
Dear reviewer, 

 

Thank you very much for your positive, critical and constructive comments on our 

manuscript. Please see our responses to your comments point-by-point as follows.  

 

This paper uses a DGVM to examine how ecosystem productivity and biome distributions respond 

to hypothetical changes in the intensity and frequency of daily rainfall events as well as wet 

season duration, all without changing mean annual rainfall. Simulations span all of Africa, 

covering a wide range of annual rainfall conditions. Results show increased productivity with 

greater frequency and lower intensity, or with longer wet seasons but reduced frequency or 

intensity of daily events. Biome shifts are evident in some regions, though remain largely modest 

over the whole of the content for simulations spanning plus and minus 20% of the current 

climatology. The use of a model to identify sensitivities within model assumptions is reasonable, 

as is the approach to synthetic weather generation for driving the model and generating scenarios. 

Overall, I judge this to be a good study on a worthwhile and understudied topic of importance, but 

the paper could use some improvement as recommended below. 

Response: Thank you very much for your positive assessment of our work! Please see the 

following responses to your specific comments. 

 

1) Mechanistic explanation of why GPP increases or decreases, and why biomes shifts occur is 

largely lacking. This is particularly disappointing given that the study uses a model, and thus it is 

possible to fully document why the observed dynamics emerge in the way they do. Specifically, 

new analysis of the reduction in productivity from a maximal rate due to soil water stress should 

be added, with daily and cumulative time series similar to those shown schematically in Figure 7 

but with real data from your simulations, and also with extension to GPP, not just soil water. 

Response: This work aims to study the impact of intra-seasonal rainfall variability on 

ecosystem function (e.g. GPP) and biome distribution. We mainly use soil moisture changes 

to explain the shifts in GPP and biome distribution. For example, Figure 5 (in the original 

manuscript) presents the soil moisture change and GPP change in pair for each experiment; 

from which, we can see that the pattern of soil moisture change can largely explain the 

changes in GPP in woodlands and savannas, consistent with the previous literature. Figure 7 

(in the original manuscript) is a summary of the hydrological mechanisms derived from the 

original time series. These mechanisms are consistent with the existing ecohydrological 

knowledge (e.g. Rodrigues-Iturbe and Porporato, the book “Ecohydrology of 

Water-Controlled Ecosystem”, 2004), and also expand beyond to include the impact of rainy 

season length.  

 

In the revised manuscript, we directly used soil moisture status to explain the GPP pattern. 

We feel that the revised manuscript has presented the mechanisms for the changes in GPP 

and biomes with enough evidence. We agree that our presentation may cause some confusion 

and misunderstanding, and we have significantly revised and improved in the updated 

manuscript (see the updated manuscript attached at the end). 

 

2) The rigidity of rainfall regime assumptions is rather disappointing, mainly the lack of multiple 



wet seasons (as important in East Africa) and the lack of seasonal variability beyond a binary, wet 

versus dry season set of statistics. While the realism could be improved here, I must admit that it is 

unlikely to have a major impact on the qualitative dynamics that are demonstrated with the current 

approach. 

Response: We fully agree with your assessment, as we have discussed these limitations in the 

section 4.1. We agree that our rainfall model can be significantly improved by incorporating 

the month-to-month variation in rainfall frequency and intensity. Though in this work we 

decide to keep the original approach, as the whole simulation is very costly for the 

computational time, and we also agree with your assessment that the qualitative patterns 

would not change.  

 

3) In Figure 2 please reiterate what the symbols represent, either in the caption or in the figure 

itself (lambda = daily rainfall frequency, alpha = daily rainfall depth, Tw = wet season duration). 

Response: We deleted Figure 2 in the revised manuscript as the other reviewer suggested 

that this figure is not very useful.  

 

4) The writing is quite poor throughout the manuscript, riddled with errors of grammar, syntax, 

diction, tense, accord, use of plural/singular, etc., making the paper rather frustrating to read. It is 

beyond the responsibility of a reviewer to edit the manuscript but it really should be thoroughly 

improved before it can be considered for final publishing. The authors should either pay for 

copy-editing or do it themselves. 

Response: Thanks for pointing this out. In the revised manuscript, all the coauthors have 

helped improving the language and presentation. Please refer to the updated manuscript 

attached at the end of this reply.  

 

5) L88: This statement is not true. Croplands have greater sensitivity to hydrological variability 

than grasslands, according to recent synthesis of global flux tower data. 

Response: We agree with your comments. We revised the text to reflect the actual meaning: 

“Grasslands have the largest sensitivity to hydrological variabilities among all natural 

ecosystems” 

 

6) L173: “fine-scale” is vague and should be clarified. 

Response: “fine-scale” in the SEIB-DGVM is defined as individual plant level. We have 

clarified this point in the revised manuscript. Please see the following revised text:  

“This model follows the traditional “gap model” concept (Shugart, 1998) to explicitly 

simulate the dynamics of ecosystem structure and function for individual plants at a set of 

virtual vegetation patches, and uses results at these virtual patches as a surrogate to 

represent large-scale ecosystem states.” 

 

7) L348: “negative impact” in what sense? Grasslands are not bad, so an expansion of grasslands 

at the expense of woodlands is not a negative impact. Please rephrase this. 

Response: Here “negative impact” refers to a GPP decrease. We have clarified here by the 

following: 

“Experiment SFREQ-INT shows that the simulated biome distributions have a small portion of 



regions converting from woodlands to grasslands at low rainfall regime (~500 mm/year), 

corresponding to the decrease of GPP resulted from increased rainfall frequency in these 

regions.” 

 

8) L540: To suggest that this modeling study solves the noted debate is surely stretching what is 

possible with a model. This should be rephrased to better reflect the nature of the study and its 

methods. 

Response: We accepted the reviewer’s comments. Please see the following revised text: 

“In this modeling study we provide a plausible answer to possibly resolve the previous 

debate about whether increasing rainfall intensity (or equivalently decreasing rainfall 

frequency, i.e. FREQ↓, INT↑) has positive or negative impacts on above-ground primary 

productivity with a fixed annual rainfall total.” 

 

9) L571: This first sentence in section 4.3 is incorrect. The study did not fully demonstrate 

importance of rainfall seasonality. Seasonality is treated in this study in such a simplistic way that 

it is a misrepresentation and overstatement to make this claim. 

Response: We fully agree with your comments, as we have recognized in section 4.1 

“Limitation of the methodology”. We revised the manuscript as follows: 

“Our results involving rainy season length (i.e. STw-FREQ and STw-INT) provide evidence for the 

ecological importance of rainfall seasonality.” 

 

10) L585: The focus on phase and magnitude seems to miss the potential influence of seasonality 

beyond the simplistic treatment adopted here toward, for example, month-specific probabilities of 

daily rainfall. Depth and frequency statistics can vary over shorter intervals of the year than 

simply being static for wet versus dry season. This notion should also be drawn out here. 

Response: We accepted the reviewer’s suggestions and these shortcomings have been 

discussed in section 4.1:  

“We only consider rainy season length for rainfall seasonality, and neglect the possible 

temporal phase change; in reality, rainfall seasonality change usually has length and phase 

shifts in concert. These rainfall-model-related limitations can be possibly overcame by 

simulating smaller intervals of rainfall processes (e.g. each month has their own α and λ) 

rather than simulating the whole wet or dry season using one fixed set of α and λ.” 

 

Also we add the following text to the discussion in section 4.3:  

“Cautions are required that our simplified treatment rainy season length may overestimate 

its importance, and we did not consider the rainfall phase information here.” 

 

Again, thank you very much for taking your precious time in reviewing our manuscript and 

providing constructive comments! Please let us know whether you are satisfied with our 

responses, and we will try our best to address any extra concerns and suggestions. 

 

Best wishes, 

Kaiyu Guan, on behalf of all the authors 

 



The attached files: 

1) revised manuscript with all the editing marks 

2) final revised manuscript without any marks 
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Abstract:  29 

Climate change is expected to result in an increase change of intra-seasonal rainfall 30 

variability, which has arisenarising from concurrent shifts in rainfall frequency, 31 

intensity and seasonality. These intra-seasonal Cchanges in intra-seasonal rainfall 32 

variability are likely to have important ecological impacts for on terrestrial 33 

ecosystems. Yet, , and quantifying these impacts across biomes and large climate 34 

gradients is required largely missing. This gap hinders our ability to for a better 35 

prediction of ecosystem services and their responses to climate change, esp. for arid 36 

and semi-arid ecosystems. Here we use a synthetic weather generator and an 37 

independently validatedn advanced vegetation dynamic model (SEIB-DGVM) to 38 

virtually conduct a series of “rainfall manipulation experiments” to study how 39 

changes in the intra-seasonal rainfall variability affect continent-scale ecosystem 40 

responses across Africa. We generated different rainfall scenarios with fixed total 41 

annual rainfall but shifts in: i) frequency vs. intensity, ii) rainy season lengtheasonality 42 

vs. frequency, iii) intensity vs. rainy seasonalityseason length. These scenarios were 43 

fed into the SEIB-DGVM to investigate changes in biome distributions and ecosystem 44 

productivity. We find a loss of ecosystem productivity with increased rainfall 45 

frequency and decreased intensity at very low rainfall regimes (<400 mm/year) and 46 

low frequency (<0.3 day-1event/day); beyond these very dry regimes, most 47 

ecosystems benefit from increasing frequency and decreasing intensity, except in the 48 

wet tropics (>1800 mm/year) where radiation limitation prevents further productivity 49 

gains. This finding result reconciles seemingly contradictory findings in previous field 50 

studies on the direction of rainfall frequency/intensity impacts on ecosystem 51 

productivity. We also find that changes in rainy season length can yield more dramatic 52 

ecosystem responses compared with similar percentage changes in rainfall frequency 53 

or intensity, with the largest impacts in semi-arid woodlands. This study demonstrates 54 

that not all rainfall regimes are ecologically equivalent, and that intra-seasonal rainfall 55 

characteristics play a significant role in influencing ecosystem function and structure 56 

through controls on ecohydrological processes. Our results also suggest that shifts in 57 

rainfall seasonality have potentially large impacts on terrestrial ecosystems, 58 
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something that and these understudied impacts should be explicitly examined in future 59 

studies of climate impacts. 60 

Keywords: rainfall frequency, rainfall intensity, rainfall seasonality, biome 61 

distribution, Gross Primary Production (GPP), Africa  62 

 63 

64 
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1. Introduction 65 

Due to increased water holding capacity in the atmosphere as a consequence of global 66 

warming (O’Gorman and Schneider, 2009), rainfall is projected to vary change in 67 

intensity and frequency across much of the world (Easterling et al., 2000; Trenberth et 68 

al., 2003; Chou et al., 2013), in conjunction with complex shifts in rainfall seasonality 69 

(Feng et al., 2013; Seth et al., 2013). These changes possiblyis indicates a large 70 

increase in the frequency of extreme events and variability in rainfall (Easterling et al., 71 

2000; Allan and Soden, 2008), and many of these changes may be accompanied with 72 

little changes in total annual rainfall (Knapp et al., 2002; Franz et al., 2010). 73 

Meanwhile, regions sharing similar mean climate state may have very different 74 

intra-seasonal dynamicsvariabilities, and the ecological significance of intra-seasonal 75 

climate variabilitiessecond-order climate statistics has been largely overlooked 76 

previously in terrestrial biogeography (Good and Caylor, 2011). For example, 77 

ecosystems in West Africa and Southwest Africa (Figure 1) share similar total annual 78 

rainfall, but West Africa has much more intense rainfall events within a much shorter 79 

rainy season, while Southwest Africa has a longer and less intense rainy season. The 80 

same amount of total rainfall can come in very different ways, which may cause 81 

distinctive ecological ecosystem responses and landscapestructure. Understanding the 82 

impacts of these regional differences in intra-seasonal rainfall variability and their 83 

possible future changes on terrestrial ecosystems is critical for maintaining ecosystem 84 

services and planning adaptation and mitigation strategies for ecological and social 85 

benefits (Anderegg et al., 2013).  86 

 87 

[insert Figure 1] 88 

 89 

 The changes in intra-seasonal rainfall characteristics, specifically frequency, 90 

intensity and seasonality, have critical significance to ecosystem productivity and 91 

structure (Porporato et al., 2001; Weltzin et al., 2003; Williams and Albertson, 2006; 92 

Good and Caylor, 2011; Guan et al., 2014), but previous studies on this topic 93 

(summarized in Table 1) have their limitations in the following aspects. First, existing 94 
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 5 

relevant field studies on this topic mostly focus on a single ecosystem, i.e. grasslands, 95 

and subsequently only low rainfall regimes have been examined to date (mostly below 96 

800mm/year, see Table 1). Grasslands have the largest sensitivity to hydrological 97 

variabilities among all natural ecosystems (Scanlon et al., 2005; Guan et al., 2012), 98 

however inferences drawn from a single ecosystem are limited in scope and difficult 99 

to apply to other ecosystems and rainfall regimes. Second, even within grasslands, 100 

different studies have seemingly contradictory findings (see Table 1), and there is a 101 

lack of a comprehensive framework to resolve these inconsistencies. Specifically, 102 

whether increased rainfall intensity with decreased rainfall frequency has positive 103 

(Knapp et al., 2002; Fay et al., 2003; Robertson et al., 2009; Heisler-White et al., 2009) 104 

or negative impacts (Heisler-White et al., 2009; Thomey et al., 2011) on grassland 105 

productivity is still under debateable. Third, previous relevant studies mostly focus on 106 

the impacts of rainfall frequency and intensity (Table 1 and Rodríguez-Iturbe and 107 

Porporato, 2004), and largely neglect overlook the possible changes in rainfall 108 

seasonality. Rainfall frequency and intensity mostly describe rainfall characteristics 109 

within the rainy season, but do not account for the impacts of interplay between rainy 110 

season length and dry season length (Guan et al., 2014). For ecosystems 111 

predominately controlled by water availability, rainy season length constrains the 112 

temporal niche for active plant physiological activities (van Schaik et al., 1993; 113 

Scholes and Archer, 1997), and large variations in rainfall seasonality can lead to 114 

significant shifts in biome distribution found from paleoclimate pollen records (e.g. 115 

Vincens et al., 2007). Given changes in rainfall seasonality have been found in various 116 

tropical regions (Feng et al., 2013) and have been projected in future climate (Biasutti 117 

and Sobel, 2009; Shongwe et al., 2009; Seth et al., 2013), studies investigating their 118 

impacts on terrestrial ecosystems are relatively rare, and very few field studies are 119 

designed to address this aspect (Table 1, Bates et al., 2006; Svejcar et al., 2003; Chou 120 

et al., 2008). Finally, there is an increasing trend of large-scale studies addressing 121 

rainfall variability and ecological responses using satellite remote sensing (Fang et al., 122 

