

1 **Soil carbon sequestration by three perennial legume pastures is greater in deeper**
2 **soil layers than in the surface soil**

3 Xiao-Kang Guan^A, Neil C. Turner^{BC}, Lei Song^D, Yan-Jie Gu^B, Tong-Chao Wang^{A*},
4 Feng-Min Li^{BC*}

5 ^A Collaborative Innovation Center of Henan Grain Crops, Agronomy College of
6 Henan Agricultural University, Zhengzhou, Henan 450002, China

7 ^B State Key Laboratory of Grassland Agro-Ecosystem, Institute of Arid Agroecology,
8 School of Life Sciences, Lanzhou University, Lanzhou 730000, China

9 ^C The UWA Institute of Agriculture and Centre for Plant Genetics and Breeding, The
10 University of Western Australia, M080, Perth, WA 6009, Australia

11 ^D Medical College of Northwest University for Nationalities, Lanzhou 730030, China

12 * Corresponding author.

13

14 No. of table: 2

15 No. of figures: 5

16

17 Corresponding authors: Tong-Chao Wang (Prof.), Feng-Min Li (Prof.)

18 Tel/Fax: +86 371 63978418, +86 931 8912848

19 E-mail: wtcwrn@126.com, fml@lzu.edu.cn

20

21 **ABSTRACT**

22 Soil organic carbon (SOC) plays a vital role as both a sink for and source of
23 atmospheric carbon. Revegetation of degraded arable land in China is expected to
24 increase soil carbon sequestration, but the role of perennial legumes on soil carbon
25 stocks in semiarid areas has not been quantified. In this study, we assessed the effect
26 of alfalfa (*Medicago sativa* L.) and two locally-adapted forage legumes, bush clover
27 (*Lespedeza davurica* S.) and milk vetch (*Astragalus adsurgens* Pall.) on the SOC
28 concentration and SOC stock accumulated annually over a 2-m soil profile. The
29 results showed that the concentration of SOC of the bare soil decreased slightly over
30 the 7 years, while 7 years of legume growth substantially increased the concentration
31 of SOC over the 0-2.0 m soil depth. Over the 7-year growth period the SOC stocks
32 increased by $24.1 \text{ Mg C ha}^{-1}$, $19.9 \text{ Mg C ha}^{-1}$ and $14.6 \text{ Mg C ha}^{-1}$ under the alfalfa,
33 bush clover and milk vetch stands, respectively, and decreased by 4.2 Mg C ha^{-1} in the
34 bare soil. The sequestration of SOC in the 1-2 m depth of the soil accounted for 79, 68
35 and 74 % of the SOC sequestered in the 2 m deep soil profile under alfalfa, bush
36 clover and milk vetch, respectively. Conversion of arable land to perennial legume
37 pasture resulted in a significant increase in SOC, particularly at soil depths below 1 m.

38 **Keywords:** Soil organic carbon, SOC stocks, SOC sequestration, perennial legumes
39 pasture.

40 **1. Introduction**

41 Concerns about global warming and increasing atmospheric greenhouse gas
42 concentrations (CO₂, CH₄, and N₂O) have led to questions on the role of soils as a
43 source or sink for carbon. Excluding carbonated rocks, soils constitute the largest
44 surface carbon pool, approximately 1500 Gt, equivalent to almost twice that in the
45 terrestrial biomass and three times that in the atmosphere (IPCC, 2000). Globally,
46 soil cultivation has resulted in the loss of more than 40 Pg C, at a rate of about 1.6 Pg
47 C year⁻¹, to the atmosphere during the 1990s (Smith, 2008). Chinese agricultural soils
48 have also lost 30-50% or more of the soil carbon pool (Lal, 2004a).

49 Soil organic carbon (SOC) is a significant component of the global carbon stocks
50 (Chen et al., 2008). Globally, 24% of the SOC stock has been lost through the
51 conversion of forest to cropland (Murty et al., 2002) and 59% through the conversion
52 of pasture to cropland (Guo and Gifford, 2002). Fortunately, the loss of SOC can be
53 slowed down by implementing crop management practices such as conservation
54 tillage (Lal, 2004b; Puget and Lal, 2005), converting degraded arable land to
55 perennial grassland (Gentile et al., 2005), using diverse rotations, and introducing
56 legume and grass mixtures into the rotation (Lal, 2002, 2004b, c).

57 In the USA, the revegetation of highly-erodible cropland or other environmentally-
58 sensitive areas to resource-conserving vegetation for a period of 10 to 15 years
59 increased the SOC content in the upper 3 m of soil at average rate of 1.1 Mg C ha⁻¹
60 year⁻¹ (Osborn, 1993). This conservation reserve program (CRP) also significantly
61 increased the soil C pool (Staben et al., 1997) and provided multiple benefits both
62 environmentally and economically (Munson et al., 2012; Wu and Lin, 2010). Like the

63 CRP program in USA, a program of soil and water conservation, namely “Grain for
64 Green” was implemented on the Loess Plateau of China in 1999 to alleviate land
65 degradation. The program of eco-environmental revegetation focused on the recovery
66 of damaged ecosystems (Wang et al., 2010) by the use of perennial vegetation to
67 control soil erosion, increase the stocks of SOC and prevent the occurrence of dry
68 layers in the loess soils (Fu et al., 2010). Alfalfa (*Medicago sativa* L.) has been widely
69 grown on the Loess Plateau to increase livestock production and improve water-use
70 efficiency and soil fertility through high forage production, and for its ability to
71 decrease soil erosion and fix atmospheric N (Guan et al., 2013). Additionally,
72 locally-adapted legume species such as bush clover (*Lespedeza davurica* S.) and milk
73 vetch (*Astragalus adsurgens* Pall.) have been widely grown as cover crops or
74 windbreaks to protect the soil from water or wind erosion in arid and semiarid regions
75 of northern China (Wang, 2003; Xu et al., 2006). The “Grain for Green” program has
76 reduced wind and water erosion of marginal arable land and is expected to
77 significantly contribute to soil C sequestration. Recent studies have investigated and
78 estimated the changes in SOC stocks in the top 1-m of soil as a result of revegetation
79 of regional watersheds on the Loess Plateau of China (Fu et al., 2010; Wang et al.,
80 2011; Yan et al., 2007; Zhang et al., 2013). However, deep-rooted perennial legumes
81 may penetrate deeper in the soil profile than 1 m, likely underestimating the SOC-
82 sequestration potential of these forage legumes in northwest China (Smith et al.,
83 2015).

84 The objective of this research was to assess the effect of alfalfa and two locally-
85 adapted forage legumes, bush clover and milk vetch, on the SOC concentration and
86 SOC stock accumulated annually for 7 years over a 2-m soil profile. The SOC content
87 in the 2-m soil profile was measured at the end of each growing season to quantify the
88 SOC concentration and stock under the locally-adapted forage legumes and alfalfa,
89 and to provide specific information for estimating the SOC sequestration potential of
90 an important agricultural area. The hypothesis tested was that long-term growth of
91 deep-rooted perennial legumes will increase soil organic C, provide a feed source for
92 animals and provide a sink for atmospheric carbon.

93 **2. Materials and methods**

94 **2.1 Experimental site description**

95 The experiment was conducted at the Changwu Agro-ecological Experiment Station
96 on the Loess Plateau (35°12'N, 107°40'E), Shaanxi province, China, from 2004 to
97 2010. The level site is located at 1220 m above sea level. The climate is semiarid,
98 with an annual mean temperature of 9.1 °C and a mean annual precipitation of 579
99 mm (1979-2003) with rainfall concentrated in the period from July to September.
100 Precipitation and temperature data were recorded at the Changwu Meteorological
101 Station, 20 m from the experimental site. The groundwater table is 50 – 80 m below
102 the soil surface, making it unavailable for plant growth. Prior to the establishment of
103 this experiment, the site was planted to winter wheat for many (at least 20) years. For
104 winter wheat production, the site was ploughed to a depth of 0.3 m twice a year, after

105 harvest in early July and again in September before sowing; only wheat stubble was
106 returned to the soil, but 108 kg N ha⁻¹ and 276 kg P₂O₅ ha⁻¹ of fertilizer was applied
107 each year before sowing. In 2003, after the winter wheat was harvested, the site
108 remained fallow for 280 days to allow moisture accumulation over the winter before
109 the legumes were sown in May 2004.

110 Soil at the experimental site belongs to the Loess series. The texture in the top 5 m is
111 a uniform silty clay loam (haplic greyxems, FAO-UNESCO, 1988), with a mean sand,
112 silt, and clay content of 3.5, 65.6, and 30.9%, respectively. The soil physical
113 characteristics do not significantly change in the upper 5 m. The measured average
114 bulk density of the soil in the upper 2 m is 1.31 g cm⁻³, does not change with depth,
115 and the top 0.3 m contained 1.55% total organic matter, 0.106% nitrogen, and
116 0.095% available phosphate prior to the commencement of the experiment in 2004.

117 **2.2 Treatments and measurement of aboveground biomass**

118 Twelve experiment plots, each 4 m by 3 m, were established in early May 2004 with
119 one of three forage legume species, milk vetch (*Astragalus adsurgens* Pall.), alfalfa
120 (*Medicago sativa* L.) and bush clover (*Lespedeza davurica* S.), and an unplanted
121 control. Each legume species was grown as an evenly-spaced monoculture (but
122 assumed a more patchy distribution with time) at a seeding density of 25 plants m⁻²,
123 weeds were removed from all plots by hand using local farming practice. The plots
124 were adjacent to each other. During the experimental period from 2004 to 2010, there
125 was no irrigation or other form of supplementary water and the plots were not

126 fertilized. The plants were not inoculated, but relied on the naturally-occurring root
127 nodule bacteria from previous growth of the three species on the experimental station.
128 Nodulation was not observed to be a problem. Treatments were completely
129 randomized in three replicate blocks.

