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Abstract. Physical soil properties create lags between temperature change and corresponding soil

responses, which obscure true Q10 values and other biophysical parameters such as depth of pro-

duction. This study examines an inversion approach for estimating Q10 and e-folding depth of CO2

production (Zp) using physically based soil models, constrained by observed high-frequency surface

fluxes and/or concentrations. Our inversion strategy uses a 1-D multi-layered soil model that simu-5

lates realistic temperature and gas diffusion. We tested inversion scenarios on synthetic data using a

range of constraining parameters, time averaging techniques, mechanisms to improve computational

efficiency, and various methods of incorporating real data into the model. Overall, we have found that

with carefully constrained data, inversion was possible. While inversions using exclusively surface

flux measurements could succeed, constraining the inversion using multiple shallow subsurface CO210

measurements proved to be most successful. Inversions constrained by these shallow measurements

returned Q10 and Zp values with average errors of 1.85% and 0.16% respectively. This work is a

first step toward building a reliable framework for removing physical effects from high frequency

soil CO2 data. Ultimately, we hope that this process will lead to better estimates of biophysical soil

parameters and their variability on short timescales.15

1 Introduction

Soil respiration, which includes both root and microbial respiration, represents the largest outward

flux of CO2 from terrestrial ecosystems, with a magnitude far above that of anthropogenic emis-

sions (Raich and Schlesinger, 1992). Small changes in the soil CO2 flux could therefore have a

significant impact on the carbon balance and global atmospheric CO2 concentrations. In predictions20

of atmospheric CO2 over the 21st century, uncertainties surrounding the response of land flux to
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climate change are second only to uncertainties surrounding future anthropogenic emissions (Meir

et al., 2006). In order to accurately predict future atmospheric CO2 concentrations, it is crucial to

gain a better understanding of how land systems will respond to changing temperature and moisture

regimes.25

Soil CO2 production originates from plant root respiration and microbial decomposition of organic

matter. The temperature sensitivity of soil respiration describes how the flux of CO2 from soils will

respond to a change in temperature. Normally soil microbial and plant root processes are treated

together because they are not readily distinguished from one another. Temperature sensitivity is

often quantified by a parameter Q10, which describes the factor increase in soil respiration with30

a temperature increase of 10oC. This Q10 parameter is used in global climate models to quantify

soil feedbacks to climate change. It has been found that Q10 values are influenced by a range of

environmental factors including soil temperature (Lloyd and Taylor, 1994; Luo et al., 2001), soil

volumetric water content (Davidson et al., 1998; Reichstein et al., 2002) and soil organic matter

content (Taylor et al., 1989; Wan and Luo, 2003). As these factors exhibit high spatial heterogeneity35

across ecosystems as well as within a given ecosystem, it has long been expected that Q10 will also

exhibit high spatial variability. Despite this, most existing models continue to use a globally constant

Q10 value. This may reduce or enhance predicted release of CO2 from soils, leading to large over- or

under- estimates of the contribution of soil respiration to terrestrial CO2 flux in the face of climate

change. There has been considerable debate over the usage and magnitude of Q10 (Davidson et al.,40

2006; Mahecha et al., 2010), with different studies producing widely variant values. While most

studies agree that CO2 flux feedback will be positive, there is no consensus on how best to estimate

the magnitude of Q10.

Historically, Q10 values have been determined through regression analysis of soil temperature and

CO2 surface flux measurements. A known source of error in this approach originates in the physics45

of soil heat and gas transport, which might separate a change in surface soil temperature (normally a

5 cm or 10 cm temperature is used for deriving Q10) from the resultant change in CO2 flux measured

at the surface. The lags depend most heavily on soil heat transport (Phillips et al., 2011), because

changes in surface temperature are shifted and dampened significantly as a function of depth, with

each successive soil layer experiencing a reduced temperature change in amplitude. Gas diffusion50

also plays an important role, and even if soil microbes and roots produced CO2 instantaneously

upon receipt of thermal energy at the characteristic production depths, gases still take time to diffuse

upward. Soil properties including heat and gas diffusion, and the e-folding depth of CO2 production

(Zp), all contribute to these lags (Fig. 1). Phillips et al. (2011) demonstrated that such lags can lead

to severe misinterpretation of data when attempting to extract true Q10 values through regression of55

surface flux and a temperature measurement at a single depth.