2005; Zhang et al., 2005; Good and Caylor, 2011; Zhang et al., 2013; Holmgren et al., 123 

2013) and flux network data (Ross et al., 2012). These large-scale studies are able to 124 
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expand analyseis to more types of ecosystems and different climate conditions, and 125 

provide valuable observation-based insights. However there are very few theoretical 126 

modeling works to corroborate this effort. All these above issues call for a 127 

comprehensive modeling study to investigate different aspects of intra-seasonal 128 

rainfall variability on terrestrial ecosystems spanning large environmental gradients 129 

and various biomes. 130 

 In this paper, we aim to study ecological impacts of intra-seasonal rainfall 131 

variability on terrestrial ecosystems. In particular, we design virtual “rainfall 132 

manipulation experiments” to concurrently shift intra-seasonal rainfall characteristics 133 

without changing total annual rainfall. We focus on the impacts of these different 134 

rainfall scenarios on ecosystem productivity (e.g. Gross Primary Production, GPP) 135 

and biome distributions in the African continent, simulated by an advance 136 

independently validated dynamic vegetation model SEIB-DGVM (Sato and Ise, 2012). 137 

Previous modeling approaches in this topic (Gerten et al., 2008; Hély et al., 2006) 138 

designed various rainfall scenarios by rearranging (halving, doubling or shifting) the 139 

rainfall amount based on the existing rainfall observations. In contrast to these 140 

approaches, we design a weather generator based on a stochastic rainfall model 141 

(Rodríguez-Iturbe et al., 1999), which allows us to implement a series of experiments 142 

by synthetically varying two of the three rainfall characteristics (rainfall intensity, 143 

rainfall frequency, and rainy season length) while fixing total annual rainfall at the 144 

current climatology. We choose Africa as our test-bed mostly because the following 145 

two reasons: (1) the rainfall regimes and biomes have large gradients varying from 146 

extremely dry grasslands to highly humid tropical evergreen forests, and thereby 147 

provide a large pool of different biomes; (2) Africa is a continent usually assumed to 148 

have few temperature constrains (Nemani et al., 2003), which will help to isolate the 149 

impacts of precipitation from temperature, as one challenge in attributing climatic 150 

controls on temperate ecosystems or Mediterranean ecosystems is the superimposed 151 

influences from both temperature and precipitation. The overarching science question 152 

we will address is: How do African ecosystems respond to possible changes in 153 

intra-seasonal rainfall variability (i.e. rainfall frequency, intensity and rainy 154 



 7 

season length)? 155 

 156 

[insert Table 1] 157 

 158 

2. Materials and Methods: 159 

2.1 Methodology overview 160 

Table 1 summarizes previous field-based rainfall manipulation experiments, such as 161 

the one that Knapp et al. (2002) did in a grassland that concurrently increasing rainfall 162 

frequency and decreasing rainfall intensity while fixing total rainfall for a grassland. 163 

The central idea of our study is to design similar rainfall manipulation experiments 164 

but test them virtually in the model domain across large environment gradients. We 165 

manipulate rainfall changes through a weather generator based on a parsimonious 166 

stochastic rainfall model (Rodriguez-Iturbe et al., 1984). We model the total amount 167 

of rainfall during rainy season as a product of the three intra-seasonal rainfall 168 

characteristics for the rainy season, rainfall frequency (λ, event/day), rainfall intensity 169 

(α, mm/event), and rainy season length (Tw, days) (More details in section 2.3).We 170 

manipulate rainfall changes through a stochastic weather generator based on a 171 

parsimonious model of rainfall processes: statistically for the daily rainfall record, the 172 

mean annual precipitation (MAP) is a product of the three rainfall characteristics for 173 

the wet season, rainfall frequency (λ, day-1), rainfall intensity (α, mm), and rainy 174 

season length (Tw, days), normalized by fw (the fraction of wet-season rainfall to the 175 

MAP) to account for the contribution from dry season rainfall (MAP=α λ Tw / fw). 176 

Thus it is possible to simultaneously perturb two of the rainfall characteristics away 177 

from their climatological values while preserving the mean annual precipitation (MAP) 178 

unchanged (Figure 2). We then feed these different rainfall scenarios into a 179 

well-validated dynamic vegetation model (SEIB-DGVM, section 2.2) to study 180 

simulated ecosystem responses. Detailed experiments design is described in section 181 

2.5. 182 

 183 

[insert Figure 2] 184 
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 185 

2.2 SEIB-DGVM model and its performances in Africa 186 

We use a well-validated vegetation dynamic model SEIB-DGVM (Sato et al., 2007) 187 

as the tool to study ecosystem responses to different rainfall variabilities. This model 188 

follows the traditional “gap model” concept (Shugart, 1998) to explicitly simulate the 189 

dynamics of ecosystem structure and function for individual plants the dynamics of 190 

fine-scale ecosystem structure and function forat a set of virtual vegetation patches, 191 

and uses results at these virtual patches as a surrogate to represent large-scale 192 

ecosystem states. Thus individual trees are simulated from establishment, having 193 

competition with other plants, to death,  which creates “gaps” in whichfor different 194 

plant function types (PFTs) toother plants to occupy and develop. The SEIB-DGVM 195 

includes mechanical-based and empirical-based algorithms for land physical 196 

processes, plant physiological processes, and plant dynamic processes. The 197 

SEIB-DGVM contains algorithms that explicitly involve the mechanisms of 198 

plant-related water stress (Figure 3Figure 2; Sato and Ise, 2012). With Ssimilar 199 

concepts to previous studies (e.g. Milly, 1992; Porporato et al., 2001), the current 200 

SEIB modelSEIB-DGVM implements a continuous “water stress factor” (Equation 2) 201 

based on the soil moisture status (Equation 1), scaling from 0 (most stressful) to 1 202 

(with no stress), which then acts to scale the stomatal conductance for plant 203 

transpiration and carbon assimilation.   204 

statwater = (S − Sw) / (Sf − Sw)    (Equation 1) 205 

Water stress factor = 2*statwater - statwater
2    (Equation 2) 206 

where S, Sw and Sf refer to the fraction of volumetric soil water content within the 207 

rooting depth, at the wilting point, and at field capacity, respectively. Figure 2 208 

provides a schematic diagram of “water stress factor” from the SEIB-DGVM, and we 209 

also include an approximated linear model that has been widely adopted elsewhere 210 

(e.g. Milly, 1992; Porporato et al., 2001). The linear model uses an extra variable S*, 211 

so called “critical point” of soil moisture: when S>S*, there is no water stress (water 212 

stress factor =1); and when S<S*, water stress factor linearly decreases with the 213 

decrease of S. Though SEIB-DGVM adopts a quadratic form for “water stress factor”, 214 
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it essentially functions similarly as the linear model, such that S* distinguishes two 215 

soil moisture regimes that below which there is a large sensitivity of water stress to 216 

soil moisture status, and above which there is little water stress. Understanding how 217 

this “water stress factor” functions is the key to explain the following results.  218 

 219 

[insert Figure 2] 220 

 221 

The SEIB-DGVM also allows the development of annual and perennial grasses as 222 

well as multiple life cycles of grass at one year based on environmental conditions. , 223 

and mMultiple life cycles of tree growth per year are possible in theory but rarely 224 

happen in simulations (Sato and Ise, 2012). Soil moisture status is the predominant 225 

factor to determine LAI of the vegetation layer, which influences maximum daily 226 

productivity and leaf phenology. In particular, life cycles of grass are under prominent 227 

control of soil moisture status. The previously defined “water stress factor” and other 228 

environmental conditions co-determine the optimum LAI of the grass layer, which 229 

influences maximum daily NPP and the leaf phenology. When optimum LAI exceeds 230 

0 for preceding 7 continuous days, the dormant phase of perennial vegetation layer 231 

changes into the growth phase. ; wWhile when optimum LAI falls below 0 for 232 

preceding 7 continuous days, the growth phase changes switches into to the dormant 233 

phase (Sato et al, 2007). SEIB-DGVM also explicitly simulates the light conditions 234 

and light competitions among different PFTs in the landscape based on its simulated 235 

its simulation of 3D canopy structure and radiative transfer scheme (Sato et al, 2007).  236 

 237 

[insert Figure 3] 238 

 239 

The SEIB-DGVM has been tested both globally (Sato et al., 2007) and regionally 240 

for various ecosystems (Sato et al., 2010; Sato, 2009; Sato and Ise, 2012), which 241 

whose simulated results compared favorably with ground observations and satellite 242 

remote sensing measureements in terms of for ecosystem composition, structure and 243 

function. In particular, the SEIB-DGVM has been successfully validated and 244 
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demonstrated its ability in simulating ecosystem structure and function in the African 245 

continent (Sato and Ise, 2012). Two plant function types (PFTs) of tropical woody 246 

species are simulated by SEIB-DGVM in Africa: tropical evergreen trees and tropical 247 

deciduous trees. The distribution of these two woody types in the simulation is largely 248 

determined by hydro-climatic environments. Tropical evergreen trees only develop in 249 

regions where water resources are sufficient all year around, so they can maintain 250 

leaves for all seasons; otherwise, tropical deciduous trees could survive and dominate 251 

the landscape as they can shed leaves if there is no sufficient water supply in its root 252 

zone during the dry season (Sato and Ise, 2012). For woody species, two plant 253 

function types (PFTs) of tropical woody species are modeled in Africa: tropical 254 

evergreen trees and tropical deciduous trees, which distinguish in their phenology, 255 

with the former having leaves all year around, and the latter shedding leaves during 256 

dry season, which is mostly controlled by root-zone moisture status (Sato and Ise, 257 

2012). Trees and grasses coexist in a cell, with the floor of a virtual forest 258 

monopolized by one of the two grass PFTs, C3 or C4 grass. T, the dominating grass 259 

type of which type is determined at the end of each year by air temperature, 260 

precipitation, and CO2 partial pressure (Sato and Ise, 2012).  261 

 The SEIB modelSEIB-DGVM was run at a one degree1°  spatial resolution and 262 

at a the daily temporal resolutionstep. It was spun-up for 2000 years driven by the 263 

observed climate (1970-2000) repeatedly for the soil carbon pool to reach steady state, 264 

followed by 200 years simulation driven by the forcings based on the experiment 265 

design in Section 2.4. Because our purpose is to understand the direct impacts of 266 

intra-seasonal rainfall variability, we turned off the fire component of the SEIB 267 

modelSEIB-DGVM to exclude fire-mediated feedbacks in the results. Though we are 268 

fully aware of the important role of fire in interacting with rainfall seasonality and 269 

thus in itheir influenceing on African ecosystems productivity and structures (Bond et 270 

al., 2005; Lehmann et al., 2011; Staver et al., 2012), studying these interactions is 271 

beyond the scope of this work. For the similar reason, we fixed the atmospheric CO2 272 

concentration at 380 ppmv to exclude possible impacts of CO2 fertilization effects. 273 

 274 
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2.3 Synthetic weather generator 275 

The synthetic weather generator used here consists of has two major components: i) to 276 

stochastically generate daily rainfall based on a stochastic rainfall model, and ii) to 277 

conditionally sample all other environmental variables from historical records to 278 

preserve the covariance among climate forcing forcing inputsvariables.  279 

The stochastic rainfall model can be statistically expressed as MAP=α λ Tw / fw, 280 

and we set fw to be 0.9, i.e. the period including 90% of total annual rainfall is defined 281 

as “wet rainy season” (exchangeable with “rainy wet season” hereafter). In particular, 282 

we first use Markham (1970)’s approach to find the center of the rainy season, and 283 

then extend the same length to both sides of the center until the total rainfall amount 284 

in this temporal window (i.e. “rainy season”) is equal to 90% of the total annual 285 

rainfall. Rainy season and dry season have their own rainfall frequency and intensity. 286 

Two seasons are separately modeled based on the Market Poisson Process. Here we 287 

only focus on and manipulate rainy-season rainfall characteristics in our study, as 288 

rainy-season rainfall accounts for almost all the meaningful rainfall inputs for plant 289 

use. Thus in the following paper, whenever we mention α or λ, we refer to those 290 

during the rainy season.  291 

The “wet season” and “dry season” rainfall time series are respectively modeled 292 

using the Marked Poisson Process. In this rainfall model, any day can be either rainy 293 

or not, and a rainy day is counted as one rainy event; rainfall events occur as a 294 

Poisson Process, with the parameter 1/λ (unit: days/event) being the mean intervals 295 

between rainfall events, and rainfall intensity α for each rainfall event following an 296 

exponential distribution, with α being the mean rainfall intensity per event 297 

(Rodríguez-Iturbe et al., 1999). The wet season length is modeled as a beta 298 

distribution bounded from 0 to 1, scaled by 365 days. All the necessary parameters to 299 

fit for the stochastic rainfall model climatological values of these rainfall 300 

characteristics (including the mean and variance of rainfall frequency, intensity and 301 

length of wet and dry seasons) were derived from the satellite-gauge-merged rainfall 302 

measurement from TRMM 3b42V7 (Huffman et al., 2007) for the period of 1998 to 303 

2012, based on the above assumptions for the rainfall process. Specifically, we 304 
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applied our definition of “rainy season” to each year of the TRMM rainfall data for 305 

per pixel, and calculated the mean and variance of the “rainy season length”, using 306 

which we fitted the beta distribution for Tw. For rainfall frequency and intensity, we 307 

lumped all the wet or dry season rainfall record together to derive their parameters. 308 

The Tthe two steps of the synthetic weather generator are described as below:  309 

Step 1: Model the daily rainfall following the Marked Poisson process described 310 

above. In particular, for a specific year, we first stochastically generate the wet season 311 

length by sampling from the beta distribution, and the dry season length is determined 312 

accordingly. Then we generate the daily rainfall for wet and dry season respectively.  313 

Step 2: Based on the simulated daily rainfall time series in Step 1, we conditionally 314 

sample temperature, wind, and humidity from the Global Meteorological Forcing 315 

Dataset (GMFD, Sheffield et al., 2006), as well as cloud fraction and soil temperature 316 

from the Climate Forecast System Reanalysis (CFSR) from National Centers for 317 

Environmental Prediction (NCEP) (Saha et al., 2010). To sample for a specific day, all 318 

the historical record within a 21-day time window centered at that specific day makes 319 

up a sampling pool. For each day, a sample is randomly drawn from a pool that covers 320 

all the historical record within a 21-day time window centered at the sampling day. 321 