130 Each year from 2005-2010, measurements of aboveground biomass production for
131 each legume were taken at the end May, July and September (in 2004 only one cut
132 was made in September) by cutting the plants at ground level with hand-held shears in
133 a randomly-selected 1 m × 1 m quadrat within each plot, but avoiding border areas. At
134 the same time, the rest of the plot was also cut at the same height and the forage
135 removed. The oven-dry weight was determined after drying at 105 °C for 0.5 h and
136 then further dried at 75 °C for 48 h (Guan et al., 2013).

137 **2.3 Soil sampling and analysis**

138 Soil samples were taken with a cylindrical steel corer (diameter 40 mm and height
139 200 mm) at two random positions in each plot which were combined into one
140 composite sample per plot before analysis. Each plot was sampled from the surface to
141 2 m deep at depths of 0-0.3, 0.3-0.6, 0.6-1.0, 1.0-1.5 and 1.5-2.0 m before sowing on
142 10 May 2004 and at the end of each growing season (29 October) from 2004 to 2010.

143 The soil samples were air-dried, roots and organic debris removed, ground and sieved
144 through a 2 mm sieve, then stored at room temperature before analyzing the SOC.

145 The concentration of SOC (in g kg⁻¹) was measured using the wet dichromate
146 oxidation procedure (Moinuddin and Khanna-Chopra, 2004). Briefly, a 0.5 g soil

147 sample was digested with 5 mL of 1N $K_2Cr_2O_7$ and 5 mL of concentrated H_2SO_4 at
148 150°C for 0.5 h, followed by titration of the digest with standardized $FeSO_4$.

149 **2.4 SOC stock calculation and statistical analyses**

150 Soil organic C stock was calculated as Eq (1):

151 $C_{stock} = SOC \times \rho \times H \times 10$ (1)

152 where SOC is the SOC concentration ($g kg^{-1}$) in each soil layer, ρ is the soil bulk
153 density ($g cm^{-3}$), and H is the depth of each layer.

154 The data were analyzed by analysis of variance (ANOVA) applied to the data, and
155 means were compared using the LSD at $P < 0.05$ to characterize the differences among
156 treatments. PROC GLM (General Linear Model) were used to assess the temporal
157 changes in SOC stock and the rate and amount of SOC sequestered using Statistical
158 Analysis System (SAS Institute, Cary, NC, version 8.02).

159 **3. Results**

160 **3.1 Meteorological conditions**

161 The average monthly mean temperature from June to August, the primary growth
162 period for the legumes, was about 20 °C. Monthly mean temperatures were about 1 °C
163 warmer than the long-term mean throughout the experimental period (Fig. 1). Over
164 the experimental period, the total annual precipitation varied from 470 mm in 2006 to
165 583 mm in 2010, and was below the long-term mean in all years except 2010 when
166 the rainfall was similar to the long-term mean (Fig. 1). Rainfall from July to

167 September accounted for 55-60% of total annual precipitation, while rainfall in the
168 legume-growing season (from April to October) was about 90% (range from 84% in
169 2009 to 96% in 2005) of the total annual precipitation (Fig. 1).

170 **3.2 Aboveground forage biomass production**

171 The results of the aboveground biomass production over the seven years have been
172 reported by Guan et al. (2013). Briefly, the annual production of milk vetch increased
173 from 2.2 t ha⁻¹ in the first year to 14.3 t ha⁻¹ in 2006 and then decreased, alfalfa
174 increased from 2.3 t ha⁻¹ in the first year to a maximum of 22.2 t ha⁻¹ in 2006 and then
175 decreased, while bush clover increased from 0.2 t ha⁻¹ in the first year to 7.8 t ha⁻¹ in
176 2009 and did not decrease significantly thereafter (Table 1). Total aboveground
177 biomass production over the experimental period was highest in alfalfa at 91 t ha⁻¹
178 (equivalent to 45 Mg C ha⁻¹ assuming the default C to dry weight ratio of 0.5)
179 compared to 56 t ha⁻¹ (28 Mg C ha⁻¹) in milk vetch and 42 t ha⁻¹ (21 Mg C ha⁻¹) in
180 bush clover (Table 1).

181 **3.3 SOC concentration over the soil profile**

182 The legumes significantly ($P < 0.001$) increased the SOC concentration at each soil
183 depth, and this effect varied with legume species and experimental year (Table 2).
184 The initial concentration of SOC in May 2004 decreased with increasing soil depth
185 (Fig. 2). In the upper 0-0.3 m of soil, the initial SOC concentration was 8.0 ± 0.03 g kg⁻¹,
186 while it was only 3.3 ± 0.27 g kg⁻¹ in the 1.5-2.0 m soil layer (Fig. 2). Comparison of
187 the SOC concentration between the initial values on 10 May 2004 and those at the end

188 of the experimental period in October 2010 showed that the concentration of SOC of
189 the bare soil decreased slightly over the 7 years, while 7 years of legume growth
190 substantially increased the concentration of SOC over whole 2 m soil depth. There
191 were large increases in the concentration of SOC at 0.6-1.0 m, 1.0-1.5 m and 1.5-2.0
192 m soil depth and a small, but significant, increase in the upper 0.3 m of the soil in
193 bush clover, but not in milk vetch and alfalfa. No significant changes were observed
194 after 7 years at the 0.3-0.6 m depth (Fig. 2).