These thermal and gas diffusion processes, and the resulting lags, can be captured in a simple

1-D physical heat and gas transport soil model (Nickerson and Risk, 2009; Phillips et al., 2011).
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Though not done to date for the soil respiration system, it is possible to use such a model in in-

verse fashion for estimating the value of parameters like Q10 and Zp by looping the forward model60

iteratively through possible parameter combinations, with observed measurements as a constraint.

Normally, an objective function is used for helping decide which parameter set best minimizes the

difference between modelled and measured data. This method has been identified as a promising

tool for determining unknown soil parameters (Zhou et al., 2009), with an increasing availability of

high frequency data sets allowing for rigorous constraints on known model parameters.65

This study seeks to develop a reliable inversion framework for determining the Q10 and Zp of

different sites given continuous soil measurements. It also seeks to provide guidance for researchers

who would like to build field observational sites suited for inversion analysis. Working exclusively

with synthetic soil data that mimics the form of collected field data and of which all parameters

are known, we first undertake sensitivity tests to determine optimal sensor placing in the field, and70

decide whether soil CO2 surface flux, and/or profile measurements, are more suited for anchoring

inversion approaches with the necessary field data for parameter constraint. Using the best sensor

combination, we are able to evaluate the accuracy of the inversion approach in returning the original

Q10, and Zp, across many realistic soil type scenarios.

2 Methods75

This study uses a one dimensional CO2 and heat transport model described by Phillips et al. (2011),

originally developed by Nickerson and Risk (2009). This model, with existing versions in Perl and

R (R Core Team, 2015), was recoded in C to increase computational efficiency for the parameter

solving routine.

2.1 Model description80

This model (Fig. 2) simulates the movement and production of CO2 through the soil profile and into

the free atmosphere. The model consists of one atmospheric layer and a soil profile 1 m in length,

divided into 100 layers of uniform thickness. Each layer can exchange CO2 with its two nearest

neighbouring layers using the 1-D discrete form of Fick’s first law:

Fij =−Dij
∆Cij

∆zij
(1)85

where Dij is the effective diffusion coefficient between two soil layers, ∆Cij is the CO2 concentra-

tion difference (µmol m−3) and ∆zij is the difference in depth (m) between the two layers.

For every modelled time step, each soil layer has a defined temperature, biological CO2 produc-

tion, CO2 flux, thermal diffusivity and gas diffusivity. Temperature varies sinusoidally on daily and

annual timescales. Changes in surface temperature are shifted and dampened through the soil profile90
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using:

T [i] = Tavg + ∆TDe
−zi
dTd sin

(
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−zi
dTd

)
+ ∆TY e

−zi
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)
(2)

dTd =

√
2DT [i]
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√
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ωY
(3)

which simulates the lags related to the rates of thermal diffusion. In this equation, Tavg is the av-95

erage temperature in the air and soil profile for the duration of the simulation, ∆TD is the amplitude

of the daily temperature fluctuation, ∆TY is the amplitude of the yearly temperature fluctuation, ωD

is the radial frequency for daily oscillations (ωD=2π/86400s), ωY is the radial frequency for annual

oscillations, zi is the layer depth (m), and DT is the thermal diffusivity of the soil (m2 s−1).

Biological CO2 production in each layer is calculated using an exponentially decreasing function100

(Nickerson and Risk, 2009):

P [i] =
Γ0∑N

i=1 e
−zi
Zp

e
−zi
Zp Q

T [i]−Tavg
10

10 (4)

where Γ0 is the total basal soil production (µmol m−3 s−1), N is the number of soil layers, Q10 is

the temperature sensitivity of soil respiration, zi is the depth of the layer (m) and Zp is the e-folding

depth of CO2 production (m), defined as the depth below which the total fraction of CO2 production105

remaining is 1/e (also called the characteristic production depth in some studies), from which the

production at any depth P(i) can be calculated based on equation 4.

Initially, the diffusivity of CO2 in the soil profile is calculated using the Millington Model (Millingon,

1959), an empirically derived approximation for calculating diffusivity in the field:

Dc =
θ

10
3
w

Dfw

H + θ
10
3
g Dfg

θ2T
(5)110

Dfw and Dfg are the diffusivity of CO2 in free water and free air (m2 s−1), H is the dimensionless

form of Henry’s solubility constant for CO2 in water, and θw, θg and θT are the water filled, air filled

and total soil porosities, respectively.

At each time step, the diffusivity of each soil layer is calculated using a temperature correction on

this Millington diffusivity:115

D[i] =Dc

(
T [i]

Tavg

)1.75

(6)

As previously mentioned, the flux from each layer is determined by Fick’s first law, written ex-

plicitly as:

F [i] =D[i]
(C[i]−C[i− 1])

dz
dt (7)
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where C[i] is the CO2 concentration of layer i (µmol m−3), C[i-1] is the concentration of the layer120

above, and dt is the time step (s).

Finally, at each time step CO2 concentration in each layer i is calculated using:

C[i] =
Ct−1θgdz−F [i] +F [i+ 1] +P [i]

θgdz
(8)

where Ct−1[i] is the layer concentration at the previous time step, F[i] is the flux of CO2 leaving

layer i, F[i+1] is the flux of CO2 entering the layer from the layer below, P[i] is the CO2 production125

within layer i.

2.2 Model execution and validation

Before beginning the simulation, the system is initialized using input parameters seen in Table 1.

Atmospheric CO2 concentration remains constant for the duration of the simulation; it is assumed

that any flux from the soil will quickly dissipate into the atmosphere. Flux from the bottom soil130

boundary is set to zero, as production at this depth is negligible according to the exponentially

decreasing production function. These system parameters were changed depending on the soil type

being simulated.

After initialization, the system undergoes spin-up, during which layer temperatures are held con-

stant at their initial values, and the model is run until the CO2 concentration in each layer is constant.135

The duration of the spin up period is dependent on soil diffusivity (and therefore θw), and is deter-

mined by plotting concentration vs time through the soil profile. This period ranges from 5 to 23

model days within the range of θw (0.1 to 0.25). The CO2 concentration in each layer after spin up

is the initial layer concentration at the beginning of the actual simulation.

For each modelled time step (dt=1.0 s), temperature, CO2 diffusivity, CO2 production and CO2140

flux are calculated in each soil layer. Every soil layer is then revisited, and the new CO2 layer

concentrations are calculated. The progress of the simulation is monitored by outputting the CO2

concentration and temperature of specified layers.

2.2.1 Validation

To ensure the model was performing correctly, steady state concentrations through depth (following145

spin-up) were compared to the steady state solution proposed by Cerling (1984). Daily and yearly

temperature fluctuations were removed from the model, and the model was run until CO2 concentra-

tions in each layer were constant. Deviations of modelled from analytic concentrations were found

to be far less than 1%.
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2.3 Incorporating constraining data150

In this study, we incorporated external data in the same way we would with field studies. We started

with real measurements of temperature through depth, and soil volumetric water content, from a local

field site. One of the largest challenges in preparing data for inversion is to accurately model soil

temperature through depth and time, as temperature is the known determinant of soil lags (Phillips

et al., 2011). For each set of temperature measurements through depth, a linear regression (in R)155

was performed, resulting in a 5th order polynomial for temperature through depth every 1800 s. A

linear interpolation through time was performed to obtain temperature values in each layer for every

modelled time step. The resultant temperature values replaced our originally sinusoidally varying

temperature function in the model. The value of thermal diffusivity was therefore implicitly built

into these measurements and is no longer required as a direct model input.160

These physical variables were used in a forward instance of the soil model to create CO2 surface

flux and CO2 concentration timeseries. Datasets were created using many Zp and Q10 values of in-

terest, so that we had many idealized datasets on hand in which concentration, fluxes, and associated

temperatures, Zp and Q10 values, were known. Soil volumetric water content was not formally incor-

porated as a driver of respiration in these synthetic datasets, so all simulations were performed over165

periods of constant soil volumetric water content. During inversion we pretended not to know Zp

and Q10 values of these synthetic datasets, and hoped the inversion process would return the known

values. Since the same forward soil model that generated the synthetic datasets was also embedded

within the inversion scheme, errors in Zp, or Q10, would be due entirely to the inversion process

itself.170

2.4 Inversion process

The soil profile CO2 concentrations and soil CO2 surface flux are outputs of the simulation. Their

values are dependent on all of the system input parameters. A method called inverse parameter esti-

mation is employed to determine the values of Q10 and Zp that would have given rise to the observed

concentrations and fluxes. Through this process, model outputs are compared to measured field data175

or synthetic data over a range of model input parameters. The field measurements used in this pro-

cess will be referred to as the model constraints; these constraints consist of CO2 concentration

measurements at various depths in the soil profile, as well as CO2 surface flux measurements.

