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1 Length and complexity of the manuscript

"The manuscript is well written and the study, although complex, very well executed.
The only downfall is that the reader is bombarded by comparison after comparison
showing how the GSI version of the model is better, leading to 12 figures in the main
text, 21 in the appendix, which largely bury the key messages."
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We agree with the referee that our manuscript is full of comparisons and includes many
figures. However, we think these comparisons are needed and should be also part of
the publication. LPJ is a widely used dynamic global vegetation model that is applied in
several fields. Replacing a core module as phenology of such a model requires 1) a de-
tailed model evaluation to quantify the impact of the changed model structure on model
outputs and 2) to ensure that model results are comparable with observations. Thus,
we are evaluating LPJmL against independent data streams (biomass, tree cover, ET).
Additionally, we are evaluating LPJmL against seasonal, monthly, inter-annual FAPAR
dynamics and trends to demonstrate the applicability of LPJmL in diagnosing FAPAR
dynamics on different time scales.

We consider moving results from the main text to the appendix or from the appendix to
supplementary material to improve the readability of the manuscript.

2 Model complexity and extrapolation capabilities

“My only main comment is that, with 12 free parameters, should we not expect the
GSI model to perform better than the original model (5 free parameters). What is the
potential for over-fitting the model here? The main question is whether GSI is better
at predicting out of sample. It would be good to see a test of the model optimized to
the first half of the time series and predict the second half. Better still, seen as we
are interested in future climate change applications with this model, optimized to the
northern half of the distributions of each PFT, and used to predict the southern half.
Tests such as these are needed to give us true confidence that a more complex model
with double the parameters is truly better.”

We identify two distinct concerns in this comment: 1) The higher complexity of LPJmL-
GSI over LPJmL-OP with a risk for over-fitting and 2) the capability of LPJmL-GSI in
accurately extrapolating to time periods or spatial domains that are distinct from the
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optimization data. We will discuss these two issues separately in the following.
2.1 Model complexity of LPJmL-GSI vs. LPJmL-OP

Indeed, the LPJmL-GSI phenology module has more parameters and thus a higher
complexity than LPJmL-OP. In total, 18 parameters (12 phenology parameters + 6 pro-
ductivity/albedo parameters) were considered in the optimization of LPJmL-GSI and
up to 10 parameters (number depends on PFT) for LPJmL-OP. We agree with the ref-
eree that from a statistical point of view LPJmL-GSI should better reproduce observed
FAPAR dynamics than LPJmL-OP but involves a risk of over-fitting. Nevertheless, not
all of these candidate parameters were included in the optimization experiments. We
identified some parameters as insensitive and such parameters were excluded from
optimization experiments. Thus the number of free parameters in optimization exper-
iments of LPJmL-GSI ranged between 7 and 11 dependent on PFT. This limits the
potential for over-fitting. Following the statistic reasoning, one can evaluate the model
fit with respect to the number of parameters by computing the AIC (Akaike’s Informa-
tion Criterion) (Burnham and Anderson, 2002, p.61). The model with the lower AIC
value would indicate the better model because it can provide a similar fit with less pa-
rameters. We computed AIC for grid cell optimization experiments of LPJmL-OP and
LPJmL-GSI, respectively. Nevertheless, these AIC values are not directly compara-
ble because not the same set of grid cells was used in both experiments (Figure 1).
LPJmL-GSI had lower AIC values in the BoNS tree PFT, and in the herbaceous PFTs
(TrH, TeH, PoH). AIC values were similar in the TrBR, TeBS, BoNE, BoBS PFTs. AIC
values from LPJmL-OP were lower in the TrBE, TeNE, and TeBE PFTs. This is not
surprising as LPJmL-OP has a fixed phenology in evergreen PFTs (i.e. no parame-
ters). In order to compute AIC differences (dAIC) and to investigate spatial patterns of
dAIC in terms of monthly FAPAR, we estimated AIC from the global LPJmL-OP-gc and
LPJmL-GSI model runs (Figure 2). Based on this analysis of dAIC for monthly FAPAR,
one could select LPJmL-GSI as the better model in arctic and large boreal regions
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and in temperate and tropical grasslands. LPJmL-OP could be selected in temperate,
subtropical ad topical forest regions.

Nevertheless, although LPJmL-OP is seemingly the better model in terms of AIC in
some regions, it is definitely the worse model in terms of considered environmental
processes. LPJmL-OP ignores potential drought or heat stress effects on phenology
in all PFTs. Additionally, the summergreen routine in LPJmL-OP has four parame-
ters whereas the corresponding cold temperature limiting function in LPJmL-GSI has
only three parameters. Thus, LPJmL-OP is the more complex model for the relation-
ship between cold temperature and phenology and has only a lower overall complexity
because it misses effects of light and water on phenology in summergreen and herba-
ceous PFTs. “If a particular model (...) does not make biological sense, this is the
reason to exclude it from the set of candidate models” (Burnham and Anderson, 2002,
p.17). In conclusion, although LPJmL-OP has a lower overall complexity and turns out
to be a better model in terms of AIC in some PFTs, it is not an alternative to LPJmL-GSI
because it misses important environmental controls on vegetation phenology.