195 **3.4 SOC stock over the experimental period**

196 SOC stock was calculated by converting SOC concentration to the amount of SOC
197 per soil layer per unit area. The SOC stock in 2004 varied from $20 \pm 0.85 \text{ Mg C ha}^{-1}$ in
198 the 0.3-0.6 m soil layer to $32 \pm 0.68 \text{ Mg C ha}^{-1}$ at 0-0.3 and 1.0-1.5 m depth (Fig.3). In
199 the bare soil, the SOC stock decreased at all depths across the experimental period,
200 but only decreased significantly at $-0.36 \text{ Mg C ha}^{-1} \text{ year}^{-1}$ ($P < 0.05$) in the 1.5-2.0 m
201 layer (Fig. 3d), presumably from the decay and turnover of the wheat roots
202 accumulated over the many years of wheat production prior to the planting of the
203 legumes. In the legume plots, the SOC stock increased linearly with time (2004-2010)
204 in the 0-0.3 m, 0.6-1.0 m, 1.0-1.5 m and 1.5-2.0 m soil layers, but not in the 0.3-0.6 m
205 soil layer (Fig. 3). The change in SOC stock over the 7 years was greatest at soil
206 depths below 1.0 m in all three species and was greatest in the alfalfa plots with rates
207 of $1.35 \text{ Mg C ha}^{-1} \text{ year}^{-1}$ at a depth of 1.0-1.5 m ($P < 0.001$), and $1.39 \text{ Mg C ha}^{-1} \text{ year}^{-1}$
208 ¹ at a depth of 1.5-2.0 m ($P < 0.001$) (Fig. 3b). The highest accumulation of SOC

209 stock occurred at a depth of 1.0-1.5 m in bush clover where it averaged 1.58 Mg C
210 $\text{ha}^{-1} \text{ year}^{-1}$ ($P < 0.001$) (Fig. 3c).

211 Over the full 0-2.0 m depth, the SOC stock under bare soil decreased slightly over the
212 7 years, but increased under alfalfa, milk vetch, and bush clover (Fig. 4). The SOC
213 stock increased more under the stand of alfalfa than milk vetch, but there was no
214 significant difference between alfalfa and bush clover (Fig. 4). When calculated over
215 the full 2-m soil layer, over the 7-year growth period the SOC stocks increased by
216 $24.1 \text{ Mg C ha}^{-1}$, $19.9 \text{ Mg C ha}^{-1}$ and $14.6 \text{ Mg C ha}^{-1}$ under the alfalfa, bush clover and
217 milk vetch stands, respectively, and decreased by 4.2 Mg C ha^{-1} under bare soil (Fig.
218 5). In the 1.0-2.0-m soil layer the stocks of SOC increased by $19.1 \text{ Mg C ha}^{-1}$, 13.6
219 Mg C ha^{-1} and $10.8 \text{ Mg C ha}^{-1}$, under the alfalfa, bush clover and milk vetch stands,
220 respectively, that is, by 79, 68 and 74% of the increases in the whole soil profile (Fig.
221 5).

222 **4. Discussion**

223 Although highly-productive perennial forage legumes with deep roots have been
224 shown to cause a significant decrease in soil water at depth in semiarid environments
225 (Guan et al., 2013), they are considered to have an important role in sequestering
226 SOC in deep soil layers (Gentile et al., 2005). In the present study, the SOC in the
227 upper 2 m of the soil at the beginning of the experiment in 2004 was 137 Mg C ha^{-1}
228 and increased to 151, 161 and 157 Mg C ha^{-1} under the milk vetch, alfalfa and bush
229 clover stands, respectively, by the end of the experiment in 2010 (Fig. 4). This

230 indicates that as a result of planting the legumes, the SOC sequestered over the 7
231 years was 14, 24 and 20 Mg C ha⁻¹ in milk vetch, alfalfa and bush clover (Fig. 5),
232 respectively, but would have lost 4 Mg C ha⁻¹ if the soil had been left unplanted.

