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Abstract

The vertical distribution of radiolarians was investigated using a vertical multiple plank-
ton sampler (100–0, 250–100, 500–250 and 1000–500 m water depths, 62 µm mesh
size) at the Northwind Abyssal Plain and southwestern Canada Basin in Septem-
ber 2013. To investigate seasonal variations in the flux of radiolarians in relation to5

sea-ice and water masses, time series sediment trap system was moored at Station
NAP (75◦00′N, 162◦00′W, bottom depth 1975 m) in the western Arctic Ocean during
October 2010–September 2012. We showed characteristics of fourteen abundant radi-
olarian taxa related to the vertical hydrographic structure in the western Arctic Ocean.
We found the Ceratocyrtis histricosus, a warm Atlantic water species, in net samples,10

indicating that it has extended its habitat into the Pacific Winter Water. The radiolarian
flux was comparable to that in the North Pacific Oceans. Amphimelissa setosa was
dominant during the open water and the beginning and the end of ice cover seasons
with well-grown ice algae, ice fauna and with alternation of stable water masses and
deep vertical mixing. During the sea-ice cover season, however, oligotrophic and cold-15

water tolerant Actinommidae was dominant and the productivity of radiolaria was lower
and its species diversity was greater, which might be associated with the seasonal
increase of solar radiation that induce the growth of algae on the ice and the other
phytoplankton species under the sea-ice. These indicated that the dynamics of sea-ice
was a major factor affecting the productivity, distribution, and composition of radiolarian20

fauna.

1 Introduction

In recent years, summer sea-ice extent in the Arctic Ocean decreases rapidly due to
global climate change (Stroeve et al., 2007, 2012). The sea-ice in the Arctic Ocean
reached the minimum extent in September 2012 since the beginning of satellite ob-25

servation (NSIDC, 2012). The most remarkable sea-ice decrease was observed in the
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western Arctic Ocean of the Pacific side (Shimada et al., 2006; Comiso et al., 2008;
Markus et al., 2009). In the western Arctic Ocean, the warm pacific water through the
Bering Strait contributes to both sea-ice melt in summer and an inhibition of sea-ice
formation during winter (Shimada et al., 2006; Itoh et al., 2013).

The biological CO2 absorption is an important carbon sink in the area without sea-ice5

in the Arctic Ocean (Bates et al., 2006; Bates and Mathis, 2009). Melting of sea-ice can
both enhance and reduce the biological pump in the Arctic Ocean, depending on ocean
circulation (Nishino et al., 2011). The Beaufort High, a high pressure over the Canada
Basin in the Arctic Ocean, drives the sea-ice and the water masses anticyclonically, as
the Beaufort Gyre (Fig. 1). In the Canada Basin, the Beaufort Gyre governs the upper10

ocean circulation (Proshutinsky et al., 2002). The Beaufort Gyre has been become
enhanced recently due to the decreasing sea-ice (Shimada et al., 2006; Yang, 2009).
The biological pump is reduced within the Beaufort Gyre, and conversely, it is enhanced
outside the Beaufort Gyre (Nishino et al., 2011).

Particle flux play important roles in the carbon export (Francois et al., 2002). With15

the samples collected by sediment trap in the Canada Basin and Chukchi Rise, Honjo
et al. (2010) found that annual average of sinking particle flux was three orders of
magnitude smaller than that in epipelagic areas where the particle flux represented
an important role for carbon export to greater depths. However, Arrigo et al. (2012)
observed a massive algal biomass beneath fully consolidated pack ice far from the20

ice edge in the Chukchi Sea during the summer, and suggested that a thinning ice
cover increased light transmission under the ice and allowed blooming of algae. Boetius
et al. (2013) also reported that the algal biomass released from the melting ice in the
Arctic Ocean was widely deposited at the sea floor in the summer of 2012. Therefore,
it is inferred that biomass of zooplankton also changed seasonally under the sea-ice in25

the Arctic Ocean, as a result of the variable sea-ice conditions. Microzooplankton are
now recognized as a key component of pelagic food webs (e.g., Calbet and Landry,
2004). The seasonal and interannual changes of microzooplankton communities within
the sea ice regions, however, are still poorly understood.

16648

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/16645/2014/bgd-11-16645-2014-print.pdf
http://www.biogeosciences-discuss.net/11/16645/2014/bgd-11-16645-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
gcortese
Cross-Out

gcortese
Inserted Text
, on

gcortese
Highlight

gcortese
Sticky Note
Specify which water mass or, at the very least, replace this with "North Pacific".

gcortese
Inserted Text
advection of

gcortese
Cross-Out

gcortese
Inserted Text
B

gcortese
Cross-Out

gcortese
Inserted Text
ice-free regions of

gcortese
Inserted Text
efficiency of the

gcortese
Inserted Text
system

gcortese
Cross-Out

gcortese
Inserted Text
, and it has strengthened

gcortese
Inserted Text
efficiency of the

gcortese
Cross-Out

gcortese
Inserted Text
it

gcortese
Highlight

gcortese
Sticky Note
You however do not explain why....Is this exclusively by the fact that the circulation pattern generates downwelling of surface waters within the gyre?

gcortese
Highlight

gcortese
Sticky Note
Why? How?Possibilities: enhance (with melting injecting nutrients in the surface ocean, thus promoting blooms/export) and reduce (as the lack of ice cover favours outgassing)And: whatever Nishino's argument is on the circulation itself (see next comment)...It would probably be better to split this part in a few sentences, otherwise it becomes too long and complex.

gcortese
Cross-Out

gcortese
Inserted Text
plays an important role

gcortese
Cross-Out

gcortese
Inserted Text
Based on sediment trap samples from

gcortese
Inserted Text
the

gcortese
Cross-Out

gcortese
Inserted Text
was the main mechanism

gcortese
Cross-Out

gcortese
Inserted Text


gcortese
Cross-Out

gcortese
Inserted Text
, but t

gcortese
Cross-Out

gcortese
Inserted Text
in their

gcortese
Cross-Out

gcortese
Cross-Out



BGD
11, 16645–16701, 2014

Flux variations and
vertical distributions
of microzooplankton

T. Ikenoue et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

To understand the effect of sea ice reduction on marine ecosystems in the Arctic
Ocean, we studied productivity, distribution, composition, and biological regime of living
radiolarians, which are one of the commonest micro-zooplankton groups that secrete
siliceous skeletons, based on the plankton tow samples and sediment trap samples.

The abundance of microzooplankton radiolaria in a region is related to temperature,5

salinity, productivity and nutrient availability (Anderson, 1983; Bjørklund et al., 1998;
Cortese and Bjørklund, 1997; Cortese et al., 2003). Not only at species level but also
at genus and family levels radiolarians represent various oceanographic conditions by
their distribution patterns and compositions (Kruglikova et al., 2010, 2011). In recent
studies, Ikenoue et al. (2012a, b) found a close relationship between water mass ex-10

changes and radiolarian abundances based on a fifteen year long time-series obser-
vation on radiolarian fluxes in the central subarctic Pacific. Radiolarian assemblages
are also related to the vertical hydrographic structure (e.g., Kling, 1979; Ishitani and
Takahashi, 2007; Boltovskoy et al., 2010), therefore variations in their abundance and
proportion might be useful environmental proxies for water mass exchanges at each15

depth interval related to the recent climate change (e.g., ocean circulation change,
prosperity and decline of sea-ice, influx of water mass from other regions).

The radiolarian assemblages in the western Arctic Ocean has been studied mainly
based on the samples collected by plankton net tow at the ice-floe stations (Hülseman
1963; Tibbs, 1967), and in the Beaufort Sea in summer of 2000 (Itaki et al., 2003) or the20

surface sediment samples mainly over the Atlantic side of the Arctic Ocean (Bjørklund
and Kruglikova, 2003). However, the knowledge of the geographical and the depth
distribution of living radiolarians are still limited, and the seasonal and annual changes
of radiolarians has not been studied in the western Arctic Ocean because of seasonal
sea-ice coverage.25

This is the first extensive study of the seasonal and interannual flux changes of radio-
larians in the western Arctic Ocean. We present radiolarian depth distributions and flux
variations in the western Arctic Ocean based on plankton tow samples and sediment
trap material, respectively. We discuss their seasonality and species associations in
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relation to the environmental conditions (temperature, salinity, depth, sea-ice concen-
tration, and downward shortwave radiation).

2 Oceanographic setting

The hydrography in the western Arctic Ocean has been discussed in several studies
(e.g., Aagaard et al., 1985; McLaughlin et al., 2011) and the upper 1000 m of the water5

column can be divided into five distinct water masses. The surface water is charac-
terized by low temperature and low salinity water (Aagaard et al., 1981) and can be
subdivided into three layers, i.e. Surface Mixed Layer (SML), Pacific Summer Water
(PSW), Pacific Winter Water (PWW). The SML (0–25 m) is formed in summer by sea-
ice melt and river runoff and is characterized by very low salinities (less than 28 psu).10

The PSW (25–100 m) and PWW (100–250 m) are cold halocline layers originating from
the Pacific Ocean via the Bering Sea. The PSW flows along the Alaskan coastal area
and enters the Canada Basin through the Bering Strait and Barrow Canyon (Coachman
and Barnes, 1961) (Fig. 1). The PSW is relatively warmer and less saline (30–32 psu in
the 1990s, 28–32 psu in the 2000s, according to Jackson et al., 2011) than the PWW.15

The PSW is further classified into warmer and less saline Alaskan coastal water and
cooler and more saline Bering Sea water (Coachman et al., 1975), which originate
from Pacific water that is modified in the Chukchi and Bering Seas during summer.
The Alaskan coastal water is carried by a current along the Alaskan coast, and spread
northwards along the Northwind Ridge by the Beaufort gyre depending on the rates of20

ice cover and decay (Shimada et al., 2001). The PWW is characterized by a temper-
ature minimum (of about −1.7 ◦C) and originates from Pacific water that is modified in
the Chukchi and Bering Seas during winter (Coachman and Barnes, 1961). The PWW
is also characterized by a nutrient maximum and its source is regenerated nutrients
from the shelf sediments (Jones and Anderson, 1986).25

The deep water is divided into Atlantic Water (AW), Canada Basin Deep Water
(CBDW). AW (250–900 m) is warmer (near or below 1 ◦C) and saltier (near 35 psu)
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intermediate water than the surface waters, which is originating from the North Atlantic
Ocean, via the Norwegian Sea. The CBDW (below 900 m) is a cold (lower than 0 ◦C)
water mass located beneath the AW and has the same salinity as the AW. The CBDW
is formed by the brine formation on the shelves, which makes cold and saline water
mass sinking over the continental margin into the deep basins (Aagaard et al., 1985).5

3 Materials and methods

3.1 Plankton tow samples

Plankton tow samples were collected by vertical multiple plankton sampler (VMPS).
VMPS (mesh size: 62 µm, open mouth area: 0.25 m2) was towed from 4 layers
(100–0, 250–100, 500–250, and 1000–500 m) at 2 stations (Station 32 in North-10

wind Abyssal Plain, 74◦32′N, 161◦54′W; Station 56 in southwestern Canada Basin,
73◦48′N, 159◦59′W) (Fig. 1 and Table 1) in September 2013. Hydrographical data
(temperature, salinity) down to 1000 m water depth were simultaneously obtained from
a CTD observation with the plankton sampling. The volume of seawater filtered through
the net was estimated using a flow meter mounted in the mouth ring of the plankton15

net.
The samples collected by VMPS were split with a Motoda box splitter and a ro-

tary splitter (McLaneTMWSD-10). The split samples were fixed with 99.5 % ethanol for
radiolarian studies. Plankton samples were stained with Rose-Bengal to discriminate
between living and dead specimens. The split samples were sieved through a stainless20

screen with 45 µm mesh size. Remains on the screen were filtered through Gelman®

membrane filters with a nominal pore size of 0.45 µm. The filtered samples were de-
salted with distilled water and dried, then permanently mounted with Canada Balsam
on microslides. Radiolarian taxa were identified and counted with a compound light
microscope at 200× or 400× magnification. Phaeodaria have not been recognized as25

Radiolaria but as Cercozoa in recent studies using molecular biology (Cavalier-Smith
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and Chao, 2003; Nikolaev et al., 2004; Adl et al., 2005; Yuasa et al., 2005). To avoid
complications we dealt with the phaeodarians as one of the radiolarian groups accord-
ing to the classical taxonomy (Anderson et al., 2002; Takahashi and Anderson, 2002).
We determined that specimens were “living”, if their protoplasm was stained clearly,
this to avoid false staining by other organisms such as bacterial growth). All specimens5

on a slide were identified and counted, and their individual numbers were converted to
standing stocks (No. specimens m−3).

3.2 Hydrographic profiles

Profiles of temperature, salinity, and dissolved oxygen down to 1000 m depth at sta-
tions 32 (Northwind Abyssal Plain) and 56 (southwestern Canada Basin) in Septem-10

ber 2013 are from Nishino (2013) and shown in Fig. 2a and b, respectively. At Station
32, temperature showed sharp decrease from the surface and down to about 25 m
depth with a sharp increase at the base of SML. The PSW is generally cold (about
−1 ◦C) with a maximum value (1.6 ◦C) at about 50 m and show a rapid decrease with
increasing depth. The PWW is the coldest water (minimum value −1.6 ◦C) at about15

200 m. Highest temperatures are found in the AW (near or below 1 ◦C) at about 400 m
with a gradual decrease below 500 m. Salinity showed low values (25–28 psu) in the
SML, increasing rapidly with depth from 28–32 psu in the PSW. In the PWW there is
a gradual increase of salinity from 32 to 35 psu, while there is a slight decrease below
the PWW/AW boundary. Dissolved oxygen showed maximum value (405 µmolkg−1) at20

the boundary of the SML and PWW, rapid decrease with increasing depth in the PSW
and PWW, minimum value (270 µmolkg−1) around the boundary of the PWW and AW,
and slight increase below the boundary of the PWW and AW. Temperature, salinity, and
dissolved oxygen show almost similar values at both Station 32 and Station 56 except
for in the SML and PSW. In the SML, salinity at Station 32 was slightly lower than at25

Station 56. In the PSW, a temperature peak at Station 32 was about one degree higher,
and a little deeper, compared to Station 56.
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3.3 Sediment trap samples

Particle flux samples were collected by a sediment trap (SMD26 S-6000, open
mouth area 0.5 m2, Nichiyu Giken Kogyo, Co. Ltd.) rotated at 10–15 day intervals
moored at 184 m (4 October 2010–28 September 2011)–260 m (4 October 2011–18
September 2012) and 1300 m (4 October 2010–28 September 2011)–1360 m (4 Oc-5

tober 2011–18 September 2012) at Station NAP (Northwind Abyssal Plain, 75◦00′N,
162◦00′W, bottom depth 1975 m) during 4 October 2010–28 September 2011 and dur-
ing 4 October 2011–18 September 2012 (Fig. 1; Table 2). The mooring system was
designed to set the collecting instrument at approximately 600 m above the sea floor.
This depth of the moored sediment traps was chosen in order to avoid possible inclu-10

sion of particles from the nepheloid layer, reaching about 400 m above the seafloor
(Ewing and Connary, 1970). Recoveries and redeployments of the traps were carried
out on the Canadian Coast Guard Ship I/B (ice breaker) Sir Wilfrid Laurier and R/V
Mirai of Japan Agency for Marine–Earth Science and Technology. The sample cups
were filled with 5 % buffered formalin seawater before the sediment trap was deployed.15

This seawater was collected from 1000 m water depth in the southern Canada Basin,
and was membrane filtered (0.45 mm pore size). The seawater in the sample cups was
mixed with sodium borate as a buffer (pH 7.6–7.8) and 5 % formalin was added as
a preservative.

The samples were first sieved through 1 mm mesh to remove larger particles, which20

are not relevant for the present study. The samples were split with a rotary splitter
(McLaneTMWSD-10). At first, we used 1/100 aliquot size of the samples to make mi-
croslides for microscope work (species identification). We made additional slides in
case of low radiolarian specimen numbers. In order to remove organic matter and
protoplasm, 20 mL of 10 % hydrogen peroxide solution are added to the samples in25

a 100 mL pyrex beaker, and heated (not boiling) on a hot plate for one hour. After this re-
action was completed, Calgon® (hexametaphosphate, surfactant) solution was added
to disaggregate the sample. The treated samples are then sieved through a screen
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(45 µm mesh size). Both the coarse (> 45 µm) and fine (< 45µm) fractions are filtered
through Gelman membrane filters with a nominal pore size of 0.45 µm and desalted
with distilled water. The edge of each filtered samples are cut according to slide size
in wet condition and mounted on glass slides on a slide warmer. The dried filters and
samples are added Xylene, and permanently mounted with Canada balsam.5

We made slides of both the coarse (> 45 µm) and the fine (< 45 µm) fraction of each
sample. For the enumeration of radiolarian taxa in this study, we counted all specimens
of radiolarian skeletons larger than 45 µm encountered on a slide. Each sample was ex-
amined under an Olympus compound light microscope at 200× or 400× magnification
for species identification and counting. The radiolarian flux (No. specimens m−2 day−1)10

was calculated from our count data using the following formula:

Flux = N · V/S/D (1)

where N is the counted number of radiolarians, V the aliquot size, S the aperture
area of the sediment trap (0.5 m2), and D the sampling interval (day). Diversity indices
using the Shannon–Weaver log-base 2 formula (Shannon and Weaver, 1949) were15

calculated for total radiolarians

H = −Pi log2Pi (2)

where H is the diversity index, P is the contribution of species and i is the order of
species.