From the sampling pool, we find choose the day such that the historical rainfall 322 

amount of the chosen day is within (100-30)% to (100+30)% of the simulated daily 323 

rainfall amount. We then draw all other the environmental variables (except rainfall) 324 

on that sampled day to the new climate forcing. If we can find a sample from the pool 325 

based on the above rule, this sampling is called “successful”. When there is more than 326 

one suitable sample, we randomly select one. When there is no suitable sample, we 327 

randomly select one day within the pool. The mean “successful” rate for all the 328 

experiments and ensembles and all the experiments aacross Africa is 83%. 329 

 The GMFD data (Sheffield et al., 2006) blends reanalysis data with observations 330 

and disaggregates in time and space, and is available from 1948 to 2008, with 331 

1.0-degree spatial resolution and daily temporal resolution. The CFSR data (Saha et 332 

al., 2010) provides cloud fraction and simulated soil temperature from three soil 333 

layers for the SEIB model. The CFSR version that we used is from 1979 to 2010, and 334 
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the original 0.3 degree spatial resolution and 6-hourly temporal resolution are 335 

aggregated to 1.0 degree and daily. 336 

 To test the validity of the synthetic weather generator, we ran the SEIB 337 

modelSEIB-DGVM using the historical climate record (Sclimatology) and the synthetic 338 

forcing (Scontrol), with the latter generated using the weather generator based on the 339 

rainfall characteristics derived from the former. Figure S1 shows that the SEIB 340 

modelSEIB-DGVM simulations driven by these two different forcings generate 341 

similar biome distributions with a Cohen’s Kappa coefficient of 0.78 (Cohen, 1960), 342 

and similar GPP patterns in Africa, with the linear fits of annual GPP as: 343 

GPP(Scontrol)= 1.03×GPP(Sclimatology)+0.215 (R2=0.89, P<0.0001). Both biome and 344 

GPP patterns are consistent with observations (Sato and Ise, 2012). These results 345 

provide confidence in using the synthetic weather generator and SEIB-DGVM to 346 

conduct the further study. 347 

 348 

2.4 Experiment design  349 

Three experiments are designed as follows, and are shown in the conceptual diagram 350 

(Figure 2):   351 

Exp 1 (Perturbation of rainfall frequency and intensity, and the experiment is termed 352 

as Sλ-α hereafter, with S referring “Scenario”) Simulations forced by the synthetic 353 

forcings with varying λ and α simultaneously for wet season (20% increases of λ and 354 

corresponding decreases of α to make MAP unchanged; 20% decreases of λ and 355 

corresponding increases of α to make MAP unchanged; no change for dry season 356 

rainfall characteristics), while fixing Tw at the current climatology; 357 

Exp 2 (Perturbation of rainfall frequency and rainy season length, termed as STw-λ) 358 

Simulations forced by the synthetic forcing with varying Tw and λ simultaneously for 359 

wet season (20% increases of Tw and corresponding decreases of λ to make MAP 360 

unchanged; 20% decreases of Tw and corresponding increases of λ to make MAP 361 

unchanged; no change for dry season characteristics), while fixing α at the current 362 

climatology; 363 

Exp 3 (Perturbation of rainy season length and intensity, termed as STw-α) Simulations 364 
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forced by the synthetic forcing with varying Tw and α simultaneously for wet season 365 

(20% increases of Tw and corresponding decreases of α to make MAP unchanged; 366 

20% decreases of Tw and corresponding increases of α to make MAP unchanged; no 367 

change for dry season characteristics), while fixing λ at the current climatology. 368 

 Because λ and Tw have bounded ranges (λ~[0, 1] and Tw~[0, 365]), if these two 369 

variables after perturbation  updated value exceeds the range, we would force the 370 

new updatedir value to be the lower or upper bound, and rearrange the other 371 

corresponding variable rainfall characteristic to ensure MAP unchanged. Each rainfall 372 

scenario has six ensemble realizations of synthetic climate forcings to account for the 373 

stochasticity of our synthetic weather generator. 374 

For example in Exp 1, if after 10% increase the updated λ is larger than 1, we would 375 

force the updated λ to be 1, and recalculate the changes in α to keep MAP the same as 376 

before. All the scenarios have six ensemble runs differentiated in their synthetic 377 

forcings to account for the stochasticity of the synthetic weather generator.  378 

 379 

3. Results  380 

We present the differences in simulated biome distributions of the three experiments 381 

(i.e. Sλ-α, STw-λ, STw-α) in Figure 4Figure 3,  (and Figure S2 and S3 for their spatial 382 

patterns are shown in Figure S2 and S3). , and the dDifferences in simulated annually 383 

averaged soil moisture and GPP for each experiment are shown in Figure 5Figure 4 384 

and 6. These differences indicate represent the simulated ecosystem sensitivity to the 385 

slight perturbation away from the current climatology of intra-seasonal rainfall 386 

characteristics deviating from the current climatology. We present the differences 387 

between +20% and -20% changes in each experiment. We also assessed shifts of +/- 388 

10%, and found that these responses are similar with only smaller magnitudes and 389 

thus not shown here. To further explore how MAP and these rainfall characteristics 390 

affect the simulated GPP, Figure 6Figure 5 shows plots the difference in of simulated 391 

GPP as a function of mean annual precipitationMAP and the climatological value of a 392 

perturbed rainfall characteristic in the corresponding experiment. We term Figure 5 as 393 

“GPP sensitivity space”, and “positive GPP sensitivity” means that GPP changes at 394 
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the same direction with MAP or rainfall characteristics, and vise versa for “negative 395 

GPP response”. These “GPP sensitivity spaces” are generated based on the aggregated 396 

mean GPP in each bin of the rainfall properties. The bin size for MAP, rainfall 397 

frequency, rainfall intensity and rainy season length are 100 mm/year, 0.05 event/day, 398 

1 mm/event and 15 days respectively. We also provide the standard error (SE) of the 399 

“GPP sensitivity spaces” in each bin to assess their uncertainties, with higher SE 400 

meaning larger uncertainties. , paired with the standard error (SE) between 401 

simulations to indicate the uncertainty of the result, as 
n

SE  , where   and n 402 

refer to the standard deviation of GPP values and the sample size in each bin 403 

respectively. Thus changes in GPP and their associated standard errors are calculated 404 

for each climatological bin; where the bin size for MAP, rainfall frequency, rainfall 405 

intensity and rainy season length are 100 mm/year, 0.05 day-1, 1 mm and 15 days 406 

respectively.  We recognize that there are large heterogeneity in soil texture, altitude 407 

and other factors which can influence simulation results at local scale, and using the 408 

current approach essentially lumps these factors and highlights the impacts from our 409 

interested variables (i.e. rainfall characteristics). A series of illustrations in Figure 410 

7Figure 6 were generalized from the simulated time series, and will beare used to 411 

explain the underlying mechanisms.  412 

 413 

[insert Figure 4Figure 3; Figure 5Figure 4; Figure 6Figure 5] 414 

 415 

3.1 Ecosystem sensitivity to rainfall frequency and intensity (Experiment Sλ-α) 416 

Experiment Sλ-α assesses ecosystem responses after increasing rainfall frequency λ 417 

and decreasing rainfall intensity α (λ↑, α↓) under a fixed total annual rainfall. The The 418 

experiment Sλ-α shows that the simulated biome distributions, after increasing rainfall 419 

frequency λ and decreasing its intensity α (λ↑, α↓) under a fixed total annual rainfall, 420 

have small differences in the low rainfall regime (around 500 mm/year, Figure 4a), 421 

with show that a small portion of regions converting are converted from woodland to 422 

grassland at low rainfall regime (~500 mm/year), corresponding to a decrease of GPP 423 
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in these regionsindicating a negative impact of increasing rainfall frequency when 424 

total rainfall is very low. In the high rainfall regime (around 1500 mm/year, Figure 425 

4Figure 3a), increasing rainfall frequency significantly converts tropical evergreen 426 

forests into woodlands. In the intermediate rainfall regime (600-1000 mm/year), there 427 

are is little changes in biome distributions. We further check the spatial patterns of 428 

differences in annual mean soil moisture and annual total GPP (Figure 5Figure 4a and 429 

5b). We find that GPP increases with increasing rainfall frequency across most of the 430 

Africa continent, except in the very dry end (in the southern and eastern Africa) as 431 

well as and the very wet regions (in central Africa and northeastern Madagascar). This 432 

GPP pattern mostly mirrors the soil moisture change in woodlands and grasslands 433 

(Figure 5Figure 4b), except the wet tropics, where the changes of soil moisture and 434 

GPP are in the reversed signs. 435 

Figure 6Figure 5a shows the GPP sensitivity as a function of MAP and the 436 

climatological rainfall frequency, and we find three major patterns stand out:  437 

Pattern 1.1: Negative GPP sensitivity shows up in the very dry end of MAP regime 438 

(MAP<400 mm/year) and with very relatively low rainfall frequency (λ<0.3 439 

day-1event/day), i.e. GPP decreases with more frequent but less intense rainfall in this 440 

low rainfall regimerange, without changes in the total rainfall amount.  441 

Pattern 1.2: Across most rainfall rangeegimes (MAP from 400 mm/year to 1600 442 

mm/year), increasing frequency of rainfall (and simultaneously decreasing rainfall 443 

intensity) lead to positive GPP sensitivity. This positive GPP sensitivity peaks at the 444 

low range of rainfall frequency (~0.35 day-1event/day) and around the MAP of 1000 445 

mm/year.  446 

Pattern 1.3: At the high range of MAP (>1800 mm/year) with low rainfall frequency 447 

(~0.4 day-1event/day), GPP decreases with increased rainfall frequency. 448 

 The relationship of GPP sensitivity to MAP and rainfall intensity (Fig. 6c) has no 449 

clear patterns as previous ones, mostly because the GPP sensitivity space (Fig. A4c) 450 

contains large uncertainties (Fig. A4d, shown as large variance in the data). Thus we 451 

will not over-interpret the pattern in Fig. 6c.The GPP sensitivity with respect to MAP 452 

and rainfall intensity (Figure 6c) contains more uncertainties and shows more 453 
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complex patterns, mostly because the space that most pixels cluster (Figure S4c) also 454 

has large variance (Figure S4d). Thus we will not over-interpret the pattern in Figure 455 

6c. 456 

Illustrative time series in Figure 7a and 7b explain the above Pattern 1.1 and 457 

Pattern 1.2 can be explained by the illustrative time series in Figure 6a and 6b, 458 

respectively. Figure 7Figure 6a shows that when rainfall events are small and very 459 

infrequent, increasing rainfall frequency while decreasing intensity would cause more 460 

frequent downcrossings of soil moisture at the wilting point Sw, which subsequently 461 

would reduce the effective time of carbon assimilation and plant growth (i.e. when 462 

soil moisture is below Sw, plants would be in the extreme water stress and slow down 463 

or stop physiological activity). It is worth noting that tThis case only happens wheren 464 

MAP is very low with low frequency, where  and the biome is predominantly 465 

grasslands, , which explains why negative changes in soil moisture and GPP in Figure 466 

4a and 4b are distributed in those regions. the spatial patterns of negative soil moisture 467 

and GPP sensitivity in Figure 5a and 5b. This result also corroborates the field 468 

findings of the negative impacts from increasing rainfall frequency in Heisler-White 469 

et al.(2009) and Thomey et al. (2011) at low rainfall regimes.  470 

Figure 7Figure 6b explains provides the hydrological mechanism for the positive 471 

sensitivity of soil moisture and GPP with increasing rainfall frequency over the most 472 

African continent (Pattern 1.2). Once individual rainfall event has enough intensity 473 

and rainfall events are frequent frequency is enough, downcrossings of Sw would not 474 

easily happen. ; iInstead, the accumulative rainy-season soil moisture becomes the 475 

dominant control of plant growth, and water stress (shaded areas between Sw and S*, 476 

Porporato et al., 2001) becomes the dominant source of growth stress for plants; and 477 

increasing rainfall frequency has can lead to a significant decrease in this type of plant 478 

water stressincrease of soil moisture for plant water use (Figure 4a and 4b). This 479 

conclusion drawn from our numerical modeling is consistent with previous findings in 480 

Rodríguez-Iturbe and Porporato (2004) based on stochastic modeling. We also find 481 

that this positive impact GPP sensitivity reaches to its maximum in the intermediate 482 

total rainfall (~1000 mm/year) and relatively low rainfall frequency (~0.35 483 
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day-1event/day), indicating that in these regimes increasing rainfall frequency could 484 

most effectively decrease increase plant water stresssoil moisture for plant water use 485 

and create marginal benefits of GPP to the increased rainfall frequency. Further 486 

increase in Either too large total annual rainfall or too high or rainfall frequency may 487 

uplift soil moisture status in general, which would reduce the sensitivity to water 488 

stress with fewer downcrossings of soil moisture critical point S*; and once the soil 489 

moisture is always ample (i.e. above S*), the changes in either MAP or rainfall 490 

frequency would not alter plant water stress.   491 

Pattern 1.3 also shows a negative GPP sensitivity, but its mechanism is different 492 

from the previous case of Pattern 1.1. There is another negative GPP sensitivity 493 

shown in Pattern 1.3, but the mechanism is different from the previous negative GPP 494 

case. In regions with total rainfall usually more than 1800 mm/year, SEIB-simulated 495 

tropical forests exhibit radiation-limitation rather than water-limitation during wet 496 

season. Increase of rainfall frequency at daily scale would enhance cloud fraction and 497 

suppress plant productivity in these regions (Graham et al., 2003). Thus even though 498 

soil moisture still increases (Figure 5Figure 4a), GPP decreases with increased rainfall 499 

frequency. This mechanism also explains why tropical evergreen forests shrink its 500 

area with increased rainfall frequency (Figure 4Figure 3a).  501 

It is worth noting that the magnitude of GPP changes due to rainfall frequency 502 

and intensity is relatively small in most of the woodlands, but can be relatively large 503 

for drylands with MAP below 600 mm/year (up to 10-20% of annual GPP). This 504 

pattern also explains why only modest changes in biome distribution  happen for the 505 

transitional area between woodlands and grasslands in Sλ-α (Figure 4Figure 3a).  506 

 507 

[insert Figure 7Figure 6] 508 

 509 

3.2 Ecosystem sensitivity to rainfall seasonality and frequency (Experiment STw-λ) 510 

EThe experiment STw-λ assesses ecosystem responses after increasing rainy season 511 

length and decreasing rainfall frequency (i.e. Tw↑, λ↓) under a fixed total annual 512 

rainfall. Tshows that the simulated biome distribution, after increasing rainy season 513 
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length and decreasing rainfall frequency (i.e. Tw↑, λ↓) under a fixed total annual 514 

rainfall,  shows a gain of has an increase of area in tropical evergreen forests, which 515 

are converted from woodlands. The northern Africa has , an area increase of 516 

woodlands converted from grasslands in the northern Africa, and African Horn region 517 

has a small expansion of grasslands into woodlands in the African Horn region  518 

(Figure 4Figure 3b). Figure 5Figure 4c and 45d show that increasing rainy season 519 

length Tw and decreasing frequency λ would significantly increase annual mean soil 520 

moisture and GPP (up to 30%) in most woodland area. , mMeanwhile decreased soil 521 

moisture and GPP are found in the southern and eastern Africa. , and tTropical 522 

evergreen forests show regions have little response. We further explore the GPP 523 

sensitivity space in Figure 6Figure 5e and 56g, and find the following interesting 524 

robust patterns (based on small standard errors shown in Figure 5f and 5h):  525 

, which are mostly robust due to the small standard errors shown in Figure 6f and 6h:  526 

Pattern 2.1: The negative GPP sensitivity tends to happen where MAP is mostly 527 

below 1000 mm/year with long rainy season length (Tw>150 days) and low rainfall 528 

frequency (λ<0.35 day-1event/day), which is a unique rainfall regime that sporadically 529 

spread rain events for a long rainy season.  530 

Pattern 2.2: When MAP and rainfall frequency are both larger than certain 531 

rangeslarge enough (MAP>1000 mm/year and λ>0.4 day-1event/day), decreasing λ 532 

while increasingtrading the decrease of λ for the increase of Tw would significantly 533 

increase GPP. The maximum positive GPP sensitivity happens in the rainfall regime 534 

with theat the intermediate MAP range (1100-1500 mm/year) and the high rainfall 535 

frequency (λ~0.7 day-1event/day).  536 

Pattern 2.3: There exists an “optimal rainy season length” for relative changes in 537 

ecosystem productivity at across largedifferent MAP ranges (the white area between 538 

the red and blue space in Figure 6Figure 5e). For the same MAP, any deviation of Tw 539 

from the “optimal rainy season length” would reduce GPP. longer than this length, 540 

rainy season lengthening would decrease GPP; while shorter than this length, rainy 541 

season lengthening would increase GPP. This “optimal rainy season length” follows 542 

an increasing trendes with MAP until 1400 mm/year.  543 
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  Figure 7Figure 6c explains the hydrological mechanism for the negative GPP 544 

sensitivity in Pattern 2.1. In the situation with low MAP and infrequent rainfall events, 545 

decreasing rainfall frequency to and expandtending rainy season length (i.e. Tw↑, λ↓) 546 

would lead to longer intervalstime b between rainfall events and possibly longer 547 

excursions below Sw, which would restrain disrupt continuous plant growth and have 548 

detrimental effects on ecosystem productivity. It is worth noting that long rainy season 549 

in dryland (Figure 6Figure 5e) is usually accompanied with low rainfall frequency 550 

(Figure 6Figure 5g). The southern African drygrasslands (south of 15°S) typically fall 551 

in this category, and these regions thus have negative GPP sensitivity (Figure 5Figure 552 

4c and 45d), accompanied by a small biome conversion from ; these regions also 553 

correspond to the small biome conversion from woodlands to grasslands in the low 554 

range of MAP (~300 mm/year) as shown in (Figure 4Figure 3b).  555 

 Figure 7Figure 6d explains the hydrological mechanisms for the positive GPP 556 

sensitivity in Pattern 2.2, which shows that . wWhen rainfall is ample enough to 557 

maintain little or no water stress during rainy season, increasing the interval of rainfall 558 

events may introduce little additional water stress but can significantly extend the 559 

growing season. This situation mostly happens in woodlands, where limited water 560 

stress exists during growing rainy season, and dry season length is the major 561 

constraint for plant growth. Thus the increase of rainy season length extends the 562 

temporal niche for plant growth, and significantly modifies the biome distribution, 563 

which leads to a significant woodland expansionlarge wood encroachment to 564 

grasslands andas well as  alsoan expansion of tropical evergreen forests conversion 565 

of woodlands to tropical evergreen forests, as shown into woodlands (Figure 4Figure 566 

3b). 567 

 The little GPP sensitivity in tropical evergreen forest regions is mostly attributed 568 

to the long rainy season length already existed in this type of ecosystem. Thus further 569 

increasing Tw may reach to its saturation (365 days) and hasthus have little impact to 570 

ecosystem productivity. This also explains why the magnitude of GPP sensitivity is 571 

much smaller at high MAP range than at the intermediate MAP range. Similar reason 572 

also explains why the GPP sensitivity has the maximum response in the intermediate 573 

Formatted

Formatted: Font: Times New Roman

Formatted



 21 

MAP range rather than the high MAP range, at which GPP sensitivity has been 574 

saturated.  575 

 The finding of “optimal rainy season length” across different rainfall regimes 576 

(Figure 6Figure 5e) is consistent with our previous empirical finding about the similar 577 

pattern of “optimal rainy season length” for tree fractional cover in Africa derived 578 

based on a satellite remote sensing product (Guan et al., 2014). The existence of 579 

“optimal rainy season length” Two distinctive GPP sensitivities separated by the 580 

“optimal rainy season length”, with this optimal length increasing with MAP, fully 581 

demonstrates the importance to explicitly consider the non-linear impacts of rainy 582 

season length on ecosystem productivity under climate change, which has been 583 

largely overlooked before. 584 

 585 

3.3 Ecosystem sensitivity to rainfall seasonality and intensity (STw-α) 586 

RThe results of the eExperiment STw-α have many similarities with those of STw-λ, 587 

including the similar changes in biome distributions (Figure 4Figure 3), soil moisture 588 

and GPP patterns (Figure 5Figure 4e and 45f). We further find that the GPP sensitivity 589 

space with MAP and rainy season length for STw-α (Figure 6Figure 5i) is also similar 590 

with that of for STw-λ (Figure 6Figure 5e). One new pattern finding is that rainfall 591 

intensity has little impacts on the GPP sensitivity, as the contour lines in Figure 592 

6Figure 5kK are mostly parallel with y-axis (i.e. rainfall intensity); in other words, the 593 

trade-off between Tw and α is mostly a function of MAP and Tw, but not α, and the 594 

largest marginal effects happen in the intermediate range of MAP, similar as in STw-λ.  595 

Figure 7Figure 6e and 67f explain the governing hydrological mechanisms for the 596 

patterns of STw-α, which also have many similarities with STw-λ. For the negative case 597 

(Figure 7Figure 6e), decreasing rainfall intensity to extendand increasing rainy season 598 

length in the very low MAP regime may possibly lead to more downcrossings of Sw 599 

and interrupt continuous plant growth. The positive case (Figure 7Figure 6e) is similar 600 

as that in Figure 7Figure 6d, i.e. the repartitioning of excessive rainywet-season water 601 

rainfall to the dry season for an extended growing period would significantly benefit 602 

plant growth and possible increase tree fraction cover.  603 
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 604 

4. Discussion 605 

In this paper we provide a new modeling approach to systematically understand 606 

interpret the ecological impacts from changes in intra-seasonal rainfall characteristics 607 

(i.e. rainfall frequency, rainfall intensity and rainy season length) across biomes and 608 

climate gradients in the African continent. 609 

 610 

4.1 Limitation of the methodology 611 

Though the our modeling framework that we used is able to characterize the diverse 612 

ecosystem responses to the shifts in different rainfall characteristics, it nevertheless 613 

has its limitations. The current rainfall model only deals with the case of single rainy 614 

season per year, and approximates the case of double rainy seasons per year to be the 615 

single rainy season case. This assumption may induce unrealistic synthetic rainfall 616 

patterns in the equatorial dryland regions, in particular the Horn of Africa. T, thus the 617 

resulting simulated sensitivity of these regions may be less reliable. We also assume 618 

that rainfall frequency and intensity are homogenous throughout wet and dry seasons 619 

(or dry seasons)s, but in reality they still have seasonal variations. We only consider 620 

rainy season length for rainfall seasonality, and neglect the possible temporal phase 621 

change; actually in reality, rainfall seasonality change usually has length and phase 622 

shifts in concert. These rainfall-model-related limitations can be possibly overcame by 623 

simulating smaller intervals of rainfall processes (e.g. each month has their own α and 624 

λ) rather than simulating the whole wet or dry season using one fixed set of α and λ. 625 

Besides, only using one ecosystem model also means that the simulated ecosystem 626 

sensitivity can be model-specific. Though magnitudes or thresholds for the 627 

corresponding patterns may vary depending on different models, we argue that , 628 

though we believe the qualitative results for the GPP sensitivity patterns (e.g. Figure 629 

5Figure 4 and Figure 6Figure 5) should mostly hold as the necessary ecohydrological 630 

processes have been incorporated in the SEIB-DGVM, magnitudes or thresholds in 631 

these patterns may vary depending on different models. For example, GPP in tropical 632 

evergreen forests (Figure 5b and Figure 6a) is less sensitive to radiation limitation as 633 
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shown in satellite-based observation than in the SEIB simulation in Africa (Guan et al., 634 

2013). We also recognize that to exclude fire impacts in the current simulation may 635 

bring some caveats limitation in interpreting the resultsfor this study, as evidence 636 

shows that many savanna regions can be bistable due to fire effects (Staver et al 2011; 637 

Hirota et al 2011; Higgins and Scheiter 2012; also see for a possible rebuttal in Hanan 638 

et al, 2013). and c Changes in rainfall regimes may not only have direct effects on 639 

vegetation productivity, but can also indirectly effects affect ecosystems through 640 

influencing its interactions with fire regimes, and with rapid biome shifts may bebeing 641 

a possible a consequence. These feedbacks can be important in situations where when 642 

the changes in the growing season length changes, which are related to fuel loads, fuel 643 

moisture dynamics and hence fire intensity (Lehmann et al., 2011). Quantifying these 644 

fire-rainfall feedbacks will be the important future direction to pursue. 645 

 646 

4.2 Clarifying the impacts of rainfall frequency and intensity on ecosystem 647 

productivity 648 

In this modeling study, we provide a plausible answer to possibly resolvepaper we 649 

have resolved the previous debate about whether increasing rainfall intensity (or 650 

equivalently decreasing rainfall frequency, i.e. λ↓, α↑) has positive or negative 651 

impacts on above-ground primary productivity with under a fixed annual rainfall total. 652 

We identify that negative GPP sensitivity with increased rainfall frequency is possible 653 

at very low MAP range (~ 400 mm/year) with very relatively low rainfall frequency 654 

(<0.35 day-1event/day) (Figure 6Figure 5a), due to the increased downcrossings of 655 

soil moisture wilting point, which restricts plant growth (Figure 7Figure 6a). Our This 656 

derived MAP threshold (~400 mm/year) to distinguish different GPP sensitivities with 657 

rainfall frequency is consistent with our meta-analysis based on the previous field 658 

studies (Table 1), which shows a threshold of MAP at 340 mm/year separates positive 659 

and negative impacts of more intense rainfall on ANPPaboveground net primary 660 

production (ANPP). Our findings are also consistent with anotherother studys about 661 

increased tree encroachments with increased rainfall intensity in very low rainfall 662 

regime (<544mm/year, Kulmatiski and Beard, 2013), which essentially follows the 663 
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same mechanism as identified in Figure 7Figure 6a.  664 

In addition, we thoroughly investigated the ecosystem responses across all the a 665 

wide ranges of annual rainfall in Africa. , and wWe find that beyond the very low 666 

rainfall range (below 400 mm/year), most grasslands and woodlands would benefit 667 

from increasing rainfall frequency, which also corroborate the previous large-scale 668 

findings about the positive effects of increased rainfall frequency (and decreased 669 

rainfall intensity) for tree fractions across the African continent (Good and Caylor, 670 

2011). The only exception happens at the very wet end of MAP (~1800mm/year) 671 

where cloud-induced radiation-limitation may suppress ecosystem productivity with 672 

increased rainfall frequency. We also find that changes in rainfall frequency and 673 

intensity mostly affeact grassland-dominated savannas (changes of GPP up to 20%), 674 

and the corresponding effects are much smaller in woodlands and have little impact 675 

on woodland distribution. Though this work is only based on a single model, it 676 

provides a primary assessment for understanding of interactive changes between λ and 677 

α in ecosystem functioning, which and expands the analysis to the full spectra ofa 678 

wide range of annual rainfall ranges conditions compared with previous studies (e.g. 679 

Porporato et al., 2004).  680 

 681 

4.3 Ecological importance of rainy season length 682 

The results involving rainy season length (i.e. STw-λ and STw-α) have fully demonstrated 683 

provide evidence for the ecological importance of rainfall seasonality. The magnitudes 684 

of changes in soil moisture, GPP and biome distribution in STw-λ and STw-α are much 685 

larger than those of Sλ-α, with almost one order of magnitude difference. These 686 

disproportional impacts of of Tw indicate that slight changes in rainy season length 687 

could modify biome distribution and ecosystem function more dramatically compared 688 

with the same percentage changes in rainfall frequency and intensity. We also notice 689 

that STw-λ and STw-α have similar results., whichThis  is because that both λ and α 690 

describe rainfall characteristics within wet season, while Tw describes rainfall 691 

characteristics of both dry season and wet season. Cautions are required that our 692 

simplified treatment rainy season length may overestimate its importance, and we did 693 
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not consider the rainfall phase information here.   694 

Given the importance of rainy season length, its ecological impacts under climate 695 

change are largely understudied, though substantial shifts in rainfall seasonality have 696 

been projected in both Sahel and South Africa (Biasutti and Sobel, 2009; Shongwe et 697 

al., 2009; Seth et al., 2013). Here we only address the rainfall seasonality in terms of 698 

its length, and future changes in rainfall seasonality may modify their phase and 699 

magnitude in concert. The climate community has focused on the increase of extreme 700 

rainfall events (Field et al., 2012), which could be captured by the changes in λ or α 701 

towards heavier tails in their distribution. However, explicit and systematic 702 

assessments and projection on rainfall seasonality changes (including both phase and 703 

magnitude) are still limited even in the latest Intergovernmental Panel on Climate 704 

Change (IPCC) synthesis reports (Field et al., 2012; Stocker et al., 2013). More 705 

detailed studies related to these changes and their ecological implications are required 706 

for future hydroclimate-ecosystem research.  707 

 708 

4.4 Not all rainfall regimes are ecologically equivalent 709 

As Figure 1 gives a convincing example that the same total annual rainfall may arrive 710 

in a very different way, our results further demonstrate that ecosystems respond 711 

differently to the changes in these intra-seasonal rainfall variability. For example, with 712 

similar MAP, drylands in West Africa and Southwest Africa can haveshow reversed 713 

responses to the same changes in intra-seasonal rainfall variability. As shown in the 714 

experiments of STw-λ and STw-α, increasing Tw while decreasing λ or α generates 715 

slightly positive soil moisture and GPP sensitivity in West Africa (Figure 5Figure 4c 716 

and 45d), but would cause relatively large GPP decrease in Southwest Africa. The 717 

prior hydroclimate conditions of these two regions can explain these differences: West 718 

Africa has much shorter rainy season with more intense rainfall events;, which is 719 

totally contrary toin contrast, Southwest Africa, which  has a long rainy season but 720 

many small and sporadic rainfall events. As a result, under a fixed annual rainfall total, 721 

slightly increasing rainy season and meanwhile decreasing rainfall intensity would 722 

benefit plant growth in West Africa, but the same change would lengthen dry spells in 723 
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Southwest Africa and bring negative effects to the ecosystem productivity. We further 724 

deduce that the rainfall use efficiency (RUE, defined as the ratio of plant net primary 725 

production and to total rainfall amount) in these two drylands could be different: West 726 

Africa may have lower RUE, and the intense rainfall could lead to more 727 

infiltration-excess runoff, and thus less water would be used by plants; while 728 

Southwest Africa can have higher RUE, because its sporadic and feeble rainfall events 729 

would favor grass to fully take the advantage of the ephemerally existed water 730 

resources. This conclusion is partly supported by Martiny et al. (2007) based on 731 

satellite remote sensing. We further hypothesize that landscape geomorphology in 732 

these two drylands may be different and therefore reflect distinctive rainfall 733 

characteristics. More bare soil may exist in West Africa grasslands due to 734 

intense-rainfall-induced erosion, while Southwest Africa may have more grass 735 

fraction and less bare soil fraction. Testing these interesting hypotheses is beyond the 736 

scope of this paper, but is worthy the further exploration.  737 
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Table 1. Summary of previous representative studies on assessing the impacts of rainfall characteristics (i.e. rainfall frequency, intensity and 

seasonality) on the structure and function of terrestrial ecosystem.  

Focus: frequency (freq); intensity (int); seasonality (sea); variation (CV).  

Methods: Field Experiments (Field); Remote Sensing (RS); Flux Tower (Flux).  

Major Conclusion: increasing rainfall intensity (or decreasing frequency) has positive impacts (int+); increasing intensity (or decreasing 

frequency)has negative impacts (int-); increasing rainfall CV has positive impacts (CV+); increasing rainfall CV has negative impacts (CV-).  

 

Focus Methods Spatial Scale Time scale MAP (mm/year) Ecosystem type Major Conclusion Reference 

freq; int RS Africa continent intra-annual 

climatology 

[0,3000] Africa all (int-) woody cover Good and Caylor, 

2011 

freq; int RS US  [163,1227] US (int-) ANPP greatest in arid grassland (16%)and 

Mediterranean forest (20%) and less for mesic grassland 

and temperate forest (3%) 

Zhang et al., 2013 

freq; int RS Pan-tropics (35°N to 

15°S) 

inter-annual [0,3000] Tropical 

ecosystems 

(CV+) wood cover in dry tropics; (CV-) wood cover in 

wet tropics 

Holmgren et al., 

2013 

freq; int RS Northern China intra-annual [100,850] temperate 

grassland and 

forests 

(int-) NDVI for temprate grassland and broadleaf 

forests, not for coniferous forest 

Fang et al., 2005 

freq; int Flux Northern Hemisphere intra-annual [393±155,906±243

] 

shrubland and 

forest 

(int-) GPP, RE and NEP Ross et al., 2012 

seas RS Africa continent climatology [0,3000] Africa all rainy season onset and offset controls vegetation 

growing season 

Zhang et al., 2005 

freq; int Field plot (Kansas, USA) intra-annual 615 grassland (int-) ANPP Knapp et al., 2002 
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(fix MAP) 

freq; int 

(fix MAP) 

Field plot (Kansas, USA) intra-annual 835 grassland (int-) ANPP Fay et al., 2003 

increase 

seasonal 

rainfall 

Field plot(Taxes, USA) intra-annual 365 grassland (int-) ANPP Robertson et al., 

2009 

freq; int Field plot (Kansas, USA) intra-annual [320,830] grassland (int-)ANPP for MAP=830mm/yr; (int+)ANPP for 

MAP=320mm/yr 

Heisler-White et 

al., 2009 

freq; int Field plot( New Mexico, 

USA) 

intra-annual 250 grassland (int+) ANPP Thomey et al., 

2011 

freq; int 

(fix MAP) 

Field Plot(Kansas, USA) intra-annual 834 grassland (int-) soil CO2 flux Harper et al., 2005 

freq; int 

(fix MAP) 

Field plot(Kruger National 

Park, South Africa) 

intra-annual 544 sub-tropical 

savanna 

(int+) wood growth; (int-) grass growth Kulmatiski and 

Beard, 2013 

sea 

(fix MAP) 

Field plot(Oregon, USA) intra-annual [140,530] grassland impact biomass and bare soil fraction Bates et al., 2006;  

Svejcar et al., 2003 

sea Field       

freq; int; 

MAP 

Field plot(South Africa) intra-annual [538,798] grassland (int-) ANPP Swemmer et al., 

2007 

MAP; sea Field plot(Spain) intra-/inter-an

nual 

242 grassland Mediterranean dryland ecosystem has more resilience 

for intra- and inter-annual changes in rainfall 

Miranda et al., 

2008 
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Figure 1. a-b: Spatial pattern of the rainfall characteristics in Africa: a-MAP; b-rainfall 

intensity; c-rainfall frequency; d-rainy season length. The black-line identified areas refer to 

two savanna regions in West and Southwest Africa. e-f: Normalized histograms of the rainfall 

characteristics in two savanna regions of West and Southwest Africa. e-MAP (bin width for 

the x-axis: 100 mm/year); f-rainfall intensity (bin width for the x-axis: 1 mm/event); g-rainfall 

frequency (bin width for the x-axis: 0.1 event/day); h-rainy season length (bin width for the 

x-axis: 20 days).   
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Figure 2. Conceptual diagram of the experiment designs for three experiments (Sλ-α, STw-λ, 

STw-α). 

Formatted: Centered
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Figure 3Figure 2. Schematic diagram of water stress factor ranging from 0 (most stressful) to 

1 (no stress), which acts to reduce transpiration and carbon assimilation. The red dotted line is 

based on Porporato et al. (2001) with a reversed sign, and the SEIB modelSEIB-DGVM has a 

nonlinear implementation (blue solid line, Sato and Ise, 2012). 
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Figure 4Figure 3. Differences in simulated dominated biomes in the three experiments (i.e. 

Sλ-α, STw-λ, STw-α). 
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Figure 5Figure 4. Simulated changes in annual mean soil moisture (0-500mm, first column) 

and annual mean GPP (second column) for different experiments. Please note that the scales 

of Sλ-α is much smaller than those of S Tw-λ and STw-α. The two areas with black boundaries in 

each panel are West African grassland and Southwest African grassland associated with 

Figure 1. The spatial patterns shown here are smoothed by 3*3 smoothing window from the 

raw data.  
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Figure 6Figure 5. Differences in simulated annual GPP as a function of mean annual 

precipitation and one of the perturbed rainfall characteristics in all the three experiments (i.e. 

Sλ-α, STw-λ, STw-α) in the left column. The right column shows the correspondent standard 

errors (SE, calculated as 
n

SE  , where   refers to the standard deviation within 

each bin, n  is the sample size in each bin, and n  and   are shown in Figure S4), 

with larger values associated with more uncertainties and requires more caution in 

interpretation. The contours are based on the binned values, with for each 100 mm/year in 

MAP, each 0.05 day-1event/day in rainfall frequency, each 1 mmmm/event in rainfall intensity 

and each 15 day in rainy season length.  
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Figure 7Figure 6. Illustrative time series for hydrological controls on plant root-zone soil 

moisture dynamics for all the experiments, and these illustrations are generalized based on the 

simulated time series from the experiments. Both negative and positive cases are shown, and 

cases with directly hydrological controls are shown (i.e. cloud-induced negative impacts in 

tropical forests are not shown). The cumulative shaded areas refer to “plant water stress” 

defined by Porporato et al. (2001).  
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Supplementary materials:  

 

Figure S1. Comparison of biomes and annual GPP between Sclimatology and Scontrol to test the 

validity of the synthetic weather generator. The biome definition follows Sato and Ise (2012). 
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Figure S2. Simulated biomes for different experiments.  
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Figure S3. Normalized histograms of three simulated dominating biomes in the three 

experiments.  
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Figure S4. The sample size ( n ) in each bin (left column) and standard deviation ( ) in each 

bin (right column), corresponding to Figure 6Figure 5. In Figure 6Figure 5 right column, 

standard deviation (SE) is calculated as
n

SE  .  
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Abstract:  29 

Climate change is expected to change intra-seasonal rainfall variability, arising from 30 

shifts in rainfall frequency, intensity and seasonality. These intra-seasonal changes are 31 

likely to have important ecological impacts on terrestrial ecosystems. Yet, quantifying 32 

these impacts across biomes and large climate gradients is largely missing. This gap 33 

hinders our ability to better predict ecosystem services and their responses to climate 34 

change, esp. for arid and semi-arid ecosystems. Here we use a synthetic weather 35 

generator and an independently validated vegetation dynamic model (SEIB-DGVM) 36 

to virtually conduct a series of “rainfall manipulation experiments” to study how 37 

changes in the intra-seasonal rainfall variability affect continent-scale ecosystem 38 

responses across Africa. We generated different rainfall scenarios with fixed total 39 

annual rainfall but shifts in: i) frequency vs. intensity, ii) rainy season length vs. 40 

frequency, iii) intensity vs. rainy season length. These scenarios were fed into 41 

SEIB-DGVM to investigate changes in biome distributions and ecosystem 42 

productivity. We find a loss of ecosystem productivity with increased rainfall 43 

frequency and decreased intensity at very low rainfall regimes (<400 mm/year) and 44 

low frequency (<0.3 event/day); beyond these very dry regimes, most ecosystems 45 

benefit from increasing frequency and decreasing intensity, except in the wet tropics 46 

(>1800 mm/year) where radiation limitation prevents further productivity gains. This 47 

result reconciles seemingly contradictory findings in previous field studies on rainfall 48 

frequency/intensity impacts on ecosystem productivity. We also find that changes in 49 

rainy season length can yield more dramatic ecosystem responses compared with 50 

similar percentage changes in rainfall frequency or intensity, with the largest impacts 51 

in semi-arid woodlands. This study demonstrates that not all rainfall regimes are 52 

ecologically equivalent, and that intra-seasonal rainfall characteristics play a 53 

significant role in influencing ecosystem function and structure through controls on 54 

ecohydrological processes. Our results also suggest that shifts in rainfall seasonality 55 

have potentially large impacts on terrestrial ecosystems, and these understudied 56 

impacts should be explicitly examined in future studies of climate impacts. 57 

Keywords: rainfall frequency, rainfall intensity, rainfall seasonality, biome 58 
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distribution, Gross Primary Production (GPP), Africa  59 

 60 

1. Introduction 61 

Due to increased water holding capacity in the atmosphere as a consequence of global 62 

warming (O’Gorman and Schneider, 2009), rainfall is projected to change in intensity 63 

and frequency across much of the world (Easterling et al., 2000; Trenberth et al., 2003; 64 

Chou et al., 2013), in conjunction with complex shifts in rainfall seasonality (Feng et 65 

al., 2013; Seth et al., 2013). These changes possibly indicate a large increase in the 66 

frequency of extreme events and variability in rainfall (Easterling et al., 2000; Allan 67 

and Soden, 2008), and many of these changes may be accompanied with little changes 68 

in total annual rainfall (Knapp et al., 2002; Franz et al., 2010). Meanwhile, regions 69 

sharing similar mean climate state may have very different intra-seasonal variabilities, 70 

and the ecological significance of intra-seasonal climate variabilities has been largely 71 

overlooked previously in terrestrial biogeography (Good and Caylor, 2011). For 72 

example, ecosystems in West Africa and Southwest Africa (Figure 1) share similar 73 

total annual rainfall, but West Africa has much more intense rainfall events within a 74 

much shorter rainy season, while Southwest Africa has a longer and less intense rainy 75 

season. The same amount of total rainfall can come in very different ways, which may 76 

cause distinctive ecosystem responses and structure. Understanding the impacts of 77 

these regional differences in intra-seasonal rainfall variability and their possible future 78 

changes on terrestrial ecosystems is critical for maintaining ecosystem services and 79 

planning adaptation and mitigation strategies for ecological and social benefits 80 

(Anderegg et al., 2013).  81 

 82 

[insert Figure 1] 83 

 84 

 The changes in intra-seasonal rainfall characteristics, specifically frequency, 85 

intensity and seasonality, have critical significance to ecosystem productivity and 86 

structure (Porporato et al., 2001; Weltzin et al., 2003; Williams and Albertson, 2006; 87 

Good and Caylor, 2011; Guan et al., 2014), but previous studies on this topic 88 
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(summarized in Table 1) have their limitations in the following aspects. First, existing 89 

relevant field studies mostly focus on a single ecosystem, i.e. grasslands, and 90 

subsequently only low rainfall regimes have been examined to date (mostly below 91 

800mm/year, see Table 1). Grasslands have the largest sensitivity to hydrological 92 

variabilities among all natural ecosystems (Scanlon et al., 2005; Guan et al., 2012), 93 

however inferences drawn from a single ecosystem are limited in scope and difficult 94 

to apply to other ecosystems. Second, even within grasslands, different studies have 95 

seemingly contradictory findings (see Table 1), and there is a lack of a comprehensive 96 

framework to resolve these inconsistencies. Specifically, whether increased rainfall 97 

intensity with decreased rainfall frequency has positive (Knapp et al., 2002; Fay et al., 98 

2003; Robertson et al., 2009; Heisler-White et al., 2009) or negative impacts 99 

(Heisler-White et al., 2009; Thomey et al., 2011) on grassland productivity is still 100 

under debate. Third, previous relevant studies mostly focus on the impacts of rainfall 101 

frequency and intensity (Table 1 and Rodríguez-Iturbe and Porporato, 2004), and 102 

largely overlook the possible changes in rainfall seasonality. Rainfall frequency and 103 

intensity mostly describe rainfall characteristics within the rainy season, but do not 104 

account for the impacts of interplay between rainy season length and dry season 105 

length (Guan et al., 2014). For ecosystems predominately controlled by water 106 

availability, rainy season length constrains the temporal niche for active plant 107 

physiological activities (van Schaik et al., 1993; Scholes and Archer, 1997), and large 108 

variations in rainfall seasonality can lead to significant shifts in biome distribution 109 

found from paleoclimate pollen records (e.g. Vincens et al., 2007). Given changes in 110 

rainfall seasonality have been found in various tropical regions (Feng et al., 2013) and 111 

have been projected in future climate (Biasutti and Sobel, 2009; Shongwe et al., 2009; 112 

Seth et al., 2013), studies investigating their impacts on terrestrial ecosystems are 113 

relatively rare, and very few field studies are designed to address this aspect (Table 1, 114 

Bates et al., 2006; Svejcar et al., 2003; Chou et al., 2008). Finally, there is an 115 

increasing trend of large-scale studies addressing rainfall variability and ecological 116 

responses using satellite remote sensing (Fang et al., 2005; Zhang et al., 2005; Good 117 

and Caylor, 2011; Zhang et al., 2013; Holmgren et al., 2013) and flux network data 118 
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(Ross et al., 2012). These large-scale studies are able to expand analyses to more 119 

types of ecosystems and different climate conditions, and provide valuable 120 

observation-based insights. However there are very few theoretical modeling works to 121 

corroborate this effort. All these above issues call for a comprehensive modeling study 122 

to investigate different aspects of intra-seasonal rainfall variability on terrestrial 123 

ecosystems spanning large environmental gradients and various biomes. 124 

 In this paper, we aim to study ecological impacts of intra-seasonal rainfall 125 

variability on terrestrial ecosystems. In particular, we design virtual “rainfall 126 

manipulation experiments” to concurrently shift intra-seasonal rainfall characteristics 127 

without changing total annual rainfall. We focus on the impacts of these different 128 

rainfall scenarios on ecosystem productivity (e.g. Gross Primary Production, GPP) 129 

and biome distributions in the African continent, simulated by an independently 130 

validated dynamic vegetation model SEIB-DGVM (Sato and Ise, 2012). Previous 131 

modeling approaches in this topic (Gerten et al., 2008; Hély et al., 2006) designed 132 

various rainfall scenarios by rearranging (halving, doubling or shifting) the rainfall 133 

amount based on the existing rainfall observations. In contrast to these approaches, we 134 

design a weather generator based on a stochastic rainfall model (Rodríguez-Iturbe et 135 

al., 1999), which allows us to implement a series of experiments by synthetically 136 

varying two of the three rainfall characteristics (rainfall intensity, rainfall frequency, 137 

and rainy season length) while fixing total annual rainfall at the current climatology. 138 

We choose Africa as our test-bed mostly because the following two reasons: (1) the 139 

rainfall regimes and biomes have large gradients varying from extremely dry 140 

grasslands to highly humid tropical evergreen forests; (2) Africa is a continent usually 141 

assumed to have few temperature constrains (Nemani et al., 2003), which will help to 142 

isolate the impacts of precipitation from temperature, as one challenge in attributing 143 

climatic controls on temperate ecosystems or Mediterranean ecosystems is the 144 

superimposed influences from both temperature and precipitation. The overarching 145 

science question we will address is: How do African ecosystems respond to possible 146 

changes in intra-seasonal rainfall variability (i.e. rainfall frequency, intensity and 147 

rainy season length)? 148 
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 149 

[insert Table 1] 150 

 151 

2. Materials and Methods 152 

2.1 Methodology overview 153 

Table 1 summarizes previous field-based rainfall manipulation experiments, such as 154 

the one that Knapp et al. (2002) did in a grassland that concurrently increasing rainfall 155 

frequency and decreasing rainfall intensity while fixing total rainfall. The central idea 156 

of our study is to design similar rainfall manipulation experiments but test them 157 

virtually in the model domain across large environment gradients. We manipulate 158 

rainfall changes through a weather generator based on a parsimonious stochastic 159 

rainfall model (Rodriguez-Iturbe et al., 1984). We model the total amount of rainfall 160 

during rainy season as a product of the three intra-seasonal rainfall characteristics for 161 

the rainy season, rainfall frequency (λ, event/day), rainfall intensity (α, mm/event), 162 

and rainy season length (Tw, days) (More details in section 2.3). Thus it is possible to 163 

simultaneously perturb two of the rainfall characteristics away from their 164 

climatological values while preserving the mean annual precipitation (MAP) 165 

unchanged. We then feed these different rainfall scenarios into a well-validated 166 

dynamic vegetation model (SEIB-DGVM, section 2.2) to study simulated ecosystem 167 

responses. Detailed experiments design is described in section 2.5. 168 

 169 

2.2 SEIB-DGVM model and its performances in Africa 170 

We use a well-validated vegetation dynamic model SEIB-DGVM (Sato et al., 2007) 171 

as the tool to study ecosystem responses to different rainfall variabilities. This model 172 

follows the traditional “gap model” concept (Shugart, 1998) to explicitly simulate the 173 

dynamics of ecosystem structure and function for individual plants at a set of virtual 174 

vegetation patches, and uses results at these virtual patches as a surrogate to represent 175 

large-scale ecosystem states. Thus individual trees are simulated from establishment, 176 

competition with other plants, to death, which creates “gaps” for other plants to 177 

occupy and develop. SEIB-DGVM includes mechanical-based and empirical-based 178 
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algorithms for land physical processes, plant physiological processes, and plant 179 

dynamic processes. SEIB-DGVM contains algorithms that explicitly involve the 180 

mechanisms of plant-related water stress (Figure 2; Sato and Ise, 2012). With similar 181 

concepts to previous studies (e.g. Milly, 1992; Porporato et al., 2001), the current 182 

SEIB-DGVM implements a continuous “water stress factor” (Equation 2) based on 183 

the soil moisture status (Equation 1), scaling from 0 (most stressful) to 1 (with no 184 

stress), which then acts to scale the stomatal conductance for plant transpiration and 185 

carbon assimilation.   186 

statwater = (S − Sw) / (Sf − Sw)    (Equation 1) 187 

Water stress factor = 2*statwater - statwater
2    (Equation 2) 188 

where S, Sw and Sf refer to the fraction of volumetric soil water content within the 189 

rooting depth, at the wilting point, and at field capacity, respectively. Figure 2 190 

provides a schematic diagram of “water stress factor” from the SEIB-DGVM, and we 191 

also include an approximated linear model that has been widely adopted elsewhere 192 

(e.g. Milly, 1992; Porporato et al., 2001). The linear model uses an extra variable S*, 193 

so called “critical point” of soil moisture: when S>S*, there is no water stress (water 194 

stress factor =1); and when S<S*, water stress factor linearly decreases with the 195 

decrease of S. Though SEIB-DGVM adopts a quadratic form for “water stress factor”, 196 

it essentially functions similarly as the linear model, such that S* distinguishes two 197 

soil moisture regimes that below which there is a large sensitivity of water stress to 198 

soil moisture status, and above which there is little water stress. Understanding how 199 

this “water stress factor” functions is the key to explain the following results.  200 

 201 

[insert Figure 2] 202 

 203 

SEIB-DGVM allows development of annual and perennial grasses as well as multiple 204 

life cycles of grass at one year based on environmental conditions. Multiple life cycles 205 

of tree growth per year are possible in theory but rarely happen in simulations (Sato 206 

and Ise, 2012). Soil moisture status is the predominant factor to determine LAI of the 207 

vegetation layer, which influences maximum daily productivity and leaf phenology. 208 
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When LAI exceeds 0 for 7 continuous days, dormant phase of perennial vegetation 209 

layer changes into growth phase. While when LAI falls below 0 for 7 continuous days, 210 

growth phase switches to dormant phase (Sato et al, 2007). SEIB-DGVM also 211 

explicitly simulates light conditions and light competition among different PFTs in the 212 

landscape based on its simulated 3D canopy structure and radiative transfer scheme 213 

(Sato et al, 2007).  214 

SEIB-DGVM has been tested both globally (Sato et al., 2007) and regionally for 215 

various ecosystems (Sato et al., 2010; Sato, 2009; Sato and Ise, 2012), whose 216 

simulated results compare favorably with ground observations and satellite remote 217 

sensing measures for ecosystem composition, structure and function. In particular, 218 

SEIB-DGVM has been successfully validated and demonstrated its ability in 219 

simulating ecosystem structure and function in the African continent (Sato and Ise, 220 

2012). Two plant function types (PFTs) of tropical woody species are simulated by 221 

SEIB-DGVM in Africa: tropical evergreen trees and tropical deciduous trees. The 222 

distribution of these two woody types in the simulation is largely determined by 223 

hydro-climatic environments. Tropical evergreen trees only develop in regions where 224 

water resources are sufficient all year around, so they can maintain leaves for all 225 

seasons; otherwise, tropical deciduous trees could survive and dominate the landscape 226 

as they can shed leaves if there is no sufficient water supply in its root zone during the 227 

dry season (Sato and Ise, 2012). Trees and grasses coexist in a cell, with the floor of a 228 

virtual forest monopolized by one of the two grass PFTs, C3 or C4 grass. The 229 

dominating grass type is determined at the end of each year by air temperature, 230 

precipitation, and CO2 partial pressure (Sato and Ise, 2012).  231 

 SEIB-DGVM was run at 1° spatial resolution and at the daily step. It was spun-up 232 

for 2000 years driven by the observed climate (1970-2000) repeatedly for the soil 233 

carbon pool to reach steady state, followed by 200 years simulation driven by the 234 

forcings based on the experiment design in Section 2.4. Because our purpose is to 235 

understand the direct impacts of intra-seasonal rainfall variability, we turned off the 236 

fire component of SEIB-DGVM to exclude fire-mediated feedbacks in the results. 237 

Though we are fully aware of the important role of fire in interacting with rainfall 238 
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seasonality and their influence on African ecosystems (Bond et al., 2005; Lehmann et 239 

al., 2011; Staver et al., 2012), studying these interactions is beyond the scope of this 240 

work. For the similar reason, we fixed the atmospheric CO2 concentration at 380 241 

ppmv to exclude possible impacts of CO2 fertilization effects. 242 

 243 

2.3 Synthetic weather generator 244 

The synthetic weather generator used here has two major components: i) to 245 

stochastically generate daily rainfall based on a stochastic rainfall model, and ii) to 246 

conditionally sample all other environmental variables from historical records to 247 

preserve the covariance among climate forcing variables.  248 

The stochastic rainfall model can be expressed as MAP=α λ Tw / fw, and we set fw 249 

to be 0.9, i.e. the period including 90% of total annual rainfall is defined as “rainy 250 

season” (exchangeable with “wet season” hereafter). In particular, we first use 251 

Markham (1970)’s approach to find the center of the rainy season, and then extend the 252 

same length to both sides of the center until the total rainfall amount in this temporal 253 

window (i.e. “rainy season”) is equal to 90% of the total annual rainfall. Rainy season 254 

and dry season have their own rainfall frequency and intensity. Two seasons are 255 

separately modeled based on the Market Poisson Process. Here we only focus on and 256 

manipulate rainy-season rainfall characteristics in our study, as rainy-season rainfall 257 

accounts for almost all the meaningful rainfall inputs for plant use. Thus in the 258 

following paper, whenever we mention α or λ, we refer to those during the rainy 259 

season.  260 

In this rainfall model, any day can be either rainy or not, and a rainy day is 261 

counted as one rainy event; rainfall events occur as a Poisson Process, with the 262 

parameter 1/λ (unit: days/event) being the mean intervals between rainfall events, and 263 

rainfall intensity α for each rainfall event following an exponential distribution, with α 264 

being the mean rainfall intensity per event (Rodríguez-Iturbe et al., 1999). The wet 265 

season length is modeled as a beta distribution bounded from 0 to 1, scaled by 365 266 

days. All the necessary parameters to fit for the stochastic rainfall model (including 267 

the mean and variance of rainfall frequency, intensity and length of wet and dry 268 
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seasons) were derived from the satellite-gauge-merged rainfall measurement from 269 

TRMM 3b42V7 (Huffman et al., 2007) for the period of 1998 to 2012, based on the 270 

above assumptions for the rainfall process. Specifically, we applied our definition of 271 

“rainy season” to each year of the TRMM rainfall data for per pixel, and calculated 272 

the mean and variance of the “rainy season length”, using which we fitted the beta 273 

distribution for Tw. For rainfall frequency and intensity, we lumped all the wet or dry 274 

season rainfall record together to derive their parameters. The two steps of the 275 

synthetic weather generator are described below:  276 

Step 1: Model the daily rainfall following the Marked Poisson process described 277 

above. In particular, for a specific year, we first stochastically generate the wet season 278 

length by sampling from the beta distribution, and the dry season length is determined 279 

accordingly. Then we generate the daily rainfall for wet and dry season respectively.  280 

Step 2: Based on the simulated daily rainfall time series in Step 1, we conditionally 281 

sample temperature, wind, and humidity from the Global Meteorological Forcing 282 

Dataset (GMFD, Sheffield et al., 2006), as well as cloud fraction and soil temperature 283 

from the Climate Forecast System Reanalysis (CFSR) from National Centers for 284 

Environmental Prediction (NCEP) (Saha et al., 2010). To sample for a specific day, all 285 

the historical record within a 21-day time window centered at that specific day makes 286 

up a sampling pool. From the sampling pool, we choose the day such that the 287 

historical rainfall amount of the chosen day is within (100-30)% to (100+30)% of the 288 

simulated daily rainfall amount. We then draw all the environmental variables (except 289 

rainfall) on that sampled day to the new climate forcing. If we can find a sample from 290 

the pool based on the above rule, this sampling is called “successful”. When there is 291 

more than one suitable sample, we randomly select one. When there is no suitable 292 

sample, we randomly select one day within the pool. The mean “successful” rate for 293 

all the experiments and ensembles across Africa is 83%. 294 

 To test the validity of the synthetic weather generator, we ran SEIB-DGVM using 295 

the historical climate record (Sclimatology) and the synthetic forcing (Scontrol), with the 296 

latter generated using the weather generator based on the rainfall characteristics 297 

derived from the former. Figure S1 shows that the SEIB-DGVM simulations driven 298 
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by these two different forcings generate similar biome distributions with a Cohen’s 299 

Kappa coefficient of 0.78 (Cohen, 1960), and similar GPP patterns in Africa, with the 300 

linear fit of annual GPP as: GPP(Scontrol)= 1.03×GPP(Sclimatology)+0.215 (R2=0.89, 301 

P<0.0001). Both biome and GPP patterns are consistent with observations (Sato and 302 

Ise, 2012). These results provide confidence in using the synthetic weather generator 303 

and SEIB-DGVM to conduct the further study. 304 

 305 

2.4 Experiment design  306 

Three experiments are designed as follows:   307 

Exp 1 (Perturbation of rainfall frequency and intensity, termed as Sλ-α hereafter) 308 

Simulations forced by the synthetic forcings with varying λ and α simultaneously for 309 

wet season (20% increases of λ and corresponding decreases of α to make MAP 310 

unchanged; 20% decreases of λ and corresponding increases of α to make MAP 311 

unchanged; no change for dry season rainfall characteristics), while fixing Tw at the 312 

current climatology; 313 

Exp 2 (Perturbation of rainfall frequency and rainy season length, termed as STw-λ) 314 