233 The aboveground biomass production over the seven years of the experiment was the
234 highest in alfalfa at 91 t ha⁻¹ (45 Mg C ha⁻¹), significantly higher than the biomass
235 production in milk vetch (56 t ha⁻¹, or 28 Mg C ha⁻¹) and bush clover (42 t ha⁻¹ or 21
236 Mg C ha⁻¹) (Table 1). While alfalfa had the highest increase in SOC stocks in the
237 upper 2 m of the soil (24.1 Mg C ha⁻¹), bush clover had a similar increase to alfalfa
238 (19.9 Mg C ha⁻¹) and milk vetch has a significantly smaller increase in SOC (14.6 Mg
239 C ha⁻¹) over the 7-year period (Fig. 5). An increase in the SOC stocks is usually
240 associated with the production of roots and/or their turnover, that is the pattern of root
241 growth and death, particularly the turnover of fine roots (Luo et al., 1995). A high rate
242 of turnover of fine roots and a high rate of exudation of carbon by the roots influences
243 the stability of plant C in soil and the accumulation of SOC (Shahzad et al., 2015).
244 Although the root biomass was not measured in this study, root biomass is usually
245 associated with aboveground biomass. However, the increase in SOC among the three
246 species was not associated simply with aboveground biomass, suggesting that root
247 biomass among the three species was not associated with aboveground biomass, or
248 the increase in SOC was not associated simply with root biomass. Assuming the
249 increase in SOC over the 7 years was all the result of the increase in root biomass, the
250 root mass ratio (root dry weight/total dry weight) would need to be 0.31 in alfalfa,
251 0.34 in milk vetch and 0.49 in bush clover for the increase in SOC to be associated

252 with the aboveground biomass produced over the 7 years. While the root mass ratios
253 of alfalfa and milk vetch are similar to those reported for alfalfa by Fan et al. (2015),
254 the bush clover would have to produce a much greater root biomass relative to the
255 aboveground biomass. Guan et al. (2013) did not measure root biomass, but showed
256 that the water extraction profile was greater in alfalfa and similar in milk vetch and
257 bush clover below 1.2 m, suggesting that root biomass did not vary significantly
258 between milk vetch and bush clover and cannot explain the greater accumulation of
259 SOC in the upper 2 m of the soil profile in bush clover than the milk vetch (Fig. 5).
260 The greater sequestration of SOC by bush clover than milk vetch may indicate the
261 production and turnover of fine roots was greater in bush clover than milk vetch. Sun
262 et al. (2001) reported that the fine roots (root diameter < 0.5 mm) of bush clover
263 accounted for 42% of total root biomass in 0-0.3 m soil layer, while the fine roots of
264 milk vetch were only 25% of total root biomass (Chen and Nie, 1978). If the roots
265 below 1 m are similar to those in the upper soil, this would help to explain why the
266 sequestration of SOC in bush clover was greater than milk vetch. The accumulation of
267 SOC in the upper 0.3 m of the soil was highest in bush clover at 3.4 Mg C ha^{-1} ,
268 intermediate in alfalfa at 1.3 Mg C ha^{-1} , and least in milk vetch at 0.8 Mg C ha^{-1} . The
269 accumulation of SOC in the upper soil layer may be attributed to the high
270 accumulation of legume residues and litter (Zhou et al., 2006), or due to the
271 proliferation and turnover of roots in this surface layer. The sequestration of SOC in
272 the upper 0.3 m of the soil in this study was significantly lower than Zhang et al.
273 (2009) who reported that the SOC stocks in 0 – 0.3 m soil layer had increased by 16

274 Mg C ha⁻¹ ten years after the conversion of a wet reed meadow to an irrigated alfalfa
275 pasture in the Hexi Corridor in north-west China. This suggests that well-managed
276 legume pastures in areas with higher precipitation and with appropriate fertilizer use
277 could sequester significantly more of SOC than in the present unirrigated and
278 unfertilized legumes.

279 An unexpected result from this study was the greater increase in SOC at soil depths
280 from 1 – 2 m than above 1 m. The water extraction patterns (Guan et al., 2013) do not
281 suggest that there was greater root density or biomass below 1 m than above 1 m and
282 do not provide an explanation for the greater sequestration of SOC at depth. The
283 greater increase in SOC at depth may be associated with a greater proliferation and
284 turnover of fine roots at depth, or alternatively may reflect the movement of SOC
285 down the profile with rainfall. The sequestration of SOC in the 1 – 2 m depth of soil
286 accounted for 79, 68 and 74% of SOC sequestered through the whole top 2 m of soil
287 under alfalfa, bush clover and milk vetch, respectively, indicating the importance of
288 deep roots. This was consistent with K äterer et al. (2011) who found that root-
289 derived carbon was about 2.3 times higher than that from above-ground residue-
290 derived C from a long-term field experiment in Sweden. Rasse et al. (2005) and
291 Johnson et al. (2006) attributed the SOC increase in the rhizosphere to the C from root
292 turnover and cells sloughing off the epidermal root tissues during the growing season,
293 and to soluble C compounds released from the roots by exudation. With the water
294 table at a depth of 20–300 m on the Loess Plateau of China, crop and pasture
295 production is reliant on precipitation as its major source of water supply. Low rainfall

296 and high legume water use led to soil water depletion in the 1 – 3 m root zone (Chen
297 et al., 2008), possibly accelerating root turnover and death and increasing the SOC
298 stock at soil depths from 1 – 2 m.