As supplemental environmental data, the moored sediment trap depth and the20

water temperature (accuracy of +0.28 ◦C) were monitored every hour (sensor type:
ST-26S-T). Moored trap depth for the upper trap was lowered by about 80 m dur-
ing the second year (about 260 m depth) than during the first year (about 180 m
depth). Especially, during July–August in 2012, the moored trap depth was lowered
to about 300 m (Fig. S1). Time-series data of sea-ice concentration around Sta-25

tion NAP during the mooring period were calculated from the sea-ice concentration
data set (http://iridl.ldeo.columbia.edu/SOURCES/.IGOSS/.nmc/.Reyn_SmithOIv2/, cf.
Reynolds et al., 2002).
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3.4 Taxonomic note

The species described by Hülsemann (1963) under the name of Tholospyris
gephyristes certainly is not a Spyridae at all. This species has been accepted as
a Spyridae by most workers, but with a closer view this species has no sagittal ring
that is typical for the Spyridae. We have therefore tried to evaluate its taxonomic po-5

sition and have now an understanding that this species better belongs in the family
Plagiacanthidae. Based on our microscope and literature studies we at present con-
clude that this species can be named Tripodiscium gephyristes.

4 Results

4.1 Radiolarians collected by plankton tows10

A total of 43 radiolarian taxa (12 Spumellaria, 3 Entactinria, 26 Nassellaria, and 2
Phaeodaria) were identified in the plankton tow samples (Table 3). The numbers of
individuals for each radiolarian taxa are in Tables S1 (Station 32) and S2 (Station 56).

4.1.1 Standing stocks and diversities of radiolaria

The abundance of living radiolarians at Station 32 was about two times as large as at15

Station 56 at each depth interval in the upper 500 m, where the abundance of living
radiolarians decreased with increasing water depth at both stations (Fig. 2a and b).
The abundance of dead radiolarians also decreased with water depth at both stations
except for 100–250 m depth at Station 32 (Fig. 2a and b). The abundance of dead
radiolarians was generally higher than living radiolarians at both stations except for in20

the 0–100 m depth at Station 32. The living radiolarian diversity index was low in the
0–100 m depth interval, increased with depth and the maximum at about 400 m, and
then slightly decreased below 500 m depth at both stations.
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At Station 32, Amphimelissa setosa (58 %) and Amphimelissa setosa juvenile (22 %)
were dominant, and Joergensenium sp. A (6 %), Pseudodictyophimus clevei (4 %), Acti-
nommidae spp. juvenile forms (3 %), and Actinomma leptodermum leptodermum (1 %)
were common (Fig. 3a). At Station 56 the Actinommidae spp. juvenile forms (38 %)
and Amphimelissa setosa (29 %) were dominant, and Actinomma leptodermum lepto-5

dermum (6 %), Amphimelissa setosa juvenile (6 %), Pseudodictyophimus clevei (5 %),
and Joergensenium sp. A (4 %) were common (Fig. 3b). Actinommidae spp. juvenile
forms are juvenile forms of Actinomma leptodermum leptodermum and Actinomma bo-
reale, but we cannot separate between the two.

4.1.2 Vertical distribution of radiolarian species and environment10

We selected fourteen abundant radiolarian taxa to show species characteristics related
to the vertical hydrographic structure in the western Arctic Ocean (Fig. 4).

Adult and juvenile of Amphimelissa setosa were mainly distributed in the 0–250 m
depth at both stations. In the 0–100 m depth, Adult and juvenile stages were dominant
(70 and 28 %, respectively) at Station 32, and at Station 56 (23 and 7 %, respectively)15

following the juvenile Actinomma spp. (56 %). In the 100–250 m depth, A. setosa was
the dominant species at both stations. At Station 32, the abundance of A. setosa in the
100–250 m depth interval was lower than in the 0–100 m depth, whereas at Station 56,
the abundance in the 100–250 m depth was almost the same as in the 0–100 m depth.

Actinommidae spp. juvenile forms and Actinomma l. leptodermum were absent in20

0–100 m depth at Station 32, but both, especially Actinommidae spp. juvenile forms
(56 %) were abundant at Station 56. Both were common in the 100–250 m depth at
both stations (8 and 4 %, respectively at Station 32; 14 and 7 %, respectively at Station
56), and decreased abundance in the 250–500 m depth. Spongotrochus glacialis was
rare in the 0–100 m depth at Station 32 (0.4 %) but common at Station 56 (1.4 %). In25

deeper layers S. glacialis was rare.
Joergensenium sp. A, Pseudodictyophimus clevei, and Actinomma boreale were

abundant in the 100–250 m depth at both stations. Joergensenium sp. A was absent
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in the 0–100 m depth but abundant in the 100–250 m depth and rare in deeper depths.
Pseudodictyophimus clevei distributed throughout surface to 1000 m depth, but was
rare at Station 32 except for in the 100–250 m. Actinomma boreale was rare and mainly
distributed in the 100–250 m depth at both stations.

Ceratocyrtis histricosus was mainly distributed in the 250–500 m depth, and occurred5

also in the 100–250 m depth at both stations. Tripodiscium gephyristes was widely dis-
tributed below 100 m depth at Station 56, while at Station 32 this species was scarce
at all depth layers. Pseudodictyophimus g. gracilipes occurred in very low numbers at
both stations through the upper 1000 m. Pseudodictyophimus plathycephalus, Plagia-
canthidae gen. et sp. in det., and Cycladophora davisiana were most abundant below10

500 m depth at both stations.

4.2 Radiolaria collected by sediment trap

A total of 51 radiolarian taxa (15 Spumellaria, 3 Entactinria, 31 Nassellaria, and 2
Phaeodaria) were identified in the upper and lower sediment trap samples at Station
NAP during 4 October 2010–18 September 2012 (Table 3). The number of radiolarians15

counted in each sample ranged from 8 to 1100 specimens in the upper trap, and from
0 to 2672 specimens in the lower trap (Tables S3 and S4). There were 15 samples with
fewer than 100 specimens (2 samples in upper trap, 13 samples in lower trap). Most of
the species recognized in our sample materials are shown in Plates 1–9.

4.2.1 Radiolarian flux and diversity in the upper trap20

Total radiolarian flux in the upper trap varied from 114 to 14 677 specimensm−2 day−1

with an annual mean of 2823 specimensm−2 day−1 (Fig. 5). The highest fluxes were
observed during the beginning of sea-ice cover season (November in 2010 and 2011,
> 10 000 specimensm−2 day−1). The fluxes were higher during the open water season
(August–October in 2011, > 5000 specimensm−2 day−1) and around the end of sea-ice25

cover season (July–August in 2011, > 4000 specimensm−2 day−1) than those during
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the sea-ice cover season (December–June, mostly< 800 specimensm−2 day−1). The
diversity of radiolarians, however, was high during the sea-ice cover season (> 3) than
open water season (< 2) (Fig. 5). The diversity indices were negative correlated with
the total radiolarian fluxes (r = 0.91) (Fig. 6).

Species composition varied seasonally. Adult and juvenile Amphimelissa setosa5

were most dominant (90 %) during the sea-ice free season, and the beginning and the
end of sea-ice cover season. The juvenile and adult forms were abundant in earlier and
later season, respectively (Fig. 7). During the sea-ice cover season, however, Actinom-
midae spp. juvenile forms (range, 0–51 %; average, 18 %), Actinomma leptodermum
leptodermum (range, 0–14.6 %; average, 4 %), Actinomma boreale (range, 0–33 %; av-10

erage, 4 %) were dominant. Relatively high percentages of Pseudodictyophimus clevei,
Pseudodictyophimus gracilipes, Tripodiscium gephyristes were also observed during
the sea-ice cover season.

4.2.2 Radiolarian flux and diversity in the lower trap

Total radiolarian flux in the lower trap varied from 0 to 22 733 specimensm−2 day−1
15

with an annual mean of 4828 specimensm−2 day−1 (Fig. 5). The fluxes were high
during October–November both in 2010 and 2011 and during March in 2011 (>
10 000 specimensm−2 day−1), while, extremely low (0–80 specimensm−2 day−1) during
May–September in 2012. Diversity did not change greatly, and increased slightly during
May–July 2011, and in April 2012 when the radiolarian fluxes were low. The diversity20

indices were weakly and negative correlated with the radiolarian fluxes (r = −0.52)
(Fig. 6).

Adult and juvenile stages of Amphimelissa setosa were dominant throughout the
sampling periods (range, 66–92 %; average, 82 %). During July–September 2011, ju-
venile and adult forms of A. setosa were dominant during June–July and August–25

September, respectively. The relative abundance of A. setosa juvenile was slightly in-
creased in 2012 in comparison to 2010 and 2011.
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5 Discussion

5.1 Comparison between Arctic and North Pacific Oceans

Biogenic particle flux into the deep sea in the Canada Basin was low due to the low pro-
ductivity of shell-bearing microplankton, which play an important role in biological pump
process (Honjo et al., 2010). However, we observed high radiolarian fluxes (14 677: up-5

per trap, 22 733: lower trap) at Station NAP during the open water season and around
the beginning and the end of sea-ice cover season in 2011–2012. The annual means
(2823: upper trap, 4823: lower trap) were comparable to those observed in several ar-
eas in the North Pacific Ocean (Fig. 8, Table S5). The biogenic opal collected in this
study mainly consisted of radiolarians and diatoms, therefore siliceous skeletons of ra-10

diolarians and diatoms might play important role to export biogenic silica to the deep
Arctic. Relatively high flux of radiolarians in arctic microplankton might contribute to
substantial part of the POC flux.

