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Dear Reviewer, thank you for the evaluation of the manuscript and constructive com-
ments. We addressed all the issues raised in the review. The reviewer will find below
the responses to general and specific comments. We hope that thanks to the com-
ments and suggestions addressed during the reviewing process the scientific value of
the article will increase.

General comment:

The work in this paper is very solid and the analysis is good, but the authors do little
to expand the science. This work repeats studies done by others without showing us
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anything really new. To me, there are a number of questions that can be addressed
by this analysis that would make the paper much more interesting and useful to the
community.

Response to the general comment:

In this study we used and tested a 16 band multispectral system which is: 1) not very
commonly used in the European proximal sampling and especially in the flux commu-
nity, 2) relatively low cost (total cost of approximately 4.5 KEUR, including datalogger
which is not strictly necessary), 3) commercially available, and 4) easy to configure
and use. We believe that the use of such sensors should be encouraged within the
EC networks (Fluxnet, ICOS) e.g. to simulate SENTINEL bands and to investigate the
ability of the upcoming sensors to provide reliable estimates of biophysical parameters
and fluxes across different ecosystems. Also, if it is true that the link between spectral
observations and carbon fluxes on grasslands is a well investigated topic, we think that
the database of this study (5 years) is very solid and allows us to answer a critical ques-
tion, regarding the applicability of the simple optical sampling models across different
years.

Specific comments:

C1: First, one omission in the methods; there is no description of instrument calibration.
Over the long study period, what was done to prevent instrument drift? How stable was
the instrument? Is this an issue for anyone else using this type of instrument?

A1: According to the reviewer's question, the following information was added to
the manuscript section “Multispectral reflectance and narrow-band vegetation indices”
(P7L20):

“Before the beginning of each growing season, the system was calibrated using the
method recommended by the manufacturer, based on the use of a white reference
panel with known reflectance (http://www.cropscan.com/wsupdn.html).Additionally,
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CROPSCAN, Inc. provided cosine response calibration data with each upward facing
MSR16 module and temperature sensitivity calibration data. Both cosine and temper-
ature corrections were included in the postprocessing software (POSTPROC program)
provided with the MSR system.”

C2: In the introduction the light use efficiency equation (LUE) was introduced (Eq 1).
However, it is not mentioned again in the paper. Of the four different statistical models,
only Model 2 directly relates to the LUE, and Model 2 is stated to do poorly. As the
LUE is widely used, what do the results of this study say about its applicability? Is PAR
unnecessary in the LUE model? If you do need PAR, why did the statistical models
that used PAR in them do poorly? Should there be a direct/diffuse ratio added to the
model? These are important questions that fall out of your analysis and should be
addressed.

A2: From a remote sensing perspective, a strong argument for the use of the concept
of LUE model is that all LUE model input parameters can in principle be derived from
remote sensing measurements. Spectral vegetation indices presented in the paper
are non-direct measures of fAPAR, which is one of the components of LUE model. In
our view, even not using all the components of the LUE model, but only its simplified
version, allows for definition of the general idea behind using VIs as a LUE model
concept. This will be especially valid in “dynamic” canopies where fAPAR shows high
seasonal variations and appears to be the main driver of GEP.

According to the reviewer's comment, the section “Models for GEPm estimation”, de-
scribing models formulations presented in the paper, was supplemented with clarifica-
tion that we refer to the LUE model concept (P8L8). Later in the article we refer to
terms defined in this section:

“In order to estimate GEPm we used two approaches, one based on linear regression
(using the concept of the LUE model) and the other on multiple regression.”

Also, we agree with both reviewers that the complex relationship between GEP and
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PAR should be further discussed in the paper.

For this reason, in the “Discussion” section we reworded the sentence in P14L19-
P14L22 into:

“One of the reasons for this is that sunlight is used by plants more efficiently under
cloudy than clear sky conditions due to a more uniform illumination of the canopy, and
thus a smaller fraction of the canopy likely to be light saturated (Baldocchi and Amthor,
2001; Chen et al., 2009; Mercado et al., 2009).”

In the same section we added the following paragraph (P15L1):

“A recent study of Peng et al. (2013) confirmed that the use of PAR in the model can
introduce noise and unpredictable uncertainties in GEP estimations. As suggested by
these authors, the response of productivity to changes in PAR is quite complex and
influenced by many variables such as vegetation physiological status, canopy structure
and light distribution in the canopy. Some other authors also brought to light some im-
portant aspects related to the use of PAR. Sims et al. (2008) showed that the variation
in PAR is a more relevant determinant of GEP over very short timescales, and appears
to be important for diurnal trends. Gitelson et al. (2012) demonstrated that seasonal
variation of PAR potential (defined as the maximal value of incident PAR that may oc-
cur when the concentrations of atmospheric gasses and aerosols are minimal) can be
used to improve the performance of the models.”