299 The high SOC stocks at soil depths of 1 – 2 m in alfalfa and milk vetch can be
300 attributed to their taproot system that can penetrate to 6.8 and 7.6 m, respectively, in 6
301 years (Cheng et al., 2005; Cheng et al., 2004). The root growth and death along with
302 their penetration would increase SOC stocks in the deep layers. In bush clover the
303 taproot predominates in the 0-0.3 m soil layer with coarse roots (root diameter > 2
304 mm) accounting for 48% of the total root biomass, and fine roots predominating in the
305 0.3-1.4 m soil depth, accounting for 60% of the root biomass (Cheng et al., 2005;
306 Cheng et al., 2004; Sun et al., 2001).

307 The conversion of arable land that had been growing crops for many years to
308 perennial legume pasture resulted in a significant increase in SOC, particularly at soil
309 depths below 1 m. All three legume species increased the SOC in the top 2 m of the
310 soil profile, but the increase was greatest in alfalfa and least in milk vetch. While the
311 production of aboveground biomass was least in bush clover, the SOC sequestration
312 in the soil profile was not significantly different from alfalfa, indicating that carbon
313 sequestration in the soil is not associated simply with aboveground biomass
314 production in a system in which the forage is removed for animal feed, as in the
315 present study. The root biomass production, turnover of fine roots and exudation of
316 carboxylic acids and other carbon compounds by the roots in the different legume

317 species would be a valuable further step in understanding the differences in carbon
318 sequestration in the three legume species.

319 **Acknowledgements**

320 This research was supported by grants (No. 31470496 and No. 31471452) from the
321 National Natural Science Foundation of China, the National Key Technology R&D
322 Program of China (Projects 2012BAD04B07 and 2012BAD14B08) and the
323 Innovation Team Program of the Ministry of Education of China (No. IRT_13R26).
324 This research was also supported by the Fundamental Research Funds for the Central
325 Universities (lzujbky-2015-ct02), and the Program of Introducing Talents of
326 Discipline to Universities ('111 Project 2007B051'). We are grateful to Xiao-Hong
327 Zhang for her help in the laboratory. NCT thanks the Centre for Plant Genetics and
328 Breeding and the UWA Institute of Agriculture at the University of Western Australia
329 for financial support. This work is a part of the doctoral dissertation of the first author,
330 Dr Xiao-Kang Guan, at Lanzhou University.

331

332 **References**

333 Chen, B. and Nie, C.: Research of *Astragalus adsurgens* Pall. root system, Journal of Gansu
334 Agricultural University, 2, 71-75, 1978. (in Chinese with English abstract)

335 Chen, H., Shao, M., and Li, Y.: Soil desiccation in the Loess Plateau of China, Geoderma,
336 143, 91-100, 2008.

337 Cheng, J., Wan, H. E., and Wang, J.: Alfalfa growth and its relation with soil water status in
338 loess hilly and gully region, The Journal of Applied Ecology, 16, 435-438, 2005. (in Chinese
339 with English abstract)

340 Cheng, J. M., Wan, H. E., Wang, J., and Yong, S. P.: Over depletion and recovery of soil
341 moisture on *Astragalus adsurgens* grasslands in the loess hilly-gully region, Acta Ecologica
342 Sinica, 24, 2979-2983, 2004. (in Chinese with English abstract)

343 Fan, J.-W., Du, Y.-L., Turner, N., Wang, B.-R., Fang, Y., Xi, Y., Guo, X.-R., and Li, F.-M.:
344 Changes in root morphology and physiology to limited phosphorus and moisture in a locally-
345 selected cultivar and an introduced cultivar of *Medicago sativa* L. growing in alkaline soil,
346 Plant and Soil, 392, 215-226, 2015.

347 Fu, X., Shao, M., Wei, X., and Horton, R.: Soil organic carbon and total nitrogen as affected
348 by vegetation types in Northern Loess Plateau of China, Geoderma, 155, 31-35, 2010.

349 Gentile, R. M., Martino, D. L., and Entz, M. H.: Influence of perennial forages on subsoil
350 organic carbon in a long-term rotation study in Uruguay, Agriculture, Ecosystems &
351 Environment, 105, 419-423, 2005.

352 Guan, X. K., Zhang, X. H., Turner, N. C., Xu, B. C., and Li, F. M.: Two perennial legumes
353 (*Astragalus adsurgens* Pall. and *Lespedeza davurica* S.) adapted to semiarid environments are
354 not as productive as lucerne (*Medicago sativa* L.), but use less water, Grass and Forage
355 Science, 68, 469-478, 2013.

356 Guo, L. B. and Gifford, R. M.: Soil carbon stocks and land use change: a meta analysis,
357 Global Change Biology, 8, 345-360, 2002.