Simulations forced by the synthetic forcing with varying Tw and λ simultaneously for 315 

wet season (20% increases of Tw and corresponding decreases of λ to make MAP 316 

unchanged; 20% decreases of Tw and corresponding increases of λ to make MAP 317 

unchanged; no change for dry season characteristics), while fixing α at the current 318 

climatology; 319 

Exp 3 (Perturbation of rainy season length and intensity, termed as STw-α) Simulations 320 

forced by the synthetic forcing with varying Tw and α simultaneously for wet season 321 

(20% increases of Tw and corresponding decreases of α to make MAP unchanged; 322 

20% decreases of Tw and corresponding increases of α to make MAP unchanged; no 323 

change for dry season characteristics), while fixing λ at the current climatology. 324 

 Because λ and Tw have bounded ranges (λ~[0, 1] and Tw~[0, 365]), if these two 325 

variables after perturbation exceeds the range, we would force their value to be the 326 

lower or upper bound, and rearrange the other corresponding rainfall characteristic to 327 

ensure MAP unchanged. Each rainfall scenario has six ensemble realizations of 328 
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synthetic climate forcings to account for the stochasticity of our synthetic weather 329 

generator. 330 

 331 

3. Results  332 

We present the differences in simulated biome distributions of the three experiments 333 

(i.e. Sλ-α, STw-λ, STw-α) in Figure 3, and their spatial patterns are shown in Figure S2 334 

and S3. Differences in simulated annually averaged soil moisture and GPP for each 335 

experiment are shown in Figure 4 and 6. These differences represent the simulated 336 

ecosystem sensitivity to the slight perturbation of intra-seasonal rainfall characteristics 337 

deviating from the current climatology. To further explore how MAP and these 338 

rainfall characteristics affect the simulated GPP, Figure 5 shows the difference of 339 

simulated GPP as a function of MAP and a perturbed rainfall characteristic in the 340 

corresponding experiment. We term Figure 5 as “GPP sensitivity space”, and “positive 341 

GPP sensitivity” means that GPP changes at the same direction with MAP or rainfall 342 

characteristics, and vise versa for “negative GPP response”. These “GPP sensitivity 343 

spaces” are generated based on the aggregated mean GPP in each bin of the rainfall 344 

properties. The bin size for MAP, rainfall frequency, rainfall intensity and rainy 345 

season length are 100 mm/year, 0.05 event/day, 1 mm/event and 15 days respectively. 346 

We also provide the standard error (SE) of the “GPP sensitivity spaces” in each bin to 347 

assess their uncertainties, with higher SE meaning larger uncertainties. 
n

SE  , 348 

where   and n refer to the standard deviation of GPP values and the sample size in 349 

each bin respectively. A series of illustrations in Figure 6 were generalized from the 350 

simulated time series, and are used to explain the underlying mechanisms.  351 

 352 

[insert Figure 3; Figure 4; Figure 5] 353 

 354 

3.1 Ecosystem sensitivity to rainfall frequency and intensity (Experiment Sλ-α) 355 

Experiment Sλ-α assesses ecosystem responses after increasing rainfall frequency λ 356 

and decreasing rainfall intensity α (λ↑, α↓) under a fixed total annual rainfall. The 357 
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simulated biome distributions show that a small portion of regions are converted from 358 

woodland to grassland at low rainfall regime (~500 mm/year), corresponding to a 359 

decrease of GPP in these regions. In the high rainfall regime (around 1500 mm/year, 360 

Figure 3a), increasing rainfall frequency significantly converts tropical evergreen 361 

forests into woodlands. In the intermediate rainfall regime (600-1000 mm/year), there 362 

is little change in biome distributions. We further check the spatial patterns of 363 

differences in annual mean soil moisture and annual total GPP (Figure 4a and 5b). We 364 

find that GPP increases with increasing rainfall frequency across most of the Africa 365 

continent, except in the very dry end (in the southern and eastern Africa) and the very 366 

wet regions (in central Africa and northeastern Madagascar). This GPP pattern mostly 367 

mirrors the soil moisture change in woodlands and grasslands (Figure 4b), except the 368 

wet tropics, where the changes of soil moisture and GPP are reversed. 369 

Figure 5a shows the GPP sensitivity as a function of MAP and the climatological 370 

rainfall frequency, and we find three major patterns:  371 

Pattern 1.1: Negative GPP sensitivity shows up in the very dry end of MAP regime 372 

(MAP<400 mm/year) and with relatively low rainfall frequency (λ<0.3 event/day), i.e. 373 

GPP decreases with more frequent but less intense rainfall in this low rainfall range.  374 

Pattern 1.2: Across most rainfall ranges (MAP from 400 mm/year to 1600 mm/year), 375 

increasing frequency of rainfall (and simultaneously decreasing rainfall intensity) lead 376 

to positive GPP sensitivity. This positive GPP sensitivity peaks at the low range of 377 

rainfall frequency (~0.35 event/day) and around the MAP of 1000 mm/year.  378 

Pattern 1.3: At the high range of MAP (>1800 mm/year) with low rainfall frequency 379 

(~0.4 event/day), GPP decreases with increased rainfall frequency. 380 

 The relationship of GPP sensitivity to MAP and rainfall intensity (Fig. 6c) has no 381 

clear patterns as previous ones, mostly because the GPP sensitivity space (Fig. A4c) 382 

contains large uncertainties (Fig. A4d, shown as large variance in the data). Thus we 383 

will not over-interpret the pattern in Fig. 6c. 384 

Pattern 1.1 and Pattern 1.2 can be explained by the illustrative time series in 385 

Figure 6a and 6b, respectively. Figure 6a shows that when rainfall events are small 386 

and very infrequent, increasing rainfall frequency while decreasing intensity would 387 
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cause more frequent downcrossings of soil moisture at the wilting point Sw, which 388 

subsequently would reduce the effective time of carbon assimilation and plant growth 389 

(i.e. when soil moisture is below Sw, plants would be in the extreme water stress and 390 

slow down or stop physiological activity). This case only happens where MAP is very 391 

low with low frequency and the biome is predominantly grasslands, which explains 392 

why negative changes in soil moisture and GPP in Figure 4a and 4b are distributed in 393 

those regions. This result also corroborates the field findings of the negative impacts 394 

from increasing rainfall frequency in Heisler-White et al.(2009) and Thomey et al. 395 

(2011) at low rainfall regimes.  396 

Figure 6b provides the hydrological mechanism for the positive sensitivity of soil 397 

moisture and GPP with increasing rainfall frequency over the most African continent 398 

(Pattern 1.2). Once individual rainfall event has enough intensity and rainfall 399 

frequency is enough, downcrossings of Sw would not easily happen. Instead, the 400 

accumulative rainy-season soil moisture becomes the dominant control of plant 401 

growth, and increasing rainfall frequency has led to a significant increase of soil 402 

moisture for plant water use (Figure 4a and 4b). This conclusion drawn from our 403 

numerical modeling is consistent with previous findings in Rodríguez-Iturbe and 404 

Porporato (2004) based on stochastic modeling. We also find that this positive GPP 405 

sensitivity reaches to its maximum in the intermediate total rainfall (~1000 mm/year) 406 

and relatively low rainfall frequency (~0.35 event/day), indicating that in these 407 

regimes increasing rainfall frequency could most effectively increase soil moisture for 408 

plant water use and create marginal benefits of GPP to the increased rainfall frequency. 409 

Further increase in large total annual rainfall or rainfall frequency would reduce the 410 

sensitivity to water stress with fewer downcrossings of soil moisture critical point S*; 411 

and once the soil moisture is always ample (i.e. above S*), the changes in either MAP 412 

or rainfall frequency would not alter plant water stress.   413 

Pattern 1.3 also shows a negative GPP sensitivity, but its mechanism is different 414 

from the previous case of Pattern 1.1. In regions with total rainfall usually more than 415 

1800 mm/year, SEIB-simulated tropical forests exhibit radiation-limitation rather than 416 

water-limitation during wet season. Increase of rainfall frequency at daily scale would 417 
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enhance cloud fraction and suppress plant productivity in these regions (Graham et al., 418 

2003). Thus even though soil moisture still increases (Figure 4a), GPP decreases with 419 

increased rainfall frequency. This mechanism also explains why tropical evergreen 420 

forests shrink its area with increased rainfall frequency (Figure 3a).  421 

It is worth noting that the magnitude of GPP changes due to rainfall frequency 422 

and intensity is relatively small in most of the woodlands, but can be relatively large 423 

for drylands with MAP below 600 mm/year (up to 10-20% of annual GPP). This 424 

pattern also explains why only modest changes in biome distribution happen between 425 

woodlands and grasslands in Sλ-α (Figure 3a).  426 

 427 

[insert Figure 6] 428 

 429 

3.2 Ecosystem sensitivity to rainfall seasonality and frequency (Experiment STw-λ) 430 

Experiment STw-λ assesses ecosystem responses after increasing rainy season length 431 

and decreasing rainfall frequency (i.e. Tw↑, λ↓) under a fixed total annual rainfall. The 432 

simulated biome distribution shows a gain of area in tropical evergreen forests 433 

converted from woodlands. The northern Africa has an area increase of woodlands 434 

converted from grasslands, and African Horn region has a small expansion of 435 

grasslands into woodlands (Figure 3b). Figure 4c and 4d show that increasing rainy 436 

season length Tw and decreasing frequency λ would significantly increase annual 437 

mean soil moisture and GPP (up to 30%) in most woodland area. Meanwhile 438 

decreased soil moisture and GPP are found in the southern and eastern Africa. 439 

Tropical evergreen forests show little response. We further explore the GPP sensitivity 440 

space in Figure 5e and 5g, and find the following robust patterns (based on small 441 

standard errors shown in Figure 5f and 5h):  442 

Pattern 2.1: The negative GPP sensitivity tends to happen where MAP is mostly 443 

below 1000 mm/year with long rainy season length (Tw>150 days) and low rainfall 444 

frequency (λ<0.35 event/day).  445 

Pattern 2.2: When MAP and rainfall frequency are large enough (MAP>1000 446 

mm/year and λ>0.4 event/day), decreasing λ while increasing Tw would significantly 447 
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increase GPP. The maximum positive GPP sensitivity happens at the intermediate 448 

MAP range (1100-1500 mm/year) and the high rainfall frequency (λ~0.7 event/day).  449 

Pattern 2.3: There exists an “optimal rainy season length” for relative changes in 450 

ecosystem productivity across large MAP ranges (the white area between the red and 451 

blue space in Figure 5e). For the same MAP, any deviation of Tw from the “optimal 452 

rainy season length” would reduce GPP. This “optimal rainy season length” follows 453 

an increasing trend with MAP until 1400 mm/year.  454 

  Figure 6c explains the hydrological mechanism for the negative GPP sensitivity 455 

in Pattern 2.1. In the situation with low MAP and infrequent rainfall events, 456 

decreasing rainfall frequency and expanding rainy season length (i.e. Tw↑, λ↓) would 457 

lead to longer intervals between rainfall events and possibly longer excursions below 458 

Sw, which would disrupt continuous plant growth and have detrimental effects on 459 

ecosystem productivity. It is worth noting that long rainy season in dryland (Figure 5e) 460 

is usually accompanied with low rainfall frequency (Figure 5g). The southern African 461 

drylands (south of 15°S) typically fall in this category, and these regions thus have 462 

negative GPP sensitivity (Figure 4c and 4d), accompanied by a small biome 463 

conversion from woodlands to grasslands (Figure 3b).  464 

 Figure 6d explains the hydrological mechanisms for the positive GPP sensitivity 465 

in Pattern 2.2. When rainfall is ample enough to maintain little or no water stress 466 

during rainy season, increasing the interval of rainfall events may introduce little 467 

additional water stress but can significantly extend the growing season. This situation 468 

mostly happens in woodlands, where limited water stress exists during rainy season, 469 

and dry season length is the major constraint for plant growth. Thus the increase of 470 

rainy season length extends the temporal niche for plant growth, and leads to a 471 

significant woodland expansion to grasslands as well as an expansion of tropical 472 

evergreen forests to woodlands (Figure 3b). 473 

 The little GPP sensitivity in tropical evergreen forest regions is mostly attributed 474 

to the long rainy season length in this ecosystem. Thus further increasing Tw may 475 

reach to its saturation (365 days) and has little impact to ecosystem productivity. This 476 

also explains why the magnitude of GPP sensitivity is much smaller at high MAP 477 
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range than at the intermediate MAP range.  478 

 The finding of “optimal rainy season length” across different rainfall regimes 479 

(Figure 5e) is consistent with our previous empirical finding about the similar pattern 480 

of “optimal rainy season length” for tree fractional cover in Africa derived based on a 481 

satellite remote sensing product (Guan et al., 2014). The existence of “optimal rainy 482 

season length” fully demonstrates the importance to explicitly consider the non-linear 483 

impacts of rainy season length on ecosystem productivity under climate change, 484 

which has been largely overlooked before. 485 

 486 

3.3 Ecosystem sensitivity to rainfall seasonality and intensity (STw-α) 487 

Results of Experiment STw-α have many similarities with those of STw-λ, including the 488 

similar changes in biome distributions (Figure 3), soil moisture and GPP patterns 489 

(Figure 4e and 4f). We further find that the GPP sensitivity space with MAP and rainy 490 

season length for STw-α (Figure 5i) is also similar with that for STw-λ (Figure 5e). One 491 

new finding is that rainfall intensity has little impact on GPP, as the contour lines in 492 

Figure 5k are mostly parallel with y-axis (i.e. rainfall intensity).  493 

Figure 6e and 6f explain the governing hydrological mechanisms for the patterns 494 

of STw-α, which also have many similarities with STw-λ. For the negative case (Figure 495 

6e), decreasing rainfall intensity and increasing rainy season length in the very low 496 

MAP regime may lead to more downcrossings of Sw and interrupt continuous plant 497 

growth. The positive case (Figure 6e) is similar as that in Figure 6d, i.e. the 498 

repartitioning of excessive wet-season rainfall to the dry season for an extended 499 

growing period would significantly benefit plant growth and possible increase tree 500 

fraction cover.  501 

 502 

4. Discussion 503 

In this paper we provide a new modeling approach to systematically interpret the 504 

ecological impacts from changes in intra-seasonal rainfall characteristics (i.e. rainfall 505 

frequency, rainfall intensity and rainy season length) across biomes and climate 506 

gradients in the African continent. 507 
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 508 

