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Abstract 14�

Land cover change can impact climate by influencing surface energy and water balance. 15�

Unproductive peatlands were vastly drained to stimulate forest growth in Finland over the 16�

second half of 20th century. The aim of this study is to investigate the biophysical effects 17�

of peatland forestation on climate change in Finland. Two sets of 18-year climate 18�

simulations were done with the regional climate model REMO, using land cover data 19�

based on pre-drainage (1920s) and post-drainage (2000s) Finnish National Forest 20�

Inventories. Results show that in the most intensive peatland forestation area which 21�

located in the middle west of Finland, the differences in monthly averaged daily mean 22�

two meter air temperature show a spring warming of up to 0.43 K in April, whereas a 23�

slight cooling of less than 0.1 K in general, is found from May till October. 24�

Consequently, snow clearance day over that area is advanced up to 5 days in the mean of 25�

15 years. No clear signal is found for precipitation. Through analyzing the simulated 26�

temperature and energy balance terms, as well as snow depth over five selected 27�



subregions, a positive feedback induced by peatland forestation is found between 28�

decreased surface albedo and increased surface air temperature in the snow melting 29�

period. Our modelled results show good qualitative agreements with observational data. 30�

In general, decreased albedo in snow-melting period and increased evapotranspiration in 31�

the growing period are the most important biogeophysical aspects induced by peatland 32�

forestation that cause changes in climate. 33�

 34�

1 Introduction 35�

Climate response to anthropogenic land cover change happens more locally and occurs 36�

on a much shorter time scale, compared to global warming due to increased greenhouse 37�

gases (IPCC, 2013). The influences on climate from biogeophysical effects caused by 38�

land cover changes can enhance or reduce the projected climate change (Bathiany et al., 39�

2010; Bonan, 2008; Feddema et al., 2005; Gálos et al., 2011; Göttel et al., 2008; Ge and 40�

Zou, 2013; Pielke et al., 2011; Pielke et al., 1998; Pitman, 2003). Especially for the 41�

climate impacts of past large-scale afforestation, studies show that the most obvious 42�

effect from the increase of forests in boreal areas is warming during snow-cover period 43�

due to decreased surface albedo and in tropical areas with sufficient soil moisture is 44�

cooling in summer time from increased evapotranspiration (ET) (Bala et al., 2007; Betts, 45�

2000; Betts et al., 2007). 46�

 47�

Vast areas of unproductive peatlands have been drained to grow forests for timber 48�

production in northern European countries (Päivänen and Hånell, 2012). In Finland, it is 49�

the dominant land cover change over the last half century, due to the high fraction of 50�

pristine peatland and the needs for timber production. The total peatland area of Finland 51�

was estimated to be 9.7 million ha in the 1950s (Ilvessalo, 1956). In the beginning of 52�

2000s, the area of drained peatland for forestry was estimated to be 5.7 million ha by 53�

Minkkinen et al. (2002) and 5.5 million ha by Tomppo et al. (2011). The area of drained 54�

peatlands is unlikely to increase further because no more public subsidization are given 55�

for the first-time drainage of peatlands, along with the increased awareness of natural 56�

conservation (Metsätalouden kehittämiskeskus Tapio, 1997). The area of restored mires 57�



was 15 000 ha between 1990-2008 (www.biodiversity.fi/en/indicators/mires/mi17-mire-58�

restoration) (Kaakinen and Salminen, 2006). However, land cover change is not only a 59�

result of human land use activities but can also be a consequence of climate change. 60�

Global warming in the future is also considered to be a factor that affects boreal peatland 61�

through water-level drawdown due to increased ET (Laiho et al., 2003; Laine et al., 62�

1995). 63�

 64�

Attention has been paid to the climate effects of peatland forestation. A decrease in the 65�

local night-time minimum temperature during the growing season was observed roughly 66�

for the first 15 years after drainage (Solantie, 1994). The reason for this nocturnal cooling 67�

phenomenon is the insulation of lower soil layers from the atmosphere by dry peat. 68�

Therefore, the heat flux from a drained peat soil cannot compensate the radiative cooling 69�

at the surface, which leads to a drop in daily minimum temperature (Venäläinen et al., 70�

1999). On a longer time scale, the growing forest on formerly open peatlands leads to a 71�

decrease in albedo. The reasons for this are the darker tree-cover in comparison to the 72�

lighter grass-cover in snow free period, and the partial snow cover in forest areas 73�

compared to the full snow cover in open area in snow-cover period. This increases daily 74�

maximum temperature due to an increase in the absorption of short-wave radiation 75�

(Solantie, 1994). A consistent result was found by Lohila et al. (2010) based on radiation 76�

and albedo measurements at different drained and undrained peatland sites, as well as the 77�

observed long-term surface temperatures in Finland. In southern Finland (<65° N), the 78�

day-time maximum (night-time minimum) temperature in April has increased by 0.64 79�

(0.37) K/decade during 1961 to 2008, along with about a total of 2.7 million ha drained 80�

unproductive peatlands (Hökkä et al., 2002). This indicates an increase in the diurnal 81�

temperature range in April due to a greater increase in day-time maximum than in night-82�

time minimum temperatures, which is possibly a result of the change in surface radiative 83�

properties after drainage.  84�

 85�

However, these studies related to peatland forestation are based on site-level data alone. 86�

The climate effects of peatland forestation have not been quantified on a regional 87�
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scale/country level by investigating biogeophysical effects. Also, the magnitude and 88�

pattern of land use change effects on climate is quite dependent on regional conditions, 89�

for instance soil property, topography, and so on. Information from regional studies is 90�

essential for the development of future strategies on climate mitigation or forest 91�

management. Thus, it is necessary to investigate the effects regionally and systematically. 92�

In recent years, regional climate models have become suitable for simulating regional 93�

climate in a fine resolution to resolve small scale atmospheric circulation (Déqué et al., 94�

2005; Jacob et al., 2007; Jacob et al., 2001; McGregor, 1997). For this, a regional climate 95�

model with realistic land scheme to interpret more detailed land surface information 96�

needs to be applied. 97�

 98�

In this study, the long-term climate effects caused by peatland forestation are assessed 99�

from two sets of 15-year simulation results with the regional climate model REMO, by 100�

using the historical (1920s) and present-day (2000s) land cover conditions, respectively. 101�

The intention is to investigate the biogeophysical impacts of past peatland forestation on 102�

climate change in Finland. 103�

 104�

2 Model description and methodology 105�

2.1   REMO climate model 106�

The regional climate model REMO is a three-dimensional hydrostatic atmospheric 107�

circulation model developed at Max Plank Institute, Germany (Jacob et al., 2007; Jacob 108�

and Podzun, 1997; Jacob et al., 2001). Its dynamical core is based on the ‘Europamodell’, 109�

the former numerical weather prediction model of German Weather Service (Majewski, 110�

1991). The land surface scheme (LSS) of REMO mainly follows that of the global 111�

atmosphere circulation model ECHAM4 (Roeckner et al., 1996), with several physical 112�

packages updates (details will be shown later). The prognostic variables are: pressure, 113�

temperature, horizontal wind components, specific humidity, cloud liquid water and ice. 114�

REMO is driven by large scale forcing data according to the relaxation scheme (Davies, 115�

1976). The eight outer most grid boxes at each lateral boundary are the sponge zone. 116�

 117�



Because land cover is central for this study, a brief introduction of the LSS in REMO is 118�

given below. In REMO LSS, the total area of each model grid box is composed of 119�

fractions of land (vegetation cover and bare soil), water (ocean surface and inland lake) 120�

and sea ice (Semmler et al., 2004). The biogeophysical characteristics of major land 121�

cover classes (Olson, 1994a, b) are described by surface parameters: background surface 122�

albedo (albedo over snow-free land areas), roughness length, fractional green vegetation 123�

cover, leaf area index (LAI; one-sided green leaf area per unit ground area), forest ratio 124�

(fr; fractional coverage of trees regardless of their photosynthetic activity), soil water 125�

holding capacity (maximum amount of water that plants may extract from the soil before 126�

wilting begins) and volumetric wilting point (percentage of moisture in a soil column 127�

below which plants start to wilt) (Hagemann, 2002; Hagemann et al., 1999). The land 128�

surface parameters  are averaged linearly according to fractional coverage of land cover 129�

types within a model gridbox, except for the roughness length which is averaged 130�

logarithmically (Claussen et al., 1994; Hagemann et al., 1999). As LAI, fractional green 131�

vegetation cover and background surface albedo strongly depend on the vegetation 132�

phenology, they are prescribed with intra-annual cycles by using a monthly varying 133�

growth factor which determines the growth characteristics of the vegetation (Hagemann, 134�

2002; Rechid and Jacob, 2006). The growth factor for latitudes higher than 40 degrees 135�

North or South is derived from a two meter temperature climatology (Legates and 136�

Willmott, 1990), in other latitudes the fraction of photosynthetically active radiation is 137�

used. 138�

 139�

The simple bucket scheme (Manabe, 1969) is used for soil hydrology where the 140�

partitioning of surface runoff and infiltration follows the Arno-Scheme (Dumenil and 141�

Todini, 1992). The soil temperature profile from the ground surface to around 10 m depth 142�

is described by five soil layers with increasing thickness. The heat conductivity and heat 143�

capacity, in the heat conduction equation for calculating the soil temperature, are 144�

dependent on the soil types (Kotlarski, 2007). The distribution of soil types is from 145�

FAO/UNESCO soil map of the world (FAO/UNESCO, 1971-1981; Kotlarski, 2007). 146�

 147�

The Arno-Scheme used for the soil hydrology was further improved by considering the 148�
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high resolution subgrid-scale heterogeneity of the field capacities within a climate model 149�

gridbox (Hagemann and Gates, 2003). The resolution of subgrid-scale heterogeneity is 150�

set to be 10 times higher than the resolution of the model by using the standard REMO 151�

land cover map - Global Land Cover Characteristics Database (GLCCD) (Loveland et al., 152�

2000; U.S. Geological Survey, 2001). The three parameters in the improved Arno-153�

Scheme are accounting for the shape of the subgrid distribution of soil water capacities 154�

(Beta), subgrid minimum (Wmin) and maximum (Wmax) soil water capacity. Also, the 155�

original annual background albedo cycle was modified by using MODIS satellite data 156�

between 2001 and 2004 in order to derive more realistic global distributions of pure soil 157�

albedo and pure vegetation albedo, which are then used to compute the annual 158�

background albedo cycle with monthly varying LAI (Rechid, 2008; Rechid et al., 2009). 159�

2.2   The model domain and land cover data sets 160�

Our model domain covers Fennoscandia, a part of Russia and the northern part of Central 161�

Europe, and it is centred around Finland (Fig. 1). Typical features influencing climate of 162�

this domain include: the North Atlantic Ocean and the Baltic Sea that surround the 163�

Fennoscandian countries; many inland lakes located in Sweden and Finland; the 164�

relatively high Scandinavian mountain range, while the rest of the area is with 165�

topography lower than 300m above sea level. 166�

 167�

The default land cover map in REMO is GLCCD. However, its description of the land 168�

cover in Finland is unrealistic. For instance, there is no peatland in Finland in GLCCD, 169�

whereas 7.4% (22377 km2) of land is covered by unproductive peatland areas in the 10th 170�

Finnish National Forest Inventory (FNFI10) (Korhonen et al., 2013). GLCCD was 171�

therefore substituted by the more realistic and up to date CORINE land cover map (CLC; 172�

2006) for the same model domain in Gao et al. (2014), except for the Russian part where 173�

CLC (2006) is not available. Unfortunately, land cover maps describing land cover 174�

conditions of Finland before the most intensive period of peatland drainage in 1960s are 175�

quite limited. Nevertheless, the data collected in the 1st Finnish National Forest Inventory 176�

(FNFI1) provides a possibility for tracing back the land cover condition of Finland in 177�

1920s (Ilvessalo, 1927; Tomppo et al., 2010). The FNFI10 is adopted to describe the land 178�
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cover condition of Finland in 2000s instead of CLC (2006), for the aim to avoid the 179�

uncertainties in comparing land cover maps with different land cover classification 180�

methods and different spatial resolutions. The FNFI1 and FNFI10 land cover maps are 181�

post-products that were specially prepared for this study from the relative FNFI field 182�

measurement data. The detailed description of the procedures for deriving the FNFI1 and 183�

FNFI10 land cover maps is shown in Appendix A. The two FNFI land cover maps are in 184�

3 km resolution and include ten land cover classes following CLC-nomenclature. 185�

 186�

The fractional coverage for the ten land cover classes over the land area of Finland in 187�

1920s and the changes from 1920s to 2000s based on the two FNFI land cover maps are 188�

shown as below (fractional coverage in 1920s; changes from 1920s to 2000s): Coniferous 189�

Forest (33.0%; 5.2%); Mixed Forest (13.5%; -5.7%); Broad-leaved Forest (4.7%; -0.8%); 190�

Artificial Areas (0.7%; 4.1%); Natural Grasslands (3.4%; -3.4%); Peat Bogs (14.3%; -191�

5.2%); Open Spaces (1.5%; -0.1%); Transitional Woodland/Shrub (18.9%; 4.3%); Moors 192�

and heathland (2.1%; 0.7%); and Agricultural Areas (8.0%; 0.9%). Regional differences 193�

of those land cover classes can be seen in Fig. 2. In the FNFI maps, the land cover class 194�

Peat Bogs is defined as naturally treeless peatland and also pine mires where the stocking 195�

level is low or the mean height of trees is below 5 m at maturity. Therefore, the shifting 196�

from Peat Bogs to forests represents the major land cover change due to peatland 197�

forestation. 198�

 199�

In addition to regional inspections, five subregions were selected to represent different 200�

land cover change conditions between FNFI1 and FNFI10. This was done to specifically 201�

assess the local climate effects of different intensities of peatland forestation (Fig.1; 202�

Table 1). From subregion1 to subregion4, there is a decrease in the reduction of Peat 203�

Bogs. Subregion1 and subregion2 are two peatland forestation areas located in the middle 204�

and south of Finland, respectively. In subregion1 and subregion2, there were decreases in 205�

the fractional coverage of Peat Bogs of more than 20%, and the decreases were mainly 206�

compensated by Coniferous Forest. The decrease in the fractional coverage of Peat Bogs 207�

was 2% less in subregion2 than that in subregion1, but the increase in the fractional 208�

coverage of Coniferous Forest was 5% higher in subregion2 than that in subregion1. The 209�
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total increase in the fractional coverage of forest types was about 16% in both subregion1 210�

and subregion2. Subregion3 is located in the east of subregion1. There was 12% decrease 211�

in the fractional coverage of Peat Bogs, but instead of increase of forests, the fractional 212�

coverage of Transitional Woodland/Shrub increased by 14.3%. Subregion4 is an area 213�

where the most intensive anthropogenic activities have occurred in the five subregions. 214�

There was 14% decrease in the fractional coverage of forest types and 3.8% decrease in 215�

that of Peat Bogs, while 5.7% increase in the fractional coverage of Artificial Areas and 216�

10.5% increase in that of Agriculture Areas. Subregion5 is an area with 8.64% increase in 217�

the fractional coverage of Peat Bogs and 16.3% decrease in the fractional coverage of 218�

forest types. Herein, one should notice that some uncertainties may arise from sampling 219�

in the FNFI1 and FNFI10 data. This goes especially for FNFI1, where the distance 220�

between inventory lines was as high as 26 km. Therefore, subregions which are smaller 221�

than 100 km × 100 km may not be sufficient to represent the actual land cover changes 222�

precisely. However, signals averaged over large areas do not reflect the dynamics of the 223�

changes when diverse land cover changes are involved. Therefore, small subregions can 224�

be considered as hypothetical scenarios to represent different kinds of land cover changes 225�

and their local climate impacts. 226�

 227�

Moreover, the FNFI data only covers the land surface in Finland without considering 228�

inland lakes. Therefore, the land sea mask in the model domain is adopted from CLC 229�

(2006). In addition, the land cover conditions of the area outside Finland in the model 230�

domain are the same as those, i.e. based on CLC (2006) and GLCCD, in Gao et al. (2014) 231�

and thus identical in both simulations. Additionally, in order to allocate the surface 232�

parameters to appropriate land cover classes, the standard GLCCD land cover classes are 233�

related to the ten land cover classes in the FNFI maps through comparing the definitions 234�

of land cover classes (Table 2). 235�

2.3    Modifications in REMO LSS in this study 236�

Most of the surface parameters follow the built-in parameter values. However, large 237�

deviations were found when comparing the parameterized albedo with observed albedo. 238�

Moreover, the method for background albedo parameterization is not suitable for land use 239�
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change studies because the vegetation albedo and the soil albedo maps are both derived 240�

from satellite albedo data which is measured in 2001-2004 with respect to land cover 241�

over that period. A new method, Land Use Character Shifts (LUCHS), has been proposed 242�

for land cover change studies (Preuschmann, 2012). It derives the annual background 243�

albedo cycle for certain land use types in one region from good quality remote sensing 244�

datasets – a surface albedo dataset and a land cover mask that are produced in the same 245�

time period. Unfortunately, LUCHS is not feasible for high latitude areas, where snow 246�

cover prevents the possibility of deriving background albedo values from satellite albedo 247�

data. Hence, a simplified method is developed in this study to derive the background 248�

albedo values of the ten land cover classes in FNFI land cover map. It is based on the 249�

assumption that the vegetation albedo map and the soil albedo map in current REMO 250�

LSS are feasible to describe the albedo values of the land cover condition in FNFI10, 251�

because the two datasets are overlapping in time. Therefore, the soil albedo and the 252�

vegetation albedo values, in model gridboxes that satisfy a requirement of 80% coverage 253�

of one land cover class in FNFI10, are averaged to represent the soil and vegetation 254�

albedo values of that land cover class. The 80% threshold was decreased to 50% for 255�

Natural Grasslands, Peat Bogs and Artificial Areas, as none of the model gridboxes have 256�

an 80% coverage of those land cover classes in Finland. The derived albedo values and 257�

the standard deviations for each land cover class in FNFI maps are shown in Table 3. The 258�

maximum background albedos, calculated based on the derived soil and vegetation 259�

albedo for FNFI land cover classes, are then compared with the summer time albedo of 260�

similar land cover classes for a southern (Hyytiälä; 61°51'N and 24°17'E) and a northern 261�

(Värriö; 67°48'N and 27°52'E) Finnish observation stations. The station values are 262�

estimated by a linear unmixing approach with the land use and forestry maps in 263�

combination with the MODIS BRDF/albedo product (Kuusinen et al., 2013). The derived 264�

and observed albedo values show good agreement for Peat Bogs, Mixed Forest, 265�

Transitional Woodland/Shrub and Agricultural Areas, as well as for Artificial Areas. 266�

Although the maximum albedo values of Coniferous Forest and Broad-leaved Forest in 267�

this study are roughly around 0.01 higher than those in Kuusinen et al. (2013), they are 268�

reasonable for considering albedo differences between land cover classes (Fig.3). The 269�

three land cover classes (Natural Grasslands, Moors and heathland, Open Spaces) are not 270�



found at the two stations, however they take up only small proportions in the FNFI land 271�

cover maps. 272�

 273�

The snow albedo scheme for calculating the surface albedo during snow-cover period 274�

was also found to require some improvements. When there is snow on the ground, the 275�

surface albedo in REMO LSS is a function of background albedo, snow albedo and snow 276�

depth. The snow albedo depends linearly on snow surface temperature and fr (Kotlarski, 277�

2007). Based on previous studies (Køltzow, 2007; Räisänen et al., 2014; Roesch et al., 278�

2001), the amin (T=0°C) and amax (T�-10°C) of non-forested area (fr=0) in this study were 279�

increased from 0.4 to 0.56 and decreased from 0.8 to 0.68, respectively; in addition, the 280�

amin (T=0°C) and amax (T�-10°C) of fully forested area (fr=1) were both decreased to 0.25 281�

(Fig. 4). The linear relationship with snow surface temperature and forest ratio is still 282�

adopted. 283�

 284�

Moreover, the three parameters for describing the subgrid heterogeneity of soil hydrology 285�

(Hagemann and Gates, 2003), Beta, Wmin and Wmax, were calculated in a subgrid scale of 286�

6 km resolution. It is 1/3 of the 18 km REMO resolution. The reason for this is that the 287�

spatial resolution of the FNFI land cover maps is around 3 times lower compared to that 288�

of the default GLCCD land cover map. 289�

 290�

Corrections were also made to some of the surface parameters of Coniferous Forest and 291�

Mixed Forest, to obtain a better mutual consistency of the surface parameters for the 292�

three forest types. For Coniferous Forest, the fractional green vegetation cover in 293�

dormancy season and in growing seasons, and also the forest ratio were set to 0.91, 0.91, 294�

0.8, respectively, as proposed for Fennoscandia by Claussen et al. (1994). For Mixed 295�

Forest, the fractional green vegetation cover and LAI in dormancy season were revised to 296�

be half of those parameters in the growing season. 297�

 298�

3 Experiment design 299�

Two simulations were conducted with the FNFI1 and FNFI10 land cover maps 300�

representing the land cover conditions before and after peatland forestation activities in 301�
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Finland, respectively. The simulations were driven with 6-hourly lateral boundary 302�

conditions from ECWMF ERA-Interim reanalysis data (Simmons et al., 2007) from 1 303�

January 1979 to 31 December 1996. The 18-year forward runs were preceded with 10-304�

year (1 August 1979 - 1 January 1990) simulations in order to stabilize the deep soil 305�

temperatures and soil moistures. The last 15-year (1 December 1981 - 30 November 306�

1996) out of the 18-year forward simulations were adopted for further analysis. The 307�

analyzed period starts from December 1st in order to keep all the three winter months 308�

continuous. The simulated first one and a half years were excluded in order to minimize 309�

the influences of the initial boundary conditions on simulated climate conditions which 310�

are with much quicker adaptation speed than deep soil temperature. The model grid is in 311�

18 km resolution horizontally and extends over 27 vertical levels (up to 25 km). The 312�

model time step was set to 90 s and the time steps of output variables are 6-hourly for 3D 313�

variables and hourly for 2D variables. Daily data covering 24 hours is processed from 314�

1800 UTC of previous day to 1700 UTC of the current day. For 6-hourly data, 1800 UTC 315�

of the previous day and 0000 UTC, 0600 UTC, 1200 UTC of the current day were used 316�

for daily values. For this study domain, the growing season and the dormancy season 317�

cover the period from May to October and from November to April, respectively. 318�

 319�

4 Results 320�

The land cover change effects on regional climate conditions in Finland are analyzed 321�

based on the differences in climate variables between the post-drainage and pre-drainage 322�

simulations (FNFI10 – FNFI1). This 'delta change approach' is adopted to eliminate the 323�

uncertainties related to model bias (Gálos et al., 2011; Jacob et al., 2008). 324�

4.1    Effects on climate over Finland 325�

The differences in monthly averaged daily mean two meter air temperature (T2m) are 326�

quite heterogeneous temporally and spatially (Fig. 5). The most noticeable difference in 327�

T2m, up to 0.43 K, takes place in the most intensive peatland forestation area in the 328�

middle west of Finland in April. The warming is also evident in February and March, 329�

with differences of 0.2 K in this area. However, T2m turns to show a slight cooling, 330�



generally less than 0.1 K, in a few parts of this area from May to October. There are also 331�

two regions in northern Finland that show opposite changes compared to the peatland 332�

forestation area in the middle west of Finland with cooling in spring and warming in the 333�

growing season. This is because of decreased forest cover and increased fraction of Peat 334�

Bogs in those two areas from FNFI1 to FNFI10 based land cover maps. An increase of 335�

less than 0.2 K is seen in T2m in the southeast of Finland in July and August, as well as in 336�

the very south of Finland throughout the growing season, which are mainly due to the 337�

change from Mixed Forest to Coniferous Forest and the increased Artificial Areas, 338�

respectively. The 15-year averaged monthly precipitation only shows small differences, 339�

less than 10 mm/month, in varied patterns in the model domain from April to August 340�

(Fig. 6). 341�

 342�

The snow clearance day is also an important indicator of spring-time climate change in 343�

high latitude areas (Peng et al., 2013). Therefore, the snow clearance day for each 344�

gridbox is determined for Finland over the 15 years. The snow clearance day is defined 345�

here as the first day after which the total number of snow covered days does not exceed 346�

the total number of snow free days, and the selection of this day ends before midsummer 347�

in a year. The differences between the 15-year averaged snow clearance days of the two 348�

simulations (Fig. 7) show almost the same pattern as the differences in T2m in April 349�

(Fig.5). In the peatland forestation area in the middle west of Finland, the snow clearance 350�

days are mostly advanced from 0.5 to 3 days and in a few gridboxes advanced by up to 5 351�

days in the 15-year mean. The two small areas in the north of Finland with reverse land 352�

cover changes in comparison to peatland forestation show up to two days delay in 353�

general. In the very south of Finland, the snow clearance days are also generally 354�

advanced in accordance with the warming seen in T2m, but delayed in several scattered 355�

gridboxes, due to increased fraction of Artificial Areas at the expense of forests. 356�

4.2    Effects on climate over five subregions 357�

T2m and precipitation, as well as several closely related climate variables (surface albedo, 358�

net surface solar radiation, snow depth, ET) for the five subregions were processed into 359�

11-day running means to reduce the influence of day to day variations. The differences 360�



between the simulations in each regionally averaged climate variables were further 361�

averaged over the 15 years (Fig. 8). Herein, the date information (DOY, day of year) 362�

represents the middle contributing day of the 11-day averaging period. 363�

 364�

T2m of subregion1 shows a warming of 0.1 K to 0.2 K from February till the end of 365�

March, and an evident peak from early April to early May (DOY 95 to DOY 125) which 366�

reaches a maximum of 0.5 K in late April. T2m of subregion2 has the same trend as 367�

subregion1 throughout the whole year, but the warming is much smaller and the biggest 368�

difference occurs in the beginning of April being only 0.12 K. This is consistent with the 369�

differences in snow depth. The decrease of snow depth in subregion1 is two to three 370�

times larger than that in subregion2, and the snow-cover period in subregion2 is shorter 371�

along with an earlier maximum difference in snow depth. Moreover, those characteristics 372�

of the differences in snow depths are in agreement with the differences in surface albedo 373�

because snow is the key factor that controls the surface albedo in snow-cover period. 374�

From the beginning of May to the beginning of October, T2m turns to show a cooling of 375�

less than 0.1 K in subregion1 and subregion2, because the cooling caused by ET exceeds 376�

the warming caused by slightly lower albedo. The variability of the differences in net 377�

surface solar radiation in the growing season is induced by the variability of cloud cover 378�

rather than surface albedo. In November, December and January, the differences in T2m 379�

vary in both directions. In high latitude areas, incoming solar radiation is quite small and 380�

cloud cover fraction is high in late autumn and winter. Therefore, the differences in 381�

surface albedo are not able to induce differences in net surface solar radiation in this 382�

period. Instead, the surface air temperature is sensitive to changes in long wave radiation 383�

balance that may lead to atmospheric air temperature inversion under clear sky, 384�

manifesting itself as extreme cold surface air temperature. Thus, the variability of the 385�

differences in cloud cover caused by short term variations in the climate contributes to 386�

varied differences in T2m in this period. 387�

 388�

The differences in T2m for subregion3 show a warming of less than 0.1 K from DOY 91 389�

to DOY 120, but also warming in an even smaller magnitude throughout the growing 390�

season. The difference in surface albedo in subregion3 is close to 0, although the 391�



difference in snow depth is similar to that of subregion2 but with a time lag of around 15 392�

days in the most intensive point. In subregion4, the snow depth shows a quite small 393�

increase from the beginning of January till the end of March, which is consistent with the 394�

increase in surface albedo and explains the slight decrease of up to 0.1 K in T2m, from 395�

middle of February till the end of March. Subregion5 performs opposite characteristics 396�

compared to subregion1 and subregion2 for all the investigated variables. The absolute 397�

differences in snow depth of subregion5 are smaller than those of subregion1, but larger 398�

than those of subregion2. Because subregion5 is located in the north of Finland, the 399�

biggest difference of snow depth occurs later than that of subregion1. The magnitude of 400�

the maximum differences in T2m in snow-cover period of subregion5 also lies between 401�

that of subregion1 and subreigon2, and happens later than that of subregion1. 402�

 403�

The differences of T2m in the growing season depend on the surplus of energy balance 404�

terms, where ET manifests itself as latent heat flux. In general, the increase of ET amount 405�

in subregion2 is slightly higher than that in subregion1. As a consequence, the decrease 406�

of T2m in subregion2 is slightly larger than that in subregion1 during the growing season 407�

when the albedo difference is quite small. The decreased ET and the slightly decreased 408�

surface albedo together result in a slight warming in growing season in the other 409�

subregions. The extents of warming in the other subregions follow the magnitudes of the 410�

decreased ET amounts because the differences in surface albedo are almost the same in 411�

the growing season. 412�

 413�

Precipitation has higher variability than ET throughout the year in the five subregions. In 414�

general, the differences in precipitation are much larger in the growing season than in the 415�

dormancy season, when they are close to 0 mm/day. In the growing season, the increase 416�

in precipitation of subregion1 occurs during a longer period and has a larger magnitude 417�

than that of subregion2. There are slight increases in the precipitation in subregion3 and 418�

also in subregion4, whereas the precipitation of subregion5 shows a decreasing tendency 419�

in the growing season, with the biggest differences less than 0.2 mm/day. 420�

 421�

Furthermore, the maximum and minimum differences of gridpoint-wise and regionally 422�



averaged 11-day running mean of T2m over 15 years for subregion1 were investigated as 423�

complements for the regionally averaged 15-year mean differences of subregion1 (Fig. 424�

9). T2m shows a maximum difference in gridpoint-wise of nearly 2 K in snow-melting 425�

period over the 15 years, which is 1 K higher than the maximum difference in regionally 426�

averaged T2m over the 15 years and four times as much as that in the 15-year mean of 427�

regionally averaged T2m. The timings of the three kinds of maximum differences in 428�

spring deviate from each other from 3 to 10 days. The minimum differences show only a 429�

small deviation between the gridpoint-wise and regional mean values over the 15 years. 430�

During the snow-melting period, the minimum differences of regionally averaged T2m is 431�

above 0, but not the gridpoint-wise T2m. The spring time differences between regional 432�

mean and gridpoint-wise extremes elucidate that even within one subregion with 433�

homogenous characteristics related to peatland forestation, the spring warming of T2m is 434�

temporally and spatially heterogeneous. This implies that local effects are more 435�

pronounced than the regional and temporal statistics can reveal. For the rest of the year, 436�

the differences between the maximum (minimum) of the gridpoint-wise and regionally 437�

averaged T2m are small and of more regional nature. In the period between November and 438�

January, the large variations of maximum (minimum) T2m are contributed by the 439�

inversion effects due to short term variations in the climate. 440�

 441�

Additionally, for a more thorough understanding of the relationships between spring 442�

warming and albedo changes in snow-cover period due to peatland forestation, two 443�

correlation relationships were investigated over all the 15 years for subregion1 (Fig. 10). 444�

One is between maximum temperature difference day (DOY) and maximum surface 445�

albedo difference day (DOY). The other is between inflection day of total albedo (that is, 446�

the day when surface albedo just finishes a fast decrease from its wintertime level, DOY) 447�

and snow clearance day (DOY). The maximum temperature difference days match with 448�

maximum albedo difference days in 6 years, and the rest of the years generally show a 449�

delayed maximum temperature difference day compared to the maximum albedo 450�

difference day, with a maximum deviation of 14 days. In general, the snow clearance day 451�

correlates well with the inflection point of surface albedo. For most years, the differences 452�

are less than 6 days, but three years show differences up to around 20 days. In those 453�
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years, sporadic snowfall with a small accumulated snow depth cannot really introduce 454�

differences in total surface albedo over the subregion but influences the determination of 455�

snow clearance day. 456�

 457�

5 Discussion 458�

The differences in temperature and precipitation, as well as the closely related variables 459�

such as surface albedo, snow depth, net surface solar radiation and ET are examined in 460�

this study, to evaluate the peatland forestation effects through changes in biogeophysical 461�

characteristics. Surface albedo shows a decrease of up to 0.064 in peatland forestation 462�

areas during snow-cover period, and also a slight decrease in the growing season, 463�

whereas LAI, roughness length, fractional green vegetation cover, and forest ratio are 464�

increased throughout the year after peatland forestation. Those changes lead to an 465�

increase in spring-time T2m, which occurs locally in accordance with the decrease in 466�

surface albedo. In the growing season, an increase in ET related to the increased LAI and 467�

fractional green vegetation cover leads to more energy consumed by latent heat flux than 468�

gained by slightly lower albedo. Additionally, higher roughness length can play a role by 469�

increasing turbulent mixing and consequently the magnitudes of turbulent fluxes. Thus, 470�

the scattered differences in precipitation in summer are contributed by more convective 471�

structures, while for the rest of the year the precipitation is basically controlled by large-472�

scale meteorology. From the analysis of the results in the five subregions, the differences 473�

in the climate variables show that their magnitudes are dependent on the extent of land 474�

cover changes, while the timings of the extremes mostly depend on geographical 475�

locations (latitudes) that define the radiation balance through the seasonal cycle. Results 476�

also illustrate a positive feedback induced by peatland forestation between lower surface 477�

albedo and warmer T2m in the snow-melting period. The warming caused by lower 478�

surface albedo in snow-cover period due to more forest leads to a quicker and earlier 479�

snow melting, meanwhile, surface albedo is reduced and consequently surface air 480�

temperature is increased. Additionally, the maximum difference in the gridpoint-wise 11-481�

day running mean of T2m in spring warming period over the 15 years reaches 2 K in 482�

subregion1, which is four times of the 15-year mean of the corresponding regionally 483�



averaged values. This illustrates that the spring warming effect from peatland forestation 484�

is highly heterogeneous spatially and temporally. 485�

 486�

To examine the realism of the simulated surface air temperature differences due to 487�

peatland forestation, monthly temperature trends over 40 years (1959 - 1998) were 488�

calculated linearly based on monthly mean temperature maps over Finland, which were 489�

interpolated from observational data and in 10 km resolution (Aalto et al., 2013). The 490�

observation based temperature trends show around 0.1 K/decade stronger spring warming 491�

in the peatland forestation area in the middle west of Finland than surrounding areas in 492�

February, March and April (Fig.11), which is consistent with the simulated T2m. 493�

However, while the observations show the largest warming in March, the modelled 494�

difference in T2m is largest in April. This is because of the cold temperature bias in the 495�

dormancy season in REMO simulations over this domain (Gao et al., 2014). The negative 496�

temperature differences in the simulations for the two areas in the north of Finland are 497�

mainly due to imperfections in the FNFI based land cover maps. For example, the 498�

influence of the Lokka reservoir, a 400 km2 artificial lake located in northeast Lapland 499�

whose filling was started in 1967, can be seen in the observational maps but not in the 500�

simulation results.  501�

 502�

The differences in simulated net surface solar radiation averaged over subregion1 (Fig.8) 503�

agrees rather well with the general trend of differences in net surface solar radiation 504�

calculated from observational data between peatland areas and closed forested areas in 505�

southern and northern Finland in Lohila et al. (2010), except for the variations in the 506�

growing season. The maximum differences in the observed net surface solar radiation in 507�

north and south of Finland are around 40 W/m2 (on DOY 70) and 80 W/m2 (on DOY 508�

120), respectively. The maximum difference of 6.5 W/m2 occurs on DOY 107 in 509�

simulated net surface solar radiation averaged over subregion1. Only around 20% of 510�

subregion1 changed from peatland to forests, which probably explains the smaller 511�

magnitude of the maximum differences in the simulated results. Thus, supposing peatland 512�

forestation would have occurred on the entire subregion1, the maximum difference in net 513�

surface solar radiation could be roughly estimated to be five times larger and reach 32.5 514�
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W/m2. The timing of the maximum difference in simulated results agrees better with 515�

observational data for northern Finland because of the cold temperature bias in the 516�

dormancy season. The evolution of the differences in both simulated and observation 517�

based net surface solar radiation in spring can be divided into three phases: a slow 518�

increase, a quick increase and a quick drop. For the simulated net surface solar radiation, 519�

the slow increase occurs from the beginning of January until the end of March, and 520�

appears to be mostly induced by the differences in snow depth on land cover classes. The 521�

following quick increase occurs in a much shorter period in April, within around 10 to 20 522�

days. The quick drop of the differences in net surface solar radiation follows the strong 523�

decrease of snow cover. The quick increase and quick drop are mainly attributed to snow 524�

melting, which is very sensitive to warmed air temperature. 525�

 526�

There are a number of model uncertainties affecting the outcome of this work. Although 527�

the maximum background albedo values of FNFI land cover classes in this study are 528�

broadly consistent with the summer time albedo values derived specially for two 529�

observation stations in Finland in Kuusinen et al. (2013), the estimated albedo for land 530�

cover classes in high latitude areas show variations in a range of studies. The mean 531�

summer time albedo for Coniferous Forest is only 0.079 in Hollinger et al. (2010), while 532�

it is 0.119 in our study. We used a summer albedo for Broad-leaved Forest of 0.146, 533�

which is higher than the albedo values for Deciduous in Kuusinen et al. (2013) but still 534�

lower compared to 0.156 for aspen in Betts and Ball (1997) and 0.152 for deciduous in 535�

Hollinger et al. (2010). The cropland albedo is 0.189 in Hollinger et al. (2010) and it is 536�

much higher than the cropland albedo of 0.156 used in our study. In the middle boreal 537�

zone of Finland, the albedo of Peat Bogs and the albedo of forest are on average 0.145 538�

and 0.115 in Solantie (1988), respectively. Thus, compared to those values, our lower 539�

albedo for Peat Bogs and higher albedo for forest (even only considering Coniferous 540�

Forest) may underestimate the warming effect contributed by more absorbed solar 541�

radiation. However, it is hard to say because higher temperature could enhance ET. 542�

Furthermore, even albedo values of same land cover class could be different in different 543�

parts of Finland. In Solantie (1988), the mean albedo of barren bogs in southern Finland 544�

and also of the concentric raised bogs in the middle of Finland is only 0.128. Also, recent 545�



studies show that forest albedo is influenced by stand density and understory in different 546�

sites (Bernier et al., 2011). 547�

 548�

In winter time, the snow albedo scheme is much more important than the background 549�

albedo in determining the surface albedo for high latitude areas. The snow albedo scheme 550�

in REMO does not adequately represent the complex conditions over forests, with the 551�

linear dependence on snow surface temperature. Snow properties and canopy conditions, 552�

such as snow water content, grain size and snow pack thickness, as well as impurities on 553�

the snow surface, have strong influence on snow albedo (Wiscombe and Warren, 1980). 554�

Moreover, there is no vertical structure of forests in REMO where the process of snow 555�

intercepted by canopy is crucial (Roesch et al., 2001). The canopy of forests is also 556�

important in causing a night-time warming by shelter effect in areas with successful 557�

peatland forestation after about 15 years (Venäläinen et al., 1999). 558�

 559�

Besides, the subgrid variability of soil saturation within a model gridbox is taken into 560�

account as 1/3 times of the model resolution in the simple bucket hydrology scheme in 561�

REMO LSS for this study, which is restricted by the 3 km resolution of the FNFI land 562�

cover maps. This can lead to underestimation of the surface runoff because the 563�

differences between the two surface parameters, Wmax and Wmin are smaller over the 564�

model domain compared to that with when using 10 times finer resolution to represent 565�

the subgrid hydrologic heterogeneity with GLCCD or CLC (2006). The influence on 566�

surface runoff could further effect on precipitation and ET through soil moisture, and also 567�

related to energy fluxes (Hagemann et al., 2013). 568�

 569�

Furthermore, uncertainties can also arise from the FNFI land cover maps due to sampling 570�

and the translations between land cover classes in different land cover maps. 571�

 572�

6 Summary 573�

To get a clear picture of peatland forestation effects on climate in Finland is important for 574�

future forest management by not only considering economic aspects but also global 575�

warming mitigation. In this paper, we investigated the long-term biogeophysical effects 576�



of peatland forestation on near-surface climate conditions in Finland by using a historical 577�

(1920s) and a present-day (2000s) land use map based on Finnish National Forest 578�

Inventory data in a regional climate model REMO. The differences between the two 579�

simulations in surface air temperature and precipitation were examined. The results show 580�

that peatland forestation induces a spring warming effect and a slight cooling effect in the 581�

growing season, but a varied pattern with less than 10 mm/month differences in 582�

precipitation over Finland from April to September. The temperature response in spring 583�

in simulation results is well in line with that seen in observational maps. In the most 584�

intensive peatland forestation area in the middle west of Finland, the monthly averaged 585�

daily mean surface air temperature show a warming effect of around 0.2 K in February 586�

and March and reach 0.43 K in April, whereas a cooling effect of in general less than 0.1 587�

K is found from May till October. Consequently, the snow clearance days in model 588�

gridboxes over that area are advanced up to 5 days in the mean of 15 years. Furthermore, 589�

a more detailed analysis was conducted on five subregions with decreased fractions of 590�

transformation from peatland to other land cover classes. 11-day running means of 591�

simulated temperature, surface albedo, net surface solar radiation and snow depth, as well 592�

as precipitation and ET were averaged over 15 years. Results show a positive feedback 593�

induced by peatland forestation between decreased surface albedo and increased surface 594�

air temperature in snow-melting period. Overall, decreased albedo in snow-melting 595�

period and increased ET in the growing period as a result of peatland forestation are the 596�

most important biogeophysical aspects that cause changes in surface air temperature. The 597�

extent of these climate effects depend on the intensity and geological locations of 598�

peatland forestation. 599�

 600�

In the future, for the aim to get a more precise assessment of the biogeophysical impacts 601�

of peatland forestation on regional climate conditions, more accurate land cover maps 602�

and land surface parameters are essential. Also, a more robust land surface scheme could 603�

enhance the representation of interactions between land surface and climate. 604�

 605�

Acknowledgement 606�



The study was funded by Helsinki University Centre for Environment (HENVI). We are 607�

also grateful to Stefan Weiher from Brandenburg Technical University, Germany, and 608�

Stefan Hagemann from Max Planck Institute for Meteorology, Germany, for their 609�

valuable comments on this work. 610�

 611�

Appendix A: Methods in deriving FNFI land cover maps 612�

The sample of FNFI1 (1921-1924) consisted of inventory lines oriented from southwest 613�

to northeast at a distance of 26 km across most parts of the country. The total length of 614�

measured lines was 13348 km, and the total number of assessed land figures was 93922. 615�

In CLC-classification method, mean tree height and crown cover are two important 616�

criteria for classifying land use classes. However, because crown cover was not measured 617�

in FNFI1, the growing stock volume corresponding to crown cover thresholds were 618�

estimated using naturally regenerated forests and unditched pine mires in FNFI9 (1996-619�

2003) and in FNFI10 (2004-2010), according to vegetation zone, site type, mean height, 620�

and dominant tree species. Afterwards, fractions of the ten land cover classes that were 621�

used in this study were derived for the FNFI1 sample in FNFI1 by considering land use 622�

class, estimated growing stock volume classes, mean height, vegetation zone, site type, 623�

and tree species composition. 624�

 625�

For the interpolation, the FNFI1 sample lines were firstly split into slices with 1 km 626�

intervals in S-N direction. The fractions of the ten land cover classes in each slice on 627�

inventory line (1380m on average) were then used in calculating sample variograms. 628�

Those sample variograms are then fitted into a variogram model to derive kriging 629�

predictions using the R version 2.15.2 package gstat (Pebesma, 2004; R Core Team, 630�

2012). The block kriging was carried out separately for the fraction of each of the ten 631�

land cover classes with isotropic exponential (or spherical) variogram model and a block 632�

size of 50 km x 50 km. A raster map in 3 km resolution was then produced for the 633�

coverage of the ten land cover classes. 634�

 635�



In FNFI10, a systematic cluster sample (more details can be found at: 636�

http://www.metla.fi/ohjelma/vmi/vmi10-otanta-en.htm) of 69388 plots was measured 637�

(Korhonen et al., 2013). The distance between clusters of plots (10-14 plots/cluster) 638�

varied between 5 km (in southern Finland) and 11 km (in northern Finland). The 639�

classification of FNFI10 dataset was processed in a similar way to the FNFI1 data, with 640�

the exception that crown cover thresholds for classifying land use classes can be used 641�

directly in FNFI10 because it is assessed. To derive the 3 km by 3 km grid map, the 642�

cluster means of the proportions of the ten land cover classes were first calculated and 643�

then the same interpolation method was used as for FNFI1. 644�

 645�
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Table 1. Changes of fractional coverage (%) of the ten land cover classes from 1920s to 846�

2000s (FNFI10-FNFI1) in the five subregions. 847�

Class Legend Subregion1 Subregion2 Subregion3 Subregion4 Subregion5 
1 Coniferous Forest 13.40 18.03 -2.24 -11.74 -10.13 
2 Mixed Forest 1.23 -3.46 -2.30 -1.86 -2.10 
3 Broad-leaved Forest 1.24 0.98 1.68 -0.52 -4.11 
4 Artificial Areas 4.44 4.95 2.44 5.69 2.52 
5 Natural Grasslands -4.41 -2.10 -1.71 -2.82 -1.60 
6 Peat Bogs -22.92 -20.82 -12.60 -3.80 8.64 
7 Open Spaces 0.06 -0.12 -0.11 -0.31 -1.14 
8 Transitional 

Woodland/Shrub 3.64 -0.72 14.26 4.84 9.12 

9 Moors and heathland 0.00 0.00 0.00 0.00 -1.37 
10 Agricultural Areas 3.31 3.26 0.57 10.52 0.17 

 848�
  849�



Table 2. Translation between the ten land cover classes in FNFI maps and GLCCD land 850�

cover classes. 851�

FNFI GLCCD 

Class Legend Class Legend 

1 Coniferous Forest 21 Conifer Boreal Forest 

2 Mixed Forest 23 Cool Mixed Forest 

3 Broad-leaved Forest 25 Cool Broadleaf Forest 

4 Artificial Areas 30 Cool Crops and Towns 

5 Natural Grasslands 40 Cool Grasses and Shrubs 

6 Peat Bogs 44 Mire, Bog, Fen 

7 Open Spaces 53 Barren Tundra 

8 Transitional Woodland/Shrub 62 Narrow Conifers 

9 Moors and heathland 64 Heath Scrub 

10 Agricultural Areas 93 Grass Crops 
 852�
  853�



Table 3. Derived soil albedo and vegetation albedo values with standard deviations for 854�

the land cover classes in the FNFI maps, and the threshold used for each land cover class. 855�

Class Legend Threshold 
(%) 

Mean soil albedo 
s SD 

Mean vegetation albedo 
s SD 

Maximum 
albedo s SD 

Minimum 
albedo s SD 

1 Coniferous Forest 80 0.091 s 0.017 0.121 s 0.011 0.119 s 0.012 0.119 s 0.012 
2 Mixed Forest 80 0.077 s 0.003 0.134 s 0.022 0.128 s 0.020 0.119 s 0.017 
3 Broad-leaved Forest 80 0.091 s 0.007 0.151 s 0.001 0.146 s 0.001 0.112 s 0.005 
4 Artificial Areas 50 0.090 s 0.000 0.167 s 0.000 0.145 s 0.000 0.114 s 0.000 
5 Natural Grasslands 50 0.074 s 0.000 0.211 s 0.004 0.155 s 0.002 0.077 s 0.000 
6 Peat Bogs 50 0.129 s 0.054 0.133 s 0.011 0.132 s 0.023 0.129 s 0.052 
7 Open Spaces 80 0.147 s 0.013 0.128 s 0.001 0.136 s 0.007 0.147 s 0.013 
8 Transitional 

Woodland/Shrub 
80 0.074 s 0.003 0.131 s 0.008 0.120 s 0.007 0.076 s 0.004 

9 Moors and heathland 80 0.124 s 0.001 0.144 s 0.001 0.142 s 0.001 0.125 s 0.001 
10 Agricultural Areas 80 0.087 s 0.011 0.184 s 0.011 0.156 s 0.011 0.128 s 0.011 

 856�
  857�



 858�
Figure 1. The model domain and the five selected subregions (the background is 859�

elevation in meters above sea level). 860�

  861�



 862�

Figure 2. Changes of fractional coverage of the ten land cover classes in Finland from 863�

1920s to 2000s (FNFI10-FNFI1). 864�

  865�



 866�

Figure 3. Comparison of the derived maximum background albedo values in a year (with 867�

the standard deviations) for the ten land cover classes in FNFI maps with the summer 868�

time albedo values (with the standard deviations) of the respective land cover classes 869�

observed at two Finnish stations in Kuusinen et al. (2013). 870�
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 872�

Figure 4. Modified snow albedo values in the snow albedo scheme (modified based on 873�

Fig. 3.6 in Kotlarski (2007)). 874�
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 876�

Figure 5. 15-year averaged differences (FNFI10 - FNFI1) in monthly averaged daily 877�

mean two meter air temperature. 878�
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880�

Figure 6. 15-year averaged differences (FNFI10 - FNFI1) in monthly precipitation. 881�
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 883�

Figure 7. 15-year averaged differences (FNFI10 - FNFI1) in selected snow clearance 884�

days for model gridboxes. 885�
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 887�

Figure 8. Regional mean differences in 11-day running mean of T2m, surface albedo, net 888�

surface solar radiation, snow depth (presented as equivalent water), precipitation and ET 889�

averaged over 15 years for the five subregions. ET has the negative sign to represent 890�

more water loss, and vice versa. 891�
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 893�

Figure 9. Maximum, minimum and mean differences of gridpoint-wise and regionally 894�

averaged 11-day running mean of T2m over 15 years for subregion1.   895�



 896�

Figure 10. (a) Correlation between maximum temperature change day (DOY) and 897�

maximum total albedo change day (DOY). (b) Correlation between inflection day of total 898�

albedo (DOY) and selected snow clearance day (DOY). The plots show regional means 899�

over subregion1 for all the 15 years. 900�
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 902�

Figure 11. Surface temperature trends (K/decade) for February, March and April in 903�

Finland based on 40 years (1959-1998) observational data. 904�

 905�


