig. 3.

Reply: It has been corrected as follows in the revised Fig. 5

2. Type II methanotrophs did not rapidly respond to added methane or urea. Are the detected organisms known to be diazotrophic, i.e., are

these specialists that respond under N-limited conditions? Please, discuss this issue in the revised manuscript version

Reply: We fully agree with these comments, and believe type II could survive better under N-limited conditions than type I. It was discussed in the revised ms as follows.

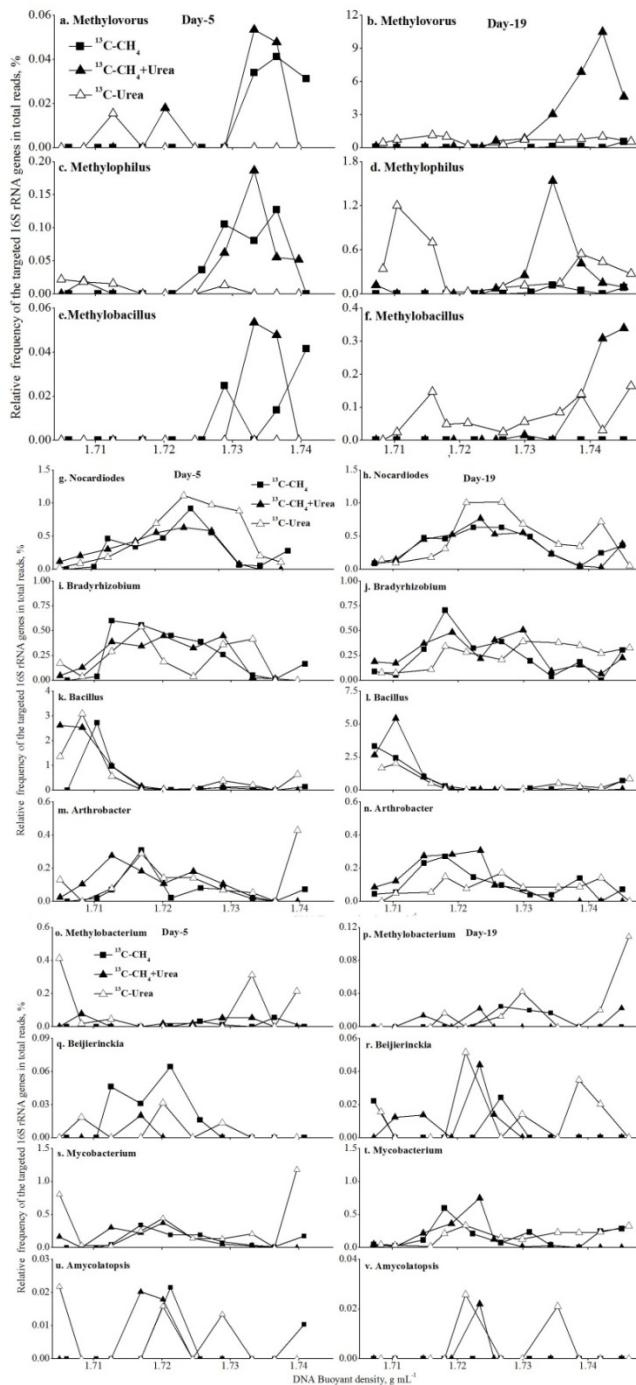
¹³C-labeled methanotrophic 16S rRNA gene sequences are closely affiliated with *Methylocystis parvus* OBBP, which possesses nitrogenase and capable of nitrogen fixing (Murrell and Dalton, 1983). This suggested that these *Methylocystis parvus*-like type II may respond under N-limited conditions in our study. Pls see the revised version [from line 535 to line 538 on page 19](#).

3. Before the experiment soil was pre-incubated. The reviewer did not see any data that documents, which changes in the methanotrophic and ammonia-oxidizing communities occurred during this pre-incubation period. This lack of information make the relevance for the *in situ* situation less likely. Please, discuss this issue in the revised manuscript

Reply: the new discussion was added in the revised ms as follows..

According to this comment and the related comments of reviewer#2, We have discussed about the issue as follows in the revised version [from line 470 to line 487 on page 17~18](#).

The pre-incubation was performed to increase the labeling efficiency of targeted microorganisms because the dilution of ¹³CO₂ by soil-respired ¹²CO₂ could be decreased significantly as reported previously (Jia and Conrad, 2009; Xia et al., 2011). No apparent changes of ammonia oxidizer communities were observed during a 4-week pre-incubation without ammonium fertilization, significant shift of AOB communities occurred in the ammonium-amended soils (Jia and Conrad, 2009). The nitrogenous fertilization of paddy field in this study is about 250 kg N ha⁻¹, which is equivalent to 107 µg N g⁻¹ d.w.s, assuming an effective soil depth of 20 cm. In addition, methane concentrations of 900 to 15000 µL L⁻¹ were generally detected in paddy soil during rice-growing season (Nouchi et al., 1990; Nouchi et al., 1994). Therefore, the microcosms were incubated with 100 µg urea-N g⁻¹ d.w.s. and 10000 µL L⁻¹ methane to extrapolate the microbial interactions between methane- and ammonia-oxidation under field conditions. It suggests that microcosms might represent largely what is occurring under *in situ* conditions, although it could not reproduce the physiochemical and biological conditions in field. For instance, it also has been reported that the results of microcosm incubations remained largely consistent with population dynamics of methanotrophic communities in field (Eller et al., 2005).

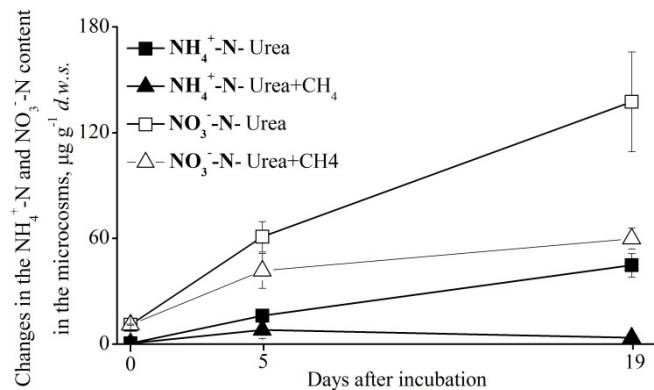

4. Methanol-oxidizers: The authors do not explain how they decided, which of the detected taxa were methanol-utilizers (this is also not documented for ammonia-oxidizers, nitrite oxidizers, and

methanotrophs). There are a lot of methanol-oxidizers known that occur in soil and were likely overlooked when defining this functional group (for reference Kolb 2009 FEMS Letters, Stacheter & Kolb 2013 Front Mic)

Reply: We greatly appreciate this insightful comment.

- (1) Methanol oxidizers: Methanol-oxidizing bacteria utilize methanol as carbon and energy source. The known soil-retrieved methanol-oxidizing bacteria was with high diversity (Kolb, 2009). However, most of them are facultative methylotrophic, indicating the capability to utilize alternative carbon substrate. The family *Methylophilaceae* is the known obligate methylotrophs that use methanol as the sole source of carbon and energy (Bratina et al., 1992; He et al., 2012).
- (2) In addition, we have analyzed the known methanol-oxidizers mentioned by Kolb 2009. We detected 11 genera of methanol-oxidizing bacteria, while only three genera *Methylovorus*, *Methylophilus*, and *Methylobacillus*, belonging to *Methylophilaceae* were apparently higher in the 'heavy' DNA fractions from labeled microcosms (^{13}C -CH₄ treatment and ^{13}C -CH₄+Urea treatment) than those in the control treatment (^{12}C -CH₄+Urea treatment), indicating that activity of these three methanol-oxidizers in soils after incubation for 5 and 19 days.

Therefore, the methanol-oxidizing bacteria analyzed in our study is *Methylophilaceae*. The revision and correction has been made about methanol-oxidizers in the revised manuscript from line 93 to line 98 on page 4 and from line 323 to line 325 on page 12.

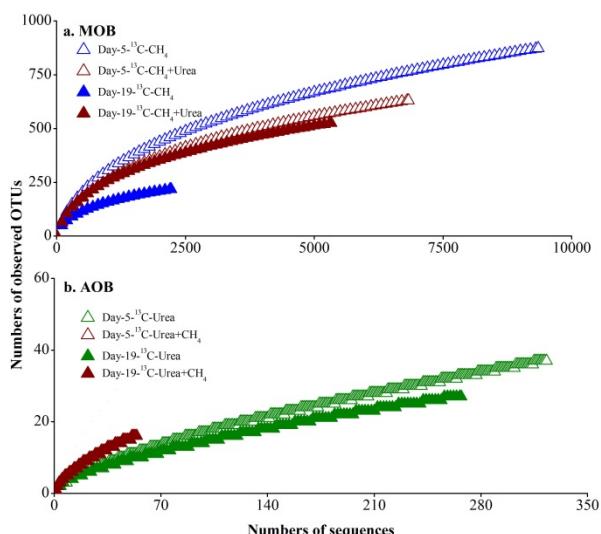

Comment#1-Fig.1 Relative frequency of 16S rRNA gene sequences affiliated with methanol-oxidizers on genus level detected in our study across the buoyant density gradient of DNA fractions from the ^{13}C -labeled and ^{12}C -control microcosms after incubation for 5 and 19 days.

(1) We have stated the taxa of the Methanotrophs [from line 82 to line 89 on page 4](#), AOB [from line 106 to line 109 on page 4](#), AOA [from line 109 to line 113 on page 4](#), and NOB [from line 113 to line 117 on page 4](#) in the revised manuscript.

5. Fig. 1, The reviewer thinks, that it would improve understanding of the complex experiment, when nitrate and ammonia data would be presented as line graphs in a separate figure.

Reply: It has been done as follow as supplementary Fig. S2

Figure S2. Changes in NH_4^+ -N and NO_3^- -N content in soil microcosms incubated with urea with or without CH_4 over the course of 19 days of incubation


6. Fig. 5, Is the sequence coverage high enough to allowed for statistical comparison of single datasets? Please, provide coverages and rafaction analyses. Please, correct in the label of the y-axis '...on genus level...'.

Reply: Yes, the sequencing is deep enough to allow for statistical comparison of single datasets.

- (1) The coverage calculated using Good's C([Comment#1-Table1](#)) at sequence identity of 97% of MOB and AOB sequences retrieved from ^{13}C -labeled DNA was 96.2%~96.5% and 83.3%~94.0%, respectively. In addition, rarefaction analysis ([Comment#1-Fig.2](#)) indicated that the OTU numbers of MOB and AOB nearly reached saturation level in our treatments.
- (2) We have corrected in the label of the y-axis the '...on genus level...' in the revised version(see [Fig. 5](#)).

Comment#1-Table 1. The coverage analysis of 16S rRNA gene sequences affiliated with MOB and AOB in the ^{13}C -labeled DNA from the microcosms after incubation for 5 and 19 days.

Treatment	MOB			AOB		
	sequences	Coverage	Observed OTUs	sequences	Coverage	Observed OTUs
Day5- ^{13}C -DNA	CH ₄	9348	96.2%	873	---	---
	Urea	---	---	---	323	92.2%
	CH ₄ +Urea	6828	96.4%	631	27	85.1%
Day19- ^{13}C -DNA	CH ₄	2219	96.5%	218	---	---
	Urea	---	---	---	267	94.0%
	CH ₄ +Urea	5325	96.2%	526	54	83.3%

Comment#1-Fig.2 Rare fraction of methotrophic (a) and ammonia-oxidizing bacterial (b) 16S rRNA gene sequences in the ^{13}C -labeled DNA from the microcosms after incubation for 5 and 19 days.

7. Please define in the beginning of the text once the abbreviation 'd.w.s'. It means 'dry weight of soil'?

Reply: Corrected. 'd.w.s.' means 'dry weight of soil'. We have defined the abbreviation in the revised version [line 176 on page 7](#).

8. Do the authors also consider 16S rRNA phylotypes of the genus *Nitrosococcus* as AOB? Where these AOB detected?

Reply: Yes, we do consider it

- (1) The 16S rRNA phylotypes of the genus as AOB based on the the

previous study (Purkhold et al., 2000; Purkhold et al., 2003). Comparative 16S rRNA sequences analyses showed that all the recognized ammonia oxidizers are confined to β and γ -subclass of *Proteobacteria*, and the genus *Nitrosococcus* constitutes a separate branch with the γ -subclass (Purkhold et al., 2000; Purkhold et al., 2003).

(2) It has been reported that *Nitrosococcus* species are restricted to marine environments and salt lakes (Degelmann et al., 2010). However, It has also been reported that organisms similar to the cultivated *N.oceani* strains could be detected from a wide variety of terrestrial environments (Ward and O'Mullan, 2002).

9. Discussion. The authors state that denitrification took place suggesting a reduced oxygen availability (3908, ln 24-26). a) The authors did not provide any data on this. b) Denitrification can be very active at slightly lowered oxygen levels. The whole issue is pure speculation.

Reply: Thanks! We agree with the comment.

According to this comment and the related comments of reviewers#2, the discussion about N balance and the denitrification activity are rather speculative. To make our discussion precise and focused, we have removed the relevant discussions in the revised ms.

10. Discussion: The authors stated that MOB have a 'memory' for optimal growth conditions. The whole concept sounds awkward. Such a memory might occur somehow on community level or might just be a misinterpretation because the phylogenetic resolution of such studies are too imprecise and the found identical taxa were not identical on phenotypic level. Please, remove it or extend this point with more details.

Reply: We agree with this point and removed the points about 'memory' for optimal growth conditions in the revised version.

Minor comments

1. abstract: The final conclusion (last sentence) is not very concise and convincing. Please, provide a more conclusive statement what can be learned on competition between AOB and MOB in rice field soil. This statement is the take home message.

Reply: It has been rephrased as follows

These results suggest that type I methanotrophs could likely outcompete type

II methane oxidizers under nitrogen-rich environment and the competitive interactions among methane and ammonia oxidizers are complicated than previously appreciated.

2. 3895 ln25-27, What do you intend to state here. Please, find a more concise wording.

Reply: We intend to state that there are methanotrophic groups outside *Proteobacteria*, such as phylum *Verrucomicrobia*. Because this point has been mentioned from line 77 to line 78 on page 3, we removed this sentence to avoid repetition in the revised version.

3. 3896 ln 21, correct '...methanotrophs might...'

Reply: Corrected

4. 3897 ln9-14, Please provide a more sharpened rational why the study is important.

Reply: It was rephrased as follows from line 145 to line 150 on page 6 in the revised version.

The interactions between methane- and ammonia-oxidizers are linked to methane-nitrogen cycle in light of climate change. However, the effects of nitrogen on methane oxidation are complicated and contradictory results are often reported. Therefore, the microbial populations and functional dynamics of methane- and ammonia oxidizers were investigated in microcosms incubated with CH₄, urea and CH₄+urea in a paddy soil using culture-independent techniques.

5. 3898,ln2-12, Why was no additional control with only 12CH₄ being used.

Reply: Methanotrophs are not expected in the control SIP microcosms of both ¹²CH₄ and ¹²CH₄+urea treatments. Therefore, we do not run ¹²CH₄ control

6. 3899-3900, Please, put in references for the used SIP protocol.

Reply: Reference added including Jia and Conrad (Jia and Conrad, 2009), Xia et al (Xia et al., 2011) and Dumont et al (Dumont et al., 2011).

7. 3901, ln6 correct '...high-quality...'

Reply: Corrected

8. 3901, ln 25, it does make any sense to cluster *pmoA* sequences at a level of 97% similarity. It has been suggested that an average similarity of 87% is species-indicative. Of course any threshold can be used, but then a rational is mandatory.

Reply: Corrected

The 87% species cutoff value based on *pmoA* gene was shown to correspond to the 3% 16S rRNA gene distance level (Degelmann et al., 2010). We have clustered *pmoA* sequences at a level of 87% similarity in supplementary Fig. S5 and supplementary Fig. S9 in the revised version. The phylogenetic analysis of *pmoA* gene at 87% similarity is similar with that at 97% similarity in our study when we analyze the data based on genus level.

9. 3908, ln9-10 correct 'The ratio of N to CH4 is approximately 0.11 ...'

Reply: Corrected

10. 3908, ln 16 correct '...mineral N,...

Reply: Corrected.

11. 3911, ln 12, correct '...low methane habitats.'

Reply: Corrected.

12. 3911, ln 15 correct '...in the *pmoA* gene...'

Reply: Corrected

13. 3911, ln 13-27, Can you exclude that the *pmoA* primers and 16S rRNA primers did not cover the same diversity of organisms. If not, please, note also this as another technical challenge when comparing 16S rRNA gene with *pmoA* datasets.

Reply: We agree with the comment that *pmoA* primers and 16S rRNA primers may not cover similar ranges of diversity. We have noted this [from line 580 to line 582 on page 21](#) in the revised version.

14. 3913, ln 5 correct '...three species...'

Reply: Corrected

15. 3913, ln 8-10, the reviewer is not convinced that substantial amounts of formaldehyde would be released. Normally formaldehyde is to its largest amount bound to cofactors to keep the cell-internal concentrations as low as possible. This system is highly efficient and works as well at high millimolar CH₄ concentrations. Methanol is a completely different issue since the reaction rate of the MeOH dehydrogenase is usually such low that methanol production at high methane concentrations exceeds its consumption. This process is located in periplasm and thus, substantial amounts of an metabolic intermediate can be released. Please, remove formaldehyde from the statement or provide literature evidence that it might have happened.

Reply: Thanks for the reasoning. The relevant discussion of formaldehyde was

removed in the revised version.

16. 3914, correct '...communities...'

Reply: Corrected

17. 3914, In 13-15. This is **very** speculative based on the presented data. The authors did not provide any evidence for oxygen depletion

Reply: We agree with the comments since oxygen concentrations were not measured. The relevant discussion was therefore tuned down, although it seems very likely that oxygen concentrations differed in microcosms with different methane oxidation capacity.

18. 3914, The study did **not** provide any direct evidence that methanol or any other metabolite was assimilated by other methylotrophs. Thus, the sentence is overstated. Please, down tone it a bit.

Reply: We have rephrased the sentence [from line 670 to line 673 on page 24](#) as follows.

'In addition, our results revealed the cross-feeding of methane-derived carbon in the soil system upon urea fertilization, indicating urea might play an important role in carbon cycle through the microbial food web processing carbon from methane oxidation in paddy soil.'

19. Fig S3, correct in figure legend '..affiliation...' and NOT '...designation...'

Reply: We are afraid there might have some confusion. It has been rephrased as follows.

The designation of CH₄+Urea-OTU-1-38%-(616) indicates that OTU-1 containing 616 sequences with identity of >97% comprised 38% of methanotrophic 16S rRNA gene sequences in ¹³C-CH₄+Urea treatment after incubation for 19 days.

Reference

Bratina, B.J., Brusseau, G.A., and Hanson, R.S. (1992) USE OF 16S Ribosomal-rna analysis to investigate phylogeny of methylotrophic bacteria. *International Journal of Systematic Bacteriology* **42**: 645-648.

Degelmann, D.M., Borken, W., Drake, H.L., and Kolb, S. (2010) Different atmospheric methane-oxidizing communities in European beech and Norway spruce soils. *Appl Environ Microbiol* **76**: 3228-3235.

Dumont, M.G., Pommerenke, B., Casper, P., and Conrad, R. (2011) DNA-, rRNA- and mRNA-based stable isotope probing of aerobic methanotrophs in lake sediment. *Environmental Microbiology* **13**: 1153-1167.

Eller, G., Kruger, M., and Frenzel, P. (2005) Comparing field and microcosm experiments: a case study on methano- and methylo-trophic bacteria in paddy soil. *Fems Microbiology Ecology* **51**: 279-291.

He, R., Wooller, M.J., Pohlman, J.W., Catranis, C., Quensen, J., Tiedje, J.M., and Leigh, M.B. (2012) Identification of functionally active aerobic methanotrophs in sediments from an arctic lake using stable isotope probing. *Environmental Microbiology* **14**: 1403-1419.

Jia, Z., and Conrad, R. (2009) *Bacteria* rather than *Archaea* dominate microbial ammonia

oxidation in an agricultural soil. *Environmental Microbiology* **11**: 1658-1671.

Kolb, S. (2009) Aerobic methanol-oxidizing Bacteria in soil. *Fems Microbiology Letters* **300**: 1-10.