2.4.1 Inversion steps

The model is run for two unknowns, including Q10 values ranging from 1 to 5.5 in steps of 0.1, and180

Zp from 0.02 m to 0.3 m in steps of 0.01 m. This results in a total of 1260 parameter combinations.

Inversion seeks to identify the parameter set that minimizes the objective function√
(S1−M1)2 + (S2−M2)2 + (S3−M3)2 + ... (9)
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where Si and Mi correspond to modelled and measured CO2 concentrations at various profile depths.

For each parameter set, this objective function is calculated every 1800 timesteps and averaged at185

the end of the simulation. The pair that minimizes Eq. (9) is output as the inversion result.

2.5 Validation of the inverse method

Before applying the inversion method to real field data, tests must be done to ensure method accu-

racy, and this manuscript focuses on such tests. We created synthetic timeseries using the original

soil model, that mimic the form of real data sets. The values of Q10 and Zp were known for each190

synthetic timeseries, as these parameters are required to run the model. This synthetic data included

temperature measurements at six depths in the profile, volumetric water content, CO2 surface flux

and CO2 concentration measurements at various depths in the soil profile.

The inverse method was applied to these synthetic data sets, and the output value of Q10 and Zp

could then be compared to the actual values of these parameters used to create the timeseries.195

2.5.1 Constraint, sensitivity, and random error testing

To determine which model constraints resulted in the highest accuracy of the inversion method,

the error (Eq. (9)) was calculated using a large range of constraining parameters and combinations

thereof. A total of 35 different constraint combinations were tested, representing various combi-

nations of surface CO2 flux, and subsurface CO2 concentration measurements up to 0.6 m depth.200

These combinations are illustrated in Table 2. Testing which constraints consistently returned the

most accurate values of Q10 and Zp aids in determining optimal sensor placing the field.

To ensure model validity across all possible parameter values that may be encountered in the

field, extensive sensitivity testing was done using these synthetic timeseries. These timeseries were

created across a range of combinations of Q10, Zp, volumetric water content (diffusivity) and total205

soil production. Table 3 illustrates the ranges tested for each parameter.

Field-deployable CO2 sensors typically have 1-5 % error. To see how the model and inversion

would perform under these conditions, errors of 1, 5 and 10 % were added into all components of

the synthetic data. The effect of these errors on the inverse method were observed.

3 Results and discussion210

Inversions on synthetic timeseries were successful across all tested soil parameters, though some

CO2 concentration measurement depth combinations (surface flux, single or multiple profile mea-

surements) helped to minimize the overall error, as well as the error in Q10 and Zp individually. Er-

rors discussed in this section represent an average from 64 inversions across values of Q10, Zp, and

soil diffusivity as presented in Table 3. In this section, we use either fractional error ( |actual−result|actual ),215

or absolute deviation from the actual value (|actual− result|).
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3.1 Best measurement configurations to obtain Q10 and Zp via inversion

In Fig. 3 we show the average fractional error in the returned Q10 value for every combination of

subsurface CO2 sensor measurements. Observations of CO2 concentration shallow in the soil were

found to be necessary for highly accurate Q10 estimates. The lowest inversion error for Q10 was220

1.85%, in a scenario where subsurface measurements were made at 5, 10 and 15 cm. Single con-

centration measurements at or above 10 cm also proved successful, with errors < 2.3 %. The least

accurate inversions for Q10 occurred when the constraint consisted of (single or multiple) CO2 con-

centration measurements deep in the soil profile. We propose that the poor performance of inversion

when using deep profile constraints could be related to the low magnitude of thermal and concentra-225

tion variability at these depths. Deep soil layers are subject to much smaller thermal fluctuations than

layers close to the surface. In this less variable environment, CO2 concentrations are less variable

and provide less of a signal upon which to anchor inversion. In contrast, CO2 concentrations shallow

in the soil exhibited larger variations in temperature and concentration, which presumably allowed

Q10 to be extracted more easily. If the primary interest is to obtain Q10 from inversion, multiple230

CO2 concentration measurements in the soil were found to be important. It should be noted that,

while differences in error rate were noted, errors for all scenarios could be considered tolerably low

relative to the normal variance expected from regression-based Q10, considering the gas transport

lags inherent in those data (Phillips et al., 2011).

