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Supplementary material 1 

 2 

S1. Parametrization of Ra, Rb, Rbg and Rsto 3 

The value of Ra (sm-1) is dependent on the stability of atmosphere. An unstable stratification – 4 

when perturbing an air parcel it ascends from its initial position – favours smaller Ra, whilst a 5 

stable one – when the perturbed air parcel returns to its initial position – favours larger Ra. 6 

Atmospheric stability can be determined based on the measurements of the sensible heat flux 7 

(H, J m2s-1); for H>0, the stratification is unstable, while for H<0, it is stable.  The following 8 

parametrization of Ra was used (following Garland (1977)):  9 

       if H<0, (S1) 

 
   if H>0, (S2) 

where u is the wind speed measured at zw (m) height above ground, u* (m s-1) is the friction 10 

velocity, ΨH and ΨM are the stability functions for heat and momentum flux, respectively, L 11 

(m) is the Monin-Obukhov length, d is the displacement height of the vegetation, and k is the 12 

Karman constant (see its value together with all the model constants used in the parametrization 13 

of the compensation point model in Table S1).  14 

In the case of stable conditions, we parametrized ΨH and ΨM following Webb (1970):  15 

 , (S3) 

and for unstable conditions we applied the approach of Paulson (1970): 16 

 , (S4) 

 , (S5) 

where:  17 
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  (S6) 

L and u* can be obtained from measurements, but in the absence of these, parametrization 1 

should be used. Eq. (S7) expresses u*, with z0 (m) roughness length. L was derived following 2 

Eq. (S8), where T (K) is the temperature at 2 m above ground, ρ (kg m-3) is air density, cp is the 3 

specific heat capacity of dry air, and g is the acceleration of gravity. As the two parameters (L 4 

and u*) depend on each other, we applied iteration to calculate both. 5 

 
 

(S7) 

  (S8) 

The values of ρ can be calculated as a function of atmospheric pressure (p, Pa) and virtual 6 

temperature (Tv, K): 7 

 , (S9) 

where R is the gas constant and Tv as a function of specific humidity (q) (for actual vapour 8 

pressure (ea, Pa) see (S21)) : 9 

 , (S10) 

where 10 

 . (S11) 

Based on Nemitz et al. (2001) for Rb , we used the formula of Owen and  Thomson (1963), 11 

where Re is the Reynolds number (Re=u* z0 ν
-1 , with ν as kinematic viscosity) and Sc is the 12 

Schmidt number (Sc= ν Dg
-1, with Dg as the diffusivity of ammonia in air): 13 

 . (S12) 
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Nemitz et al. (2001) applied a parametrization for Rbg (s m-1) for oilseed rape. Based on this Rbg 1 

can be expressed as (Schuepp, 1977): 2 

 
, 

(S13) 

where δ0 (m) is the height where eddy and molecular diffusivity are the same in magnitude and 3 

zl (m) is the height of the top of logarithmic wind profile (assumed to be 0.1 m as for oilseed 4 

rape). According to Schuepp (1977), δ0 (Eq. (S14)) is a function of friction velocity at ground 5 

level in the canopy (u*g, sm-1), which can be derived from the wind speed (Eq. (S15) as an 6 

approximation for oilseed rape by Nemitz et al. (2001)). 7 

  (S14) 

  (S15) 

In the parametrization of Rsto the components glight, gtemp and gVPD were derived following  8 

Emberson et al. (2000). Whilst glight (Eq. (S16)) is expressed as a function of photosynthetically 9 

active radiation (PAR, µmol m2 s-1), gtemp (Eq.(S17)) and gVPD (Eq.(S18)) takes into account air 10 

temperature (⁰C) and vapour pressure deficit (VPD, kPa), respectively. The latter is defined 11 

(Eq.(S19)) as the difference between saturated (es (kPa), Eq. (S20)) and actual vapour pressure 12 

(ea (kPa), Eq. (S21)). 13 

  (S16) 

   (S17) 

  (S18) 

  (S19) 

  (S20) 
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  (S21) 

    Table S1. Constants used in the parametrization of the 2LCCPM. 1 

Model constants  Value 

For Ra and Rb  

k (Karman constant) 0.41 

d (displacement height)M 0.189 m 

z0 (surface roughness)M 0.039 m 

ν (kinematic viscosity) 1.56 × 10-5 m2 s-1 

Dg (diffusivity of NH3 in air) 2.28 × 10-5 

R (gas constant) 287 J kg-1 K-1 

g (acceleration of gravity) 9.81 m s-2 

cp (heat capacity) 1005 J kg-1 K-1 

For Rac and Rbg  

α M 65.24 

zl (height of the top of logarithmic wind profile)N 0.1 m 

For Rw and Rsto  

Rw(min) (minimal cuticular resistance)H 1 s m-1 

a H 0.074 

(ratio of diffusivity of O3 and NH3)
S  

LAI (leaf area index)M 3.5 m2 m-2 

gmax (maximal stomatal conductance)S 270 mmol O3 m
-2 

gpot (effect of phenological change on stomatal conductane)S 1 

gmin (minimal stomatal conductance)E 0.1 

αPAR E 0.009 (µmol m2 s-1)-1 

Topt (temperature for optimal stomatal conducatnce)E 26 ºC 

Tmin (temperature for minimal stomatal conductance)E 12 ºC 

VPDmin (VPD for minimal stomatal conductance)E 3 kPa 

VPDmax (VPD for maximal stomatal conductance)E 1.3 kPa 

For Γsto  
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ΤM 2.88 days 

MMassad et al., 2010, for summer grassland (values are available also for the other seasons) 1 