2.2 Extrapolation capabilities of LPJmL-GSI

The referee asked to demonstrate the extrapolation capabilities of LPJmL-GSI by split-
ting the data in temporal or spatial distinct sets for model optimization and evaluation.
Such a test helps to understand the model performance in different time periods, re-
gions or environmental conditions. We did not split the observed FAPAR time series
in two time periods for model optimization and evaluation (“split-sample test”, (Klemes,
1986)) because we wanted to use the full time series length to maintain enough in-
formation about inter-annual variability and trends in model optimization experiments.
More than such a test, the referee suggests splitting the data spatially (northern and
southern half). We think a north-south splitting is not very insightful because especially
boreal and arctic PFTs don’t have an equivalent at the southern hemisphere and most
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PFTs occur only in relatively small latitudinal bands. However, we split the data spatially
as the referee suggested: we optimized LPJmL-GSI only in a few randomly selected
grid cells and evaluated the model in all other grid cells. Optimization grid cells had
a dominant cover of one PFT whereas all other evaluation grid cells had mixed PFT
cover. But the referee is right, we did not explicitly show the difference in model per-
formance between optimization and evaluation grid cells in our manuscript. To test the
extrapolation capabilities of LPJmL-GSI into different regions or under different climate
conditions, we investigated the relationship between model performance (expressed as
the correlation between monthly FAPAR time series from GIMMS3g and LPJmL-GSI)
and the distance to the closest grid cell that was used for a PFT-level optimization of
LPJmL-GSI (Figure 3). If LPdJmL-GSI would be not capable of extrapolation, we would
expect a decrease in correlation with increasing distance from optimization grid cells.

We found no general decrease in model performance if optimized LPJmL-GSI model
parameters were applied to distant geographic regions or under different temperature
conditions (Figure 3). Whereas only in the Am, Cw, BSh, Df, and ET climate types sig-
nificant lower correlations in distant (600-800 km) than in close (< 200 km) grid cells oc-
curred, we found constant or even improving correlations with increasing distance from
optimization grid cells in all other climate types (Figure 3 c). More important than the
spatial extrapolation capability is the capability in extrapolating to different environmen-
tal conditions especially with respect to climate change applications. Consequently,
we also tested if the correlation between simulated and observed FAPAR time series
depends on the difference in mean annual temperature between each grid cell and the
corresponding closest optimization grid cell (Figure 3 d). We did not find significant
lower correlations in grid cells that were 3 to 5°C warmer than the closest optimiza-
tion grid cell. This indicates that under common climate warming scenarios of 0.3° to
4.8°C (IPCC, 2014), LPdJmL-GSI will likely simulate FAPAR with similar performance
like during the optimization.

We will consider including this analysis in the appendix or supplementary material of

C4387

the revised manuscript.

3 Minor Points

“Introduction: Page 10919, line 18: Give citation for these claimed browning trends.”

We suggest to add the following citations: (Baird and Verbyla, 2012; Bi et al., 2013; de
Jong et al., 2013).

“Page 10919, line 21: Why focus on just the boreal browning here? What about the
other regions?”

We suggest to add references to studies that investigated relations between browning
trends, droughts and land use change in subtropical regions (Cook and Pau, 2013; van
Leeuwen et al., 2013).

“The introduction is in general too long and could be edited to improve flow.”

We will try to shorten and improve the introduction as soon as we will get other referee
comments.

“Page 10925, line 9: Please give the values of k used, and cite references.”

Parameter values of the light extinction coefficient were optimized in optimization ex-
periments. Prior and posterior values can be found in Tables D2-D5.

“Page 10928, line 21: It is not clear to me how the fact that LPJ here is a prognostic
model makes it impossible to use a running window averaging approach.”

The running window averaging approach in the original GSI model computes the actual
daily GSI value as the mean value from daily iGSI indicator values for time period of
21 days (Jolly et al., 2005, p.622). In LPJmL-GSI, the actual daily phenology status
needs to be estimated from the phenology status of the previous day to ensure that the
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model is fully applicable in a prognostic mode. Otherwise, one needs first to run the
LPJmL-GSI phenology module, then apply the running window average on the daily
phenology status, and then compute photosynthesis and all other process modules of
LPJmL afterwards. This does not correspond to the common modelling approach in
LPJmL. An alternative implementation would be to compute the daily phenology status
dependent on the average status of the previous x days. We will test this alterna-
tive implementation in future studies when we will apply and optimize LPJmL model
parameters against site measurements of daily eddy covariance fluxes.

“Page 10932: “we used”
We changed this.

“Page 10935, line 4: Is Table D2 all optimized parameters, or all relevant parameters.
Please clarify in the main text.”