The average fractional error in Zp for different model sensor combination constraints is also shown235

in Fig. 3. Out of the 35 combinations tested, only 5 resulted in an average Zp error greater than 2%.

Single concentration measurements shallow or deep in the soil profile caused this larger error, but on

average, single concentration measurements at any depth in the soil were less accurate. Inversions

constrained by at least one measurement shallow (< 15 cm) and one deep (≥ 30 cm) in the profile

returned Zp with 100% accuracy across all sensitivity tests. We did expect that single measurements240

deep in the profile would perform poorly relative to others, because with the exponentially decreasing

production defined in the model, CO2 production approaches zero at significant depths regardless

of the value of Zp and thus cannot perform well as an inversion anchor. The large Zp error of

almost 25% associated with soil surface CO2 flux measurements, was also not surprising. In this

situation the inversion scheme must reconstruct Zp mainly via the temporal delay, and damping,245

between sinusoids of temperature through depth, and soil surface CO2 flux. Without a concentration

measurement in the soil, the gas transport regime is black boxed from the perspective of the inversion

scheme, resulting in the large error. Overall, surface CO2 flux measurements alone are less suited

for elucidating information on e-folding depth of production, whereas a combination of shallow and

deep measurements is best for reconstructing the distribution of CO2 production in the soil profile.250

In examining inversion accuracy for both parameters Q10 and Zp simultaneously (Fig. 3), we

found that multiple concentration measurements shallow in the soil (≤ 15 cm), or combinations

shallow in the soil with one deep concentration measurement (≥ 30 cm) were the best constraints.

8



Deep soil measurements and surface flux constraints should therefore be avoided if the aim is the

minimize overall error. This overall result is a combination of what was found for Q10 and Zp255

individually, where shallow measurements were best for Q10 and a combination of shallow and deep

measurements resulted in most accurate Zp.

Depending on error tolerance for the final parameter estimates, it is conceivable that the accuracy

of all inversions performed here might be sufficient for the community of soil scientists. Out of

the 35 combinations tested, 19 resulted in an overall average error less than 5%. The top constraint260

(measurements at 5,10 and 15 cm) had an average error of 2.01%, and the top 6 combinations all

had error less than 3%. These errors are small compared to the degree of random error in CO2 flux

studies (Lavoie et al., 2015). These results are summarized in Table 4, where the top and bottom 5

combinations are listed individually and overall.

This assessment was performed using synthetic data, and even the most ideal field settings will265

depart from these modelled profiles. For example, we represented CO2 production through depth

using an exponential production function, but a field site may show a linear decrease in production

at increasing depths. Clearly users of the inversion process will want to characterize as many site-

specific parameters as possible so as to provide proper guideposts and constraints for the inversion,

otherwise additional error will be introduced. The sensitivity of the inversion to error is an important270

question, and will be addressed in a later section.

3.2 Effect of soil-specific parameters on inversion success

Having determined the best CO2 sensor concentration measurement depth to constrain inversions,

we can examine how site-specific parameters such as soil diffusivity, Zp and Q10 affect inversion

results. For this assessment, we will use the best performing measurement configurations established.275

Even when not a top choice, we will always include CO2 surface flux measurements in this section,

because of the likelihood that scientists will want to use inversion to analyze these data which are

increasing in number rapidly.

Figure 4 a) and b) illustrate how deviation in Q10 and Zp were affected by the diffusivity of soils.

When subsurface sensor combinations were used as a constraint, there was an overall downward280

trend in Q10 and Zp error with increasing diffusivity. As diffusivity increases (drier soils), CO2

travels through the soil layers to the surface more quickly which results in decreased lag times,

more rapid concentration changes, and more distinct soil responses. Under these conditions of rapid

diffusion, inversions were most successful. Sites that are frequently waterlogged with limited air

filled pore space tended to be less ideal for inversion, but the optimal instrument configuration still285

helps ensure reasonably small error throughout the entire range of diffusivities, so there is no strict

limitation on the use of the inversion approach in low diffusivity soils.