Also, we reworded the sentence in P15L1-P15L4 into:

“Therefore, further analyses of the response of different vegetation types to various
levels of diffuse radiation are required, and the hypothesis that the DI and PAR potential
can improve the performance of the models including radiation as an input parameter
needs to be verified.”

And the sentence: “Also, the assessment of the influence of radiation quality on canopy
reflectance should be further investigated.” (P15L4-P15L5) was removed.
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C3: The authors suggest that these types of reflectance measurements could be used
to determine carbon fluxes and productivity and it would be much cheaper and easier
to deploy these optical sensors than flux towers. | wish the authors explored this idea a
little farther. How robust are their best models? If the model were parameterized using
data from one year, how well would it have performed in the other years?

A3: Considering the long data series presented in the study (characterized by a high
variability in both precipitation and air temperature - covering approximately 88% and
54% of the variability observed in a 20 year period for precipitation and temperature,
respectively) and the obtained results (robust relationship between GEPm derived from
EC measurements and GEPm derived from general model 1, 3 and 4), we see the
use of ground spectral measurements for monitoring GEPm in a long-term framework
as very promising. However, taking into account the limitation of both methods (EC
and optical sampling of vegetation), they cannot be used interchangeably, but only
complement each other.

Following the suggestion of both reviewers we performed the validation of the best
performing general models (model 1 and 4). Sections “Statistical analysis” (P9L21),
“Results” (P13L5) and “Discussion” (P15L21) have been enhanced with the information
about the validation procedure and results:

2.5 Statistical analysis:

“Additionally, a validation of the best performing general models (considering all 5 years
of observations together) using training/validation splitting approach, in which one year
at a time was excluded from the dataset, was conducted. The remaining 4 years subset
was used as a training set and the excluded year as the validation set. The model was
fitted (calibrated) against each training set and the resulting parameterization was used
to predict the GEPm of the excluded year. Validation accuracy was evaluated in terms
of RMSE.”

3 Results:
C2645

“Validation of model 1 based on NDVlIred-edge showed that there was no relevant
difference in prediction accuracy among validation years (RMSE was varying between
3.12 and 3.85 ymolm—2 s—1, Figure 2). The general model 4 validation results showed
that considering the all 5 validated years RMSE was on average 3.26 ymolm—2s—1.

4 Discussion:

“The results of the validation of the general model 1 fed with NDVIred-edge showed
that RMSE increased, compared to the non-validated general model 1 results, on
average (averaging the values obtained from 5 validation years) from 3.41 to 3.48
umolm—2s—1. The general model 4 validation results showed that RMSE increased,
as regards to the non-validated general model 4 results, on average from 3.06 to 3.26
pmolm—2s—1. The highest decrease of the GEPm estimation accuracy was noted in
the growing season of 2012 (Table 4, Figure 2), which was presumably caused by the
unusual drought which occurred just after the cut event. The precipitation to temper-
ature ratio for the period of 15 days after the cut in the growing season of 2012 was
more than 10 times lower than in the other years which could have affected GEPm to
the higher extend than VIs related to the canopy “greenness”. As a consequence, mod-
els calibrated with the first four years of the dataset overestimated the GEPm measured
in the second part of the growing season of 2012.”

C4: Are there particular times or conditions (e.g. rain or very cloudy conditions) where
errors in flux estimation are particularly bad?

A4: There are only a few times or conditions under which errors in flux estimation are
particularly bad. We are aware of two cases when the data should be discarded from
the analysis: 1) when rain was recorded 2 h prior or during the midday averaging pe-
riod, and 2) when the weather conditions (precipitation) did not allow for the removal
of the cut biomass from the footprint of Cropscan system (and EC tower) straight after
the cut event. In either case the data were omitted in the deliberation. Also, in order
to check the performance of the models in cloudy conditions we established and com-
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pared the relationships between EC derived GEPm and NDVIred-edge in the growing
season 2012 for: 1) sunny conditions (diffusion index — DI<0.3), 2) cloudy conditions
(DI1>0.7) and 3) regardless the quality of incoming radiation (DI1<0.3 and DI>0.7). The
obtained results showed that cloudy conditions did not affect the model performance
significantly.

C5: Are the relationships developed during the spring green-up the same as those
for the summer green-up after cutting? Can a brief (say, month-long) training dataset
provide a good solution for the rest of the season (or other years)?

A5: In order to check the above mentioned possible seasonal effect, we established
and compared the relationships between EC derived GEPm and NDVIred-edge mea-
sured during the 5 years of observations for: 1) the periods before the cut event, and
2) the periods after the cut event. Slopes and y-intercepts of both linear regressions
were statistically indistinguishable (p>0.72) (Figure 1).