NNemitz et al., 2001, for oilseed rape 2 

HHorváth et al., 2005, for summer, semi-natural grassland (values are available also for the 3 

other seasons) 4 

SSutton et al., 2013, for grassland 5 

EEmberson et al., 2000, for grassland  6 
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S2. Chemical reactions in the GAG model and their equilibrium coefficients  1 

Table S2. Chemical equations – indicated by R0-5 - simulated within the model, (where applicable) their equilibrium coefficient according to 2 

definition (K for dissociation and H for dissolution) and the coefficients expressed as the function of soil temperature (Tsoil (K)) and their references. 3 

 4 

Chemical equation Equilibrium coefficient  Equilibrium coefficient  

as a function of temperature 

Reference 

R0: 
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S3. Constants used in the soil evaporation calculation 1 

Table S3. Constants used in the parametrization of soil evaporation. 2 

Constants Value 

hM (canopy height) 0.3 m 

Kcb(Tab)A (coefficient) 0.7 

ΔzE
A (thickness of evaporation layer) 0.125 m 

M recommended by Massad et al. (2010) for grass 3 

A recommended by Allen et al. (1998) (for extensively grazed pasture) 4 

 5 

S4. NH3 fluxes simulated by the GAG model 6 

 7 

Figure S1. NH3 fluxes simulated by the GAG model: Total NH3 (Ft), soil emission flux (Fg), 8 

deposition to the leaf surface (Fw) and the stomatal exchange (Fsto) 9 

 10 

S5. Model experiment for a possible restart of urea hydrolysis after the rain event 11 

To test the model for a possible restart of urea hydrolysis after the rain event, we assumed that 12 

10% of the urine (0.1 litre, containing 1.5 g of urea N) was intercepted on the vegetation. From 13 

there due to the dry and warm weather conditions (according to the meteorological data in Fig. 14 

10, on the first day of the experiment relative humidity was particularly low and air temperature 15 



 8 

relatively high compared to the following days) the liquid content might evaporate quickly 1 

leaving behind dry urea, which could be washed into the soil by precipitation. With this 2 

assumption, allowing the hydrolysis to restart in the soil, the model gives a better representation 3 

for the peaks in NH3 emission (Fig. 10d) on the following three days. In addition, a peak in both 4 

soil pH and TAN budget (Fig. S2 (a)-(b)) appears in the model results after the rain event, 5 

similarly to the observed values of soil pH and NHx-N, respectively.  6 

  7 

Figure S2. Results for soil pH (a) and TAN budget (b) from the model experiment when an 8 

assumed 1.5 g of urea was added in the beginning of the rain event. 9 

  10 



 9 

S6. Investigation of model sensitivity to the timing of the rain event 1 

To test the model sensitivity to the timing of the rain event, we assumed the exact same hourly 2 

precipitation sums and modified only the starting time of the rain event. In Fig. S3 (a) we show 3 

how the timing of the rain event affects the NH3 emission, with up to a 6% reduction or 2% 4 

increase in total NH3 emission. If it starts raining close to the time of the urine application, the 5 

larger Rsoil reduces the total emission by supressing the first peak of emission (see Fig. S3 (b), 6 

time step t3).   7 

 8 

Figure S3. (a): The total ammonia emission over the period for a given starting time of the rain 9 

event. Dashed red lines indicate the time of the daily maxima of soil temperature. (b): Hourly 10 

ammonia emission for the time steps indicated on panel (a) with red dots. 11 

 12 



 10 

Further local minima occur in the total emission two and three days after urine application, 1 

when the rain event is close to the daily maxima of soil temperature which is when the daily 2 

peak of NH3 emission is expected. In these cases also the increased soil resistance inhibits 3 

volatilization. For example, in the 45th time step (Fig. S3 (b)) the third peak of emission 4 

disappeared. If we move the rain event after the daily maximum of soil temperature, the 5 

prevented peak appears (not shown here) and at the same time increase of the total NH3 6 

emission can be observed.   7 

Nevertheless, if precipitation gets into the soil, when there is still enough TAN available for 8 

volatilization apparently, the “trapped” TAN is emitted later on, as the soil resistance declines 9 

due to evaporation. This will lead to a less low minimum in total emission. An example can be 10 

seen for this phenomenon on Fig. S3 (b), when it started raining in the 22nd time step, supressing 11 

the second NH3 emission peak but enhancing the forth peak two days later, when the soil dried 12 

out.  13 

On the other hand, if precipitation occurs several days after the deposition of the urine patch 14 

(e.g. four or five days after urine application) total emission does not decline. This is because, 15 

after the third day the increased soil resistance prevents all the emissions after rainfall until the 16 

end of the period (Fig. S3 (b), t72). The reason for that is in this last period only a small amount 17 

of TAN is remaining in the soil, which is not able to overcome the effect of the soil resistance. 18 

Later, as the rain event passes the daily maximum temperatures, emission peaks appear, leading 19 

to an increase in total emission.  20 

 21 
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