Murrell, J.C., and Dalton, H. (1983) NITROGEN-FIXATION IN OBLIGATE METHANOTROPHS. *Journal of General Microbiology* **129**: 3481-3486.

Nouchi, I., Mariko, S., and Aoki, K. (1990) Mechanism of methane transport from the rhizosphere to the atmosphere through rice plants. *Plant Physiology* **94**: 59-66.

Nouchi, I., Hosono, T., Aoki, K., and Minami, K. (1994) Seasonal-variation in methane flux from rice paddies associated with methane concentration in soil-water, rice biomass and temperature, and its modeling. *Plant and Soil* **161**: 195-208.

Purkhold, U., Wagner, M., Timmermann, G., Pommerening-Roser, A., and Koops, H.P. (2003) 16S rRNA and amoA-based phylogeny of 12 novel betaproteobacterial ammonia-oxidizing isolates: extension of the dataset and proposal of a new lineage within the nitrosomonads. *International Journal of Systematic and Evolutionary Microbiology* **53**: 1485-1494.

Purkhold, U., Pommerening-Roser, A., Juretschko, S., Schmid, M.C., Koops, H.P., and Wagner, M. (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: Implications for molecular diversity surveys. *Applied and Environmental Microbiology* **66**: 5368-5382.

Ward, B.B., and O'Mullan, G.D. (2002) Worldwide distribution of *Nitrosococcus oceani*, a marine ammonia-oxidizing gamma-proteobacterium, detected by PCR and sequencing of 16S rRNA and amoA genes. *Applied and Environmental Microbiology* **68**: 4153-4157.

Xia, W., Zhang, C., Zeng, X., Feng, Y., Weng, J., Lin, X. et al. (2011) Autotrophic growth of nitrifying community in an agricultural soil. *Isme Journal* **5**: 1226-1236.

1 **Title Page**

2 1. Title:

3 Competitive interactions between methane- and ammonia-oxidizing bacteria
4 modulate carbon and nitrogen cycling in paddy soil

5 2. Running Title:

6 Interactions between soil methane and ammonia oxidizers

7 3. Subject Category:

8 Microbial Ecology

9 4. Author Names:

10 Yan Zheng^{1,2}, Rong Huang¹, Baozhan Wang¹, Paul L.E. Bodelier³, Zhongjun Jia^{1*}

11 5. Author Affiliation

12 ¹ State Key Laboratory of Soil and Sustainable Agriculture,

13 Institute of Soil Science, Chinese Academy of Sciences

14 Nanjing, 210008, Jiangsu Province, P.R. China

15 ²University of the Chinese Academy of Sciences

16 Beijing 100049, People's Republic of China

17 ³Netherlands Institute of Ecology

18 Department of Microbial Ecology

19 Droevendaalsesteeg 10

20 6708 PB, Wageningen, the Netherlands

21 6. Corresponding author ^{1,*}

22 Dr. Zhongjun Jia

23 E-mail: jia@issas.ac.cn

24 Tel: +86-25-86881311; Fax: +86-25-86881000

25 **Abstract**

26 Pure culture studies have demonstrated that methanotrophs and ammonia oxidizers
27 can both carry out the oxidation of methane and ammonia. However, the expected
28 interactions resulting from these similarities are poorly understood, especially in
29 complex, natural environments. Using DNA-based stable isotope probing and
30 pyrosequencing of 16S rRNA and functional genes, we report on biogeochemical and
31 molecular evidence for growth stimulation of methanotrophic communities by
32 ammonium fertilization, and that methanemodulates nitrogen cycling by competitive
33 inhibition of nitrifying communities in a rice paddy soil. Pairwise comparison between
34 microcosms amended with CH₄, CH₄+Urea, and Urea indicated that urea fertilization
35 stimulated methane oxidation activity by 6-fold during a 19-day incubation period,
36 while ammonia oxidation activity was significantly suppressed in the presence of CH₄.
37 Pyrosequencing of the total 16S rRNA genes revealed that urea amendment resulted
38 in rapid growth of *Methylosarcina*-like type Ia MOB, and nitrifying communities
39 appeared to be [partially inhibited](#) by methane. High-throughput sequencing of the
40 ¹³C-labeled DNA further revealed that methane amendment resulted in clear growth
41 of *Methylosarcina*-related MOB while methane plus urea led to equal increase in
42 *Methylosarcina* and *Methylobacter*-related MOB, indicating the differential growth
43 requirements of representatives of these genera. Increase in ¹³C-assimilation by
44 microorganisms related to methanol oxidizers clearly indicated carbon transfer from
45 methane oxidation to other soil microbes, which was enhanced by urea addition. The
46 active growth of type Ia methanotrophs was significantly stimulated by urea amendment,
47 and the pronounced growth of methanol-oxidizing bacteria occurred in CH₄-treated
48 microcosms only upon urea amendment. Methane addition [partially inhibited](#) the
49 growth of *Nitrosospira* and *Nitrosomonas* in urea-amended microcosms, in addition of
50 nitrite-oxidizing bacteria. [These results suggest that type I methanotrophs could likely](#)
51 [outcompete type II methane oxidizers under nitrogen-rich environment and the](#)
52 [competitive interactions among methane and ammonia oxidizers are complicated than](#)
53 [previously appreciated.](#)

54 **Key Words:**

55 Paddy soil, methane oxidation, ammonia oxidation, microbial interactions,
56 high-throughput pyrosequencing, DNA-SIP

57 **Introduction**

58 The intensive use of nitrogenous fertilizers in rice agriculture is a perquisite to meet
59 the growing demand for food, especially since this crop feeds more than half of
60 world's population (Galloway et al., 2008). The tight coupling between nitrogen
61 fertilization and methane emission from rice paddy ecosystems in combination with
62 the significant contribution of these system to the global methane emission 15 to 45%
63 of global CH₄ budget (Bodelier, 2011) has evoked numerous studies focusing on this
64 topic. Recent meta-analysis indicate that the increasing rice biomass by nitrogen
65 fertilization may result in the elevated supply of readily available carbon in suport of
66 methanogenesis, stimulating methane emission in paddy fields(Banger et al., 2012).
67 However, opposed to this there is a strong body of evidence demonstrating
68 stimulation of methane oxidation by ammonium-based fertilizers in rice soil, leading
69 to reduced methane flux (Bodelier et al., 2000b). The vast amount of studiesfollowing
70 these observations as well as possible underlying mechanisms for nitrogen regulation
71 of methane oxidation in soils and sediments has been reviewed (Bodelier, 2011;
72 Bodelier and Laanbroek, 2004). However, the role of interactions between
73 methanotrophs and ammonia oxidizers and the consequences for interactions between
74 carbon and nitrogen cycling has rarely been investigated in natural complex
75 ecosystems (Bodelier, 2011).

76 Aerobicmethane-oxidizing bacteria (MOB) belong to two phyla: *Proteobacteria* and
77 *Verrucomicrobia* (Bodelier et al., 2009). Whereas proteobacterial MOB are
78 widespread, *Verrucomicrobia* seem to be restricted to extreme environments(Dunfield
79 et al., 2007). Aerobic proteobacterialMOB can be divided into two major groups
80 mainly based on phylogeny being type I (*Gammaproteobacteria*) and type II
81 (*Alphaproteobacteria*). This group assignment used to be supported by differences in
82 biochemical, physiological and morphological properties. [Based on congruent 16S](#)
83 [rRNA and *pmoA* phylogeny](#), type I MOB harboring the family *Methylococcaceae* can
84 be further divided into type Ia (including genera *Methylosarcina*,

85 *Methylobacter, Methylomonas, Methylomicrobium, Methylosoma, Methylosphaera*
86 *and Methylovulum*) and type Ib (including genera *Methylococcus, Methylocaldum,*
87 *Methylogaea, Methylobius and Methylothermus*). Type II MOB includethe family
88 *Methylocystaceae* (including genera *Methylocystis* and *Methylosinus*)and
89 *Beijerinckiaceaea* (including genera *Methylocella, Methylocapsa* and
90 *Methyloferula*)(Stein et al., 2012).The methane monooxygenase (MMO) exist either
91 as a particulate (pMMO) or a soluble (sMMO) form. All known methanotrophs
92 contain pMMO except *Methylocella* and *Methyloferula*, while sMMO is found only in
93 a few species(Hanson and Hanson, 1996; Lipscomb, 1994).Methanotrops covers CH₄
94 to methanol, which can be utilized by methanol-oxidzing bacteria as carbon and
95 energy source. The known soil-retrieved methanol-oxidizing bacteria was with high
96 diversity, however, most of them are facultative methylotrophic, indicating the
97 capability to utilize alternative carbon substrate(Kolb 2009). The family
98 *Methylophilaceae* is the known obligate methylotrophs that use methanol as the sole
99 source of carbon and energy (Bratina et al 1992, He et al 2012).Nitrifying bacteria use
100 ammonia monooxygenase (AMO) for oxidation of their primary growth
101 substrate.Though the AMO gene was thought to be unique to ammonia-oxidizing
102 bacteria, the discovery of ammonia-oxidizing archaea (AOA) has suggested important
103 role of archaeal nitrification in the global nitrogen cycle (Lu and Jia, 2013; Venter et
104 al., 2004).However, until now the relative contribution of AOB and AOA to ammonia
105 oxidation in argricultural soil is still unclear(Prosser and Nicol, 2012; Xia et al.,
106 2011).16S rRNA and *amoA* gene analyses of AOB revealed that physiological group
107 are confined to monophyletic groups whithin β - andy-subclass of *Proteobacteria*.
108 *Nitrosospira* and *Nitrosomonas* form a grouping within β -subclass and *Nitrosococcus*
109 is affiliated with γ -subclass (Purkhold et al 2000, Purkhold et al 2003).Enormous
110 diversity of AOA based on 16S rRNA and *amoA* gene has been suggested, and four
111 major lineages have been displayed, including *Nitrososphaera* cluster, *Nitrosopumilus*
112 cluster, *Nitrosotalea* cluster, and *Nitrosocaldus* cluster(Pester et al 2012, Stahl and de
113 la Torre 2012). The conversion of nitrite into nitrate is caused by nitrite-oxidizing
114 bacteria (NOB). NOB are composed of four genera, including *Nitrobacter*,

115 *Nitrococcus*, *Nitrospina* and *Nitospira*, which were assigned to the α -proteobacteria,
116 γ -proteobacteria, δ -proteobacteria and phylum *Nitrospirae*, respectively (Bock and
117 Wagner 2006).

118 The key enzymes methane monooxygenase (MMO) in methanotrophs and ammonia
119 monooxygenase in ammonia oxidizers are evolutionarily linked (Holmes et al., 1995),
120 leading to functional similarities enabling both methanotrophs and ammonia oxidizers
121 to oxidize both methane and ammonia (Jones and Morita, 1983; O'Neill and
122 Wilkinson, 1977). Pure culture studies demonstrated that methane can act as a
123 competitive inhibitor for ammonia oxidizers, and ammonia inhibits the growth and
124 activity of methanotrophs (Bedard and Knowles, 1989; Stein et al., 2012). Next to this,
125 both MOB as well as AOB have to deal with toxic intermediates (hydroxylamine in
126 case of MOB and methanol in case of AOB) (Stein et al., 2012). At the microbial
127 community level, however, the growth of methanotrophs might be nitrogen-limited and
128 nitrogen fertilization might relieve methane oxidizers from nutrient constraint
129 (Bodelier et al., 2000b). At the same time ammonia oxidizers and subsequent
130 nitrification may be inhibited by the methanotrophic N-assimilation. However, the
131 research focus of methane effect on nitrification in natural complex ecosystems is poor,
132 which is in sharp contrast with a large number of studies executed to elucidate effect
133 of nitrogenous fertilizers on methane oxidation. Moreover, the lack of knowledge on
134 this topic is even more evident taking the yet unknown role of AOA in interactions
135 with MOB into account. DNA-based stable isotope probing (DNA-SIP) is generally
136 used to link the metabolisms of ^{13}C -labeled substrates with growing microbial
137 communities in the environment. DNA-SIP has been employed to identify the active
138 methanotrophs (Dumont et al., 2011) and ammonia oxidizers in soils (Jia and Conrad,
139 2009; Lu and Jia, 2013; Xia et al., 2011). The combined use of stable isotope labeling
140 and high throughput pyrosequencing is a powerful combination of approaches that
141 offers great opportunities in elucidating interaction between MOB and AOB/AOA,
142 because both groups can easily and specifically be labeled using $^{13}\text{CH}_4$ (Bodelier et al.,
143 2013; Bodelier et al., 2012) and $^{13}\text{CO}_2$ (Jia and Conrad, 2009). However, studies that

144 assessed both functional groups in interaction with each other are missing.

145 The interactions between methane- and ammonia-oxidizers are linked to
146 methane-nitrogen cycle in light of climate change. However, the effects of nitrogen on
147 methane oxidation are complicated and contradictory results are often reported.
148 Therefore, the microbial populations and functional dynamics of methane- and
149 ammonia oxidizers were investigated in microcosms incubated with CH₄, urea and
150 CH₄+urea in a paddy soil using culture-independent techniques.

151 **Materials and Methods**

152 **Site description and soil sampling**

153 The paddy soil was collected from Yangzhou City (119°42'0"E, 32°35'5"N) of Jiangsu
154 province, one of the major regions for rice production in China. The soil was silt clay
155 and classified as CalcaricGleVsols. The field has a history of rice cultivation for more
156 than 50 years. Soil sampling was performed at 0-15 cm depth by steel cores with three
157 replicates. Soil maximum water holding capacity (WHC) was 55%, and the soil
158 samples were homogenized by passing through a 2-mm meshed sieve. The resulting
159 soil samples were kept at 40% maximum water holding capacity in fridge until use.
160 Soil characteristics are as follows: 15 g total organic C kg⁻¹, 1.59 g total N kg⁻¹, 1.23 g
161 total P kg⁻¹ and pH 7.4 determined with water to soil ratio at 2.5.

162 **DNA-SIP microcosms**

163 Four treatments were performed including ¹³C-CH₄-labeled microcosms (incubated
164 with ¹³C-CH₄), ¹³C-Urea-labeled microcosms (incubated with ¹³C-Urea and ¹³C-CO₂),
165 ¹³C-CH₄+Urea-labeled microcosms (incubated with ¹³C-CH₄, ¹³C-Urea and ¹³C-CO₂)
166 and ¹²C-CH₄+Urea control microcosm (incubated with ¹²C-CH₄, ¹²C-Urea and
167 ¹²C-CO₂). The hydrolysis of ¹³C-labeled urea was employed to generate ammonia and
168 ¹³C-CO₂ in support of autotrophic nitrifying communities in soil as previously
169 reported (Lu and Jia, 2013). Pairwise comparison among the treatments of ¹³C-CH₄,
170 ¹³C-CH₄+Urea, and ¹³C-Urea was used to assess the effect of urea fertilization on

171 methane oxidation activity [and MOB community composition](#), and the role of
172 methane on ammonia oxidation activity [and AOB/AOA community composition](#). The
173 soil microcosm with $^{12}\text{C-CH}_4$ +Urea amendment was performed as control treatment
174 for the labeled SIP microcosms.

175 Microcosms for stable-isotope probing incubations were constructed in triplicate by
176 adding approximately 7.30 g fresh soil (equivalent to 6.0 g [dry weight of soil](#), i.e.,
177 *d.w.s.*) to 120 mL serum bottles capped with black butyl stoppers for incubation at 28°
178 C in the dark for 19 days. To increase the labeling efficacy of targeted microorganisms,
179 the pre-incubation of soil at 40% maximum water-holding capacity (WHC) was
180 performed for 14 days to reduce the amount of soil-respired $^{12}\text{C-CO}_2$ (Jia and Conrad,
181 2009; Xia et al., 2011). The $^{13}\text{C-CH}_4$ -labeled microcosms and $^{13}\text{C-CH}_4$ +Urea-labeled
182 microcosms were injected with $^{13}\text{CH}_4$ (99 atom % ^{13}C , Sigma-Aldrich Co., St Louis,
183 MO, USA) to reach 9000 ppmv (Table S1). Meanwhile, $^{13}\text{C-Urea}$ fertilization of 100
184 μg urea-N/g. *d.w.s.* with 5% $^{13}\text{CO}_2$ (99 atoms % ^{13}C , Sigma-Aldrich Co., St Louis, MO,
185 USA) was performed for $^{13}\text{C-Urea}$ -labeled microcosms and for $^{13}\text{C-CH}_4$ +Urea-labeled
186 microcosms as previously described (Jia and Conrad, 2009). As for $^{13}\text{C-CH}_4$ -labeled
187 microcosms, the distilled water instead of urea was added. SIP control microcosms
188 were established in triplicate by addition of the unlabeled CH_4 , urea and CO_2 instead
189 of ^{13}C -substrate. CH_4 and CO_2 concentrations were measured every few hours
190 depending on the rate of methane consumption by gas chromatography (Shimadzu
191 GC12-A, Japan) as previously described (Zhu et al., 2010). After more than 90% of
192 CH_4 was consumed, the headspace was flushed with pressurized synthetic air (20% O_2 ,
193 80% N_2) for 1 min to maintain oxic conditions before ^{13}C -labeled or unlabeled
194 substrate was renewed, to reach about ~10000 ppmv CH_4 and/or 100 μg urea-N/g.
195 *d.w.s.* plus 5% CO_2 . Due to strong methane oxidation in microcosms amended with
196 $^{13}\text{C-CH}_4$ +Urea treatment (Fig. S1), methane addition was regularly repeated, in
197 addition to urea and CO_2 substrates. The scenario of SIP microcosm construction was
198 detailed in supplemental Table S1. The destructive sampling was performed in
199 triplicate after incubation of SIP microcosms for 0, 5 and 19 days. Soil samples were

200 immediately frozen at -20° C until further use. For SIP microcosm amended with urea,
201 approximately 3g of fresh soil was removed from each of triplicate microcosms. The
202 rest of the soil was homogenized with 15mL of 2M KCl by shaking at 200 rpm for
203 60min., and then passed through filter paper for determination of NH₄⁺-N and NO₃⁻-N
204 using a Skalar SAN Plus segmented flow analyzer (Skalar, Inc., Breda, Netherlands).

205 **DNA extraction and Isopycnic centrifugation**

206 The total DNA from 0.5 g soil (fresh weight) of each microcosm was extracted using
207 the FastDNA spin kit for soil (MP Biomedicals, Cleveland, OH, USA), according to
208 the manufacturer's instruction. Soil DNA quality and quantity were observed by a
209 Nanodrop ND-1000UV-Vis Spectrophotometer (NanoDropTechnoloqies ,Wilmington,
210 DE, USA), and soil DNA was stored at -20°C.

211 For each treatment, density gradient centrifugation of total DNA was performed to
212 separate the ¹³C-labeled DNA from ¹²C-DNA as previously described in detail (Jia
213 and Conrad, 2009; Xia et al., 2011).. In brief, approximately 2.0 µg DNA was mixed
214 well with CsCl stock solution to achieve an initial CsCl buoyant density of 1.725 g
215 ml⁻¹using gradient buffer (pH 8.0; 100 mMTris-HCl; 100 mM KCl; 1.0 mM EDTA).
216 The mixturewas ultra-centrifuged in a 5.1 mL Beckman polyallomer ultracentrifuge
217 tube by using a Vti65.2 vertical rotor (Beckman Coulter, Inc., Palo Alto, CA, USA) at
218 177,000 g for 44hours at 20° C. A NE-1000 single syringe pump (New Era Pump
219 Systems, Inc., Farmingdale, NY, USA) with a precisely controlled flow rate of 0.38
220 ml/minwas used to fractionate DNA by displacing the gradient medium with sterile
221 water from the top. Fourteen or fifteen DNA fractions were obtained with equal
222 volumes of about 340 µL, and a 65 µL aliquot was used for refractive index
223 measurement using an AR200 digital hand-held refractometer (Reichert Inc., Buffalo,
224 NY, USA). The CsCl medium was removed by PEG precipitation (polyethylene
225 glycol 6000), and the DNA pellet was further purified with 70% ethanol. The
226 fractionated DNA wasthen dissolved in 30µL sterile water for downstream analysis.

227 **Real-time quantitative PCR of total and fractionated DNA**

228 Real-time quantitative analysis of the *pmoAgene* in total DNA and in each buoyant
229 density of DNA gradient fraction was performed to determine the growth and efficacy
230 of ¹³C incorporation into the genomic DNA of MOB communities on a CFX96
231 Optical Real-Time Detection System (Bio-Rad, Laboratories Inc., Hercules, CA,
232 USA), respectively. The growth and labeling of AOB and AOA communities was
233 assessed by real-time quantitative PCR of bacterial and archaeal *amoA* genes,
234 respectively (Lu and Jia, 2013). The primers and PCR conditions were described in
235 Supplementary Table S2. The reactions was performed in a 20 μ L mixture containing
236 10.0 μ L SYBR Premix Ex Taq (Takara, Dalian), 0.5 μ M each primer, and 1 μ L of DNA
237 template. The amplification efficiencies were 93%~103% obtained with R^2 values of
238 99.1%~99.9%.

239 **Pyrosequencing of 16S rRNA genes at the whole community level**

240 Pyrosequencing of the total 16S rRNA genes was performed in triplicate microcosms
241 (Table S3) and in the fractionated DNA from fraction-3 to 13 of each treatment (Table
242 S4) using the universal primers 515F/907R with primer adaptors, key sequence, and
243 tag sequence as previously described (Lu and Jia, 2013). Tag sequences were used to
244 barcode the PCR amplicons, and PCR conditions and primers were described in
245 Supplementary Table S2. 50 μ L PCR reaction mixture containing 45 μ L L⁻¹ Platinum
246 PCR SuperMix (Invitrogen, Shanghai, China), a 200 nM final concentration of
247 each primer, and 2 μ L template DNA was performed and the amplicons were purified
248 and visualized on 1.8% agarose gels. The purified PCR products were determined by a
249 Nanodrop ND-1000UV-Vis Spectrophotometer. Pyrosequencing was performed on a
250 Roche 454 GS FLX Titanium sequencer (Roche Diagnostics Corporation, Branford,
251 CT, USA). The read was trimmed to generate high-quality sequences using mothur
252 software (Schloss et al., 2009). Taxonomic assignment of the high-quality sequence
253 reads were obtained by RDP Multi Classifier with a confidence threshold of 50%
254 (Wang et al., 2007). The MOB-like and AOB-like 16S rRNA gene sequences were

255 extracted and clustered into operational taxonomic unit (OTU) at 97% sequence
256 identify cut-offusing mothur software package. One representative sequence of each
257 OTU was then used for phylogenetic analysis.

258 **Pyrosequencing of *amoA* and *pmoA* genes from total DNA and ^{13}C -labeled DNA**

259 The *pmoA* gene for MOBand bacterial *amoA* gene for AOBwere also analyzed using
260 high-throughput pyrosequencing of the total DNA and ^{13}C -labeled DNA in the
261 ^{13}C -labeled microcosms at day 0 and day 19 (Table S5). PCR primer pairs were
262 A189F/mb661r for *pmoA* gene (Costello and Lidstrom, 1999; Holmes et al., 1995),
263 and amoA-1F/amoA-2R for bacterial *amoA* gene (Rotthauwe et al., 1997),
264 respectively (Table S2). The functional genes were amplified using total DNA extract
265 fromtriplicatemicrocosms for each treatment. The ‘heavy’ DNA fraction showed the
266 highest relative abundance of AOB and MOB 16S rRNA genes was used as the
267 ^{13}C -DNA for pyrosequencing of functional genes. PCR was performed in a 50 μL
268 PCR reaction mixture containing 45 $\mu\text{L L}^{-1}$ Platinum PCR SuperMix (Invitrogen,
269 Shanghai, China), a 200 nM final concentration of each primer, and 2 μL template
270 PCR products were gel purified and sent for pyrosequencing on a Roche 454 GS FLX
271 Titanium sequencer (Roche Diagnostics Corporation, Branford, CT, USA). Raw
272 sequences were imported into mothur software (Schloss et al 2009) for quality check,
273 alignment and phylogenetic tree construction. High quality sequences(e.g. read length longer
274 than 200bp, average quantity score more than 25, without ambiguous base calls) were
275 excluded from further analysis. Pyrosequencing of *pmoA* gene yield about 36 000 high quality
276 sequence reads with an average length of 482bp, while about 47 000 bacterial *amoA* gene were
277 generated with an average length of 469bp (Table S5).*pmoA* gene sequences and bacterial
278 *amoA* gene sequences wereclustered into operational taxonomic unit at 87% (Degelmann et al
279 2010)and 97% sequence identity cut-off, respectively. One representative sequence was ten
280 used from each OTU for phylogenetic analysis.

281 **Statistical Analysis**

282 Effect of urea or CH₄ on measured parameters was tested using one-way analysis of
283 variance analysis (ANOVA). Prior to ANOVA analysis these data were tested for
284 normality (plots of SD versus means) and for homogeneity of variances (Levene's
285 test). All analyses were performed using SPSS Statistics soft package version 16.0.

286 **Accession number of nucleotide sequences**

287 The pyrosequencing reads have been deposited at DNA Data Bank of Japan (DDBJ)
288 with accession numbers DRA001245 and DRA001247 for the 16S rRNA genes and
289 functional genes (bacterial *amoA* and *pmoA*), respectively.

290 **Results**

291 ***Microbial oxidation of methane and ammonia***

292 Methane oxidation activity was assessed by determining the amount of methane
293 consumed in soil microcosms over the incubation course of 19 days, and the strong
294 capacity of methane oxidation was observed in the paddy soil tested (Fig. S1). It is
295 estimated that 4.01 and 32.4 $\mu\text{mol CH}_4 \text{ g}^{-1} \text{ d.w.s}$ were oxidized in soil microcosms
296 after incubation with CH₄ for 5 and 19 days, respectively (Fig. 1a). Urea fertilization
297 significantly stimulated methane oxidation activity by 2- and 6-fold at day 5 and 19,
298 respectively (Fig. 1a). Soil nitrification activity was determined as the increase of soil
299 nitrate concentrations during incubation of microcosms for 19 days. Soil nitrate
300 content significantly increased from 11.1 $\mu\text{g NO}_3^- \text{-N/g d.w.s}$ in urea-amended
301 microcosms at day 0, to 61.0 and 137.6 $\mu\text{g NO}_3^- \text{-N/g d.w.s.}$ at 5 and 19 days,
302 respectively (Fig. 1b, [Fig.S2](#)). The presence of CH₄ in the headspace of urea-amended
303 microcosms significantly inhibited production of soil nitrate at day 19, although
304 statistically significant inhibition was not observed at day 5 (Fig. 1b, [Fig.S2](#)).

305 High-throughput fingerprinting of the total microbial communities was performed by
306 pyrosequencing of the total 16S rRNA genes in SIP microcosms over the 19 days
307 incubation period (Table S3). About 346, 000 high-quality sequence reads were

308 obtained with an average length of 377 bp in the V3~V4 region. Methanotrophic 16S
309 rRNA gene comprised only 0.28% of total microbial communities in paddy soil tested
310 (Fig. 1c). However, methane oxidation led to a remarkable increase of MOB-like 16S
311 rRNA genes up to 27.9% of the total microbial communities during SIP microcosm
312 incubations (Fig. 1c). Interestingly, methanotrophic proportions appeared to show a
313 decreasing trend with prolonged incubation of microcosms amended only with CH₄
314 from 14.8% at day 5 to 7.42% to day 19. Nonetheless, urea addition resulted in higher
315 abundance of methanotroph-like 16S rRNA gene sequences up to 19.8% and 27.9% at
316 day 5 and day 19, respectively, representing 1.3- and 4-fold increase relative to
317 CH₄-amended microcosms (Fig. 1c). The population size of MOB community
318 determined by real-time PCR of *pmoA* genes (Fig. S3a) showed the similar result with
319 16S rRNA pyrosequencing analysis. The copy number of *pmoA* genes increased
320 significantly from 4.44×10^8 copies g⁻¹ d.w.s. at day 0 to 1.45×10^9 copies g⁻¹ d.w.s. and
321 1.66×10^9 copies g⁻¹ d.w.s. in the microcosms incubated with CH₄ for 5 and 19,
322 respectively. Urea addition led to 1.35 and 3.16 times more *pmoA* genes than that in
323 only CH₄-incubated microcosms at day 5 and day 19, respectively. The family
324 *Methylophilaceae*, using methanol as sole source of carbon and energy (Devries et al.,
325 1990; He et al., 2012), was methanol-oxidizing bacteria analyzed in our study. Similar
326 trend was observed for 16S rRNA gene sequences affiliated with methanol-oxidizing
327 bacteria (Fig. 1e), the relative abundance of which was 150-fold higher in soil
328 microcosms with CH₄+Urea treatment (2.76%) than that in CH₄-amended
329 microcosms (0.02%) at day 19.

330 AOB16S rRNA gene sequences comprised only a tiny fraction of the total microbial
331 communities during a 19-day incubation period (Fig. 1d). The relative abundance
332 increased significantly in urea-amended microcosms from 0.21% at day 0 to 0.35% at
333 day 19. The presence of CH₄ significantly suppressed the proportional increase of
334 AOB-like 16S rRNA gene reads leading to a relative frequency down to 0.15% at day
335 19 (Fig. 1d). The copies of bacterial *amoA* gene detected by real-time PCR increased
336 from 4.08×10^7 copies g⁻¹ d.w.s. at day 0 to 1.06×10^8 copies g⁻¹ d.w.s. at day 19 in the

337 microcosms incubated with urea (Fig. S3b). The increasement also was observed in
338 the urea+CH₄ treatment, however, the presence of CH₄ resulted in 1.33-fold decrease
339 relative to only urae-amended microcosms after incubation for 19 days. This indicated
340 that CH₄ partially inhibited the growth of AOB. Similar results were observed for soil
341 nitrite-oxidizing bacteria (NOB). For instance, the relative abundance of NOB16S
342 rRNA gene sequences in total microbial community increased significantly from 0.91%
343 at day 0 to 1.42% at day 19 in the urea-amended microcosms, while soil microcosms
344 with Urea+CH₄ displayed a relative abundance as low as 0.42% at day 19 (Fig. 1f). As
345 for AOA, there was no significant change in relative abundances upon urea
346 fertilization during SIP microcosm incubation, although the decreasing trend was
347 observed in the presence of CH₄ (Fig. S4). The simialr result was also detected by the
348 real-time PCR of archaeal *amoA* gene (Fig. S3c).

349 ***High-throughput fingerprinting of functional guilds against the total communities***

350 The 16S rRNA genes affiliated with MOB and AOB were selected for phylogenetic
351 analysis from the total pyrosequencing reads in soil microcosms, after incubation for
352 5 and 19 days, following the additions of methane and/or urea. Phylogenetic analysis
353 revealed a remarkable shift of MOB community structure based on both 16S
354 rRNA gene (Fig. S5a) and *pmoA* genes (Fig. S5b). Though type II methanotrophs
355 dominate MOB communities in background soil at day 0, the consumption of CH₄ in
356 soil microcosms led to a drastic increase in relative abundance of type Ia
357 methanotrophic 16S rRNA gene sequences in the total 16S rRNA gene sequences
358 from 0.09% at day 0 to 14.4% at day 5 (Fig. 2a). Interestingly, type II
359 methanotroph-like 16S rRNA genes stayed at very low proportions in the total
360 microbial community during the entire incubation period, whereas significant increase
361 was observed from 0.12% at day 0 to 0.55% at day 19. Urea fertilization further
362 stimulated the relative abundance of type Ia methanotrophs reaching 1.3 and 4 times
363 higher in the CH₄+Urea-amended microcosms than that in the microcosms amended
364 only with CH₄ at day 5 and day 19, respectively. However, urea nitrogen appeared to

365 have no effect on the relative abundance of type II methanotrophs. Similar results were
366 obtained by pyrosequencing analysis of *pmoA* genes (Fig. S5b). **Phylogenetic analysis**
367 of *pmoA* genes indicated that type Ia *pmoA* sequences were stimulated from 7.4% at day
368 0 to 69.8% of total methanotrophic communities after incubation with CH₄ for 19
369 days. Urea addition further stimulated the proportion of type Ia methanotroph *pmoA*
370 gene sequences to a greater extent up to 84.7%.

371 AOB communities were exclusively dominated by *Nitrosospira*-like 16S rRNA gene
372 sequences at day-0, and none of 16S rRNA gene sequences could be assigned to
373 *Nitrosomonas* (Fig. S6a). However, the relative abundance of *Nitrosomonas*-like 16S
374 rRNA genes rose to 0.04% and 0.06% of the total microbial communities in
375 urea-amended microcosms after incubation for 5 and 19 days, respectively (Fig. 2b).
376 CH₄ addition resulted in lower abundance of *Nitrosomonas*-like 16S rRNA genes in
377 the total microbial communities at day 5 and day 19, representing 2- and 3-fold
378 decrease relative to that in urea-amended microcosms (Fig. 2b). The relative
379 abundance of *Nitrosospira*-like AOB was stimulated by urea fertilization, but **partially**
380 **inhibited** in the presence of CH₄ (Fig. 2b). These results were further verified by
381 phylogenetic analysis of the *amoA* pyrosequencing reads (Fig. S6b). For instance,
382 none of *amoA* gene sequences was affiliated with *Nitrosomonas* in background soil at
383 day 0, whereas 7% of *amoA* gene sequences were affiliated with *Nitrosomonas* at day
384 19 in the urea-amended microcosms.

385 ***Stable isotope probing of active methanotrophs and ammonia oxidizers***

386 The incorporation of ¹³C-label into nucleic acid of active microbial communities in
387 complex soil was analyzed by isopycnic centrifugation of total DNA extracted from
388 SIP microcosms. The fractionated DNA over the entire density range of a given
389 gradient was further assessed by pyrosequencing of the total 16S rRNA gene. About
390 418,000 high-quality reads were generated with an average length of 356 bp in the
391 V3~V4 region of the 16S rRNA gene (Table S4). Pyrosequencing the relative
392 abundance of microbial guilds as a function of the buoyant density of the DNA

gradient indicated that MOB and AOB were ^{13}C -labeled to different extents. The relative abundance of [16S rRNA gene sequences of methanotrophs](#) was exceptionally high up to 90% of the total 16S rRNA gene sequences in the ‘heavy’ DNA fractions from the labeled microcosms, suggesting strong labeling of methanotrophic communities in soils after incubation for 5 (Fig.3a) and 19 days (Fig.3b). This was further supported by quantitative analysis of *pmoA* gene copies reaching the peak in the ‘heavy’ DNA fractions from the labeled microcosms, while the highest number was observed in the ‘light’ DNA fractions for the ^{12}C -control treatment (Fig. S7). In addition, the relative abundance of 16S rRNA gene sequences affiliated with methanol-oxidizing bacteria was apparently higher in the ‘heavy’ DNA fractions from the labeled microcosms (^{13}C - CH_4 and ^{13}C - CH_4 +Urea) than those in the control treatments (^{12}C - CH_4 +Urea), despite the relatively low proportion of ~0.20% at day 5 (Fig. 3c). The prolonged incubation for 19 days increased the proportion of methanol-oxidizing bacteria significantly up to 11.0% of the total 16S rRNA gene sequences in the ^{13}C -DNA from the labeled soil microcosms amended both with CH_4 and Urea, but not in the labeled microcosms that received only CH_4 (Fig. 3d).

The 16S rRNA gene sequences of AOB were highly enriched in ‘heavy’ DNA fractions from the labeled microcosm amended only with urea at day 5 (Fig. 3e) and day 19 (Fig.3f), but not the CH_4 +Urea treatment during the 19-day incubation period. For instance, up to 5.73% of total 16S rRNA gene sequences in the ‘heavy’ DNA fractions could be assigned to AOB for ^{13}C -Urea treatment, while only 0.33% of the total 16S rRNA gene sequences in the ^{13}C -Urea+ CH_4 treatments were related to AOB at day 19 (Fig. 3f). Similar results were obtained for nitrite-oxidizing bacteria (Fig.3g and Fig.3h). The relative abundance of NOB in the ‘heavy’ DNA fractions was significantly higher in microcosms with ^{13}C -urea than ^{13}C -Urea+ CH_4 treatment, implying a much greater degree of labeling of NOB cells in ^{13}C -Urea treatments during active nitrification. Furthermore, it is noteworthy that no significant enrichment of archaeal 16S rRNA gene sequences occurred in the ‘heavy’ DNA fractions from the labeled microcosms (Fig. S8).

422 Phylogenetic analysis of the ^{13}C -labeled 16S rRNA genes demonstrated that active
423 MOB were affiliated with Type Ia (*Methylobacter*- and *Methylosarcina-like*) and
424 *Methylcystis*-related type II methanotrophs, while type Ib methanotrophic sequences
425 were not detected during active methane oxidation (Fig. 4a). Active ammonia
426 oxidizers were phylogenetically assigned to distinctly different phylotypes including
427 the *Nitrosospira* clusters and the *Nitrosomonas communis* lineage on the basis of
428 ^{13}C -16S rRNA gene analysis (Fig. 4b). DNA-SIP demonstrated remarkable
429 community shifts of methanotrophs and ammonia oxidizers during the 19-day
430 incubation period (Fig. 5). Type Ia-like MOB accounted for 89% of the ^{13}C -labeled
431 methanotrophic 16S rRNA sequences in CH_4 -amended microcosms at day 19, while
432 up to 98% of the active methanotrophs could be assigned to Type Ia MOB in soil
433 microcosms amended with both CH_4 and urea (Fig. 5a). This was further supported by
434 pyrosequencing analysis of *pmoA* genes in the ^{13}C -DNA (Fig. S9a). For instance,
435 85.0% of *pmoA* genes were affiliated to type Ia MOB in CH_4 -amended microcosms at
436 day 19, whereas all *pmoA* sequences were detected exclusively as type Ia MOB in the
437 microcosms amended with both CH_4 and urea. As for ammonia oxidizers, the relative
438 abundance of *Nitrosomonas*-like 16S rRNA genes was as high as 88.2% of the
439 ^{13}C -labeled AOB communities in microcosms after incubation with urea for 5 days
440 (Fig. 5b). However, the presence of CH_4 resulted in lower proportions of
441 *Nitrosomonas*-like 16S rRNA genes, represented by 1.6 and 1.3 times lower than that
442 in urea-amended microcosms at day 5 and day 19, respectively. Pyrosequencing of
443 *amoA* genes in the ^{13}C -DNA lend further support for the suppression of
444 *Nitrosomonas*-like AOB since it decreased from 21% to 2% of active AOB
445 communities upon by CH_4 addition (Fig. S9b).

446 Discussion

447 The interaction between methane and nitrogen has been identified as one of the major
448 gaps in carbon-nitrogen cycle interactions (Gardenas et al., 2011; Gärdenäs et al.,
449 2011). There are many possible feedbacks to climate change through effects on

450 methane and N₂O emissions and eutrophication of soils and sediments as a
451 consequence of interactions between methane- and ammonia oxidizers. The inhibition
452 of mineral nitrogen on methane consumption has been demonstrated from numerous
453 studies, however, ammonium-based fertilization was observed to stimulate methane
454 consumption in rice paddies(Bodelier and Laanbroek, 2004). Mechanistically, there is
455 still a poor understanding of nitrogen effects on methane cycling and vice versa.
456 Elucidation of these mechanisms is of utmost importance to obtain comprehensive
457 understanding of the nature of the effects of e.g. climate change on the release of
458 major greenhouse gases from various ecosystems.

459 Due to the enzymatic similarity of methane and ammonia monooxygenase, methane
460 and ammonia-oxidizers can oxidize methane as well as ammonia (Bodelier and
461 Frenzel, 1999; Oneill and Wilkinson, 1977; Stein et al., 2012). However, methane
462 oxidizers do not gain energy out of the oxidation of ammonia while ammonia
463 oxidizers do not grow on methane(Stein et al., 2012). Moreover, mineral nitrogen is
464 essential for biomass formation, especially for those methanotrophs lacking the ability
465 to fix molecular nitrogen(Semrau et al., 2010). The latter indicates that next to direct
466 enzymatic effects, interactions at the level of competition for N will play an important
467 role in this matter, especially in high methane environments where ammonia
468 oxidizers will face enzymatic as well as competitive stress, with respect to which
469 sparse information is available.