Table D2 lists all parameters of the LPJmL-OP phenology model and all parameters
that were addressed in optimization experiments of LPJmL-OP. Except the parameter
GDDbase all of these parameters were included in grid cell-level optimization experi-
ments of LPJmL-OP.

“Page 10939, Line 19: “In temperate broadleaved evergreen forests, the GIMMS3g
FAPAR dataset 20 might have a wrong seasonality.” This is quite a bold statement,
given that GIMMS3g and its predecessor have been extensively used in temperate
broadleaved evergreen forests. | hate to ask for a figure to back up this statement,
given that the authors have already included so many in the manuscript, but it would
seem one is warranted.”

The difference in the mean seasonal cycle between GIMMS3g, GL2 and LPJmL-GSI
FAPAR in temperate broadleaved evergreen forests is already shown in Figure 8 of the
main text. Although the mean seasonal FAPAR cycles from GIMMS3g and GL2-VT
are negatively correlated (r = -0.48), the correlation is not significant and GIMMS3g is
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within the uncertainty of the GL2 dataset. Thus, we consider using a weaker wording.

“Page 10954, Line 6: “water availability is regulated through seasonal thawing and
freezing of the active permafrost layer”. Seasonal thawing co-varies with temperature,
suggesting temperature could be used as a driver (and is sure to have lower error
propagation than going through modeled soil moisture). | would suggest reconsidering
your interpretation.”

We agree with the referee that seasonal freezing and thawing of upper active layer
in permafrost soils is too a large extent driven by temperature changes. As a conse-
quence it is likely possible to explain phenology in arctic and boreal ecosystem only
by temperature changes. Nevertheless, air temperature and soil thawing are not com-
pletely synchronized because soil temperature depends also on topography, substrate,
and the insulating effects of the snow, litter and vegetation cover (Jorgenson et al.,
2010; Shur and Jorgenson, 2007; Zhang, 2005). Soils might be still frozen if air tem-
perature is already positive or vice versa. Indeed, we did not find a completely syn-
chronized temporal dynamic of the cold temperature and water limiting functions for
phenology (Figure 12 of the manuscript) which suggests that water availability might
affect phenology independently from temperature seasonality. Also experimental stud-
ies highlighted the role of permafrost-regulated soil moisture on phenology and pro-
ductivity in boreal and arctic ecosystem (Natali et al., 2012; Schuur et al., 2007). Thus,
we assume that temperature might be enough to explain average spatial patterns of
phenology in boreal and arctic regions but variations in snow or vegetation cover that
affects soil temperature and thus moisture might be important factors in explaining
inter-annual variations of land surface phenology.
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5 Extended figure captions

Figure 1: Distribution of AIC based on the total cost (FAPAR, albedo and GPP) from
single grid cell optimization experiments of LPJmL-OP and LPJmL-GSI grouped by
the dominant PFT of each grid cell. 530 single grid cells were used for optimizing
LPJmL-OP and 348 for LPJmL-GSI. Only 71 grid cells were used in both optimization
experiments. These 71 grid cells were distributed in the BoNS, BoBS and TeBS PFTs.
Thus, the sample size is too small to compute AIC differences (dAIC) between LPJmL-
OP and LPJmL-GSI from grid cell level optimization experiments. The dAIC values in
this plot refer to the difference in the median AIC.
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Figure 2: AIC differences defined as LPJmL-GSI minus LPJmL-OP based on the cost
for FAPAR. AIC was computed based on the sum-of-squared error (SSE) of monthly
FAPAR and the active number of LPJmL parameters per grid cell. The SSE was com-
puted between monthly FAPAR time series from GIMMS3g and from the LPJmL-GSI
or LPJmL-OP-gc model runs, respectively. The number of active parameters per grid
cell does not only depend on the use of LPJmL-OP or LPJmL-GSI but depends also
on the number and type of established PFTs per grid cell.

Figure 3: Extrapolation capabilities of LPJmL-GSI in terms of monthly FAPAR dynam-
ics. (a) Correlation coefficient between monthly FAPAR time series from LPJmL-GSI
and GIMMS3g (1982-2011). Areas without vegetation, with more than 50
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Fig. 1. Distribution of AIC based on the total cost from single grid cell optimization experiments
(see extended figure caption at the end of our reponse).
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dAIC (LPIML-GSI - LPImL-OP—-gc) for monthly FAPAR
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Fig. 2. AIC differences defined as LPJmL-GSI minus LPJmL-OP based on the cost for FAPAR.
(see extended figure caption at the end of our reponse).
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Extrapolation capabilities of LPImL-GSI
Correlation between monthly GIMMS3g and LPIJmL-GSI FAPAR (1982-2011)
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Fig. 3. Extrapolation capabilities of LPJmL-GSI in terms of monthly FAPAR dynamics. (see
extended figure caption at the end of our reponse).
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