358 IPCC: Land-use, land-use change, and forestry. In: Land use, land-use change, and forestry: a
359 special report of the intergovernmental panel on climate change, Watson, R. T., Noble, I. R.,
360 Bolin, B. R., Ravindranath, N. H., Verardo, D. J., and Dokken, D. J. (Eds.), Cambridge
361 University Press, U.K., 2000.

362 Johnson, J.-F., Allmaras, R., and Reicosky, D.: Estimating source carbon from crop residues,
363 roots and rhizodeposits using the national grain-yield database, Agronomy Journal, 98, 622-
364 636, 2006.

365 Kätterer, T., Bolinder, M. A., Andrén, O., Kirchmann, H., and Menichetti, L.: Roots
366 contribute more to refractory soil organic matter than above-ground crop residues, as revealed
367 by a long-term field experiment, Agriculture, Ecosystems & Environment, 141, 184-192,
368 2011.

369 Lal, R.: Offsetting China's CO₂ Emissions by Soil Carbon Sequestration, Climatic Change,
370 65, 263-275, 2004a.

371 Lal, R.: Soil carbon dynamics in cropland and rangeland, Environmental Pollution, 116, 353-
372 362, 2002.

373 Lal, R.: Soil carbon sequestration impacts on global climate change and food security,
374 Science, 304, 1623-1627, 2004b.

375 Lal, R.: Soil carbon sequestration to mitigate climate change, *Geoderma*, 123, 1-22, 2004c.
376 Luo, Y., Meyerhoff, P. A., and Loomis, R. S.: Seasonal patterns and vertical distributions of
377 fine roots of alfalfa (*Medicago sativa* L.), *Field Crops Research*, 40, 119-127, 1995.
378 Moinuddin and Khanna-Chopra, R.: Osmotic Adjustment in Chickpea in Relation to Seed
379 Yield and Yield Parameters, *Crop Science*, 44, 449-455, 2004.
380 Munson, S., Lauenroth, W., and Burke, I.: Soil carbon and nitrogen recovery on semiarid
381 Conservation Reserve Program lands, *Journal of Arid Environments*, 79, 25-31, 2012.
382 Murty, D., Kirschbaum, M. U. F., McMurtrie, R. E., and McGilvray, H.: Does conversion of
383 forest to agricultural land change soil carbon and nitrogen? a review of the literature, *Global
384 Change Biology*, 8, 105-123, 2002.
385 Osborn, T.: The conservation reserve program: Status, future and policy options, *Journal of
386 Soil and Water Conservation*, 48, 271-279, 1993.
387 Puget, P. and Lal, R.: Soil organic carbon and nitrogen in a Mollisol in central Ohio as
388 affected by tillage and land use, *Soil and Tillage Research*, 80, 201-213, 2005.
389 Rasse, D. P., Rumpel, C., and Dignac, M.-F.: Is soil carbon mostly root carbon? Mechanisms
390 for a specific stabilisation, *Plant and Soil*, 269, 341-356, 2005.
391 Shahzad, T., Chenu, C., Genet, P., Barot, S., Perveen, N., Mougin, C., and Fontaine, S.:
392 Contribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the
393 rhizosphere priming effect induced by grassland species, *Soil Biology and Biochemistry*, 80,
394 146-155, 2015.
395 Smith, P.: Land use change and soil organic carbon dynamics, *Nutrient Cycling in
396 Agroecosystems*, 81, 169-178, 2008.
397 Smith, P., House, J. I., Bustamante, M., Sobock á J., Harper, R., Pan, G., West, P., Clark, J.,
398 Adhya, T., Rumpel, C., Paustian, K., Kuikman, P., Cotrufo, M. F., Elliott, J. A., McDowell,
399 R., Griffiths, R. I., Asakawa, S., Bondeau, A., Jain, A. K., Meersmans, J., and Pugh, T. A. M.:
400 Global Change Pressures on Soils from Land Use and Management, *Global Change Biology*,
401 doi: 10.1111/gcb.13068, 2015. n/a-n/a, 2015.
402 Staben, M., Bezdicek, D., Fauci, M., and Smith, J.: Assessment of soil quality in conservation
403 reserve program and wheat-fallow soils, *Soil Science Society of America Journal*, 61, 124-
404 130, 1997.
405 Sun, Q., Han, J., Gui, R., Li, Z., and Liu, G.: Biomass in *Lespedeza dahurica* S., Grassland of
406 China, 04, 21-26, 2001. (in Chinese with English abstract)
407 Wang, G.: Differences in leaf $\delta^{13}\text{C}$ among four dominant species in a secondary succession
408 sere on the Loess Plateau of China, *Photosynthetica*, 41, 525-531, 2003.
409 Wang, Y., Fu, B., L ü, Y., and Chen, L.: Effects of vegetation restoration on soil organic
410 carbon sequestration at multiple scales in semi-arid Loess Plateau, China, *Catena*, 85, 58-66,
411 2011.
412 Wang, Y., Shao, M. a., and Shao, H.: A preliminary investigation of the dynamic
413 characteristics of dried soil layers on the Loess Plateau of China, *Journal of Hydrology*, 381,
414 9-17, 2010.
415 Wu, J. and Lin, H.: The effect of the conservation reserve program on land values, *Land
416 Economics*, 86, 1-21, 2010.