470 The pre-incubation was performed to increase the labeling efficiency of targeted
471 microorganisms because the dilution of ¹³CO₂ by soil-respired ¹²CO₂ could be
472 decreased significantly as reported previously (Jia and Conrad 2009, Xia et al 2011).
473 No apparent changes of ammonia oxidizer communities were observed during a
474 4-week pre-incubation without ammonium fertilization, significant shift of AOB
475 communities occurred in the ammonium-amended soils (Jia and Conrad 2009). The
476 nitrogenous fertilization of paddy field in this study is about 250 kg N ha⁻¹, which is
477 equivalent to 107 µg N g⁻¹ d.w.s, assuming an effective soil depth of 20 cm. In
478 addition, methane concentrations of 900 to 15000 µL L⁻¹ were generally detected in
479 paddy soil during rice-growing season (Nouchi et al 1990, Nouchi et al 1994).

480 Therefore, the microcosms were incubated with 100 μg urea-N g^{-1} d.w.s. and 10000
481 $\mu\text{L L}^{-1}$ methane to extrapolate the microbial interactions between methane- and
482 ammonia-oxidation under field conditions. It suggests that microcosms might
483 represent largely what is occurring under *in situ* conditions, although it could not
484 reproduce the physiochemical and biological conditions in field. For instance, it also
485 has been reported that the results of microcosm incubations remained largely
486 consistent with population dynamics of methanotrophic communities in field (Eller et
487 al 2005).

488 In our study, it is demonstrated that urea fertilization significantly stimulated methane
489 oxidation activity and growth of MOB. Growth and activity of ammonia oxidizers
490 was partially inhibited in the presence of CH_4 . It is obvious that competitive inhibition
491 of the methanemonooxygenase did not occur in our microcosms. The ratio of N-CH_4 is
492 approximately 0.11 (assuming all urea is converted to ammonium). In other studies
493 ratios of up to 200 (Bodelier et al., 2000b) did not lead to inhibition. Hence, it is safe
494 to conclude that the ammonium formed out of urea or the subsequently produced
495 nitrate acted as nitrogen source for biomass generation of MOB. The decreased
496 $\text{NH}_4^+ \text{-N}$ concentrations corresponded with the increased $\text{NO}_3^- \text{-N}$ concentrations via
497 nitrification only in the microcosms without methane amendment. Addition of
498 methane to microcosms led to lower recovery of mineral N (Table 1), despite the equal
499 addition of urea (Table S1), suggesting that part of consumed ammonia was not
500 oxidized to nitrate via nitrification or part of the nitrate disappeared. We deduce that
501 the consumed ammonia, which was not involved in ammonia oxidation, may be
502 assimilated as a nitrogen nutrient for cell growth of MOB. Assuming that for oxidation
503 of every mol $\text{CH}_4\text{-C}$, 0.25 mol N has to be assimilated by MOB (Bodelier and
504 Laanbroek, 2004), the amount of N-assimilated can be calculated using a 70:30 ratio
505 of respiration of CH_4 vs assimilation. This calculation shows that of the total amount
506 of urea added 69% was assimilated by MOB, while 20% was nitrified (Table S6). The
507 fate of unaccount remaining nitrogen (11%) need further experiment to investigate.

508 Our results even demonstrate the dependency of the MOB on sufficient N-availability.

509 The relative abundance of both 16S rRNA and *pmoA* genes decreased when
510 incubating with methane only, demonstrating loss of activity and growth potential
511 when N is limiting. A similar result was obtained in microcosms planted with rice
512 (Bodelier et al., 2000a), where MOB even lost their potential for oxidizing methane.
513 However, adding ammonium to these inactive communities led to immediate
514 re-activation of oxidation (Bodelier et al., 2000a), indicating that N-limitation is not
515 only inhibiting growth but also regulated methane consumption enzyme machinery.
516 This inactivation and rapid re-activation of methane oxidation has even been
517 demonstrated on field scale in rice paddies (Dan et al., 2001; Kruger and Frenzel,
518 2003). It has been proposed that nitrogen fixation may deplete reducing equivalents
519 leading to lowering and even cessation of methane oxidation (Bodelier and Laanbroek,
520 2004; Dan et al., 2001). This suggests that under conditions of high methane and low
521 N availability, there is a niche for methanotrophy where they seem to overwhelmingly
522 outcompete nitrifying communities. Nitrifiers can operate in the absence of
523 competition with MOB, which may be inactivated due to energy-depletion as the
524 result of N₂-fixation. Hence, this points to niche differentiation or avoidance strategies
525 of the nitrifiers.

526 It is obvious that only a subset of the MOB profit substantially from the combined
527 addition of methane and urea-N. Although type II MOB increase in relative
528 abundance of 16S rRNA gene sequences in total microbial community with the
529 addition of methane they do not profit from the addition of urea, but are also not
530 affected by it. Addition of ammonium to rice soil has been demonstrated to inhibit
531 type II MOB (Mohanty et al., 2006). This is obviously not the case in our study where
532 the rapid growth of type Ia MOB keeps ammonium N-low. The growth of type II
533 MOB is apparently independent of the N-availability suggesting that they can rely on
534 N₂-fixation only.¹³C-labeled methanotrophic 16S rRNA gene sequences are closely
535 affiliated with *Methylocystis parvus* OBBP, which possesses nitrogenase and capable
536 of nitrogen fixing (Murrell and Dalton 1983). This suggested that these *Methylocystis*
537 *parvus*-like type II may respond under N-limited conditions in our study. Next to this,

538 the presence of highly active type I MOB did not prevent the growth of type II.
539 However, significant growth of type II MOB only occurs after 19 days of incubation
540 suggesting that either lower growth rates as compared to type I or dependency of type
541 II MOB on the activity of type I. The former is indeed the case as was demonstrated
542 in wetland soil microcosms (Steenbergh et al., 2010) while the latter maybe the result
543 from the fact that type II MOB may use CO₂(Yang et al., 2013) as their main C-source
544 for assimilation (Matsen et al., 2013). Labelled CO₂ in the microcosms can only be
545 formed by methane oxidation carried by type Ia in the early stages of the experiment.
546 Another explanation may be succession of MOB, with type II MOB increasing in
547 number when type I MOB are getting limited by N (Krause et al., 2010).

548 The strong stimulation of type Ia MOB upon methane application alone and in
549 combination with urea-N application has been observed frequently in rice soils but
550 also in other environments, reflecting their competitive life-strategy as reviewed and
551 synthesized (Ho et al., 2013). The most responsive MOB species in high methane
552 habitats seem to be *Methylobacter* species (Krause et al., 2012). Our experiments
553 show that *Methylosarcina* species are clearly the most responsive without addition of
554 urea. This is in contrast with the niche differentiation observed at high spatial
555 resolution in rice soil microcosms (Reim et al., 2012). The presence of
556 *Methylosarcina* related MOB in the surface layer of thin layer microcosms and not in
557 the methane-oxygen interface, implying that *Methylosarcina* thrives under
558 low-methane ('oligotrophic') conditions, in contrast to *Methylobacter* which
559 dominates the zone of high methane flux. However, remarkably, in our experiments
560 *Methylosarcina* clearly is dominant at high methane supply but is replaced partly by
561 *Methylobacter* when urea-N is added. This might be attributed to competition for
562 methane, nitrogen, or even oxygen. A similar result was observed in SIP analyses of
563 lake sediment microcosms using a metagenomic approach (Beck et al., 2013). Hence,
564 we speculate that observations by Reim et al (Reim et al., 2012) may also be
565 explained by weak competitive abilities of *Methylosarcina* instead of being restricted
566 to lowmethane habitats.

567 A comparison of 16S rRNA gene and *pmoA* gene sequences revealed that
568 *Methylobacter* was detected in a higher proportion in the MOB-16S rRNA gene
569 phylogenetic tree than [in the *pmoAgene*](#) phylogenetic tree. It may be explained by that
570 the 16S rRNA gene copies varied in the different genus of MOB community. It has
571 been reported that the 16S rRNA gene copies ranged from 1 to 15 in the bacterial and
572 archaeal genomes (Lee et al., 2009). Moreover, the number of 16S rRNA in the
573 closely related species is not entirely consistent (Fogel et al., 1999; Lee et al., 2009).
574 The variation of *pmoA* copy numbers may occur among different MOB. The two
575 *pmoA* copies was assumed to exist in methanotrophs (Gilbert et al., 2000; Kolb et al.,
576 2003), which is only the average copies that has been identified in some strains of
577 methanotrophs, such as *Methylococcus capsulatus* Bath (Stolyar et al., 1999).
578 However, this assessment may misestimate the *pmoA* copies in other MOB which is
579 not identified until now. [Furthermore, another possible explanation for incongruence](#)
580 [may be that *pmoA* primers and 16S rRNA primers may not completely cover simiar](#)
581 [ranges of diversity, as reported previously\(Costello and Lidstrom 1999\).](#)

582 Interestingly, we found significant increase of putative methanol-oxidizing bacteria
583 related to *Undibacterium* (Fig. S10) which are affiliated the family
584 *Methylophilaceae*(Fig. S10a), a family of microbes known to utilize methanol as sole
585 carbon and energy source. The occurrence 16S rRNA of these sequences in the 'heavy'
586 DNA fractions indicates that these *Undibacterium*-like organisms assimilated methane
587 derived carbon. Cross feeding of methylotrophs by methanotrophs releasing methanol
588 has been demonstrated before (Antony et al., 2010; Beck et al., 2013; He et al., 2012;
589 Noll et al., 2008). The direct mechanism for this cross feeding and what compound
590 actually is exchanged have not been elucidated yet. We can add another component to
591 this body of unsolved mechanisms which is the strong stimulation of methylotrophs
592 upon urea fertilization, thereby linking the nitrogen and the carbon cycle. It is very
593 likely that the enhanced methane consumption and growth of methanotrophs leads to
594 higher availability of methanol. However, we can not exclude that urea has
595 stimulatory effect on the methylotrophs directly. We also speculate that the active

596 removal of methanol by the methylotrophs is beneficial to methanotrophs given the
597 toxic nature of the compound. However, this would be subject of further
598 study. Interesting is this link between nitrogen and cross-feeding of methanotrophic
599 metabolites by other microorganism, possibly creating novel niches e.g. more
600 methane-driven carbon substrate, lower-toxic environment for methanotrophs in soil.

601 Our results revealed that the presence of CH₄ in microcosms partially inhibited the
602 nitrification activity in the paddy soil tested. Physiologically, the enzymatic similarity
603 of ammonia-oxidizers and MOB may result in ammonia oxidation by MOB (Bodelier
604 and Frenzel, 1999), leading to reduced availability of ammonia for ammonia oxidizers.
605 However, previous studies showed that MOB had lower affinity for ammonia than for
606 CH₄ (Banger et al., 2012; Bedard and Knowles, 1989; Yang et al., 2011). Moreover, it
607 has been proposed that ammonia oxidation by MOB occurred only when the ratio of
608 ammonia to CH₄ is higher than 30 in soils (Banger et al., 2012; Bodelier and
609 Laanbroek, 2004; Yang et al., 2011). The molecular ratio of ammonia to CH₄ was
610 about 0.11 in our study, thus the suppression of ammonia oxidizers growth and activity
611 in the presence of CH₄ may not be explained by ammonia oxidation by MOB.
612 Furthermore, a large part of the applied N disappeared in the presence of CH₄, and
613 presumably assimilated by MOB. This explanation seems plausible for the
614 suppression of methane on ammonia oxidation and the growth of ammonia oxidizers.
615 It is interesting to note that up to 4.8% of the ¹³C labeled sequences in the
616 urea-amended microcosm were phylogenetically closely related to *Pseudomonas*
617 *fluorescens*, *Pseudomonas syringae* and *Pseudomonas aeruginosa* (Fig. S10b). These
618 three species use nitrite as nitrogen source and catalyze denitrification (Betlach and
619 Tiedje, 1981; Modolo et al., 2005; Rinaldo et al., 2007). In the meantime, it remains
620 elusive about the toxic effect of intermediates substance during methane oxidation on
621 nitrifying communities. For example, methanol may inhibit the growth of AOA and
622 AOB communities, and we detected no archaeal *amoA* genes and 16S rRNA genes.
623 The possibility of heterotrophic AOA lifestyle could also not be excluded (Ingalls et
624 al., 2006; Stahl and de la Torre, 2012).

625 The genus *Nitrosospira* was the dominant AOB in the native soil, being consistent
626 with general observations that *Nitrosospira* are ubiquitous in upland soils as important
627 members of nitrifying population (Hastings et al., 1997; Stephen et al., 1996). In our
628 study, the apparent growth of *Nitrosospira* was observed in the microcosms amended
629 with urea-N, and the cluster 3 was the dominant active *Nitrosospira* group. It has been
630 reported that *Nitrosospira* cluster 3 was the dominant AOB group in a number of
631 neutral soil receiving nitrogen fertilization (Bruns et al., 1999; Mendum et al., 1999).
632 Intriguingly, methane addition suppressed the growth of *Nitrosospira*, and AOB
633 within the cluster 3 appeared to be inhibited to a greater extent than those of cluster 4.
634 It has been proposed that the reduced ammonia supply may select for the cluster 4
635 populations (Kowalchuk and Stephen, 2001). In the presence of methane, the growth
636 of methanotrophs were significantly stimulated and methanotrophic N assimilation
637 could have likely led to the depletion of ammonium in support of nitrification activity.
638 It was noteworthy that none of 16S rRNA and *amoA* genes were affiliated with
639 *Nitrosomonas* in the native soil at day zero. **The growth of *Nitrosomonas* was**
640 **stimulated to a much greater extent than that of *Nitrosospira* in urea-amended**
641 **microcosms, but *Nitrosomonas* appeared to be suppressed more significantly than**
642 ***Nitrosopira*.** This might be explained by the fact that *Nitrosomonas* are markedly
643 responsive to ammonia input (Hastings et al., 1997). Similar to methanotrophic
644 **communities**, the proportion of *Nitrosospira* in AOB community detected by 16S
645 rRNA gene sequences was lower than that detected by *amoA* gene. It could be in part
646 attributed to the variation of *amoA* copy numbers among different AOB. For instance,
647 the species *N. briensis* and *N. europaea* have two copies of *amoA* genes and *N. tenuis*
648 contained three identical *amoA* genes (Norton et al., 1996; Sayavedra-Soto et al.,
649 1998).

650 The abilities to catalyze the hydrolysis of urea to yield ammonia can be observed in a
651 wide range of microorganisms possessing urease activity (Mobley and Hausinger
652 1989). Some methanotrophs have been identified with the ability of urea hydrolysis
653 (Boden et al 2011, Khmelenina et al 2013), however, the ¹³C-labeled active
654 methanotrophs on the basis of 16S rRNA gene (Fig.4a) and *pmoA* gene (Fig.S9a)

655 were phylogenetically distinctly different with these known ureolytic methanotrophs.
656 However, the ¹³C-labeled AOB showed high sequence similarity with ureolytic
657 *Nitrosomonas nitrosa* and *Nitrosomonas oligotrophs*. This indicates the potential of
658 hydrolyzing urea in these active ammonia-oxidizing bacteria. It was estimated that
659 30%~50% of ammonia could be released from hydrolysis of urea by AOB in batch
660 culture (Pommerening-Roser and Koops 2005). This suggests that ammonia oxidizers
661 may have to compete for the ammonia released into environment with other
662 ammonia-utilizing microorganisms such as methanotrophs, intensifying the
663 competition for nitrogen between AOB and MOB. It is noteworthy that there was no
664 report about the ureolysis of AOA in non-acid soils.

665 Taken together, the results of this study demonstrate the stimulation of methane
666 consumption and growth of MOB by urea and the subsequent suppression of nitrifier
667 growth and activity. Only a sub-set of the MOB profited from the urea addition, with
668 *Methylobacter* species responding the most vigorous, showing that urea addition gives
669 rise to niche differentiation in MOB communities. In addition, our results revealed the
670 cross-feeding of methane-derived carbon in the soil system upon urea fertilization,
671 indicating urea might play an important role in carbon cycle through the microbial
672 food web processing carbon from methane oxidation in paddy soil. Assimilation of N
673 possibly might provide mechanistic mechanisms for inhibition of ammonia oxidizers
674 by methane addition. Therefore, we speculated that competition for nitrogen between
675 methane- and ammonia-oxidizers play a dominant role in microbial interactions in our
676 study, which is of help toward predictive understandings of carbon and nitrogen cycle
677 in complex environment.

678 **Acknowledgments**

679 This work was financially supported by the National Science Foundation of China
680 (41090281), the Ministry of Science and Technology of China (2010DFA22770), and
681 the Distinguished Young Scholar Programme of Jiangsu Province (BK2012048). The
682 authors thank our lab colleagues for helpful discussion.

683 **Reference**

684 Antony, C. P., Kumaresan, D., Ferrando, L., Boden, R., Moussard, H., Fernandez
685 Scavino, A., Shouche, Y. S., and Murrell, J. C.: Active methylotrophs in the
686 sediments of Lonar Lake, a saline and alkaline ecosystem formed by meteor
687 impact, *ISME J.*, 4,1470-1480,2010.

688 Banger, K., Tian, H., and Lu, C.: Do nitrogen fertilizers stimulate or inhibit methane
689 emissions from rice fields?, *Glob Change Biol.*, 18,3259-3267,2012.

690 Beck, D. A. C., Kalyuzhnaya, M. G., Malfatti, S., Tringe, S. G., Glavina Del Rio, T.,
691 Ivanova, N., Lidstrom, M. E., and Chistoserdova, L.: A metagenomic insight into
692 freshwater methane-utilizing communities and evidence for cooperation between
693 the Methylococcaceae and the Methylophilaceae, *PeerJ.*, 1,
694 e23,doi:10.7717/peerj.23,2013.

695 Bedard, C. and Knowles, R.: Physiology, biochemistry, and specific inhibitors of CH₄,
696 NH₄⁺, and CO oxidation by methanotrophs and nitrifiers, *Microbiol. Rev.*, 53,
697 68-84,1989.

698 Betlach, M.R. and Tiedje, J.M.: Kinetic explanation for accumulation of nitrite, nitric
699 oxide, and nitrous oxide during bacterial denitrification. *Appl. Environ.*
700 *Microbiol.*,42,1074-1084, 1981.

701 Bock, E, Wagner M. (2006). Oxidation of inorganic nitrogencompounds as an energy
702 source. In: Dworkin M, Falkow S (eds). *The Prokaryotes*. Springer Verlag: New
703 York, pp 457–495, 2006..

704 Bodelier P.L. and Laanbroek, H.J: Nitrogen as a regulatory factor of methane
705 oxidation in soils and sediments, *FEMS Microbiol. Ecol.*, 47, 265-277, 2004.

706 Bodelier, P. L. E. and Frenzel, P.: Contribution of methanotrophic and nitrifying
707 bacteria to CH₄ and NH₄⁺ oxidation in the rhizosphere of rice plants as determined
708 by new methods of discrimination, *Appl. Environ. Microbiol.*, 65, 1826-1833,
709 1999.

710 Bodelier, P. L. E., Bär-Gilissen, M.-J., Meima-Franke, M., and Hordijk, K.: Structural
711 and functional response of methane-consuming microbial communities to different
712 flooding regimes in riparian soils, *Ecol. Evol.*, 2, 106-127, 2012.

713 Bodelier, P. L. E., Gillisen, M.-J. B., Hordijk, K., Damste, J. S. S., Rijpstra, W. I. C.,
714 Geenevasen, J. A. J., and Dunfield, P. F.: A reanalysis of phospholipid fatty acids as
715 ecological biomarkers for methanotrophic bacteria, *ISMEJ.*, 3, 606-617, 2009.

716 Bodelier, P. L. E., Hahn, A. P., Arth, I. R., and Frenzel, P.: Effects of ammonium-based
717 fertilisation on microbial processes involved in methane emission from soils
718 planted with rice, *Biogeochem.*, 51, 225-257, 2000a.

719 Bodelier, P. L. E., Roslev, P., Henckel, T., and Frenzel, P.: Stimulation by
720 ammonium-based fertilizers of methane oxidation in soil around rice roots, *Nature*,
721 403, 421-424, 2000b.

722 Bodelier, P. L. E.: Interactions between nitrogenous fertilizers and methane cycling in
723 wetland and upland soils, *Curr. Opin. Environ. Sustainability*, 3, 379-388, 2011.

724 Bodelier, P. L., Meima-Franke, M., Hordijk, C. A., Steenbergh, A. K., Hefting, M. M.,
725 Bodrossy, L., von Bergen, M., and Seifert, J.: Microbial minorities modulate
726 methane consumption through niche partitioning, ISMEJ., 7, 2214-2228, 2013.

727 Boden, R., Cunliffe, M., Scanlan, J., Moussard, H., Kits, K.D., Klotz, M.G. *et al*:
728 Complete Genome Sequence of the Aerobic Marine Methanotroph *Methylomonas*
729 *methanica* MC09, J. Bacteriol., 193: 7001-7002, 2011.

730 Bratina, B.J., Brusseau, G.A., Hanson, R.S: Use of 16S ribosomal-RNA analysis to
731 investigate phylogeny of methylotrophic bacteria, Int. J. Syst. Bacteriol., 42,
732 645-648, 1992.

733 Bruns, M. A., Stephen, J. R., Kowalchuk, G. A., Prosser, J. I., and Paul, E. A.:
734 Comparative diversity of ammonia oxidizer 16S rRNA gene sequences in native,
735 tilled, and successional soils, Appl. Environ. Microbiol., 65, 2994-3000, 1999.

736 Costello, A.M. and Lidstrom, M.E.,: Molecular characterization of functional and
737 phylogenetic genes from natural populations of methanotrophs in lake sediments,
738 Appl. Environ. Microbiol., 65, 5066-5074, 1999.

739 Dan, J. G., Kruger, M., Frenzel, P., and Conrad, R.: Effect of a late season urea
740 fertilization on methane emission from a rice field in Italy, Agr. Ecosys. Environ.,
741 83, 191-199, 2001.

742 Degelmann, D.M., Borken, W., Drake, H.L., Kolb, S.: Different atmospheric
743 methane-oxidizing communities in European beech and Norway spruce soils, Appl.
744 Environ. Microbiol. 76, 3228-3235, 2010.

745 Devries, G.E., Kues, U., and Stahl, U.: Physiology and genetics of methylotrophic
746 bacteria. FEMS Microbiol. Rev., 75, 57-101, 1990.

747 Dumont, M. G., Pommerenke, B., Casper, P., and Conrad, R.: DNA-, rRNA- and
748 mRNA-based stable isotope probing of aerobic methanotrophs in lake
749 sediment, Environ. Microbiol., 13, 1153-1167, 2011.

750 Dunfield, P. F., Yuryev, A., Senin, P., Smirnova, A. V., Stott, M. B., Hou, S., Ly, B.,
751 Saw, J. H., Zhou, Z., Ren, Y., Wang, J., Mountain, B. W., Crowe, M. A., Weatherby,
752 T. M., Bodelier, P. L. E., Liesack, W., Feng, L., Wang, L., and Alam, M.: Methane
753 oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia,
754 Nature, 450, 879-882, 2007.

755 Eller, G., Kruger, M., Frenzel, P.: Comparing field and microcosm experiments: a case
756 study on methano- and methylo-trophic bacteria in paddy soil, Fems Microb. Ecol.,
757 51, 279-291, 2005.

758 Fogel, G. B., Collins, C. R., Li, J., and Brunk, C. F.: Prokaryotic genome size and
759 SSU rDNA copy number: Estimation of microbial relative abundance from a mixed
760 population, Microb. Ecol., 38, 93-113, 1999.

761 Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R.,
762 Martinelli, L. A., Seitzinger, S. P., and Sutton, M. A.: Transformation of the
763 nitrogen cycle: Recent trends, questions, and potential solutions, Science, 320,
764 889-892, 2008.

765 Gärdenäs, A. I., Ågren, G. I., Bird, J. A., Clarholm, M., Hallin, S., Ineson, P., Kätterer,
766 T., Knicker, H., Nilsson, S. I., Näsholm, T., Ogle, S., Paustian, K., Persson, T., and

767 Stendahl, J.: Knowledge gaps in soil carbon and nitrogen interactions - From
768 molecular to global scale, *Soil Biol. Biochem.*, 43, 702-717, 2011.

769 Gilbert, B., McDonald, I. R., Finch, R., Stafford, G. P., Nielsen, A. K., and Murrell, J.
770 C.: Molecular analysis of the pmo (particulate methane monooxygenase) operons
771 from two type II methanotrophs, *Appl. Environ. Microbiol.*, 66, 966-975, 2000.

772 Hanson, R.S., and Hanson, T.E.: Methanotrophic bacteria, *Microbiol. Rev.*,
773 60,439-471, 1996.

774 Hastings, R. C., Ceccherini, M. T., Miclaus, N., Saunders, J. R., Bazzicalupo, M., and
775 McCarthy, A. J.: Direct molecular biological analysis of ammonia oxidising bacteria
776 populations in cultivated soil plots treated with swine manure, *FEMS
777 Microbiol. Ecol.*, 23, 45-54, 1997.

778 He, R., Wooller, M. J., Pohlman, J. W., Catranis, C., Quensen, J., Tiedje, J. M., and
779 Leigh, M. B.: Identification of functionally active aerobic methanotrophs in
780 sediments from an arctic lake using stable isotope probing, *Environ. Microbiol.*,
781 14,1403-1419, 2012.

782 Ho, A., Kerckhof, F.-M., Luke, C., Reim, A., Krause, S., Boon, N., and Bodelier, P. L.
783 E.: Conceptualizing functional traits and ecological characteristics of
784 methane-oxidizing bacteria as life strategies, *Environ. Microbiol. Rep.*, 5, 335-345,
785 2013.

786 Ho, A., Lueke, C., Cao, Z., and Frenzel, P.: Ageing well: methane oxidation and
787 methane oxidizing bacteria along a chronosequence of 2000 years, *Environ.
788 Microbiol. Rep.*, 3, 738-743, 2011.

789 Holmes, A. J., Costello, A., Lidstrom, M. E., and Murrell, J. C.: Evidence that
790 particulate methane monooxygenase and ammonia monooxygenase may be
791 evolutionarily related, *FEMS Microbiol. Lett.*, 132, 203-208, 1995.

792 Ingalls, A. E., Shah, S. R., Hansman, R. L., Aluwihare, L. I., Santos, G. M., Druffel, E.
793 R., and Pearson, A.: Quantifying archaeal community autotrophy in the
794 mesopelagic ocean using natural radiocarbon, *Proc. Natl. Acad. Sci. U S A.*, 103,
795 6442-6447, 2006.

796 Jia, Z. and Conrad, R.: Bacteria rather than Archaea dominate microbial ammonia
797 oxidation in an agricultural soil, *Environ. Microbiol.*, 11, 1658-1671, 2009.

798 Jones, R. D. and Morita, R. Y.: Methane Oxidation by *Nitrosococcus oceanus* and
799 *Nitrosomonas europaea*, *Appl. Environ. Microbiol.*, 45, 401-410, 1983.

800 Khmelenina, V.N., Beck, D.A.C., Munk, C., Davenport, K., Daligault, H., Erkkila, T.
801 *et al*: Draft Genome Sequence of *Methylomicrobium buryatense* Strain 5G, a
802 Haloalkaline-Tolerant Methanotrophic Bacterium, *Genome announcements*,
803 4,2169-8287, 2013.

804 Kolb, S.: Aerobic methanol-oxidizing bacteria in soil, *Fems Microbiology Letters*, 300,
805 1-10, 2009.

806 Kolb, S., Knief, C., Stubner, S., and Conrad, R.: Quantitative detection of
807 methanotrophs in soil by novel pmoA-targeted real-time PCR assays, *Appl.
808 Environ. Microbiol.*, 69, 2423-2429, 2003.

809 Kowalchuk, G. A. and Stephen, J. R.: Ammonia-oxidizing bacteria: A Model for
810 Molecular Microbial Ecology, *Ann. Rev. Microbiol.*, 55, 485-529, 2001.

811 Krause, S., Lueke, C., and Frenzel, P.: Methane source strength and energy flow shape
812 methanotrophic communities in oxygen-methane counter-gradients, *Environ.*
813 *Microbiol. Rep.*, 4, 203-208, 2012.

814 Krause, S., Lueke, C., and Frenzel, P.: Succession of methanotrophs in
815 oxygen-methane counter-gradients of flooded rice paddies, *ISME J.*, 4, 1603-1607,
816 2010.

817 Kruger, M. and Frenzel, P.: Effects of N-fertilisation on CH₄ oxidation and production,
818 and consequences for CH₄ emissions from microcosms and rice fields, *Glob.*
819 *Change Biol.*, 9, 773-784, 2003.

820 Lee, Z. M., Bussema, C., and Schmidt, T. M.: rrnDB: documenting the number of
821 rRNA and tRNA genes in bacteria and archaea, *Nucleic Acids Res.*, 37, D489-493,
822 2009.

823 Lipscomb, J. D.: Biochemistry of the soluble methane monooxygenase, *Annu. Rev.*
824 *Microbiol.*, 48, 371-399, 1994.

825 Lu, L. and Jia, Z.: Urease gene-containing Archaea dominate autotrophic ammonia
826 oxidation in two acid soils, *Environ. Microbiol.*, 15, 1795-1809, 2013.

827 Matsen, J. B., Yang, S., Stein, L. Y., Beck, D., and Kalyuzhnaya, M. G.: Global
828 Molecular Analyses of Methane Metabolism in Methanotrophic
829 Alphaproteobacterium, *Methylosinus trichosporium* OB3b. Part I: Transcriptomic
830 Study, *Front. Microbiol.*, 4, 40-40, 2013.

831 Mendum, T. A., Sockett, R. E., and Hirsch, P. R.: Use of molecular and isotopic
832 techniques to monitor the response of autotrophic ammonia-oxidizing populations
833 of the beta subdivision of the class Proteobacteria in arable soils to nitrogen
834 fertilizer, *Appl. Environ. Microbiol.*, 65, 4155-4162, 1999.

835 Mobley, H., Hausinger, R.: *Microbial ureases: significance, regulation, and molecular*
836 *characterization*, *Microbiol. Res.*, 53, 85-108, 1989..

837 Modolo, L. V., Augusto, O., Almeida, I. M. G., Magalhaes, J. R., and Salgado, I.:
838 Nitrite as the major source of nitric oxide production by *Arabidopsis thaliana* in
839 response to *Pseudomonas syringae*, *FEBS Lett.*, 579, 3814-3820, 2005.

840 Mohanty, S. R., Bodelier, P. L. E., Floris, V., and Conrad, R.: Differential effects of
841 nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils,
842 *Appl. Environ. Microbiol.*, 72, 1346-1354, 2006.

843 Murrell, J.C., Dalton, H.: Nitrogen-fixation in obligate methanotrophs, *J. Gen.*
844 *Microbiol.*, 129, 3481-3486, 1983.

845

846 Noll, M., Frenzel, P., and Conrad, R.: Selective stimulation of type I methanotrophs in
847 a rice paddy soil by urea fertilization revealed by RNA-based stable isotope
848 probing, *FEMS Microbiol. Ecol.*, 65, 125-132, 2008.

849 Nouchi, I., Mariko, S., Aoki, K.: Mechanism of methane transport from the
850 rhizosphere to the atmosphere through rice plants, *Plant Physiol.*, 94, 59-66, 1990.

851 Nouchi, I., Hosono, T., Aoki, K., Minami, K.: Seasonal-variation in methane flux
852 from rice paddies associated with methane concentration in soil-water, rice biomass
853 and temperature, and its modeling, *Plant Soil*, 161, 195-208, 1994.

854 Norton, J. M., Low, J. M., and Martin, G.: The gene encoding ammonia
855 monooxygenase subunit A exists in three nearly identical copies in *Nitrosospira* sp
856 NpAV, *FEMS Microbiol. Lett.*, 139, 181-188, 1996.

857 O'Neill, G. G. and Wilkinson, J. F.: Oxidation of ammonia by methane-oxidizing
858 bacteria and the effects of ammonia on methane oxidation, *J. Gen. Microbiol.*, 100,
859 407-412, 1977.

860 O'Neill, J. G. and Wilkinson, J. F.: Oxidation of ammonia by methane-oxidizing
861 bacteria and effects of ammonia on methane oxidation, *J. Gen. Microbiol.*, 100,
862 407-412, 1977.

863 Pester, M., Rattei, T., Flechl, S., Grongroft, A., Richter, A., Overmann, J., *et al*:
864 *amoA*-based consensus phylogeny of ammonia-oxidizing archaea and deep
865 sequencing of *amoA* genes from soils of four different geographic regions. *Environ*
866 *Microbiol*, 2012, 14, 525-539.

867 Pommerening-Roser, A., Koops, H.P.: Environmental pH as an important factor for
868 the distribution of urease positive ammonia-oxidizing bacteria, *Microbiol. Res.*, 160,
869 27-35, 2005.

870 Purkhold, U., Pommerening-Roser, A., Juretschko, S., Schmid, M.C., Koops, H.P.,
871 Wagner, M.: Phylogeny of all recognized species of ammonia oxidizers based on
872 comparative 16S rRNA and *amoA* sequence analysis: Implications for molecular
873 diversity surveys, *Appl. Environ. Microbiol.*, 66, 5368-5382, 2000.

874 Purkhold, U., Wagner, M., Timmermann, G., Pommerening-Roser, A., Koops, H.P.:
875 16S rRNA and *amoA*-based phylogeny of 12 novel betaproteobacterial
876 ammonia-oxidizing isolates: extension of the dataset and proposal of a new lineage
877 within the nitrosomonads, *Int. J. Syst. Evol. Micr.*, 53, 1485-1494, 2003.

878 Prosser, J. I. and Nicol, G. W.: Archaeal and bacterial ammonia-oxidisers in soil: the
879 quest for niche specialisation and differentiation, *Trends Microbiol.*, 20, 523-531,
880 2012.

881 Reim, A., Lueke, C., Krause, S., Pratscher, J., and Frenzel, P.: One millimetre makes
882 the difference: high-resolution analysis of methane-oxidizing bacteria and their
883 specific activity at the oxic-anoxic interface in a flooded paddy soil, *ISME J.*, 6,
884 2128-2139, 2012.

885 Rinaldo, S., Brunori, M., and Cutruzzola, F.: Nitrite controls the release of nitric oxide
886 in *Pseudomonas aeruginosa* cd(1) nitrite reductase, *Biochem. Biophys. Res.*
887 *Commun.*, 363, 662-666, 2007.

888 Rotthauwe, J. H., Witzel, K. P., and Liesack, W.: The ammonia monooxygenase
889 structural gene *amoA* as a functional marker: Molecular fine-scale analysis of
890 natural ammonia-oxidizing populations, *Appl. Environ. Microbiol.*, 63, 4704-4712,
891 1997.

892 Sayavedra-Soto, L. A., Hommes, N. G., Alzerreca, J. J., Arp, D. J., Norton, J. M., and
893 Klotz, M. G.: Transcription of the *amoC*, *amoA* and *amoB* genes in *Nitrosomonas*

894 europaea and Nitrosospira sp, NpAV, FEMS Microbiol. Lett., 167, 81-88, 1998.

895 Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B.,
896 Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres,
897 B., Thallinger, G. G., Van Horn, D. J., and Weber, C. F.: Introducing mothur:
898 Open-Source, Platform-Independent, Community-Supported Software for
899 Describing and Comparing Microbial Communities, Appl. Environ. Microbiol., 75,
900 7537-7541, 2009.

901 Semrau, J. D., DiSpirito, A. A., and Yoon, S.: Methanotrophs and copper, FEMS
902 Microbiol. Rev., 34, 496-531, 2010.

903 Stahl, D. A. and de la Torre, J. R.: Physiology and diversity of ammonia-oxidizing
904 archaea, Annu. Rev. Microbiol., 66, 83-101, 2012.

905 Steenbergh, A. K., Meima, M. M., Kamst, M., and Bodelier, P. L. E.: Biphasic
906 kinetics of a methanotrophic community is a combination of growth and increased
907 activity per cell, FEMS Microbiol. Ecol., 71, 12-22, 2010.

908 Stein, L. Y., Roy, R., and Dunfield, P. F.: Aerobic methanotrophy and nitrification:
909 processes and connections, in: Encyclopedia of lifesciences (eLS.), John Wiley &
910 Sons Ltd, Chichester, 1-11, doi: 10.1002/9780470015902.a0022213, 2012. 2012.

911 Stephen, J. R., McCaig, A. E., Smith, Z., Prosser, J. I., and Embley, T. M.: Molecular
912 diversity of soil and marine 16S rRNA gene sequences related to beta-subgroup
913 ammonia-oxidizing bacteria, Appl. Environ. Microbiol., 62, 4147-4154, 1996.

914 Stolyar, S., Costello, A. M., Peeples, T. L., and Lidstrom, M. E.: Role of multiple gene
915 copies in particulate methane monooxygenase activity in the methane-oxidizing
916 bacterium *Methylococcus capsulatus* Bath, Microbiol., 145, 1235-1244, 1999.

917 Venter, J. C., Remington, K., Heidelberg, J. F., Halpern, A. L., Rusch, D., Eisen, J. A.,
918 Wu, D., Paulsen, I., Nelson, K. E., and Nelson, W.: Environmental genome shotgun
919 sequencing of the Sargasso Sea, Science, 304, 66-74, 2004.

920 Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R.: Naive Bayesian Classifier for
921 Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy, Appl.
922 Environ. Microbiol., 73, 5261-5267, 2007.

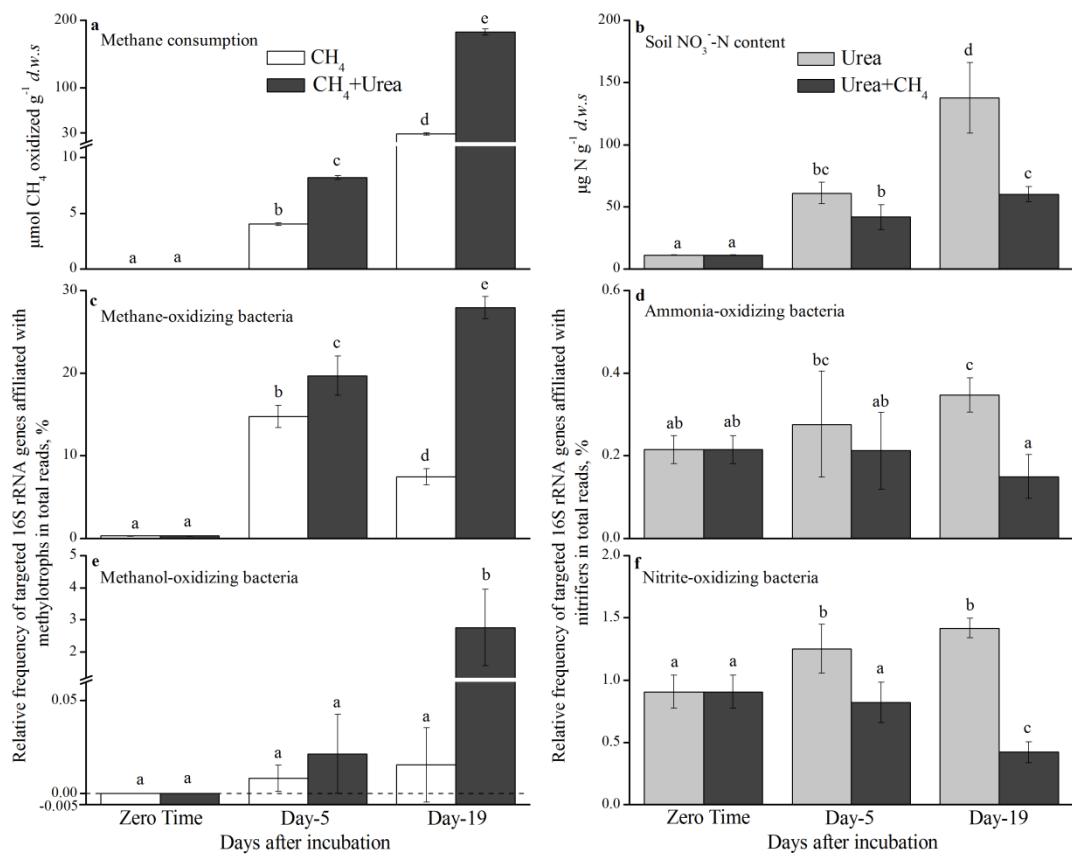
923 Xia, W., Zhang, C., Zeng, X., Feng, Y., Weng, J., Lin, X., Zhu, J., Xiong, Z., Xu, J.,
924 Cai, Z., and Jia, Z.: Autotrophic growth of nitrifying community in an agricultural
925 soil, ISME J., 5, 1226-1236, 2011.

926 Yang, N., Lu, F., He, P., and Shao, L.: Response of methanotrophs and methane
927 oxidation on ammonium application in landfill soils, Appl. Microbiol. Biotech., 92,
928 1073-1082, 2011.

929 Yang, S., Matsen, J. B., Konopka, M., Green-Saxena, A., Clubb, J., Sadilek, M.,
930 Orphan, V. J., Beck, D., and Kalyuzhanaya, M. G.: Global moelcuar analyses of
931 methane metabolism in methanotrophic alphaproteobacterium, *Methylosinus*
932 *Trichosporium* OB3b. Part II. Metabolomics and ¹³C-labelling study, Front.
933 Microbiol., 4, 70,doi: 10.3389/fmicb.2013.00070, 2013.

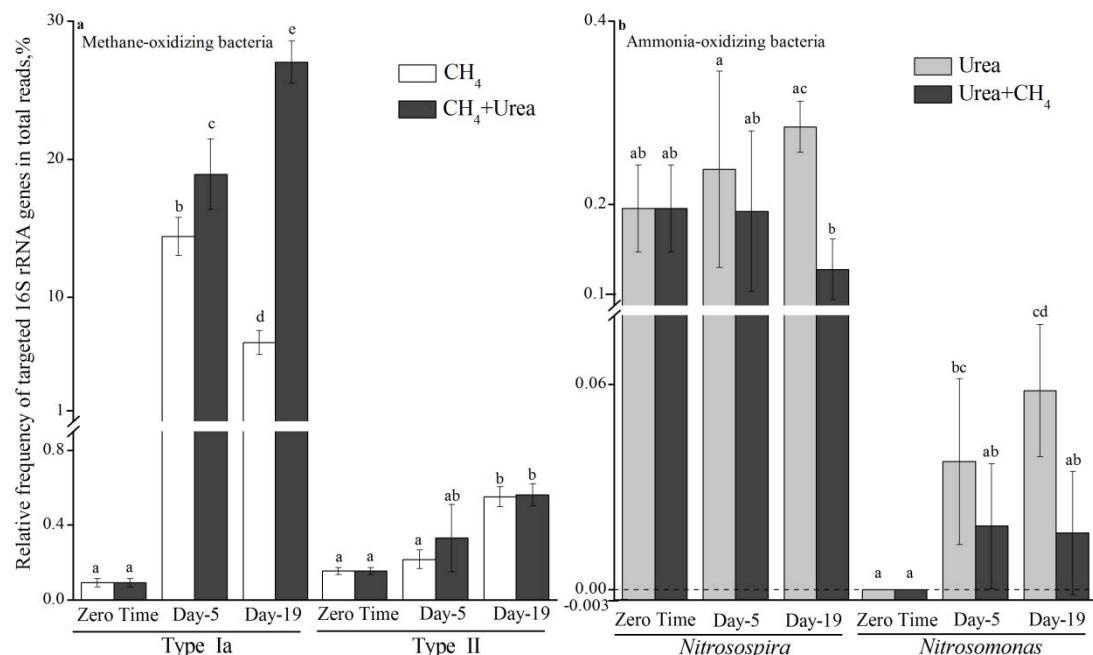
934 Zhu, R. B., Liu, Y. S., Xu, H., Huang, T., Sun, J. J., Ma, E. D., and Sun, L. G.: Carbon
935 dioxide and methane fluxes in the littoral zones of two lakes, east Antarctica,

Table1. Changes in pH, moisture content, NH_4^+ -N and NO_3^- -N content in soil microcosms over the course of 19 days of incubation

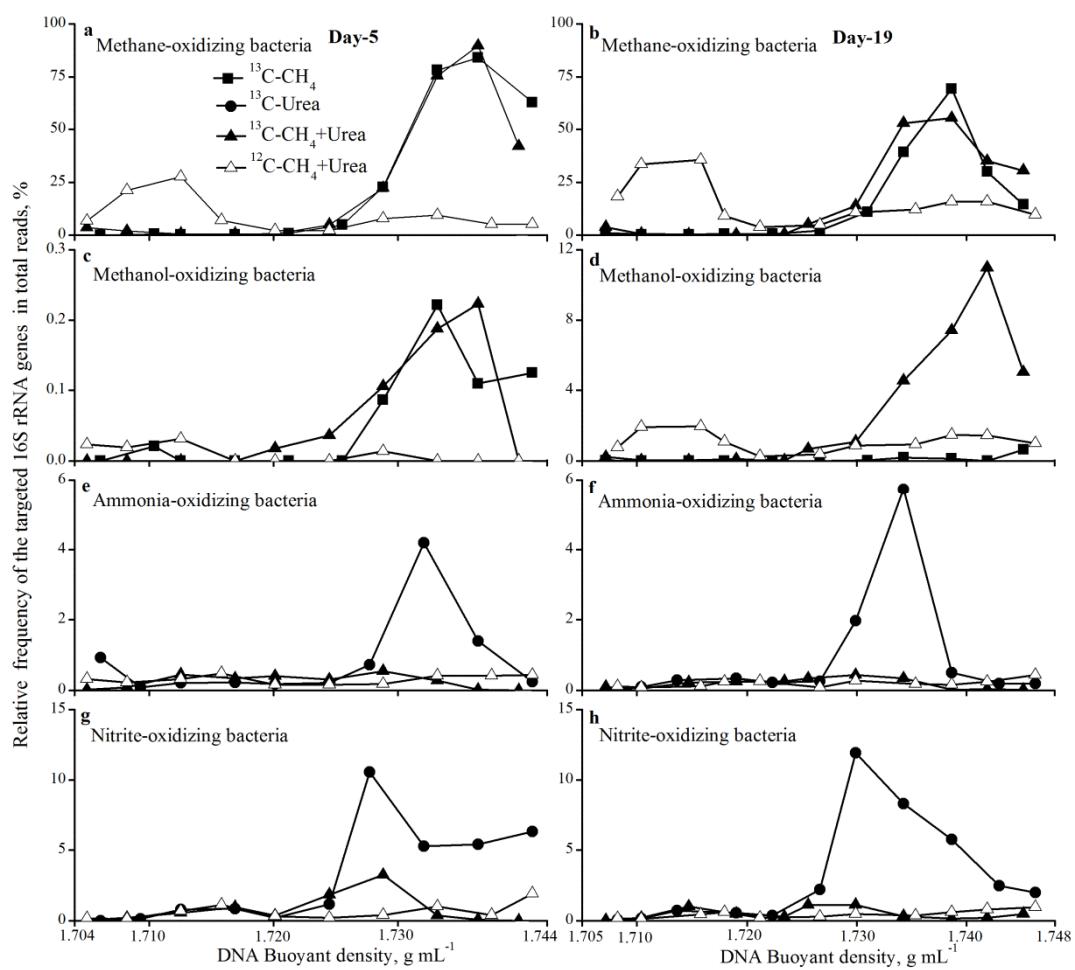

Treatments	pH ^a	Moisture (%) ^b	NH_4^+ -N($\mu\text{g/g d.w.s}$) ^c	NO_3^- -N($\mu\text{g/g d.w.s}$) ^c
Zero Time	7.39 \pm 0.04	19.4 \pm 0.42	0.51 \pm 0.10	11.1 \pm 0.31
Day-5-CH ₄	7.53 \pm 0.01	26.1 \pm 0.16	0.47 \pm 0.33	0.90 \pm 0.35
Day-5-Urea	7.35 \pm 0.06	25.5 \pm 0.51	16.1 \pm 3.81	61.0 \pm 8.62
Day-5-CH ₄ +Urea	7.37 \pm 0.12	24.8 \pm 1.31	8.01 \pm 4.66	41.6 \pm 9.87
Day-19-CH ₄	7.54 \pm 0.03	28.3 \pm 1.89	0.78 \pm 0.12	0.41 \pm 0.49
Day-19-Urea	7.27 \pm 0.30	30.5 \pm 1.85	44.8 \pm 6.69	137.6 \pm 28.3
Day-19-CH ₄ +Urea	6.85 \pm 0.09	28.6 \pm 2.03	3.66 \pm 1.56	59.9 \pm 6.01

^apH was determined using a ratio of H₂O to soil as 2.5 (v/w). The mean \pm standard deviation of triplicate microcosms was given for each treatment.

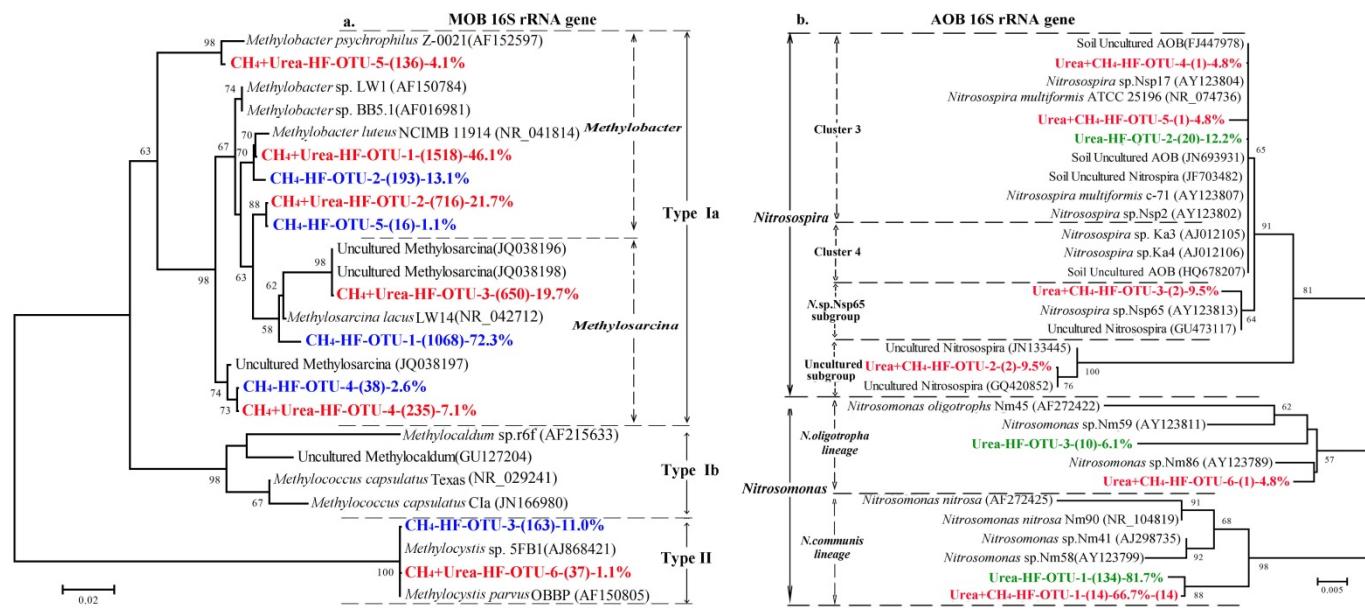
^bThe mean \pm standard deviation of triplicate microcosms was given for each treatment.


^cThe mean \pm standard deviation of triplicate microcosms was given for each treatment, while for the CH₄+Urea treatment 6 replicates were used including both ¹²C-control and ¹³C-labeled treatments.

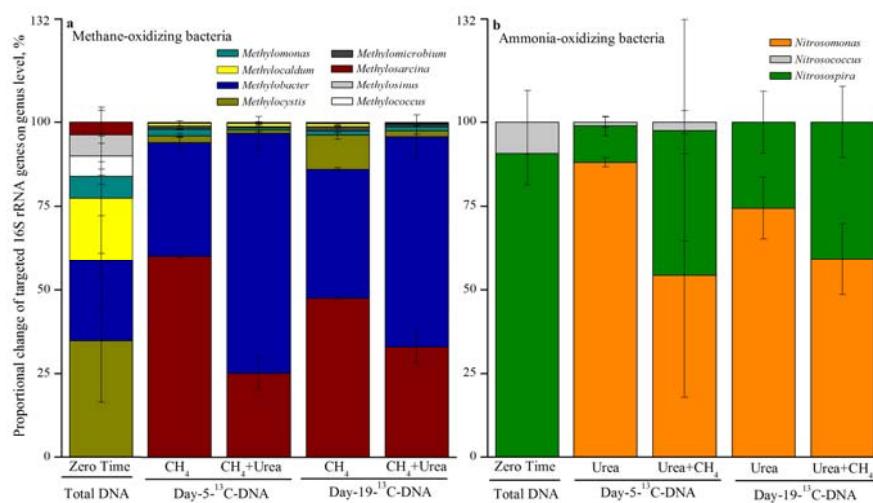
1 **Figure 1.** Interactions between microbial methane and ammonia oxidation in a paddy
 2 soil. The left panel shows urea effect on methane oxidation activity (a),
 3 methane-oxidizing bacteria (c) and methanol-oxidizing bacteria (e). The right panel
 4 refers to methane effect on ammonia oxidation activity (b), ammonia-oxidizing
 5 bacteria (d) and nitrite-oxidizing bacteria (f) in soil microcosms after incubation for 5
 6 and 19 days. The amount of methane consumed was used to assess methane oxidation
 7 activity and soil nitrate production was used to evaluate ammonia oxidation activity.
 8 The total microbial communities were pyrosequenced using universal primers of the
 9 16S rRNA gene. The relative frequency is expressed as the percentage of the targeted
 10 16S rRNA genes to the total 16S rRNA reads for each soil sample. The error bars
 11 represent standard deviations of the triplicate microcosms, while for the CH₄+Urea
 12 treatment 6 replicates were used including both ¹²C-control and ¹³C-labeled treatments.
 13 The different letters above the columns indicate a significant difference ($P<0.05$) using
 14 analysis of variance.



16 **Figure 2.** Change in relative abundance of methane-oxidizing bacteria (a) and
 17 ammonia-oxidizing bacteria (b) in soil microcosms incubated for 5 and 19 days. The
 18 relative abundance of type Ia, type II methanotrophs, *Nitrosospira* and *Nitrosomonas* are
 19 expressed as the targeted 16S rRNA gene to total 16S rRNA gene reads in soil
 20 microcosms incubated with CH₄, urea and CH₄+Urea. The error bars represent
 21 standard deviation of the triplicate microcosms, while for the CH₄+Urea treatment 6
 22 replicates were used including both ¹²C-control and ¹³C-labeled treatments. The
 23 different letters above the columns indicate a significant difference ($P<0.05$) using
 24 analysis of variance.


25

26 **Figure 3.** Relative frequency of the 16S rRNA gene sequences affiliated with
 27 methane-oxidizing bacteria (a, b), methanol-oxidizing bacteria (c, d),
 28 ammonia-oxidizing bacteria (e, f) and nitrite-oxidizing bacteria (g, h) across the
 29 buoyant density gradient of DNA fractions from the ^{13}C -labeled and ^{12}C -control
 30 microcosms after incubation for 5 and 19 days. ^{13}C - CH_4 refers to microcosm
 31 incubation with $^{13}\text{CH}_4$ for labeling of methane-metabolizing communities, and
 32 ^{13}C -Urea represents incubation with ^{13}C -Urea plus $^{13}\text{CO}_2$ for labeling of nitrifying
 33 communities. The relative frequency is expressed as the percentage of the targeted
 34 16S rRNA genes to total 16S rRNA reads in each DNA gradient fraction.



36 **Figure 4.** Phylogenetic tree of the ^{13}C -labeled 16S rRNA genes affiliated with methane-oxidizing bacteria (a) and ammonia-oxidizing bacteria (b)
 37 from the labeled microcosm after incubation for 19 days. The designations CH₄ represents soil microcosms incubated with ^{13}C -CH₄, and the
 38 designation of Urea denotes incubation with ^{13}C -Urea plus ^{13}C -CO₂. CH₄-HF-OTU-1-(1068)-72.3% indicates that OTU-1 contained 1068 reads
 39 with sequence identity of >97%, accounting for 72.3% of the total methanotroph-like 16S rRNA genes in the ‘heavy DNA fraction’ from the
 40 labeled microcosms. One representative sequence was extracted using mothur software package for tree construction. The scale bar represents
 41 nucleotide acid substitution percentage.

43 **Figure 5.** Percent changes of bacterial phylotypes affiliated with methane-oxidizing
 44 bacteria (a) and ammonia-oxidizing bacteria (b) in the ^{13}C -DNA fractions from the
 45 labeled microcosm after incubation for 5 and 19 days. The designation CH_4+Urea
 46 represents soil microcosms incubated with ^{13}C - CH_4 and ^{13}C -Urea plus ^{13}C - CO_2 , and
 47 the designation Day-5- ^{13}C -DNA denotes the ^{13}C -labeled methanotrophic communities
 48 in the ‘heavy’ DNA fractions after isopycnic centrifugation of the total DNA extracted
 49 from microcosms after incubation with the labeled substrates for 5 days. The
 50 percentage of different phylotypes is expressed as the targeted 16S rRNA gene reads
 51 to the total 16S rRNA gene reads affiliated with methane-oxidizing bacteria and
 52 ammonia-oxidizing bacteria in duplicate.

53

54

55

56

57

Supplemental Material for

Competitive interactions between methane- and ammonia oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil

Yan Zheng^{1,2}, Rong Huang¹, Baozhan Wang¹, Paul L.E. Bodelier³, Zhongjun Jia^{1*}

Author Affiliation

¹ State Key Laboratory of Soil and Sustainable Agriculture
Institute of Soil Science, Chinese Academy of Sciences
Nanjing, 210008, Jiangsu Province, China

² University of the Chinese Academy of Sciences,
Beijing, 100049, China

³ Netherlands Institute of Ecology,
Department of Microbial Ecology,
Droevendaalsesteeg 10,
6708 PB, Wageningen, the Netherlands

Corresponding author*

Zhongjun Jia
E-mail: jia@issas.ac.cn
Institute of Soil Science, Chinese Academy of Sciences, China

This file includes:

Supplemental Table S1 to S6

Supplemental Figure S1 to S10

Supplemental Reference

1 **Table S1.** The scenario of SIP microcosm construction over the course of 19 days of incubation

Treatment	¹³ C-CH ₄	¹³ C-Urea	¹³ C-CH ₄ +Urea	¹² C-CH ₄ +Urea	¹³ C-CH ₄	¹³ C-Urea	¹³ C-CH ₄ +Urea	¹² C-CH ₄ +Urea	¹³ C-CH ₄	¹³ C-Urea	¹³ C-CH ₄ +Urea	¹² C-CH ₄ +Urea
	CH ₄ added (ppmv) [*]										Urea added (μg N/g d.w.s.) [*]	
Day-0-18:00pm [†]	9460	---	9322	9035	---	100	100	100	---	50000	50000	50000
Day-5- 8:00 [‡]	The destructive sampling performed and the remaining microcosms were flushed with pressurized synthetic air (20% O ₂ , 80% N ₂)											
Day-5-18:00 pm	6114	---	7770	6821	---	100	100	100	---	50000	50000	50000
Day-7-18:00 pm	7946	---	8020	6362	---	---	---	---	---	---	---	---
Day-8-20:00 pm	8355	---	8018	8482	---	---	---	---	---	---	---	---
Day-9-18:00 pm	---	---	6755	7067	---	---	---	---	---	---	---	---
Day-10-10:00am	---	---	6201	6718	---	---	---	---	---	---	---	---
Day-10-18:00 pm	---	---	9766	9552	---	---	---	---	---	---	---	---
Day-11-10:00am	---	---	9113	9164	---	---	---	---	---	---	---	---
Day-11-20:00 pm	---	---	9229	9541	---	---	---	---	---	---	---	---
Day-12-10:00am [‡]	The microcosms were flushed with pressurized synthetic air (20% O ₂ , 80% N ₂)											
Day-12-21:00pm	18947	---	16081	15720	---	100	100	100	---	50000	50000	50000
Day-14-11:00am	---	---	11724	14355	---	---	---	---	---	---	---	---
Day-14-21:00pm	---	---	11762	12491	---	---	---	---	---	---	---	---
Day-15-11:00pm	---	---	8678	10431	---	---	---	---	---	---	---	---
Day-15-21:00pm	---	---	9591	11225	---	---	---	---	---	---	---	---
Day-16-11:00pm	---	---	17923	18598	---	---	---	---	---	---	---	---
Day-16-21:00pm	---	---	18190	17706	---	---	---	---	---	---	---	---
Day-17-11:00am	---	---	8792	10788	---	---	---	---	---	---	---	---
Day-17-21:00pm	---	---	17533	15901	---	---	---	---	---	---	---	---
Day-18-11:00am	---	---	10286	10430	---	---	---	---	---	---	---	---
Day-18-21:00pm	---	---	11928	12638	---	---	---	---	---	---	---	---
Day-19-11:00am	The destructive sampling performed.											