5.2 Characteristic and ongoing speciation of radiolarians in the western Arctic
Ocean15

Radiolarian fauna in the western Arctic Ocean had a close affinity to the Atlantic fauna,
and the family Cannobotryidae and Actinommidae were dominant in the western Arctic
Ocean. Petrushevskaya (1979) pointed out that the arctic-boreal radiolarian species
known from the Arctic Ocean basins had been originated from the early Postglacial
Norwegian Sea polycystine radiolarian fauna. Bjørklund and Kruglikova (2003) con-20

cluded that the modern radiolarian fauna in the Arctic Ocean had a close affinity to the
Norwegian Sea radiolarian fauna. Inflow of radiolarians with waters from the northern
part of the Pacific Ocean is probably negligible since the most abundant and typical
radiolarian species in the North Pacific such as Stylochlamydium venustum, and Cer-
atospyris borealis are absent in the western Arctic Ocean. In our results the radiolarian25

fauna in the western Arctic Ocean were characterized by a wide diversity of the family

16659

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/16645/2014/bgd-11-16645-2014-print.pdf
http://www.biogeosciences-discuss.net/11/16645/2014/bgd-11-16645-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
gcortese
Inserted Text
s

gcortese
Inserted Text
the

gcortese
Highlight

gcortese
Sticky Note
As this paper is about a lot of things: when? Or are you citing a general issue/observation (in which case you may want to rephrase to something like: "While it is generally assumed that...") ?On a separate note: this is all good, but (due to their generally higher abundances/fluxes) it applies a lot more to diatoms than radiolarians.

gcortese
Cross-Out

gcortese
Inserted Text
of

gcortese
Inserted Text
an

gcortese
Inserted Text
a

gcortese
Sticky Note
As mentioned above, it would be good to actually say how does the diatom flux compared to radiolarians, just to get an idea of their relative importance in this environment.

gcortese
Highlight

gcortese
Sticky Note
If you put it this way, one always thinks about the question: "When?".How about: "The radiolarian fauna observed in this study of the western Arctic Ocean was found to have a close affinity..."

gcortese
Inserted Text
also

gcortese
Cross-Out

gcortese
Inserted Text
O

gcortese
Inserted Text
suggest that

gcortese
Cross-Out

gcortese
Inserted Text
was



BGD
11, 16645–16701, 2014

Flux variations and
vertical distributions
of microzooplankton

T. Ikenoue et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Actinommidae and high standing stock of Joergensenium sp. A in the PWW (Table S6).
Actinomma morphogroup A (58 specimens), Actinomma morphogroup B (57 speci-
mens), Joergensenium sp. A (1401 specimens) observed in the western Arctic Ocean
in our study have not been reported in other areas in the Arctic Ocean, nor in the North
Pacific and in the North Atlantic. Although we could not conclude yet, Actinomma mor-5

phogroup A and B and Joergensenium sp. A might be new species endemic for the
western Arctic. Kruglikova et al. (2009) described two new species Actinomma georgii
and A. turidae, and suggested the endemism hypotheses for these two species as
a result that radiolarians had been rapidly evolving under the stressful conditions in
the Arctic Ocean and that the central Arctic Basin might be the center of an ongoing10

speciation within the family Actinommidae. Our results might support this hypothesis
suggesting that local speciation took place not only in the central Arctic basin, but also
in the western Arctic Ocean. This is demonstrated by the occurrence of a new and
still undescribed Actinomma species, very similar to A. boreale, but different structure
of the medullary shells. Also within the radiolarian group Entactinaria, in the genus15

Joergensenium, one or two undescribed species are found. The reason for radiolar-
ian species speciation in this area is still not understood but we can only speculate that
this can be controlled by the harsh environmental stress (Allen and Gilooly, 2006; Krug-
likova et al., 2009). The extremely cold water masses under the sea-ice (−1.7 ◦C) and
the always-changing quality of the water masses as affected by the inflowing Pacific20

water.

5.3 Vertical distribution of species and hydrographic structure

5.3.1 PSW and PWW association

Amphimelissa setosa and its juvenile stages were found in a shallow cold-water in both
stations 32 and 56. Specifically, they were more abundant in the SML and PSW (0–25

100 m) at Station 32 than Station 56. At Station 32, these two water masses exhibited
warmer temperature than Station 56; indicating that cold but moderate warm, and well
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mixed water mass were more favorable for this species than the perennial cold water
mass such as PWW (100–250 m). The vertical and geographic distribution of A. setosa
has been described in several previous studies. Amphimelissa setosa dominated (60–
80 %) the radiolarian assemblage through the upper 500 m of the water column in the
Chukchi Sea and the Beaufort Sea and so can be an indicator of cold Arctic surface5

water (Itaki et al., 2003). Matul and Abelmann (2005) also suggested that A. setosa
prefers well-mixed, cold and saline surface/subsurface waters.

Actinommidae spp. juvenile forms, Actinomma l. leptodermum, Spongotrochus
glacialis were mainly distributed in the PSW and PWW and preferred different water
masses from Amphimelissa setosa. Actinomma l. leptodermum and Actinomma bore-10

ale had been reported as a group (e.g. Samtleben et al., 1995), due to identification
problems, particularly of the juvenile stages, but the adult stages can be separated into
two species following Cortese and Bjørklund (1998). Actinomma l. leptodermum were
absent in the water masses of SML and PSW at Station 32, but they were abundant in
these water masses at Station 56. At Station 56, SML and PSW water masses were15

colder and more homogeneous than at Station 32; indicating that Actinommidae spp.
juvenile forms and A. l. leptodermum preferred cold but warmer water than PWW. Small
spumellarians might be herbivorous (Anderson, 1983) so Actinommidae spp. juvenile
forms and A. l. leptodermum might therefore be bound to the euphotic zone where
phytoplankton prevails. Spongotrochus glacialis showed a similar vertical distribution20

as Actinommidae spp. juvenile forms and Actinomma l. leptodermum. Spongotrochus
glacialis preferred warmer water than PWW. Spongotrochus glacialis inhabited surface
water also in the Okhotsk Sea and well adapted to low temperatures and low salinities
(Nimmergut and Abelmann, 2002). Okazaki et al. (2004) also reported S. glacialis as
a subsurface dweller with abundance maximum in the 50–100 m interval in the Okhotsk25

Sea, associated with the phytoplankton production.
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5.3.2 PWW association

Joergensenium sp. A, Pseudodictyophimus clevei, and Actinomma boreale, were
mainly distributed in the PWW. Joergensenium sp. A and P. clevei might prefer cold wa-
ter (−1.7 ◦C) with low turbulence. The depth distribution of Joergensenium sp. A were
restricted to the PWW (100–250 m) and the upper AW (250–500 m), but P. clevei were5

more flexible and widely distributed. Joergensenium sp. A has not yet been described
from recent radiolarian assemblages, so can be suggested that Joergensenium sp.
A might occur only on the Pacific side of the Arctic Ocean and might serve as an indi-
cator for the PWW layer. Standing stocks of A. boreale was lower than Actinommidae
spp. juvenile forms and A. l. leptodermum at both stations, and mainly occurred in the10

PWW. In the surface sediments of the Greenland, Iceland and Norwegian Seas, A.
boreale is associated with warm (Atlantic) water, whereas A. l. leptodermum is asso-
ciated with the cold East Greenland Current and the warm Norwegian Current water
(Bjørklund et al., 1998). Other environmental factors such as salinity, food availability,
or seasonal differences of their growth stages due to the sampling period might be15

related to the standing stocks of A. boreale.

5.3.3 Upper AW association

Ceratocyrtis histricosus occurred commonly in the upper AW (250–500 m) and rarely in
the PWW. Ceratocyrtis histricosus is a species interpreted as being introduced from the
Norwegian Sea, most likely during the early Holocene by the warm Atlantic water drift-20

ing through the Arctic Ocean (Kruglikova, 1999). This species has not been observed
in the Canada Basin during the 1950s and 1960s (Hülseman 1963; Tibbs, 1967). Fur-
thermore, C. histricosus was not reported in the PWW from the plankton samples in
the Chukchi and Beaufort Seas in 2000 (Itaki et al., 2003). Itaki et al. (2003) indicated
that the occurrence of C. histricosus in recent years in the western Arctic Ocean, as we25

found, was related to the recent warming of the Arctic water. According to McLaughlin
et al. (2011), the mean temperature of the PWW within the Canada Basin increased
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slightly (∼ 0.05 ◦C) from 2003 to 2007 and then remained constant until 2010. Thus,
the recent warming of the PWW and AW might induce the expansion of the habitat of
C. histricosus into the PWW.

Bjørklund et al. (2012) reported 98 tropical-subtropical radiolarian taxa in the area
north of Svalbard in the eastern Arctic Ocean. They stated that there are always pulses5

of warm Atlantic water that do reach the Arctic Ocean, transporting warmer water
fauna. We did not observe any tropical and subtropical radiolarian taxa in the west-
ern Arctic Ocean. However, it is necessary to conduct continuous monitoring of the
annual changes in the radiolarian fauna, including C. histricosus, in the western Arctic
Ocean.10

5.3.4 Lower AW association

Pseudodictyophimus plathycephalus, Plagiacanthidae gen. et sp. in det., and Cy-
cladophora davisiana were abundant in the cold and oxygenated lower AW at both
stations. However, their distribution patterns in PWW and upper AW water masses
were slightly different between Station 32 and Station 56 whereas temperature, salinity,15

and dissolved oxygen have similar values at both stations. Their standing stocks might
therefore reflect not only hydrographic conditions. Pseudodictyophimus g. gracilipes is
widely distributed in the world ocean, and known to inhabit the surface layer at high
latitudes and at greater depth at low latitudes (Ishitani and Takahashi, 2007; Ishitani
et al., 2008). Itaki et al. (2003) reported that the maximum depth of P. g. gracilipes oc-20

curred at 0–50 m in the Chukchi Sea and 25–50 m in the Beaufort Sea. However, in our
results, P. g. gracilipes did not show any specific vertical distribution, and its standing
stocks were low.
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5.4 Seasonal and annual radiolarian flux

5.4.1 Radiolarian fauna and seasonal sea-ice concentration

Seasonal radiolarian fluxes at Station NAP were characterized by the high dominance
of a few species and the changes of their ratios in the upper trap with the seasonal
changes in the sea-ice concentration. Cannobotryidae (Amphimelissa setosa adult5

and its juvenile forms) was dominant during the open-water season and around the
beginning and the end of ice-cover seasons, while Actinommidae (Actinommidae spp.
juvenile forms, Actinomma l. leptodermum, Actinomma boreale) was dominant during
the ice-cover season (Fig. 5). These might explain the regional difference in the radi-
olarian species in the Arctic Ocean. Cannobotryidae was dominant in Arctic marginal10

sea sediments (Iceland, Barrents, and Chukchi Seas) where sea-ice disappeared in the
summer but Actinommidae was dominant in the central Arctic Ocean (Nansen, Amund-
sen, and Makarov Basins) where the sea surface was covered by sea-ice throughout
the year (Bjørklund and Kruglikova, 2003). The summer ice edge accompanies well-
grown ice algae, ice fauna (Horner et al., 1992; Michel et al., 2002; Assmy et al., 2013)15

and favorable alternation between stable water masses and deep vertical mixing where
the nutrients are brought to the surface (Harrison and Cota, 1991). Swanberg and Eide
(1992) found that abundance of A. setosa and its juveniles were correlated well with
chlorophyll a and phaeopigments along the ice edge in summer in the Greenland Sea.
Thus A. setosa prefer water masses near the summer ice edge for reproduction and20

growth.
From the upper trap, a flux peak of A. setosa juvenile occurred in the end of sea-

ice season, and that of A. setosa adult occurred in the beginning of sea-ice season
(Fig. 7). The time interval of these peaks might indicate that A. setosa have a three
months life cycle. Pseudodictyophimus clevei also have their flux peaks during the be-25

ginning of sea-ice season (November–December) (Fig. 7). These two species seem to
prefer to live under cold water mass with sea-ice formation. On the contrary, juvenile
stages of Actinommidae were dominant during the ice-cover season (Fig. 5). There-
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fore, we interpreted that Actinommidae were tolerant to oligotrophic and stratified cold
water masses. Itaki and Bjørklund, 2007 reported that the juvenile stage Actinommids
could reproduce as well as adult stage since they found conjoined Actinommidae skele-
tons from Japan Sea sediments. Furthermore, the flux of Actinommidae spp. juvenile
forms increased towards the end of the sea-ice cover season and accompanied with5

increasing of downward shortwave radiation (Figs. 5 and 7). This might indicate that
Actinommidae spp. juvenile forms feeds on algae growing on the ice or other phyto-
plankton under the sea-ice.

This study showed that the productivity of radiolarian was low but diversity was high
under the sea-ice (Figs. 5 and 6). In contrast, radiolarian fauna in the sediment trap10

set in the Okhotsk Sea showed low diversity during the winter to spring when seasonal
sea-ice covered the surface (Okazaki et al., 2003). The maximum total radiolarian flux
during the summer season around the sea-ice edge and the open water is charac-
terized by high dominance of A. setosa (> 90 %) in our area. Such high dominance
of single species does not occur and major nine taxa contributed more than 60 % to15

the radiolarian assemblage in the Okhotsk Sea (Okazaki et al., 2003). Amphimelissa
setosa, which have small and delicate siliceous skeleton, might respond to primary
production more directly and rapidly and develop earlier than Actinommidae, which
have more robust skeleton. Therefore, Amphimelissa setosa and Actinommidae have
different nutritional niches.20

Actinomma boreale, Spongotrochus glacialis, Joergensenium sp. A were probably
related to food supply to the PWW during the sea-ice free season. Relatively higher
fluxes of these three species in the upper trap in summer 2012 than in summer 2011
might be due to an effect of the deeper mooring depth of the trap after October 2011
(Figs. 7 and S1). This might be caused by their vertical distribution patterns, as they are25

more abundant at depths lower than the first upper trap depth (about 180 m) (Fig. 3a).
On the other hand, Ceratocyrtis histricosus and Tripodiscium gephyristes in the upper
trap showed increase in their fluxes from May to September in summer 2012. The water
temperature at the upper trap depth also increased during the same period (Figs. 7

16665

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/16645/2014/bgd-11-16645-2014-print.pdf
http://www.biogeosciences-discuss.net/11/16645/2014/bgd-11-16645-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
gcortese
Cross-Out

gcortese
Cross-Out

gcortese
Inserted Text
to be

gcortese
Cross-Out

gcortese
Inserted Text
of

gcortese
Cross-Out

gcortese
Inserted Text
(2007)

gcortese
Cross-Out

gcortese
Cross-Out

gcortese
Inserted Text
,

gcortese
Cross-Out

gcortese
Inserted Text
by an increase in

gcortese
Cross-Out

gcortese
Inserted Text
s

gcortese
Inserted Text
,

gcortese
Inserted Text
,

gcortese
Inserted Text
,

gcortese
Inserted Text
a

gcortese
Cross-Out

gcortese
Inserted Text
in the Okhotsk Sea, where the main

gcortese
Cross-Out

gcortese
Inserted Text
of

gcortese
Cross-Out

gcortese
Cross-Out

gcortese
Inserted Text
has a

gcortese
Inserted Text
a

gcortese
Cross-Out

gcortese
Inserted Text
compared to



BGD
11, 16645–16701, 2014

Flux variations and
vertical distributions
of microzooplankton

T. Ikenoue et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

and S1), we therefore interpreted their increase to be related to the mixing of nutrient
and warm upper AW and under PWW, rather than a decrease in sea ice concentrations
due to their preference of the warm upper AW.

5.4.2 Radiolarian fauna and between year difference in ocean circulation

Intensification of geostrophic currents on the periphery of Beaufort Gyre (Fig. 1) has5

been reported in recent years (Nishino et al., 2011; McPhee, 2013). This intensification
is caused by increasing volume of water from sea-ice melt associated with the reduc-
tion of arctic summer sea-ice and the river runoff to the basins (Proshutinsky et al.,
2009; Yamamoto-Kawai et al., 2008). The total radiolarian flux showed lower produc-
tion during summer (July–September) in 2012 than in 2011 in the both upper and lower10

traps and especially in the lower trap (Fig. 5). Most of radiolarian taxa also showed
lower flux during summer of 2012 (Fig. 7). On the other hand, fluxes of Actinommidae
(Actinommidae spp. juvenile forms, Actinomma l. leptodermum, Actinomma boreale)
that might be adapted to the cold and oligotrophic water showed higher values dur-
ing December 2011–September 2012 than during December 2010–September 2011.15

Actinommidae spp. juvenile forms and A. l. leptodermum were most abundant in the
depth interval of 0–100 m at Station 56 in the southwestern Canada Basin. Therefore,
we interpreted that cold and oligotrophic water in the Canada Basin began to spread
to Station NAP in the Northwind Abyssal Plain from December 2011 and continued
to affect the radiolarian fluxes at least until September 2012. McLaughlin et al. (2011)20

reported that the position of the center of the Beaufort Gyre shifted westwards and that
the area under the influence of the gyre spread northwards and westwards in recent
years. Moreover, high-resolution pan-Arctic Ocean model results also showed that the
Beaufort Gyre expanded with shifting of its center from the Canada Basin interior to
the Chukchi Borderland in 2012 compared with 2011, and the ocean current direc-25

tion in the surface 100 m layer switched northwestward to southwestward in December
in 2011 (E. Watanabe, personal communication, 2014). Thus, recent intensification of
currents on the Beaufort Gyre associated with sea-ice reduction would have affected
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the surface water mass conditions and the biological pump system in the western Arctic
Ocean.

5.4.3 Vertical and lateral Transport

Flux peaks of total radiolarians in the lower trap are delayed by about two weeks in
comparison to the upper trap (Fig. 5). Therefore, the sinking speed of the aggregated5

radiolarian particle flux between these depths were averaged to 74 m day−1 during
November–December 2010, 86 m day−1 during July–August 2011, and 73 m day−1

during November 2011. Watanabe et al. (2014) simulated movement of cold and warm
eddies using a high-resolution pan-Arctic Ocean model, and suggested that the high
total mass flux during October–December 2010 at Station NAP, as we determined us-10

ing sediment samples, was mainly due to the enhancement of the marine biological
pump by an anti-cyclonic cold eddy. Shelf-break eddies induce the lateral transport of
resuspended bottom sediments composed of old carbon, and enhance the biological
pump (O’Brien et al., 2013; Watanabe et al., 2014). Actually, the passage of the cold
eddy was observed from a cooling and a deepening of the moored trap depth in the15

corresponding period (Fig. S1). Amphimelissa setosa was the most dominant (> 90 %)
during this period and the radiolarian species composition was not changed before
and after the cold eddy passage. Therefore the cold eddy in addition to seasonal water
mass variations with sea ice formation would enhance the high radiolarian flux, but not
diversity, in 2010.20

Radiolarian fluxes in the lower trap were generally higher than that in the upper trap
except for during May–September in 2012 (Fig. 5). The extremely low fluxes in the lower
trap during May–September in 2012 might be due to a decrease of aggregate forma-
tion. The aggregate formation, which helps rapid sinking of biogenic particles, would be
suppressed by influx of oligotrophic surface water originating from the Beaufort Gyre in25

the Canada Basin. In the southwestern Canada Basin (Station 56), high standing stock
of dead radiolarian specimens (Fig. 2) might indicate an inefficient biological pump in
the Canada Basin. In addition, fluxes of Actinommidae spp. juvenile forms were lower in
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the lower trap in spite of their high abundance in the upper trap since December 2011.
We speculated that the disappearance of fluxes of Actinommidae spp. juvenile forms
in the lower trap might be due to lack of aggregate formation.

Higher abundance in the lower trap rather than the upper trap in species having,
a wide vertical distribution (Pseudodictyophimus g. gracilipes, Pseudodictyophimus5

plathycephalus) or intermediate to deep water distribution (Ceratocyrtis histricosus,
Tripodiscium gephyristes, Plagiacanthidae gen. et sp. in det., and Cycladophora
davisiana) might be attributed to the reproduction of these species in a depth be-
tween the upper and lower traps. The seasonal changes in the fluxes of intermediate
and deep dwellers in the lower trap would reflect the food supply. Flux of deep water10

dwellers (Pseudodictyophimus g. gracilipes, Pseudodictyophimus plathycephalus, Pla-
giacanthidae gen. et sp. in det., Cycladophora davisiana) in the lower trap was high
during July–August in 2011. This would probably indicate that decomposing material
from the primary production during the sea-ice free season was transported to great
depths, giving nutrition to the deep water radiolarian fauna. Most of the radiolarian15

species in the lower trap also peaks during March in 2011, which corresponded to the
period with a heavy ice cover and a low downward shortwave radiation. In addition, the
flux peak during March in 2011 was made up of more than 80 % of A. setosa, which
were surface water species although the peaks around the same period were not found
in the upper trap. Therefore, the flux peaks during March in 2011 would be derived from20

some lateral advection at a depth lower than 180 m or a re-suspension of shelf bottom
materials into the upper water column.

The Supplement related to this article is available online at
doi:10.5194/bgd-11-16645-2014-supplement.
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Table 1. Logistic and sample information for the vertical plankton tows for radiolarian standing
stock (S. S.) at two stations during R/V Mirai Cruise MR13-06.

Station ID Sampling Depth Flow Aliquot Living Dead Total
time interval water mass size radiolarian radiolarian radiolarian

(UTC) (m) (m3) S.S. (count) S.S. (count) S.S. (count)

Station 32 74◦32′ N, 161◦54′W 01:24 0–100 20.4 1/4 247 (1257) 75 (381) 322 (1638)
01:22 100–250 27.2 1/4 96 (654) 116 (790) 212 (1444)

Date 9 Sep 2013 01:18 250–500 39.7 1/2 11 (215) 20 (397) 31 (612)
01:10 500–1000 79.3 1/2 12 (462) 17 (665) 29 (1127)

Station 56 73◦48′ N, 159◦59′W 17:36 0–100 15.8 1/4 499 (1968) 677 (2671) 1176 (4639)
17:34 100–250 23.8 1/2 265 (3156) 480 (5711) 745 (8867)

Date 27 Sep 2013 17:30 250–500 40.8 1/2 55 (1125) 276 (5627) 331 (6752)
17:22 500–1000 81.8 1/2 25 (1034) 83 (3381) 108 (4415)
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Table 2. Locations, mooring depths, standard sampling interval, and sampled duration of sedi-
ment trap station in the western Arctic Ocean.

Trap station Latitude Longitude Water Mooring depth (m) Standard Sampled
depth sampling duration
(m) interval*

(days)

NAP10t 75◦00′ N 162◦00′W 1975 184 (upper), 1300 (lower) 10–15 4 Oct 2010–28 Sep 2011
NAP11t 75◦00′ N 162◦00′W 1975 260 (upper), 1360 (lower) 10–15 4 Oct 2011–18 Sep 2012

* Details of the exact durations for each sample are shown in Tables S3 and S4.
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Table 3. List of 51 radiolarian taxa encountered in the plankton tow and sediment trap samples.

References

Radiolaria, Müller (1858)
Polycystina, Ehrenberg (1838); emend. Riedel (1967)
Spumellaria, Ehrenberg (1875)
Actinommidae, Haeckel (1862); emend. Riedel (1967)
Actinomma boreale, Cleve (1899) Cortese and Bjørklund (1998), Plate 1, Figs. 1–18
Actinomma leptodermum leptodermum, Jørgensen (1900) Cortese and Bjørklund (1998), Plate 2, Figs. 1–14
Actinomma morphogroup A
Actinomma leptodermum, Jørgensen (1900); longispinum, Cortese and Bjørklund (1998) Cortese and Bjørklund (1998), Plate 2, Figs. 15–22
Actinomma leptodermum longispinum juvenile
Actinommidae spp. juvenile forms
Actinomma turidae, Kruglikova and Bjørklund (2009) Kruglikova et al. (2009), Plate 5, Figs. 1–35, Plate 6, Figs. 1–28
Actinomma morphogroup B
Actinomma morphogroup B juvenile
*Drymyomma elegans, Jørgensen (1900) Dolven et al. (2014), Plate 1, Figs. 5–7
*Actinomma friedrichdreyeri, Burridge, Bjørklund and Kruglikova (2013) Burridge et al. (2013), Plate 6, Figs. 7–15, Plate 7, Figs. 3–15
Arachnosphaera dichotoma, Jørgensen (1900) Dolven et al. (2014), Plate 1, Figs. 1–4
Litheliidae, Haeckel (1862)
* Streblacantha circumtexta? Jørgensen (1905)
Spongodiscidae, Haeckel (1862)
Spongotrochus glacialis, Popofsky (1908) Bjørklund et al. (1998), Plate I, Fig. 3
Stylodictya sp.
Entactinaria, Kozur and Mostler (1982)
Cleveiplegma boreale, Cleve (1899) Dumitrica (2013), Plate 1, Figs. 1–9
Joergensenium sp. A
Joergensenium sp. B
Nassellaria, Ehrenberg (1875)
Sethophormididae, Haeckel (1881); emend. Petrushevskaya (1971)
Enneaphormis rotula, Haeckel (1881) Petrushevskaya (1971), Fig. 31, I–III
Enneaphormis enneastrum, Haeckel (1887) Petrushevskaya (1971), Fig. 32, IV, V
Protoscenium simplex, Cleve (1899) Bjørklund et al. (2014), Plate 9, Figs. 15–17
Plagiacanthidae, Hertwig (1879); emend. Petrushevskaya (1971)
*Arachnocorys umbellifera, Haeckel (1862) Welling (1996), Plate 14, Figs. 24–27
Ceratocyrtis histricosus, Jørgensen (1905) Petrushevskaya (1971), Figs. 52, II–IV
Ceratocyrtis galeus, Cleve (1899) Bjørklund et al. (2014), Plate 8, Figs. 1–2
*Cladoscenium tricolpium, Haeckel (1887) Bjørklund (1976), Plate 7, Figs. 5–8
Cladoscenium tricolpium?
Lophophaena clevei, Petrushevskaya (1971) Petrushevskaya (1971), Fig. 57, I
Phormacantha hystrix, Jørgensen (1900) Dolven et al. (2014), Plate 6, Figs. 20–24
*Peridium longispinum? Jørgensen (1900) Bjørklund et al. (1998), Plate II, Figs. 26 and 27
Plectacantha oikiskos, Jørgensen (1905) Dolven et al. (2014), Plate 7, Figs. 7–9
Pseudodictyophimus clevei, Jørgensen (1900) Bjørklund et al. (2014), Plate 9, Figs. 5–7
Pseudodictyophimus gracilipes gracilipes, Bailey (1856) Bjørklund et al. (1998), Plate II, Figs. 7 and 8
Pseudodictyophimus spp. juvenile forms
Pseudiodictyophimus gracilipes, Bailey (1856); bicornis, Ehrenberg (1861) Bjørklund and Kruglikova (2003), Plate V, Figs. 16–19
Pseudodictyophimus gracilipes, Bailey (1856); multispinus, Bernstein (1934) Bjørklund and Kruglikova (2003), Plate V, Figs. 11–13
Pseudodictyophimus plathycephalus, Haeckel (1887) Bjørklund and Kruglikova (2003), Plate V, Figs. 1–5
Tetraplecta pinigera, Haeckel (1887) Takahashi (1991), Plate. 24, Figs. 1–5
Tripodiscium gephyristes, Hülsemann (1963) Bjørklund et al. (1998), Plate II, Figs. 20 and 21
Plagiacanthidae gen. et sp. in det.
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Table 3. Continued.

References

Eucyrtidiidae, Ehrenberg (1847); emend. Petrushevskaya (1971)
Artostrobus annulatus, Bailey (1856) Bjørklund et al. (2014), Plate 9, Figs. 1–4
Artostrobus joergenseni, Petrushevskaya (1967) Petrushevskaya (1971), Fig. 92, VIII–IX
*Cornutella stylophaena, Ehrenberg (1854) Petrushevskaya (1967), Fig. 59, I–III
*Cornutella longiseta, Ehrenberg (1854) Petrushevskaya (1967), Fig. 62, I–II, Fig. 58, VIII
Cycladophora davisiana, Ehrenberg (1862) Bjørklund et al. (1998), Plate II, Figs. 1 and 6
Lithocampe platycephala, Ehrenberg (1873) Bjørklund et al. (1998), Plate II, Figs. 23–25
Lithocampe aff. furcaspiculata, Popofsky (1908) Petrushevskaya (1967), Fig. 74, I–IV
Sethoconus tabulatus, Ehrenberg (1873) Bjørklund et al. (2014), Plate 9, Figs. 10 and 11
Cannobotryidae, Haeckel (1881); emend. Riedel (1967)
Amphimelissa setosa, Cleve (1899) Bjørklund et al. (1998), Plate II, Figs. 30–33
Amphimelissa setosa, juvenile
Phaeodaria, Haeckel (1879)
Lirella melo, Cleve (1899) Bjørklund et al. (2014), Plate 11, Figs. 5 and 6
Protocystis harstoni, Murray (1885) Takahashi and Honjo (1981), Plate 11, Fig. 11

All taxa are found in the trap, and * refer to taxa found in trap only.
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Figure 1. Map of the Chukchi and Beaufort Seas showing the locations of sediment trap (solid
triangle) and plankton tows (solid circles). Gray arrows indicate the cyclonic circulation of the
Beaufort Gyre and the inflow of Pacific water through the Bering Strait, respectively.
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Figure 2. The depth distributions of total dead and living radiolarians at stations 32 (a), and
56 (b) in comparison to vertical profiles of temperature, salinity, dissolved oxygen (Nishino,
2013), and living radiolarian diversity index (Shannon and Weaver, 1949). Also the different
water masses are identified Surface Mixed Layer (SML), Pacific Summer Water (PSW), Pacific
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Figure 3. Compositions of living radiolarian assemblages in plankton samples through the
upper 1000 m of the water columns at stations 32 (Northwind Abyssal Plain) (a) and 56 (south-
western Canada basin) (b).
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Fig. 5Figure 5. (a) Total radiolarian fluxes with diversity index and sea-ice concentration in upper trap
at Station NAP. 2 samples with fewer than 100 specimens are marked with asterisk. Sea-ice
concentration data are from Reynolds et al. (2002) (http://iridl.ldeo.columbia.edu/SOURCES/
.IGOSS/.nmc/.Reyn_SmithOIv2/). (b) Radiolarian faunal compositions in upper trap at Station
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Figure 6. Scatter plots of diversity indices and total radiolarian fluxes at upper (a) and lower
trap (b). In these plots, samples with fewer than 100 specimens were excluded.

16688

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/16645/2014/bgd-11-16645-2014-print.pdf
http://www.biogeosciences-discuss.net/11/16645/2014/bgd-11-16645-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
11, 16645–16701, 2014

Flux variations and
vertical distributions
of microzooplankton

T. Ikenoue et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

0 

100 

200 

300 

400 

500 

600 

700 

0 

20 

40 

60 

80 

100 

0 

100 

200 

300 

0 

50 

100 

150 

0 

50 

100 

150 

Amphimelissa setosa
Amphimelissa setosa juvenile Actinomma l. leptodermum 

Actinommidae spp. juvenile forms

Spongotrochus glacialis  Joergensenium sp. A

Actinomma boreale 

Pseudodictyophimus clevei

Sea ice 
concentration

0 

5000 

10000 

15000 

20000 

25000 

O N D J F M A M J J A S O N D J F M A M J J A S
2011 20122010

0 

100 

200 

300 

400 

500 

600 

700 

O N D J F M A M J J A S O N D J F M A M J J A S
2011 20122010

O N D J F M A M J J A S O N D J F M A M J J A S
2011 20122010

2011 20122010
O N D J F M A M J J A S O N D J F M A M J J A S

2011 20122010

0 

50 

100 

150 

0 

20 

40 

60 

80 

100 

0 

100 

200 

300 

0 

5000 

10000 

15000 

20000 

25000 

O N D J F M A M J J A S O N D J F M A M J J A S
0 

50 

100 

150 

NAP Upper

NAP Lower

NAP Upper

NAP Lower

NAP Upper

NAP Lower

NAP Upper

NAP Lower

NAP Upper

NAP Lower

Sea ice 
concentration

 (N
o.

 s
pe

ci
m

en
s 

m
  d

   
)

−2
−1

Fl
ux

S
ea

 ic
e 

co
nc

en
tra

tio
n 

(%
)

 (N
o.

 s
pe

ci
m

en
s 

m
  d

   
)

−2
−1

Fl
ux

 (N
o.

 s
pe

ci
m

en
s 

m
  d

   
)

−2
−1

Fl
ux

O N D J F M A M J J A S O N D J F M A M J J A S
2011 20122010

20 

40 

60 

80 
Ceratocyrtis histricosus  

0 

20 

40 

60 

80 
0 

NAP Upper

NAP Lower

Fig. 7
Figure 7. Two year fluxes of major radiolarian taxa at Station NAP during the sampling period.
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Fig. 7 (continued)
Figure 7. Continued.
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North Pacific Ocean.
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Plate 1. 1–4. Actinomma boreale (Cleve, 1899). 1, 2. Actinomma boreale, same specimen.
NAP10t Shallow #23. 3, 4. Actinomma boreale, same specimen. NAP10t Shallow #24. 5–10.
Actinomma leptodermum leptodermum (Jørgensen, 1900). 5, 6. Actinomma leptodermum lep-
todermum, same specimen. NAP10t Deep #12. 7, 8. Actinomma leptodermum leptodermum,
same specimen. NAP10t Deep #12. 9, 10. Actinomma leptodermum leptodermum, same speci-
men. NAP10t Deep #12. 11–14. Actinomma morphogroup A. 11, 12. Actinomma morphogroup
A, same specimen. NAP10t Deep #4. 13, 14. Actinomma morphogroup A, same specimen.
NAP10t Deep #4. 15–18. Actinomma leptodermum (Jørgensen, 1900) longispinum (Cortese
and Bjørklund, 1998). 15, 16. Actinomma leptodermum longispinum, same specimen. NAP10t
Deep #12. 17, 18. Actinomma leptodermum longispinum juvenile, same specimen. NAP10t
Deep #12. 19–24. Actinommidae spp. juvenile forms. 19, 20. Actinomma sp. in det., same
specimen. NAP10t Deep #12. 21, 22. Actinomma sp. in det., same specimen. NAP10t Deep
#12. 23, 24. Actinomma sp. in det., same specimen. NAP10t Deep #12. 25–26. Actinomma
turidae (Kruglikova and Bjørklund, 2009), same specimen. NAP10t Deep #22.
Scale bar= 100 µm for all figures.
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Plate 2. 1–4. Actinomma morphogroup B. 1, 2. Actinomma morphogroup B, same specimen.
NAP10t Deep #4. 3, 4. Actinomma morphogroup B juvenile, same specimen. NAP10t Deep
#15. 5, 6. Drymyomma elegans (Jørgensen, 1900), same specimen. NAP10t Deep #14. 7–
9. Actinomma friedrichdreyeri (Burridge, Bjørklund and Kruglikova, 2013), same specimen.
NAP11t Deep #4. 10–11. Cleveiplegma boreale (Cleve, 1899), same specimen. NAP11t Deep
#12.
Scale bar= 100 µm for all figures.
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Plate 3. 1–4. Arachnosphaera dichotoma (Jørgensen, 1900). 1, 2. Arachnosphaera dichotoma,
same specimen. NAP11t Deep #5. 3, 4. Arachnosphaera dichotoma, same specimen. NAP11t
Deep #4. 5–8. Streblacantha circumtexta? (Jørgensen, 1905). 5, 6. Streblacantha circumtexta?
juvenile form, same specimen NAP10t Deep #12. 7, 8. Streblacantha circumtexta? juvenile
form, same specimen. NAP10t Shallow #23. 9–11. Spongotrochus glacialis (Popofsky, 1908).
9. Spongotrochus glacialis. NAP10t Shallow #24. 10, 11. Spongotrochus glacialis, same spec-
imen. NAP10t Shallow #22. 12. Stylodictya sp. NAP10t Shallow #16.
Scale bar= 100 µm for all figures.
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Plate 4. 1–7. Joergensenium spp. 1, 2, 3. Joergensenium sp. A, same specimen. NAP10t
Deep #12. 4, 5. Joergensenium sp. A, juvenile forms of 1–3, same specimen. NAP11t Deep
#4. 6, 7. Joergensenium sp. B, same specimen. NAP11t Deep #9. 8–9. Enneaphormis ro-
tula (Haeckel, 1881), same specimen. NAP11t Deep #4. 10–11. Enneaphormis enneastrum
(Haeckel, 1887), same specimen. NAP10t Deep #12. 12–16. Protoscenium simplex (Cleve,
1899). 12, 13, 14. Protoscenium simplex, same specimen. NAP10t Deep #12. 15, 16. Proto-
scenium simplex, same specimen. NAP10t Deep #12.
Scale bar= 100 µm for all figures.
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Plate 5. 1–6. Ceratocyrtis histricosus (Jørgensen, 1905). 1, 2, 3. Ceratocyrtis histricosus,
same specimen. NAP10t Deep #12. 4, 5, 6. Ceratocyrtis histricosus, same specimen. NAP10t
Deep #12. 7–10. Ceratocyrtis galeus (Cleve, 1899). 7, 8. Ceratocyrtis galeus, same specimen.
NAP10t Deep #6. 9, 10. Ceratocyrtis galeus, same specimen. NAP10t Deep #4. 11–12. Arach-
nocorys umbellifera (Haeckel, 1862), same specimen apical view. NAP10t Deep #4. 13–16.
Cladoscenium tricolpium (Haeckel, 1887). 13, 14. Cladoscenium tricolpium, same specimen.
NAP10t Deep #6. 15, 16. Cladoscenium tricolpium?, same specimen. NAP10t Deep #14. 17–
18. Lophophaena clevei (Petrushevskaya, 1971), same specimen. NAP10t Shallow #14. 19–
27. Phormacantha hystrix (Jørgensen, 1900). 19, 20. Phormacantha hystrix, same specimen.
NAP10t Deep #12. 21, 22. Phormacantha hystrix, same specimen. NAP10t Deep #12. 23, 24,
25. Phormacantha hystrix, same specimen. NAP10t Deep #12. 26, 27. Phormacantha hystrix,
same specimen. NAP10t Deep #12.
Scale bar= 100 µm for all figures.
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Plate 6. 1–4. Peridium longispinum? (Jørgensen, 1900). 1, 2. Peridium longispinum?, same
specimen. NAP11t Deep #4. 3, 4. Peridium longispinum?, same specimen. NAP11t Deep
#4. 5–6. Plectacantha oikiskos (Jørgensen, 1905), same specimen. NAP10t Deep #12. 7–11.
Pseudodictyophimus clevei (Jørgensen, 1900). 7, 8, 9. Pseudodictyophimus clevei, same spec-
imen. NAP10t Deep #12. 10, 11. Pseudodictyophimus clevei, same specimen. NAP10t Deep
#12. 12–13. Pseudodictyophimus gracilipes gracilipes (Bailey, 1856), same specimen. NAP10t
Deep #12. 14–19. Pseudodictyophimus spp. juvenile forms. 14, 15. Pseudodictyophimus in
det., juvenile forms same specimen. NAP10t Deep #12. 16, 17. Pseudodictyophimus in det.,
juvenile forms, same specimen. NAP10t Deep #12. 18, 19. Pseudodictyophimus in det., juve-
nile forms same specimen. NAP10t Deep #12. 20–23. Pseudiodictyophimus gracilipes (Bai-
ley, 1856) bicornis (Ehrenberg, 1861). 20, 21. Pseudiodictyophimus gracilipes bicornis, same
specimen. NAP11t Deep #4. 22, 23. Pseudiodictyophimus gracilipes bicornis, same specimen.
NAP11t Deep #4.
Scale bar= 100 µm for all figures.
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Plate 7. 1–3. Pseudodictyophimus gracilipes (Bailey, 1856) multispinus (Bernstein, 1934) 1, 2.
Pseudodictyophimus gracilipes multispinus, same specimen. NAP10t Shallow #2. 3. Pseudo-
dictyophimus gracilipes multispinus. NAP11t Shallow #2. 4–12. Pseudodictyophimus plathy-
cephalus (Haeckel, 1887). 4, 5, 6. Pseudodictyophimus plathycephalus, same specimen.
NAP10t Deep #12. 7, 8. Pseudodictyophimus plathycephalus, same specimen. NAP10t Deep
#12. 9, 10. Pseudodictyophimus plathycephalus, same specimen. NAP10t Deep #12. 11, 12.
Pseudodictyophimus plathycephalus, same specimen. NAP11t Deep #4. 13–14. Tetraplecta
pinigera (Haeckel, 1887), same specimen. NAP10t Deep #12.
Scale bar= 100 µm for all figures.
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Plate 8. 1–10. Tripodiscium gephyristes (Hülsemann, 1963). 1, 2. Tripodiscium gephyristes,
same specimen. NAP10t Deep #12. 3, 4, 5 Tripodiscium gephyristes, same specimen. NAP10t
Deep #12. 6, 7, 8. Tripodiscium gephyristes, same specimen. NAP10t Deep #12. 9, 10. Tripodis-
cium gephyristes, same specimen. NAP10t Deep #12. 11–18. Plagiacanthidae gen. et sp. in
det. 11, 12. Plagiacanthidae gen. et sp. in det. juvenile, same specimen. NAP10t Deep #12.
13, 14. Plagiacanthidae gen. et sp. in det., same specimen. NAP10t Deep #12. 15, 16. Pla-
giacanthidae gen. et sp. in det., same specimen. NAP10t Deep #12. 17, 18. Plagiacanthidae
gen. et sp. in det. juvenile, same specimen. NAP10t Deep #12. 19–22. Artostrobus annula-
tus (Bailey, 1856). 19, 20. Artostrobus annulatus, same specimen. NAP10t Deep #12. 21, 22.
Artostrobus annulatus, same specimen. NAP10t Deep #12. 23–30. Artostrobus joergenseni
(Petrushevskaya, 1967). 23, 24. Artostrobus joergenseni, same specimen. NAP10t Deep #12.
25, 26. Artostrobus joergenseni, same specimen. NAP10t Deep #12. 27, 28. Artostrobus joer-
genseni, same specimen. NAP10t Deep #12. 29, 30. Artostrobus joergenseni, same specimen.
NAP10t Deep #12.
Scale bar= 100 µm for all figures.
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Plate 9. 1, 2. Cornutella stylophaena (Ehrenberg, 1854), same specimen. NAP10t Deep #12.
3, 4. Cornutella longiseta (Ehrenberg, 1854), same specimen. NAP10t Deep #12. 5–9. Cy-
cladophora davisiana (Ehrenberg, 1862). 5. Cycladophora davisiana, NAP11t Deep #4. 6, 7.
Cycladophora davisiana, same specimen. NAP10t Deep #12. 8, 9. Cycladophora davisiana,
same specimen. NAP10t Deep #12. 10–11. Lithocampe aff. furcaspiculata (Popofsky, 1908).
same specimen. NAP10t Deep #12. 12–13. Lithocampe platycephala (Ehrenberg, 1873). 12.
Lithocampe platycephala. NAP10t Deep #13. 13. Lithocampe platycephala. NAP11t Deep #14.
14–21. Sethoconus tabulatus (Ehrenberg, 1873). 14, 15. Sethoconus tabulatus, same speci-
men. NAP10t Deep #12. 16, 17. Sethoconus tabulatus, same specimen. NAP10t Deep #12. 18,
19. Sethoconus tabulatus, same specimen. NAP10t Deep #12. 20, 21. Sethoconus tabulatus,
same specimen. NAP10t Deep #12. 22–33. Amphimelissa setosa (Cleve, 1899). 22, 23. Am-
phimelissa setosa, same specimen. NAP10t Deep #12. 24, 25. Amphimelissa setosa, same
specimen. NAP10t Deep #12. 26, 27. Amphimelissa setosa, same specimen. NAP10t Deep
#12. 28, 29. Amphimelissa setosa, same specimen. NAP11t Deep #4. 30, 31. Amphimelissa
setosa, same specimen. NAP10t Deep #12. 32, 33. Amphimelissa setosa, same specimen,
apical view. NAP11t Deep #4. 34–39. Amphimelissa setosa juvenile. 34, 35. Amphimelissa se-
tosa juvenile, same specimen. NAP11t Deep #14. 36, 37. Amphimelissa setosa juvenile, same
specimen. NAP10t Deep #12. 38, 39. Amphimelissa setosa juvenile, same specimen. NAP11t
Deep #14. 40–41. Lirella melo (Cleve, 1899), same specimen. NAP10t Deep #14. 42–43. Pro-
tocystis harstoni (Murray, 1885), same specimen. NAP10t Deep #18.
Scale bar= 100 µm for all figures.
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