417 Xu, B., Gichuki, P., Shan, L., and Li, F.: Aboveground biomass production and soil water
418 dynamics of four leguminous forages in semiarid region, northwest China, South African
419 Journal of Botany, 72, 507-516, 2006.

420 Yan, H., Cao, M., Liu, J., and Tao, B.: Potential and sustainability for carbon sequestration
421 with improved soil management in agricultural soils of China, Agriculture, Ecosystems &
422 Environment, 121, 325-335, 2007.

423 Zhang, C., Liu, G., Xue, S., and Sun, C.: Soil organic carbon and total nitrogen storage as
424 affected by land use in a small watershed of the Loess Plateau, China, European Journal of
425 Soil Biology, 54, 16-24, 2013.

426 Zhang, T., Wang, Y., Wang, X., Wang, Q., and Han, J.: Organic carbon and nitrogen stocks
427 in reed meadow soils converted to alfalfa fields, Soil and Tillage Research, 105, 143-148,
428 2009.

429 Zhou, Z., Sun, O. J., Huang, J., Li, L., Liu, P., and Han, X.: Soil carbon and nitrogen stores
430 and storage potential as affected by land-use in an agro-pastoral ecotone of northern China,
431 Biogeochemistry, 82, 127-138, 2006.

432

433 **Figure Captions**

434 **Fig. 1.** Mean monthly temperature and precipitation from 2004-2010 and the long
435 term mean at the experimental site at Changwu Agricultural Research Station,
436 Shaanxi Province, China.

437 **Fig. 2.** Profile of soil organic carbon (SOC) concentration in May 2004 (IV) and in
438 October 2010 under three forage legumes: milk vetch, alfalfa and bush clover, and
439 bare soil (CK). Bars give + one standard error of the mean ($n = 3$).

440 **Fig. 3.** Change with stand age in soil organic carbon amount (stock) per hectare at soil
441 depths of 0-0.3m (a), 0.3-0.6m (b), 0.6-1.0m (c), 1.0-1.5m (d) and 1.5-2.0m (e) under
442 milk vetch, alfalfa, bush clover and bare soil (CK). Note the soil layers vary in depth.
443 Data are means \pm one standard error of the mean ($n = 3$) when larger than the symbol.
444 Linear regressions fitted when significant and fitted regressions given.

445 **Fig. 4.** The soil organic carbon amount (stock) under milk vetch, alfalfa, bush clover
446 and under bare soil (CK) over the upper 2 m of the soil profile. The lower case letters
447 indicate significant differences ($P < 0.05$) between forage types within a year. IV
448 denotes initial value, the soil organic carbon stock in May 2004. Bars give + one
449 standard error of the mean ($n = 3$).

450 **Fig. 5.** Change in soil organic carbon amount (stock) in different soil layers under
451 milk vetch, alfalfa, bush clover and bare soil (CK) from May 2004 to October 2010.
452 Different letters indicate significant differences ($P < 0.05$) between total carbon stocks.

453

454 Figure 1

455

456

457 Figure 2

458

459

460 Figure 3

461

462

463 Figure 4

464

465

466 Figure 5

467 **Table 1. Annual aboveground biomass production of the three legume species, milk**
468 **vetch, alfalfa and bush clover, from 2004 to 2010. Adopted from (Guan et al. (2013)) and**
469 **used with permission.**

Year	Aboveground biomass production		
	Milk vetch	Alfalfa	Bush clover
2004	2.2Ac	2.3Ad	0.2Bd
2005	14.1Ba	20.2Aa	5.3Cc
2006	14.3Ba	22.2Aa	7.8Ca
2007	6.8Bb	9.3Ac	6.4Bbc
2008	5.6Bb	13.4Ab	7.3Bab
2009	7.2Bb	12.4Ab	7.8Ba
2010	5.8Bb	10.8Abc	7.4Bab
2004-2010 Mean	8.0B	13.0A	6.0C
2004-2010 Total	56.0B	90.7A	42.1C

470 Data in each column with a different lower-case letter are significantly different ($P < 0.05$)
471 and data in each row with a different capital letter are significantly different ($P < 0.05$).

472

473 **Table 2. Results of the ANOVA for soil organic carbon concentration as affected by**
 474 **legume species, soil depth and experimental year. The bare soil plot is considered as a**
 475 **legume species in the analysis. GLM model has been applied in the analysis.**

Factors	df	F value	Pr > F
Species	3	38.52	0.0003
Depth	4	1649.40	<0.0001
Year	7	31.68	<0.0001
Species*Depth	12	5.65	<0.0001
Species*Year	21	5.96	<0.0001
Depth*Year	28	3.20	<0.0001
Species*Depth*Year	84	0.95	0.6053

476