2 * The amount of substrate added to microcosms. The ¹³C and ¹²C-substrates were used for labeled and control microcosms, respectively.

3 [†] The timing of substrate added to microcosms, and the numbers in brackets indicate the time of day.

4 [‡] The date of SIP microcosms were flushed with pressurized synthetic air (20%O₂, 80%N₂), and subsequently amended with fresh substrate.

5 --- No substrate added

6 **Table S2.** Primers and PCR conditions used in this study

Primer name	primer sequence(5'-3')	Targeted gene	Thermal Profile	Molecular analysis	Reference
515F	CCAGCMGCCGCGG	16S rRNA	95°C,3.0min;30×(95°C,30s; 55°C, 30s;72°C, 45s);72°C,10min	Pyrosequencing	(Xia et al., 2011)
907R	CCGTCAATTCTTTAGTTT	gene			
A189F	GGN GAC TGG GAC TTC TGG	<i>pmoA</i> gene	95°C,3.0min;40×(95°C,10s; 55°C, 30s;72°C, 30s; 80°C 5s; with plate read); melt curve 65°C to 95°C, incremental 0.5°C, 0:05+plate read	Real-time PCR	(Costello and Lidstrom, 1999; Holmes et al., 1995)
mb661r	CCG GMG CAA CGT CYT TAC C		95°C,3.0min;30×(95°C,30s; 55°C, 30s;72°C, 45s);72°C,10min	Pyrosequencing	
amoA-1F	GGGGTTTCTACTGGTGGT	bacterial <i>amoA</i> gene	95°C,3.0min;40×(95°C,10s; 55°C, 30s;72°C, 30s; with plate read); melt curve 65°C to 95°C, incremental 0.5°C, 0:05+plate read	Real-time PCR	(Rotthauwe et al., 1997)
amoA-2R	CCCCTCGGGAAAGCCTTCTTC		95°C,3.0min;30×(95°C,30s; 55°C, 30s;72°C, 45s);72°C,10min	Pyrosequencing	
Arch-amoAF	STAATGGTCTGGCTAGACG	Archaeal <i>amoA</i> gene	95°C,10.0min;40×(95°C,30s; 55°C, 45s;72°C, 30s;82°C 15s with plate read); melt curve 65°C to 95°C, incremental 1.0°C, 0:05+plate read	Real-time PCR	(Francis et al., 2005)
Arch-amoAR	GCGGCCATCCATCTGTATGT				

7 **Table S3.** Pyrosequencing summary of the total microbial communities in SIP
8 microcosms using the universal primers 515F-907R of the total 16S rRNA genes

Treatment*		High-quality read number	Pyrosequencing reads number†			
			Methane oxidizing bacteria	Methanol oxidizing bacteria	Ammonia oxidizing bacteria	Nitrite oxidizing bacteria
Zero time	Zero Time-R1	9519	28 (0.29%)	---	22 (0.23%)	81 (0.85%)
	Zero Time-R2	9110	26 (0.29%)	---	16 (0.18%)	74 (0.81%)
	Zero Time-R3	9369	24 (0.26%)	---	22 (0.23%)	99 (1.06%)
Day-5	¹³ C-CH ₄ -R1	7758	1252 (16.1%)	1 (0.01%)	12 (0.15%)	64 (0.82%)
	¹³ C-CH ₄ -R2	8630	1273 (13.5%)	1 (0.01%)	16 (0.19%)	55 (0.64%)
	¹³ C-CH ₄ -R3	8829	1192 (13.5%)	---	18 (0.20%)	50 (0.57%)
	¹³ C-Urea-R1	7803	31 (0.40%)	---	10 (0.13%)	80 (1.03%)
	¹³ C-Urea-R2	7807	13 (0.17%)	2 (0.03%)	26 (0.33%)	108 (1.38%)
	¹³ C-Urea-R3	6541	17 (0.26%)	1 (0.02%)	24 (0.37%)	88 (1.35%)
	¹³ C-CH ₄ +Urea-R1	7431	1637 (22.0%)	---	15 (0.20%)	60 (0.81%)
	¹³ C-CH ₄ +Urea-R2	8372	1633 (19.5%)	1 (0.01%)	30 (0.36%)	88 (1.05%)
	¹³ C-CH ₄ +Urea-R3	7568	1559 (20.6%)	4 (0.05%)	22 (0.29%)	47 (0.62%)
	¹² C-CH ₄ +Urea-R1	6995	1109 (15.9%)	---	9 (0.13%)	67 (0.96%)
	¹² C-CH ₄ +Urea-R2	8083	1782 (22.1%)	3 (0.04%)	12 (0.15%)	55 (0.68%)
	¹² C-CH ₄ +Urea-R3	7809	1433 (18.4%)	2 (0.03%)	11 (0.14%)	63 (0.81%)
Day-19	¹³ C-CH ₄ -R1	10104	640 (6.33%)	---	18 (0.18%)	67 (0.66%)
	¹³ C-CH ₄ -R2	41172	3330 (8.09%)	18 (0.04%)	86 (0.21%)	274 (0.67%)
	¹³ C-CH ₄ -R3	41230	3235 (7.85%)	1 (0.00%)	104 (0.25%)	305 (0.74%)
	¹³ C-Urea-R1	8294	23 (0.28%)	---	26 (0.31%)	121 (1.46%)
	¹³ C-Urea-R2	31675	110 (0.35%)	2 (0.01%)	125 (0.39%)	465 (1.47%)
	¹³ C-Urea-R3	44313	129 (0.29%)	1 (0.00%)	149 (0.34%)	587 (1.32%)
	¹³ C-CH ₄ +Urea-R1	10370	2961 (28.6%)	465 (4.48%)	12 (0.12%)	34 (0.33%)
	¹³ C-CH ₄ +Urea-R2	7309	1963 (26.9%)	238 (3.26%)	7 (0.10%)	33 (0.45%)
	¹³ C-CH ₄ +Urea-R3	6494	1955 (30.1%)	231 (3.56%)	15 (0.23%)	21 (0.32%)
	¹² C-CH ₄ +Urea-R1	9485	2672 (28.2%)	163 (1.72%)	13 (0.14%)	51 (0.54%)
	¹² C-CH ₄ +Urea-R2	7695	2129 (27.7%)	121 (1.57%)	9 (0.12%)	33 (0.43%)
	¹² C-CH ₄ +Urea-R3	6663	1750 (26.3%)	132 (1.98%)	13 (0.20%)	30 (0.45%)
Average		12831				
Total reads		346428				

9 *: The designation of R1 to R3 represents triplicate microcosm incubations.

10 †: The value in parentheses represents the percentage of the targeted 16S rRNA phylotype reads to
11 total 16S rRNA gene sequence reads in each microcosm.

12 --- Not detected

13 **Table S4.** Pyrosequencing summary of the total microbial communities in the fractionated DNA by isopycnic centrifugation of total DNA
 14 extracted from SIP microcosms using the universal primers 515F-907R of the total 16S rRNA genes

DNA gradient fraction*	High-quality reads number							
	Day-5				Day-19			
	¹³ C-CH ₄	¹³ C-Urea	¹³ C-CH ₄ +Urea	¹² C-CH ₄ +Urea	¹³ C-CH ₄	¹³ C-Urea	¹³ C-CH ₄ +Urea	¹² C-CH ₄ +Urea
Fraction-13	39	107	4240	4593	4488	1384	5859	6410
Fraction-12	5134	4677	3861	5387	7446	3318	8093	8171
Fraction-11	4318	4658	3615	6492	6046	6916	7277	5441
Fraction-10	3227	4531	4941	5556	3682	6224	2472	6090
Fraction-9	4647	4710	5583	6323	6149	6102	4542	3867
Fraction-8	6195	5239	5534	4925	4108	6825	7147	8140
Fraction-7	8080	6620	3796	7488	5079	5527	6684	7118
Fraction-6	5889	7060	3736	1925	2570	3087	6374	4740
Fraction-5	7270	3306	6278	481	2134	5643	5804	5725
Fraction-4	9622	427	195	931	402	4526	7471	9873
Fraction-3	---	---	---	---	5568	5644	4424	1835
Average	5442	4134	4178	4410	4334	5018	6013	6128
Subtotal	54421	41335	41779	44101	47672	55196	66147	67410
Total	418061							

15 *: indicates DNA gradient fractions with different buoyant densities, and the smaller the number, the heavier the fractionated DNA.

16 --- Not determined.

17 **Table S5.** Pyrosequencing summary of *pmoA* and *amoA* genes in the total DNA extract from SIP microcosms and in the ^{13}C -DNA fractions after
 18 isopycnic centrifugation of total DNA using primer pairs A189F-mb661r and amoA1F-2R, respectively.

Organisms*	Replicate	Day-0		Day-19			
		^{13}C -CH ₄		^{13}C -Urea		^{13}C -CH ₄ +Urea	
		Total DNA†	^{13}C -DNA‡	^{13}C -DNA	^{13}C -DNA	Total DNA†	^{13}C -DNA
<i>pmoA</i> genes of MOB	R1	4295	8244	---	---	1106	
	R2	3616	5297	384	---	5074	7159
	R3	---	5878	---	---	6303	
<i>amoA</i> genes of AOB	R1	5484	---	7572	---	2728	
	R2	472	---	---	10656	472	3262
	R3	6261	---	4832	---	4449	1115

19 * MOB and AOB represent methane-oxidizing bacteria and ammonia-oxidizing bacteria, respectively.

20 † indicates that pyrosequencing was performed on the total DNA extract from the ^{13}C -labeled microcosms.

21 ‡ indicates that pyrosequencing was performed on the ^{13}C -DNA fraction after ultracentrifugation of total DNA extract.

22 ---Not determined

23 **Table S6.**The estimated budget of carbon and nitrogen assimilation by methanotrophs and ammonia oxidizers in microcosms at day 19

Treatment ^a	μmol CH ₄ -C/microcosm ^b			μg urea-N/microcosms		
	CH ₄ consumed	CO ₂ produced	CO ₂ assimilated by methanotrophs	Assimilation of urea-N by methanotrophs ^c	Nitrate produced from urea-N by ammoniaoxidizers	Urea-N recovery
¹³ C-CH ₄ +Urea-R1	1111	730.9	380.5 (34.2%)	1332 (74.0%)	364.2 (20.2%)	94.2%
¹³ C-CH ₄ +Urea-R2	1081	688.8	392.4 (36.3%)	1373 (76.3%)	339.6 (18.9%)	95.2%
¹³ C-CH ₄ +Urea-R3	1030	746.3	283.9 (27.6%)	994 (55.9%)	372.4 (20.69%)	76.6%
Average	1074±41.1	722.0±29.8	352.3±59.5 (32.7%±4.54%)	1234±208.4 (68.7%±11.2%)	358.7±17.1 (19.9%±0.93%)	88.7±10.5%

24 ^aThe designation R1 to R3 represents incubation of triplicate microcosms.25 ^bThe amount of CH₄consumed was calculated as the net difference in CH₄ concentration between day 0 and day 19. The amount of CO₂ produced was estimated in a
26 similar way. Assuming that all CH₄ consumed were converted to CO₂, the amount of CO₂ assimilated by methanotrophs could be calculated as the net difference
27 between the consumed CH₄ and the produced CO₂ at day 19 as previously described (Whalen et al., 1990).28 ^cFor every mole of assimilated carbon 0.25 moles of nitrogen have to be taken up(Bodelier and Laanbroek, 2004Bodelier and Laanbroek, 2004).

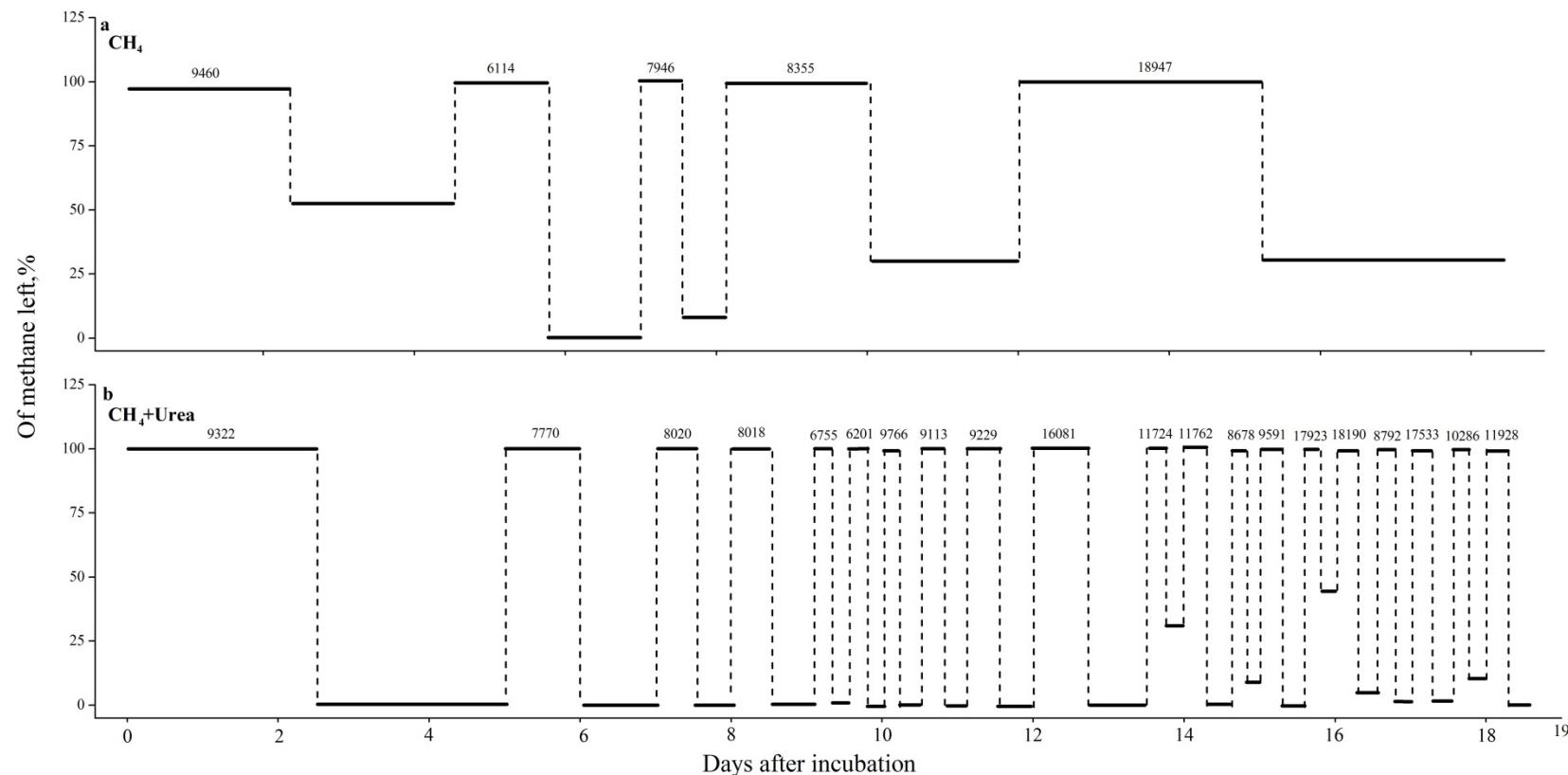
29

30

31

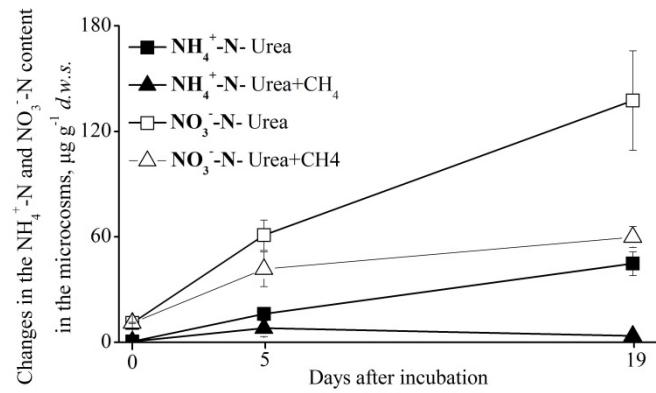
32

33

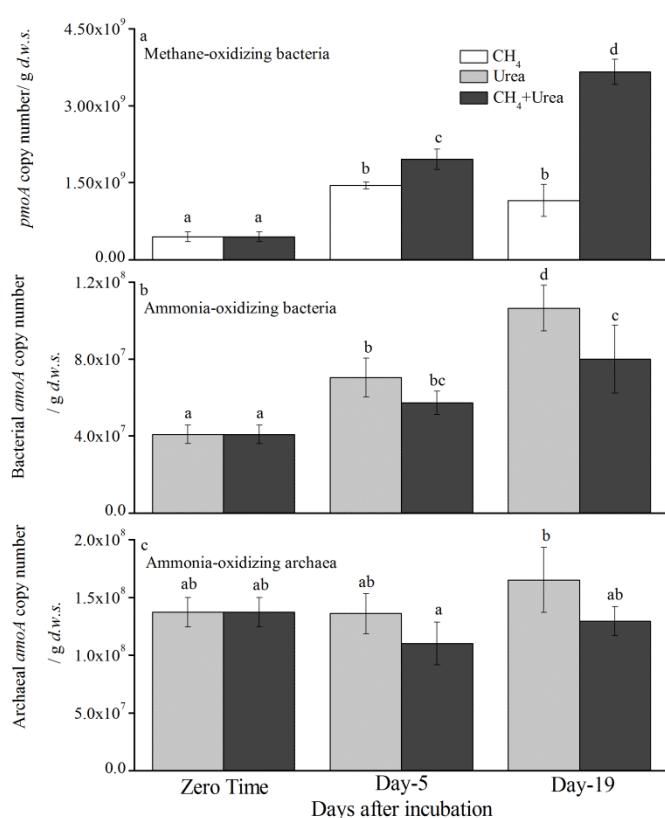

34

35

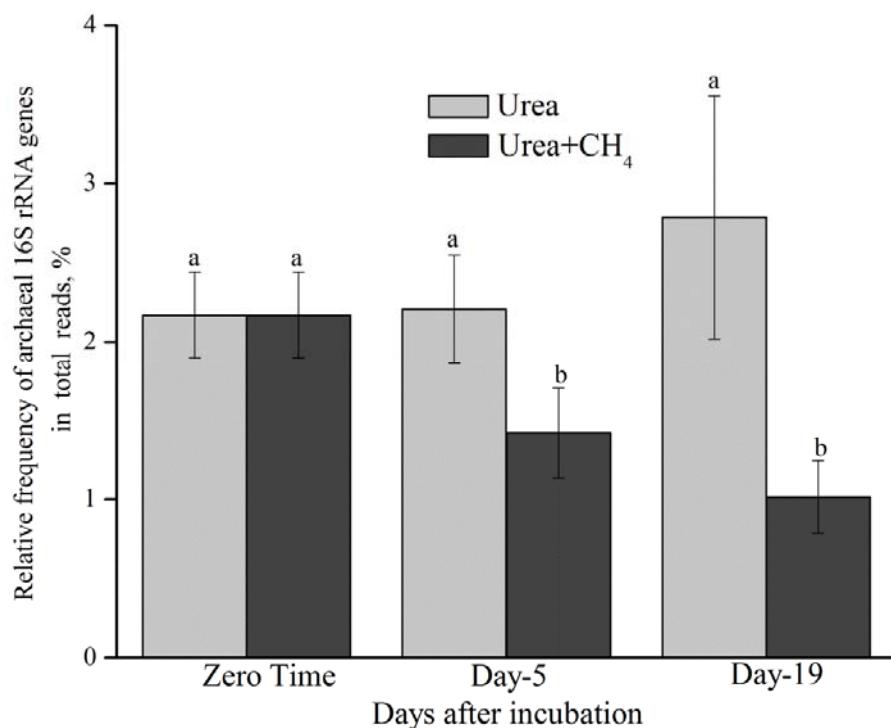
36


37

38 **Figure S1.** Methane consumption in soil microcosms over an incubation period of 19 days. Methane consumption is expressed as the percentage
39 of the methane concentrations left in the headspace of the microcosms relative to the initial methane concentration in the microcosms in the
40 absence (a) and presence (b) of urea nitrogen. The numbers above the columns denote the initial concentration (ppmv) immediately after the
41 methane additions.