4.1 Limitation of the methodology 509 

Though our modeling framework is able to characterize the diverse ecosystem 510 

responses to the shifts in different rainfall characteristics, it nevertheless has its 511 

limitations. The current rainfall model only deals with the case of single rainy season 512 

per year, and approximates the case of double rainy seasons per year to be the single 513 

rainy season case. This assumption may induce unrealistic synthetic rainfall patterns 514 

in the equatorial dryland regions, in particular the Horn of Africa. Thus the simulated 515 

sensitivity of these regions may be less reliable. We also assume that rainfall 516 

frequency and intensity are homogenous throughout wet seasons (or dry seasons), but 517 

in reality they have seasonal variations. We only consider rainy season length for 518 

rainfall seasonality, and neglect the possible temporal phase change; in reality, rainfall 519 

seasonality change usually has length and phase shifts in concert. These 520 

rainfall-model-related limitations can be possibly overcame by simulating smaller 521 

intervals of rainfall processes (e.g. each month has their own α and λ) rather than 522 

simulating the whole wet or dry season using one fixed set of α and λ. Besides, only 523 

using one ecosystem model also means that the simulated ecosystem sensitivity can 524 

be model-specific. Though magnitudes or thresholds for the corresponding patterns 525 

may vary depending on different models, we argue that the qualitative results for the 526 

GPP sensitivity patterns (e.g. Figure 4 and Figure 5) should hold as the necessary 527 

ecohydrological processes have been incorporated in SEIB-DGVM. We also 528 

recognize that to exclude fire impacts in the current simulation may bring some 529 

limitation for this study, as evidence shows that many savanna regions can be bistable 530 

due to fire effects (Staver et al 2011; Hirota et al 2011; Higgins and Scheiter 2012; 531 

also see for a possible rebuttal in Hanan et al, 2013). Changes in rainfall regimes not 532 

only have direct effects on vegetation productivity, but can also indirectly affect 533 

ecosystems through its interactions with fire, with rapid biome shifts being a possible 534 

consequence. These feedbacks can be important in situations when the changes in 535 

growing season length are related to fuel loads, fuel moisture dynamics and hence fire 536 

intensity (Lehmann et al., 2011). Quantifying these fire-rainfall feedbacks will be the 537 
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important future direction to pursue. 538 

 539 

4.2 Clarifying the impacts of rainfall frequency and intensity on ecosystem 540 

productivity 541 

In this modeling study, we provide a plausible answer to possibly resolve the previous 542 

debate about whether increasing rainfall intensity (or equivalently decreasing rainfall 543 

frequency, i.e. λ↓, α↑) has positive or negative impacts on above-ground primary 544 

productivity under a fixed annual rainfall total. We identify that negative GPP 545 

sensitivity with increased rainfall frequency is possible at very low MAP range (~ 400 546 

mm/year) with relatively low rainfall frequency (<0.35 event/day) (Figure 5a), due to 547 

the increased downcrossings of soil moisture wilting point, which restricts plant 548 

growth (Figure 6a). This derived MAP threshold (~400 mm/year) is consistent with 549 

our meta-analysis based on the previous field studies (Table 1), which shows a 550 

threshold of MAP at 340 mm/year separates positive and negative impacts of more 551 

intense rainfall on aboveground net primary production (ANPP). Our findings are also 552 

consistent with another study about increased tree encroachments with increased 553 

rainfall intensity in low rainfall regime (<544mm/year, Kulmatiski and Beard, 2013), 554 

which essentially follows the same mechanism as identified in Figure 6a.  555 

In addition, we thoroughly investigated the ecosystem responses across a wide 556 

range of annual rainfall in Africa. We find that beyond the very low rainfall range 557 

(below 400 mm/year), most grasslands and woodlands would benefit from increasing 558 

rainfall frequency, which also corroborate the previous large-scale findings about the 559 

positive effects of increased rainfall frequency (and decreased rainfall intensity) for 560 

tree fractions across the African continent (Good and Caylor, 2011). The only 561 

exception happens at the very wet end of MAP (~1800mm/year) where cloud-induced 562 

radiation-limitation may suppress ecosystem productivity with increased rainfall 563 

frequency. We also find that changes in rainfall frequency and intensity mostly affect 564 

grassland-dominated savannas (changes of GPP up to 20%), and the corresponding 565 

effects are much smaller in woodlands and have little impact on woodland distribution. 566 

Though this work is only based on a single model, it provides a primary assessment 567 
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for understanding of interactive changes between λ and α in ecosystem functioning, 568 

and expands the analysis to a wide range of annual rainfall conditions compared with 569 

previous studies (e.g. Porporato et al., 2004).  570 

 571 

4.3 Ecological importance of rainy season length 572 

The results involving rainy season length (i.e. STw-λ and STw-α) provide evidence for 573 

the ecological importance of rainfall seasonality. The magnitudes of changes in soil 574 

moisture, GPP and biome distribution in STw-λ and STw-α are much larger than those of 575 

Sλ-α, with almost one order of magnitude difference. These disproportional impacts of 576 

Tw indicate that slight changes in rainy season length could modify biome distribution 577 

and ecosystem function more dramatically compared with the same percentage 578 

changes in rainfall frequency and intensity. We also notice that STw-λ and STw-α have 579 

similar results. This is because that both λ and α describe rainfall characteristics 580 

within wet season, while Tw describes rainfall characteristics of both dry season and 581 

wet season. Cautions are required that our simplified treatment rainy season length 582 

may overestimate its importance, and we did not consider the rainfall phase 583 

information here.  584 

Given the importance of rainy season length, its ecological impacts under climate 585 

change are largely understudied, though substantial shifts in rainfall seasonality have 586 

been projected in both Sahel and South Africa (Biasutti and Sobel, 2009; Shongwe et 587 

al., 2009; Seth et al., 2013). Here we only address the rainfall seasonality in terms of 588 

its length, and future changes in rainfall seasonality may modify their phase and 589 

magnitude in concert. The climate community has focused on the increase of extreme 590 

rainfall events (Field et al., 2012), which could be captured by the changes in λ or α 591 

towards heavier tails in their distribution. However, explicit and systematic 592 

assessments and projection on rainfall seasonality changes (including both phase and 593 

magnitude) are still limited even in the latest Intergovernmental Panel on Climate 594 

Change (IPCC) synthesis reports (Field et al., 2012; Stocker et al., 2013). More 595 

detailed studies related to these changes and their ecological implications are required 596 

for future hydroclimate-ecosystem research.  597 
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 598 

4.4 Not all rainfall regimes are ecologically equivalent 599 

As Figure 1 gives a convincing example that the same total annual rainfall may arrive 600 

in a very different way, our results further demonstrate that ecosystems respond 601 

differently to the changes in these intra-seasonal rainfall variability. For example, with 602 

similar MAP, drylands in West Africa and Southwest Africa show reversed responses 603 

to the same changes in intra-seasonal rainfall variability. As shown in the experiments 604 

of STw-λ and STw-α, increasing Tw while decreasing λ or α generates slightly positive 605 

soil moisture and GPP sensitivity in West Africa (Figure 4c and 4d), but would cause 606 

relatively large GPP decrease in Southwest Africa. The prior hydroclimate conditions 607 

of these two regions can explain these differences: West Africa has much shorter rainy 608 

season with more intense rainfall events; in contrast, Southwest Africa has a long 609 

rainy season but many small and sporadic rainfall events. As a result, under a fixed 610 

annual rainfall total, slightly increasing rainy season and meanwhile decreasing 611 

rainfall intensity would benefit plant growth in West Africa, but the same change 612 

would lengthen dry spells in Southwest Africa and bring negative effects to the 613 

ecosystem productivity. We further deduce that the rainfall use efficiency (RUE, 614 

defined as the ratio of plant net primary production to total rainfall amount) in these 615 

two drylands could be different: West Africa may have lower RUE, and the intense 616 

rainfall could lead to more infiltration-excess runoff, and thus less water would be 617 

used by plants; while Southwest Africa can have higher RUE, because its sporadic 618 

and feeble rainfall events would favor grass to fully take the advantage of the 619 

ephemerally existed water resources. This conclusion is partly supported by Martiny 620 

et al. (2007) based on satellite remote sensing. We further hypothesize that landscape 621 

geomorphology in these two drylands may be different and therefore reflect 622 

distinctive rainfall characteristics. More bare soil may exist in West Africa grasslands 623 

due to intense-rainfall-induced erosion, while Southwest Africa may have more grass 624 

fraction and less bare soil fraction. Testing these interesting hypotheses is beyond the 625 

scope of this paper, but is worthy the further exploration.  626 

 627 
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Table 1. Summary of previous representative studies on assessing the impacts of rainfall characteristics (i.e. rainfall frequency, intensity and 

seasonality) on the structure and function of terrestrial ecosystem.  

Focus: frequency (freq); intensity (int); seasonality (sea); variation (CV).  

Methods: Field Experiments (Field); Remote Sensing (RS); Flux Tower (Flux).  

Major Conclusion: increasing rainfall intensity (or decreasing frequency) has positive impacts (int+); increasing intensity (or decreasing 

frequency)has negative impacts (int-); increasing rainfall CV has positive impacts (CV+); increasing rainfall CV has negative impacts (CV-).  

 

Focus Methods Spatial Scale Time scale MAP (mm/year) Ecosystem type Major Conclusion Reference 

freq; int RS Africa continent intra-annual 

climatology 

[0,3000] Africa all (int-) woody cover Good and Caylor, 

2011 

freq; int RS US  [163,1227] US (int-) ANPP greatest in arid grassland (16%)and 

Mediterranean forest (20%) and less for mesic grassland 

and temperate forest (3%) 

Zhang et al., 2013 

freq; int RS Pan-tropics (35°N to 

15°S) 

inter-annual [0,3000] Tropical 

ecosystems 

(CV+) wood cover in dry tropics; (CV-) wood cover in 

wet tropics 

Holmgren et al., 

2013 

freq; int RS Northern China intra-annual [100,850] temperate 

grassland and 

forests 

(int-) NDVI for temprate grassland and broadleaf 

forests, not for coniferous forest 

Fang et al., 2005 

freq; int Flux Northern Hemisphere intra-annual [393±155,906±243

] 

shrubland and 

forest 

(int-) GPP, RE and NEP Ross et al., 2012 

seas RS Africa continent climatology [0,3000] Africa all rainy season onset and offset controls vegetation 

growing season 

Zhang et al., 2005 

freq; int Field plot (Kansas, USA) intra-annual 615 grassland (int-) ANPP Knapp et al., 2002 
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(fix MAP) 

freq; int 

(fix MAP) 

Field plot (Kansas, USA) intra-annual 835 grassland (int-) ANPP Fay et al., 2003 

increase 

seasonal 

rainfall 

Field plot(Taxes, USA) intra-annual 365 grassland (int-) ANPP Robertson et al., 

2009 

freq; int Field plot (Kansas, USA) intra-annual [320,830] grassland (int-)ANPP for MAP=830mm/yr; (int+)ANPP for 

MAP=320mm/yr 

Heisler-White et 

al., 2009 

freq; int Field plot( New Mexico, 

USA) 

intra-annual 250 grassland (int+) ANPP Thomey et al., 

2011 

freq; int 

(fix MAP) 

Field Plot(Kansas, USA) intra-annual 834 grassland (int-) soil CO2 flux Harper et al., 2005 

freq; int 

(fix MAP) 

Field plot(Kruger National 

Park, South Africa) 

intra-annual 544 sub-tropical 

savanna 

(int+) wood growth; (int-) grass growth Kulmatiski and 

Beard, 2013 

sea 

(fix MAP) 

Field plot(Oregon, USA) intra-annual [140,530] grassland impact biomass and bare soil fraction Bates et al., 2006;  

Svejcar et al., 2003 

sea Field       

freq; int; 

MAP 

Field plot(South Africa) intra-annual [538,798] grassland (int-) ANPP Swemmer et al., 

2007 

MAP; sea Field plot(Spain) intra-/inter-an

nual 

242 grassland Mediterranean dryland ecosystem has more resilience 

for intra- and inter-annual changes in rainfall 

Miranda et al., 

2008 
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Figure 1. a-b: Spatial pattern of the rainfall characteristics in Africa: a-MAP; b-rainfall 

intensity; c-rainfall frequency; d-rainy season length. The black-line identified areas refer to 

two savanna regions in West and Southwest Africa. e-f: Normalized histograms of the rainfall 

characteristics in two savanna regions of West and Southwest Africa. e-MAP (bin width for 

the x-axis: 100 mm/year); f-rainfall intensity (bin width for the x-axis: 1 mm/event); g-rainfall 

frequency (bin width for the x-axis: 0.1 event/day); h-rainy season length (bin width for the 

x-axis: 20 days).  
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Figure 2. Schematic diagram of water stress factor ranging from 0 (most stressful) to 1 (no 

stress), which acts to reduce transpiration and carbon assimilation. The red dotted line is 

based on Porporato et al. (2001) with a reversed sign, and SEIB-DGVM has a nonlinear 

implementation (blue solid line, Sato and Ise, 2012). 
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Figure 3. Differences in simulated dominated biomes in the three experiments (i.e. Sλ-α, STw-λ, 

STw-α). 
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Figure 4. Simulated changes in annual mean soil moisture (0-500mm, first column) and 

annual mean GPP (second column) for different experiments. Please note that the scales of 

Sλ-α is much smaller than those of S Tw-λ and STw-α. The two areas with black boundaries in each 

panel are West African grassland and Southwest African grassland associated with Figure 1. 

The spatial patterns shown here are smoothed by 3*3 smoothing window from the raw data.  
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Figure 5. Differences in simulated annual GPP as a function of mean annual precipitation and 

one of the perturbed rainfall characteristics in all the three experiments (i.e. Sλ-α, STw-λ, STw-α) 

in the left column. The right column shows the correspondent standard errors (SE, calculated 

as 
n

SE  , where   refers to the standard deviation within each bin, n  is the 

sample size in each bin, and n  and   are shown in Figure S4), with larger values 

associated with more uncertainties and requires more caution in interpretation. The contours 

are based on the binned values, with for each 100 mm/year in MAP, each 0.05 event/day in 

rainfall frequency, each 1 mm/event in rainfall intensity and each 15 day in rainy season 

length.  
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Figure 6. Illustrative time series for hydrological controls on plant root-zone soil moisture 

dynamics for all the experiments, and these illustrations are generalized based on the 

simulated time series from the experiments. Both negative and positive cases are shown, and 

cases with directly hydrological controls are shown (i.e. cloud-induced negative impacts in 

tropical forests are not shown). The cumulative shaded areas refer to “plant water stress” 

defined by Porporato et al. (2001).  
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Supplementary materials:  

 

Figure S1. Comparison of biomes and annual GPP between Sclimatology and Scontrol to test the 

validity of the synthetic weather generator. The biome definition follows Sato and Ise (2012). 
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Figure S2. Simulated biomes for different experiments.  



 40 

 

Figure S3. Normalized histograms of three simulated dominating biomes in the three 

experiments.  
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Figure S4. The sample size ( n ) in each bin (left column) and standard deviation ( ) in each 

bin (right column), corresponding to Figure 5. In Figure 5 right column, standard deviation 

(SE) is calculated as
n

SE  .  