Figure 4 c) and d) demonstrate the impact of the Zp parameter value on inversion success in

terms of deviation in returned Q10 and Zp values. For small Zp values, shallow CO2 concentration
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measurements (≤ 15 cm) were the best constraints, presumably because the soil is most active in290

these top layers. As Zp increases, the production of CO2 is no longer limited to the shallow soil,

the exponential production function decreases more slowly. With increasing Zp, CO2 production

in deeper soil layers is higher, and more useful as an inversion constraint. Some matching of de-

ployment depth was also found, where for example shallow concentration measurements were more

accurate for returning the correct value of shallow CO2 production.295

Sensitivity tests indicate that increasing the temperature sensitivity of respiration had opposite

effects on Q10 and Zp error. Deviation in returned Q10 values increased rather uniformly across

the best subsurface measurements, while for most subsurface combinations the Zp error decreased.

With increasing Q10, respiration becomes more sensitive to temperature changes, leading to larger

variations in production in the event of a temperature fluctuation. Figure 4 e) and f) illustrate the300

impact of this parameter on Q10 and Zp error.

With large amounts of existing surface flux data, it is also worth examining the effectiveness of the

soil CO2 surface flux as a constraint, even when it is not the preferred constraint. It is immediately

evident from Fig. 4 that inversions constrained by the surface flux resulted in Q10 and Zp deviations

that responded much differently to changes in soil diffusivity, Zp and Q10. These deviations were305

often significantly larger than when subsurface constraints were used. Deviations in Q10 and Zp

generally increased as all three parameters increased. This suggests that for low diffusivity, Zp and

Q10, surface flux was a reasonable model constraint, producing errors comparable to the subsurface

measurements. This constraint was much less effective for determining depth of CO2 production.

However, Zp was always returned within at least 3.5 cm of its actual value, which for some uses may310

be an acceptable level of uncertainty. Inversions constrained by surface flux were quite effective

in returning Q10. Returning to Fig. 3, the overall average Q10 error associated with surface flux

was less than 5%, which is significantly better than results using deep subsurface measurements.

Figure 4 e) suggests that inversions using large Q10 values were responsible for the majority of

this error. For Q10 of 1.5, these inversions returned Q10 with 100% accuracy. For the largest Q10,315

deviation from the true value climbed as high as 0.6-0.7, which is non-negligible. A shorter model

time step could potentially reduce this error, as it may be able to better capture the larger and faster

responses associated with high Q10 and diffusivity. As we cannot estimate the Q10 of a site prior

to inversion, however, this insight may not be overly useful in site selection. Overall, inversions

constrained by the CO2 surface flux are possible but should be performed with caution, and with320

reasonable expectations as to the resultant error level.

It is also of interest to examine how the amount of CO2 production in the soil profile affects

inversion. The bulk of our sensitivity tests were performed using a basal CO2 production of 10 µmol

m−3 s−1, which is a fairly high. In order to test the other extreme, several inversions were performed

using a production level of 1 µmol m−3 s−1. These inversions performed with exactly the same325
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accuracy as those with a production level of 10. From this, we can conclude that the magnitude of

production has no effect on inversion success.

3.2.1 Random error and inversion

The measurements performed by sensors in the field will always be uncertain to some degree. It

is therefore important to examine how these uncertainties in recorded temperature, CO2 and soil330

volumetric water content measurements will impact the accuracy of the inversion method. Inversions

performed on synthetic data to which random errors of 1, 5 and 10% had been added were indeed

less accurate than those performed on idealized data. However the resulting errors in returned Q10

and Zp were not proportional to the amount of error added to the input data, but actually much lower.

That is, errors of 5% in the input data did not result in an additional 5% error in output values. An335

example of this is illustrated in Fig. 5. This plot demonstrates that with random measurement errors

in the ranges of 1-5%, Q10 values were still determined with reasonable accuracy. Prior to error

addition, deviation in Q10 was around 0.12. This deviation increased to 0.14 for 1% error and 0.17

for 5% error. As sensors in the field are typically uncertain by 1 to 5% , the inversion method remains

feasible. We can thus conclude that the inversion process is rather tolerant of error in measurement.340

3.3 Multi-parameter error landscape

It is worth investigating in detail the error landscape of the inversion process using a multi-parameter

sensitivity tests. For this test, we chose the combination of measurements at 5, 10 and 15 cm which

had resulted in the most accurate inversions on average.

The results from the sensitivity tests are shown in Fig. 6, panels a) to f). In all combinations,345

the error in Zp was very small, with the maximum error for any single inversion being just over

2%. Despite this small error, it remains evident which soil conditions should be avoided for most

accuracy. Sites with low diffusivity, production deep in the soil and low Q10 are the most problematic.