C6: If the optical data provide a reliable estimate of GEP, could that then be used to
estimate daytime respiration?

A6: In order to answer the reviewer’s question, we tested whether our optical data are
able to provide reliable estimates of mean midday ecosystem respiration (Reco). The
obtained results showed that all our models were performing poorly in Reco predic-
tions. We think that the reason for this is the lack of a direct relationship between
reflectance and both, autotrophic and heterotrophic components of the respiration
(Wohlfahrt et al., 2010). Moreover, at the Monte Bondone grassland site, tempera-
ture plays a major role in affecting both, diurnal and seasonal patterns of ecosystem
respiration (Marcolla et al., 2011).

C7: It was also suggested that the optical data could be used to fill in gaps in the flux
data. It would be nice to see a test of that idea, by creating gaps of varying sizes
at different times of the year and filling them using the optical data. Does a single
parameterization work well, or is it better to tune the equations from data surrounding
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the gap? Perhaps the authors intend to address these kinds of questions in future
papers, but not adding something to the discussion in this paper leaves it with little
lasting to say.

A7: Following the reviewer’s suggestion we tested the ability of the optical data for
GEPm gap-filling.

Accordingly, a new section was added to the manuscript: “2.6 The gap scenarios”
(P9L24), and sections “Results” (P13L9) and “Discussion” (P16L21) were extended:

2.6 The gap scenarios:

“In order to evaluate the ability of spectral models to gap-fill flux data, secondary
datasets were generated by flagging ~16 % of the 5 growing seasons data as un-
available (artificial gaps constituted 90 observation days out of 573 observation days).
The percentage of artificial gaps was chosen due to the fact that during the observa-
tion period of the study (May to November, 2008-2012) the presented dataset had an
average of 16 % of missing or rejected values of NEE data collected during midday
hours. Following Moffat et al. (2007) these artificial gaps were superimposed on the
already incomplete data, without regard for the distribution of real gaps in the GEPm
data. Three gap length scenarios were considered: gaps of 1 observation day, gaps of
3 observation days and gaps of 5 observation days. The artificial gaps were distributed
randomly and each of the three artificial gap length scenarios was permuted 10 times
and results were averaged (Moffat et al., 2007). Models used for filling GEPm data
were calibrated using secondary datasets with ~16 % of gaps. The gap-filling statis-
tical metrics (adjR2, RMSE, PRMSE) were calculated using the EC derived GEPm in
these artificial gaps to validate the predictions of filling technique.”

3 Results:

“The differences in the adjR2 performance of the gap-filling scenarios showed that the
accuracy of the gap filling decreased slightly with the gap length. Also, the range of
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the goodness of fit statistics (RMSE, PRMSE) increased together with the gap length
(Table 6). However, on average, the GEPm gaps were filled with the accuracy of 73%
with model 1 fed with NDVIred-edge (RMSE=3.40 ymolm—2s—1, PRMSE= 16.48 %),
and the accuracy of 76% (RMSE=3.14 ymolm—2s—1, PRMSE= 15.25 %), with the
model 4 using reflectance at 681, 720 and 781 nm and PARm data.”

4 Discussion:

“The results of a simple gap filling approach presented in this study (based on creating
and superimposing randomly distributed artificial gaps of three different lengths on the
real dataset and comparing GEPm values derived from EC with GEPm values filled
with the best performing spectral models) suggested to hold promise for filling gaps in
flux data time series. The spectral based models were able to predict GEPm values
with results comparable with others methods with adjR2 ranging from 0.70 (5 days long
gap, general model 1) to 0.78 (1 day long gap, general model 4) (Table 6).”
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Additional note:
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Bagnara, PhD student of Fondazione Edmund Mach, for help in R programming and
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Fig. 1. Relationship between the NDVIred-edge and GEPm considering all the 5 years of
observations.
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Fig. 2. Root mean square error (RMSE) of the validated models based on the NDVIred-edge.
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Gap length

1 observation day 3 observation days 5 observation days
Madd adjR? RMSE PRMSE adjR? RMSE PRMSE  adjR? RMSE PRMSE
& pmolm=2s? % f pmolm=s! % - umolm2s? %
mean 0.76 3.41 16.45 0.72 3.43 16.71 0.70 3.34 16.28
! range 0.16 0.73 3.80 0.28 1.19 5.45 0.46 0.95 6.50
mean 0.78 3.16 15.25 0.77 3.10 15.08 0.73 3.17 15.42
* range 0.14 0.46 2.72 0.18 0.81 4.23 0.33 0.75 5.13

Fig. 3. Table 6. Summary of the statistical metrics of gap filling procedure: adjusted R2 (adjR2),
root mean square error (RMSE) and percentage root mean square error (PRMSE).
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