43 **Figure S2.** Changes in NH_4^+ -N and NO_3^- -N content in soil microcosms incubated
44 with urea with or without CH_4 over the course of 19 days of incubation

45

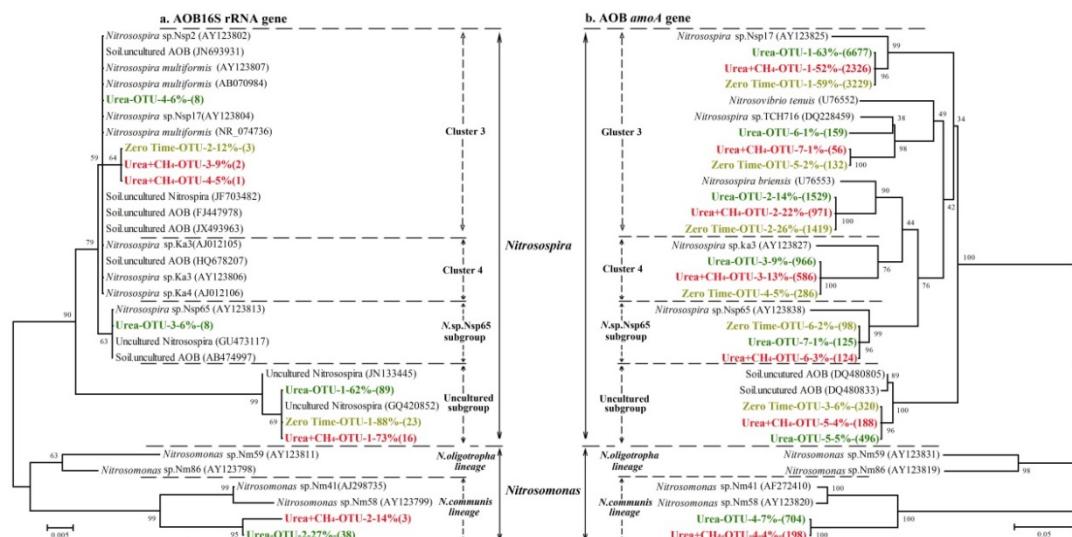


46 **Figure S3.** Quantitative distribution of *pmoA* gene copy numbers (a), *amoA* gene
47 copy numbers of Bacteria (b) and Archaea (c) in total DNA from microcosms after
48 incubation for 5 and 19 days. The error bars represent standard deviations of the
49 triplicate microcosms. The different letters above the columns indicate a significant
50 difference ($P<0.05$) using analysis of variance.

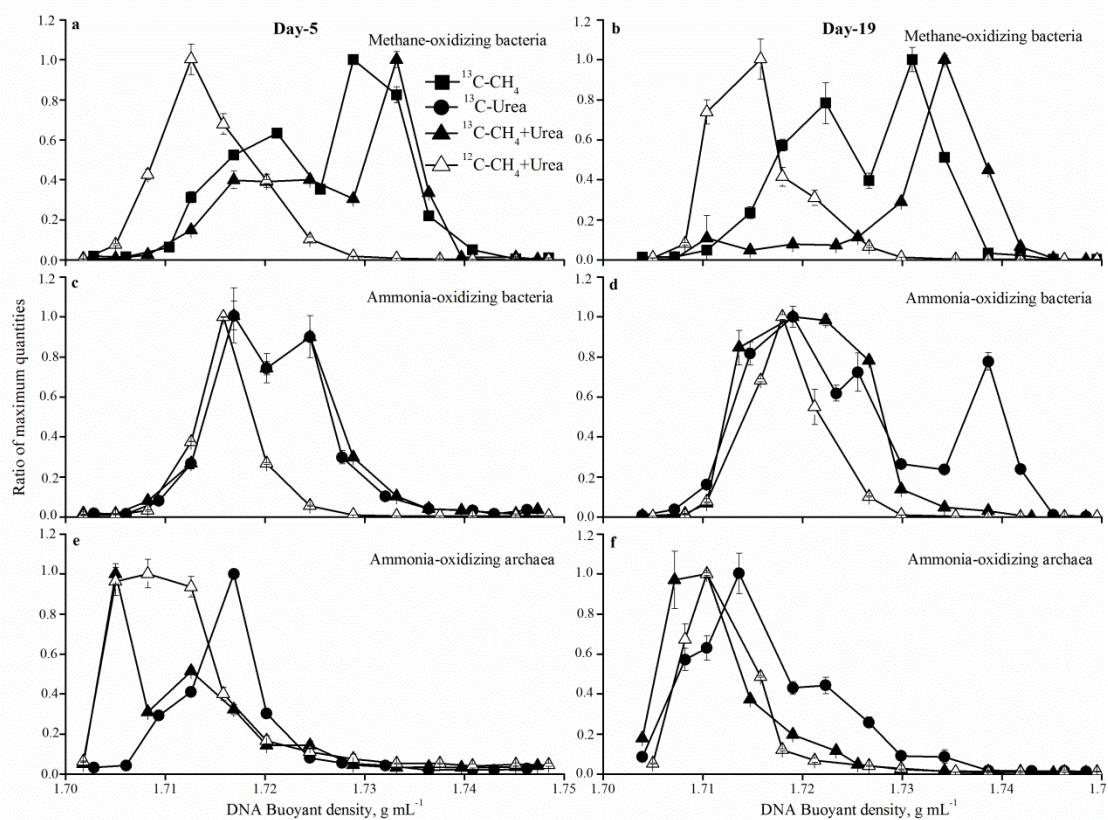
51



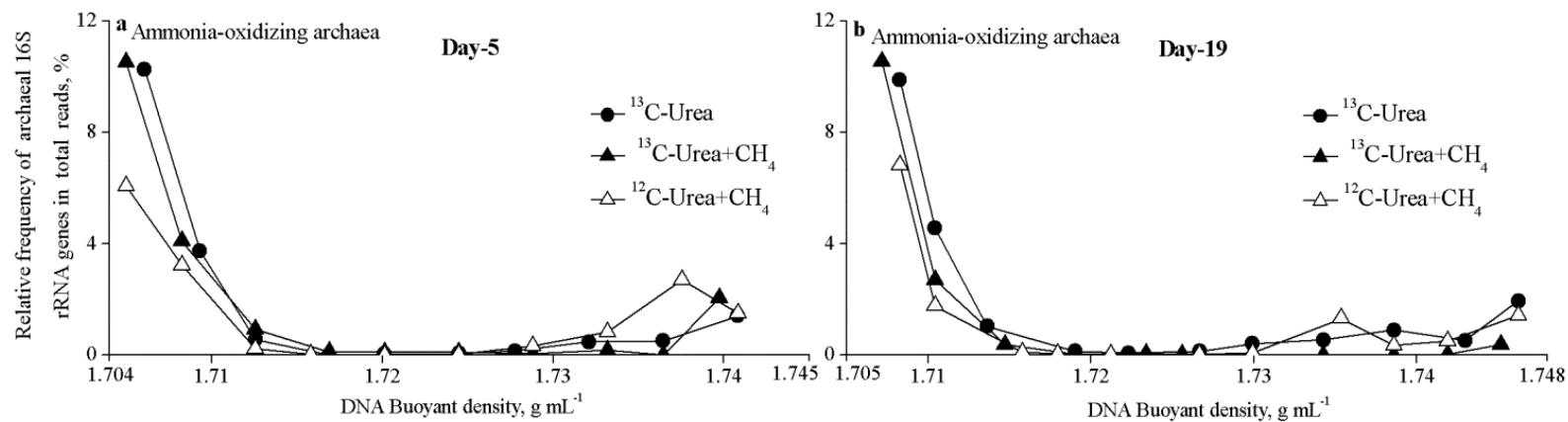
52 **Figure S4.** The effect of methane on ammonia-oxidizing archaea (AOA) in soil
53 microcosms incubated for 19 days. The relative frequency is expressed as the
54 percentage of the targeted reads to the total 16S rRNA gene sequences reads in soil
55 sample. The error bars represent standard deviation of the triplicate microcosms, while
56 for the soil microcosms of CH₄+Urea treatment 6 replicates were used including both
57 ¹²C-control and ¹³C-labeled treatments. The different letters above the columns
58 indicate a significant difference ($P<0.05$) using analysis of variance.



59

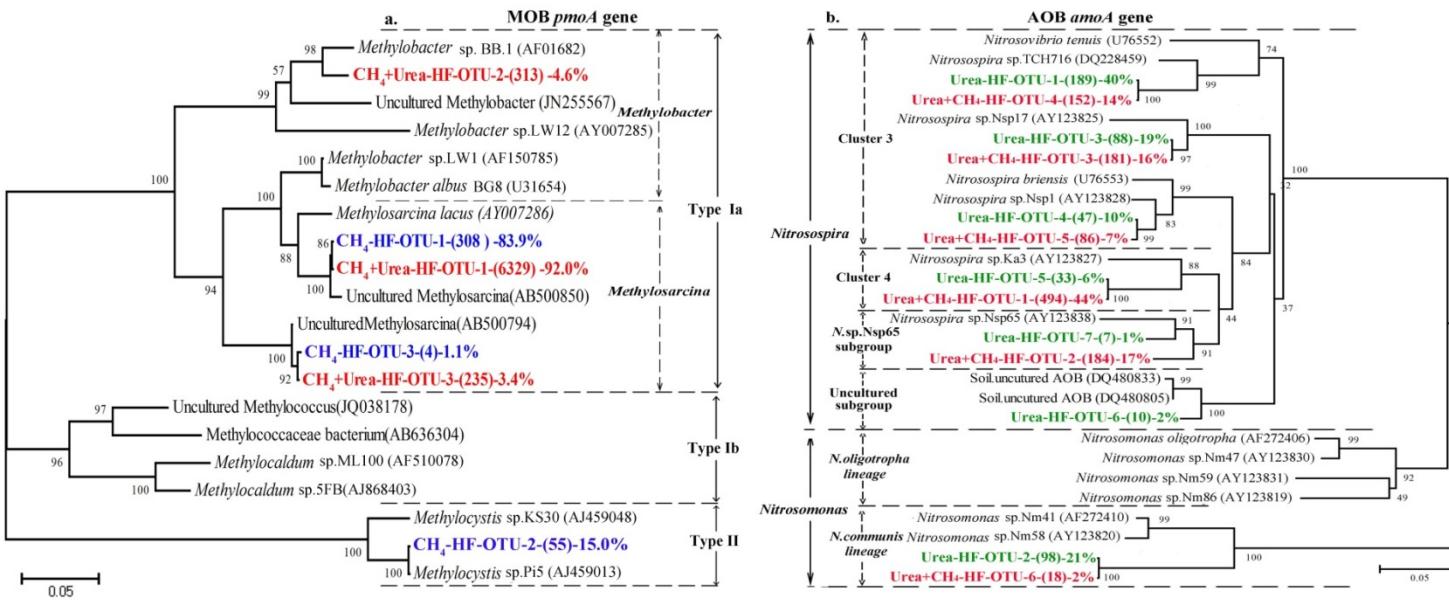

60 **Figure S5.** Phylogenetic tree showing the relationship of methane-oxidizing bacterial
 61 16S rRNA gene (a) and *pmoA* gene(b) sequences in soil microcosms to those deposited
 62 in the GenBank. Pyrosequencing reads of methanotrophic 16S rRNA genes and *pmoA*
 63 genes were used from triplicate microcosms at day 0 and day 19, and representative
 64 sequences were chosen for analysis. The designation of CH₄+Urea-OTU-1-38%-(616)
 65 indicates that OTU-1 containing 616 sequences with identity of >97% comprised 38%
 66 of methanotrophic 16S rRNA gene sequences in ¹³C-CH₄+Urea treatment after
 67 incubation for 19 days. CH₄-OTU-1-69.8%-(3844) indicates that OTU-1 containing
 68 616 sequences with identity of >87% comprised 69.8% of *pmoA* gene sequences in
 69 ¹³C-CH₄ treatment after incubation for 19 days. One representative sequence was
 70 extracted using mothur software package for tree construction. The scale bar
 71 represents nucleotide acid substitution percentage.

73 **Figure S6.** Phylogenetic tree showing the relationship of ammonia-oxidizing bacterial
74 16S rRNA gene (a) and *amoAgene*(b) sequences in soil microcosms to those deposited
75 in the GenBank. Pyrosequencing reads of AOB 16S rRNA genes and *amoA* genes
76 were used from triplicate microcosms at day 0 and day 19. As for 16S rRNA genes, all
77 AOB sequence reads were retrieved for analysis using mothur software package, and
78 only representative *amoA* gene reads were included for clarity to construct
79 phylogenetic tree. The designation of Urea+CH₄-OTU-1-52%-(2326) indicates that
80 OTU-1 containing 2326 sequences with identity of >97% comprised 52% of
81 ammonia-oxidizing bacterial *amoA* gene sequences in ¹³C-Urea+CH₄ treatment after
82 incubation for 19 days, and one representative sequence was extracted using mothur
83 software package for tree construction. The scale bar represents nucleotide acid
84 substitution percentage.



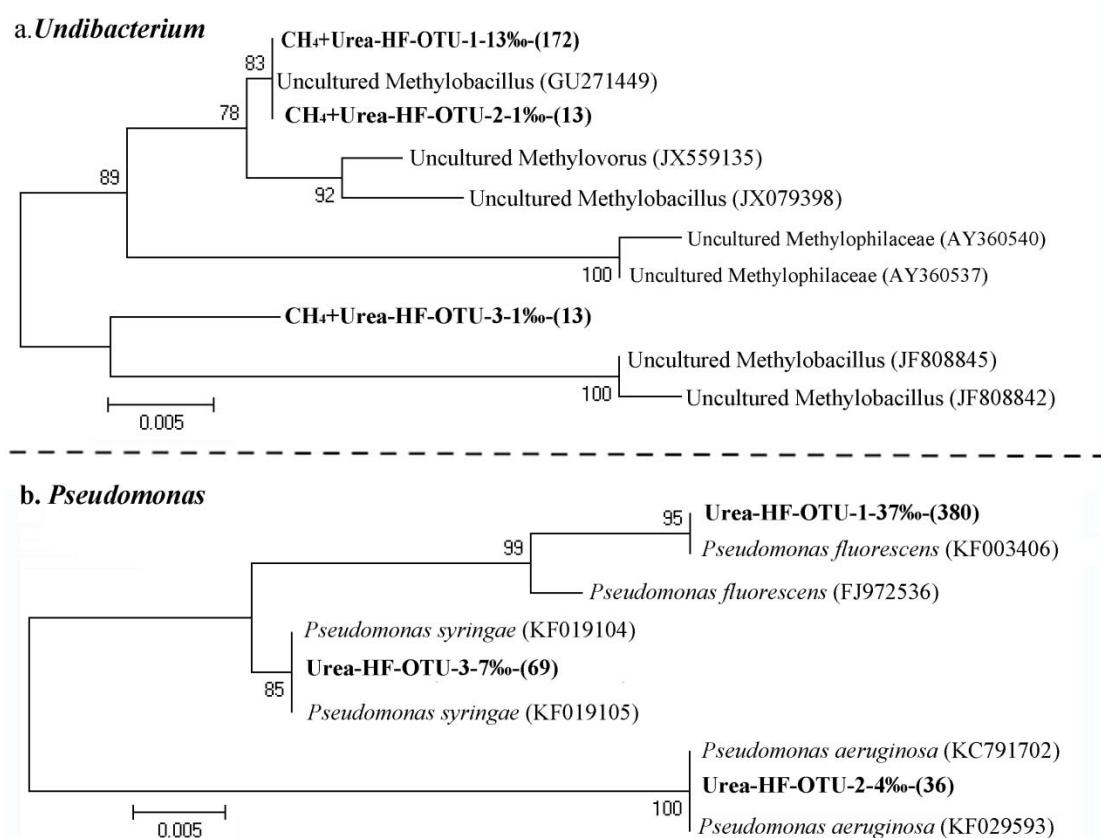
86 **Figure S7.** Quantitative distribution of *pmoA* gene copy numbers (a,b), *amoA* gene
 87 copy numbers of *Bacteria* (c,d) and *Archaea* (e,f) across the entire buoyant density
 88 gradient of the fractionated DNA from SIP microcosms after incubation for 5 and 19
 89 days. The normalized data are the ratio of gene copy number in each DNA gradient
 90 fraction to the maximum quantities for each treatment. The error bars represent
 91 standard deviations of the duplicate microcosms.

92


93 **Figure S8.** Relative frequency of the archaeal 16S rRNA gene sequences reads in DNA gradient fractions with a buoyant density gradient
94 isolated from SIP microcosms after incubation for 5 and 19 days. The frequency is expressed as the percentage of the targeted archaeal reads to
95 the total 16S rRNA gene sequences reads in each DNA gradient fraction.

96

97 **Figure S9.** Phylogenetic tree of *pmoA* genes for methane-oxidizing bacteria (a) and *amoA* genes for ammonia-oxidizing bacteria (b) in the
 98 ¹³C-DNA ‘heavy’ fraction from the labeled microcosm after incubation for 19 days. The designation of CH₄-HF-OTU-1-(308)-83.9% indicates
 99 that OTU-1 containing 308 reads with sequence identity of >87% comprised 83.9% of *pmoA* gene sequences retrieved from the ‘HF’ fraction in
 100 microcosms amended with ¹³C-CH₄ for incubation after 19 days, and one representative sequence was extracted using mothur software package
 101 for tree construction. The scale bar represents nucleotide acid substitution percentage.


102

103

104

105 **Figure S10.** Phylogenetic tree showing the relationship of the high-throughput
 106 sequence reads of *Undibacterium* (a) and *Pseudomonas* (b) in the ^{13}C -labeled ‘heavy’
 107 DNA fractions (HF) to those deposited in the GenBank. The designation of of
 108 CH_4+Urea -HF -OTU-1-13%o-(172) indicates that OTU-1 contains 172 sequences
 109 associated with *Undibacterium* comprising 13% of 16S rRNA gene sequence readsin
 110 the ‘heavy’ DNA fractions with identity of >97%, and one representative sequence
 111 was extracted using mothur software package for tree construction. The scale bar
 112 represents nucleotide acid substitution percentage.

113

114 **Reference**

115 Bodelier P.L. and Laanbroek, H.J: Nitrogen as a regulatory factor of methane oxidation in soils and
116 sediments, *FEMS Microbiol. Ecol.*, 47, 265-277, 2004.

117 Costello, A.M. and Lidstrom, M.E.: Molecular characterization of functional and phylogenetic genes
118 from natural populations of methanotrophs in lake sediments, *Appl. Environ. Microbiol.*, 65,
119 5066-5074, 1999.

120 Francis, C. A., Roberts, K. J., Beman, J. M., Santoro, A. E., and Oakley, B. B.: Ubiquity and diversity
121 of ammonia-oxidizing archaea in water columns and sediments of the ocean, *Proceedings of the
122 National Academy of Sciences of the United States of America*, 102, 14683-14688, 2005.

123 Holmes, A. J., Costello, A., Lidstrom, M. E., and Murrell, J. C.: Evidence that particulate methane
124 monooxygenase and ammonia monooxygenase may be evolutionarily related, *FEMS Microbiol. Lett.*,
125 132, 203-208, 1995.

126 Rotthauwe, J. H., Witzel, K. P., and Liesack, W.: The ammonia monooxygenase structural gene amoA
127 as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations,
128 *Appl. Environ. Microbiol.*, 63, 4704-4712, 1997.

129 Whalen, S. C., Reeburgh, W. S., and Sandbeck, K. A.: Rapid Methane Oxidation in a Landfill Cover
130 Soil, *Appl. Environ. Microbiol.*, 56, 3405-3411, 1990.

131 Xia, W., Zhang, C., Zeng, X., Feng, Y., Weng, J., Lin, X., Zhu, J., Xiong, Z., Xu, J., Cai, Z., and Jia, Z.:
132 Autotrophic growth of nitrifying community in an agricultural soil, *ISME J.*, 5, 1226-1236, 2011.

133