This is consistent with the results from Fig. 4 a), c) and e). Trends were not as evident for error in

Q10. In panels a), e) and c) the most notable error was found in panel a) for high Zp, low Q10.350

There is an error in Q10 here of almost 15%, which equates to a deviation in Q10 of about 0.225

from its actual value. This result is not unreasonable, but it is significantly higher than results from

the other inversions. Plot e) demonstrates an interesting result, where there seems to be a valley

in the Q10 error, illustrating a tradeoff between Zp and diffusivity. This is not evident in the other

plots, and does not have an intuitive physical explanation. The effect of Q10 on inversion varies, but355

success hinges quite clearly on soil diffusivity and depth of CO2 production. Choosing a site in the

appropriate ranges of these two parameters will maximize chances of success.
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3.4 Limitations and opportunities

There are both limitations and future opportunities for the inversion approach. In general, the better

an inversion is constrained with data, the better it will do in returning the true value for parameters of360

interest. Some of the soil parameters are distributed in ways that must be assumed. For example, the

distribution of CO2 production may be unknown. While most studies in the history of soil modelling

have assumed an exponential distribution (and it has been seen in many studies using the gradient

technique), some other considerations might help determine whether additional parameterization

measurements are needed. For example, knowledge of rooting depth could be one aid. On average,365

root respiration accounts for 50% of soil respiration (Hanson et al., 2000) and Jackson et al. (1996)

provides root distributions for different terrestrial biomes. Jackson et al. (1996) found that tundra,

boreal forest and temperate grasslands had upwards of 80-90% of roots within the top 30 cm of soil

whereas deserts and temperate coniferous forests had much deeper rooting profiles, with only 50%

of roots within the top 30 cm. These and other methods may be helpful in providing constraint data370

when running inversions on real timeseries.

A future opportunity for inversion studies is to determine depth-specific Q10 values, which would

be of interest to many researchers. Currently there are few field examples where researchers have

determined in-situ Q10 as a function of depth, but two examples of such data using include gradient

studies include Risk et al. (2008); Tang et al. (2003). Incubations might seem useful in this regard,375

but are disputed as a representation of in-situ conditions, especially at depth Risk et al. (2008).

Ideally, an inversion approach could determine depth-specific Q10, but the reality is challenging. If

an additional 100 Q10 values were included as unknowns (one for each layer), it would increase

computational demand by 100 times. The inversion results would also be confusing, and extreme

values at one depth could potentially cause a spurious match to the measured data. The number380

of non-unique and implausible solutions would rise significantly as a result. A more reasonable

approach might be to define Q10 as we do Zp, which is as a function of soil depth. This would

be computationally compact but whether a function would be realistic is not well known because

there are so few examples of Q10-depth profiles against which we could evaluate this approach.

The best approach would be to use many profile concentration sensors for constraining data, so that385

the e-folding depth of production could be known, and the inversion could focus instead solely on

determining layer-specific Q10 values.

Despite the relatively nascent stage of our soil CO2 inversion approach, indications are that it

has better theoretical validity than traditional regression approaches, which do not take thermal-

and gas-transport lags into account. Our error results here compare very favourably against error390

analyses generated from detailed examination of regression approaches across thermal- and gas-

transport parameter space (Zhang et al., 2015; Phillips et al., 2011; Graf et al., 2008).
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4 Conclusion

Overall, this inversion method proved successful in testing on synthetic data. Depending on the

tolerable level of error for a given application, almost every tested combination resulted in reasonably395

accurate returned Q10 and Zp values. The subsurface concentration measurements that yielded the

highest error were typically those that would be of least convenience to install and maintain deep

in the soil profile. The other constraint associated with high overall error was CO2 surface flux,

which would likely be the data with highest availability. Most of the error from this constraint arises

in estimating the Zp parameter. The CO2 surface flux is still a reasonable means of estimating Q10400

values via inversion. While in most cases the error was lower for high diffusivity, shallow production

soils, the application of this method is not limited to such regions.

This method is computationally intensive as it performs a sweep through all possible combinations

in parameter space. This study used roughly 2.5 core-years of time despite the fact that synthetic

timeseries were short. This full sweep ensures that the global minimum in the objective function is405

located every time, and when solving inversely for two unknown parameters (as we are), this is not

an unreasonable approach. However, if it was of interest in the future to examine longer timeseries,

or additional parameters such as the depth dependence of Q10, resulting in additional unknown

parameters, it may be beneficial to explore other search algorithms to increase efficiency, such as

Simulated Annealing.410

The next step for this work would be to perform inversions on real timeseries with appropriate

measurement constraints, to obtain temperature sensitivity and CO2 production distribution esti-

mates for various sites. With the increasing availability of high frequency soil data, there would be

no shortage in data to analyze. Applying this method for periods of varying constant moisture levels

could also help build an understanding of moisture effects on temperature sensitivity of respiration.415
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Figure 1. Thermal and gas diffusion lags through a soil profile.
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Figure 2. Conceptual representation of the 1-D layered soil model. Overall profile length is denoted with L,

and N represents the number of individual layers in the model soil profile.
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Figure 4. Error in Q10 and Zp as a function of Q10 (Panels C,F), Zp (Panels B,E) and D (Panels A,D), for

a grouping of the best sensor measurement depth combinations. Individual 5 cm and 10 cm observational

scenarios are shown in light blue and dark blue, respectively. The 5+15 cm measurement scenario is shown in

green. Orange and red illustrate sensitivity of the 5+10+15 cm and 5+10+30 cm scenarios, respectively. Finally,

the 4-point 5+15+30+60 cm measurement sensitivity is represented in grey while the surface flux scenario is

shown in black. For these sensitivity tests, the known Q10 was 2.0, and a Zp of 0.2 m was used.
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For this sensitivity test, the known Q10 was 2.0.
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Figure 6. Error in Q10 and Zp as a function of Q10, Zp and Diffusivity for the constraint 5+10+15 cm. For these

sensitivity tests, the known Q10 was 2.0, and a Zp of 0.2 m was used.
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Table 1. Default parameter values for simulations

Parameter Value/Range

Soil porosity (θT ) 0.40 (v/v)

Thermal diffusivity (DT ) 5 x 10-7 (m2 s−1)

Average air and soil temperature (Tavg) 15oC

Daily air temperature amplitude (∆TD) 5oC

Yearly air temperature amplitude (∆TY ) 12oC

Atmospheric CO2 380 ppm

Total basal CO2 production (Γ0) 1 -10 µmol m−2 s−1

Production exponential folding depth (Zp) 0.05-0.20 m

Q10 1.5-4.5

Volumetric water content (θw) 0.10-0.25 (v/v)
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Table 2. Measurement combinations used for the simulations. The combination number is listed at the begin-

ning of each row. The columns represent the type of measurement (e.g. CO2 surface flux), or the depth of

concentration measurement in centimetres. The "X" values denote whether the type or depth of measurement

was included in the combination.

Combination Flux 5 10 15 20 25 30 35 40 45 50 55 60

1 X

2 X

3 X

4 X

5 X

6 X

7 X

8 X

9 X

10 X

11 X

12 X

13 X

14 X X

15 X X

16 X X

17 X X

18 X X

19 X X

20 X X

21 X X

22 X X

23 X X

24 X X X

25 X X X

26 X X X

27 X X X

28 X X X

29 X X X

30 X X X X

31 X X X X

32 X X X X

33 X X X

34 X X X

35 X X X
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Table 3. Default parameter values for sensitivity testing.

Parameter Abbr. Minimum Maximum Increment

Total basal CO2 production (µmol m−2 s−1) Γ0 1 10 10

Production exponential folding depth (m) Zp 0.05 0.2 0.05

Q10 1.5 4.5 1

Volumetric water content (v/v) θw 0.1 0.25 0.05

Table 4. Best and worst sensor combinations for determining Q10, Zp and overall through inversion.

Combination

Rank Q10 Zp Overall

1 5+10+15 cm n/a 5+10+15 cm

2 5+15 cm n/a 5+15 cm

3 5 cm n/a 5+15+30 cm

4 10 cm n/a 5+15+30+60 cm

5 5+15+30 cm n/a 5+30 cm

31 45 cm 55 cm 50 cm

32 50 cm 50 cm 50+60/50+55+60 cm

33 50+60/50+55+60 cm 60 cm 55 cm

34 55 cm 5 cm 60 cm

35 60 cm Surface Flux Surface flux
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