
Author response to comment on “An inversion approach for determining production depth and 
temperature sensitivity of soil respiration” by R. N. C. Latimer and D. A. Risk 
 
Editor 
Authors 
 
Thank you very much for your careful replies to the reviews. I enjoyed reading them and I’m sure the 
reviewers did so, too.  I agree with many of your responses…. 
 
Thank you kindly.  Under the assumption that our suggested textual edits were warranted, we 
have embedded these changes revised manuscript, along with several other changes that were 
requested specifically, as described below. 
 
[I] concentrate here only on the one remaining critical aspect: the relation of your study to the real 
world. I’m very happy that Reviewer 1 has raised this (comment on P10140L24). It made me looking at 
this study in a different manner.  
 
To begin with, I was wondering, why you discuss using your model with real world data in the methods 
and not the discussion section. I suggest making this a part of the discussion (action 1). 
 
The section called “Incorporating external data” could have been worded better, as it was meant 
to describe how our synthetic datasets were created, and integrated into the inversion process.  We 
ran the process exactly as we would for field data.  We have totally reworded this section, but left 
it in the same location because the content is methodological in nature, which will now be more 
obvious. It now reads as: 
 
In this study, we incorporated external data in the same way we would with field studies.  We started 
with real measurements of temperature through depth, and soil volumetric water content, from a local 
field site.  One of the largest challenges in preparing data for inversion is to accurately model soil 
temperature through depth and time, as temperature is the known determinant of soil lags 
\citep{phillips}. For each set of temperature measurements through depth, a linear regression (in R) 
was performed, resulting in a 5th order polynomial for temperature through depth every 1800 s. A 
linear interpolation through time was performed to obtain temperature values in each layer for every 
modelled time step. The resultant temperature values replaced our originally sinusoidally varying 
temperature function in the model. The value of thermal diffusivity was therefore implicitly built into 
these measurements and is no longer required as a direct model input. 
\par 
These physical variables were used in a forward instance of the soil model to create CO$_{2}$ surface 
flux and CO$_{2}$ concentration timeseries.  Datasets were created using many e-folding depths of 
production, and Q$_{10}$s of interest, so that we had many idealized datasets on hand in which 
concentration, fluxes and associated temperatures, e-folding depths of production, and Q$_{10}$s, 
were known. Soil volumetric water content was not formally incorporated as a driver of respiration in 
these synthetic datasets, so all simulations were performed over periods of constant soil volumetric 
water content. During inversion we pretended not to know e-folding depths of production, and 
Q$_{10}$s, of these synthetic datasets, and hoped the inversion process would return the known 
values.  Since the same forward soil model that generated the synthetic datasets was also embedded 
within the inversion scheme,  errors in e-folding depths of production, or Q$_{10}$, would be due 
entirely to the inversion process itself. 
 



In general I agree and have not at all any problem with this work being a theoretical study. But inspired 
by your discussion with reviewer 1 I feel a bit confused about the objectives. There you write “This 
study seeks to develop a reliable inversion framework for determining the Q10 and Zp of different sites 
given continuous soil measurements.” (10140/21). This is clearly related to application with real world 
data. Consequently, when reading the manuscript the first time, I assumed that the main result from this 
study for practitioners was, to learn with which additional measurements they could constrain the 
process’s temperature sensitivity estimates better than with surface fluxes only. However, if this 
model is far from being applicable to real cases (correct me if this is exaggerated), the study is not 
of good help. If not with inversion, how can practitioners then use their additional soil CO2 
concentration data to constrain their empirical temperature sensitivity estimates? Or more precisely: how 
can they otherwise reliably estimate Zp?  If I’m correct, the practical relevance of the study is much 
weaker (unless you don’t know Zp, your Q10 values are biased and this study tells you why, but cannot 
help you to reduce the bias) and this needs to be clearly understandable expressed in the conclusions 
(action 2). For example you write that “Depending on the tolerable level of error for a given application, 
almost every tested combination resulted in reasonably accurate returned Q10 and Zp values.”(10154/6). 
This is correct and sounds good, but you need to make sure that everybody understands that this is only 
true for the appropriately constrained theoretical case – but most likely not at all for realistic field data! 
Investing in a CO2 concentration profile measurement will then most probably not pay back. This is an 
important conclusion, but unfortunately speculative as you didn’t test it. Consequently you need to 
conclude from the discussion on why your model will probably fail in real field cases, to make this a 
clear consequence from your error analysis (still action 2). 
 
Unfortunately, this is a misunderstanding that has been propagated from the initial review, and 
which we attempted to clear up in our initial response.  It may have helped if we could have 
uploaded a revised manuscript, where the entire text could be taken together, as it might have 
made things clearer.  But, to clarify once and for all: 
 
The inversion process presented here IS useful in the real world.  We do NOT need to know the 
depth of production a priori, as the reviewer and editor have suggested.  This suggestion stems 
from a simple misunderstanding.  Our inversion does in fact determine both the e-fold depth of 
production (Zp), and temperature sensitivity (Q10).  These are unknown prior to inversion.  But, 
like for any mathematical model, the shape of these functions must be assumed, or known.  For 
example, it would be clear to any soil researcher that the shape of the Q10 function is different than 
the numerical value of Q10, which is simply a solvable numeric parameter within the Q10 equation.  
In the same way, a production profile equation describes production through depth, and the e-fold 
parameter (called Zp in this manuscript) is needed to solve for production at each depth (but first 
e-fold is determined by inversion).  We believe that the review and editor are generally confusing 
our need to assume the shape of the production-depth distribution (an equation), with a priori 
knowledge of production at each depth (a numeric value).  These are quite different things, of 
course.   
 
Our use of e-fold value (or damping depth as it is also sometime called) to describe an 
exponentially distributed soil CO2 production profile is a common approach in soil modeling, and 
goes back over 20 years to at least Suarez and Simunek (1993).  It is probably more common than 
the uniform profile approach, though both are used, and modelers defer to whichever is more 
suitable for the study in question.  To provide some examples of past use in our studies, we have 
used exponential production profiles (and e-fold parameterization) in modeling studies including 
Bowling et al. (2015, in Biogeosciences), and Phillips et al. (2010). We have also used exponential 
production profiles with e-fold parameterization in forward modeling of CO2 concentrations in 



Phillips et al. (2013), and δ13CO2 (Nickerson et al. 2014, Nickerson and Risk 2013, Nickerson and 
Risk 2009).  In some other studies we have used instances of uniform production profiles where 
generic non-specific soils were being simulated, for both δ13CO2 (Egan et al. 2014), and CO2 
concentrations (Creelman et al. 2013).  However, we would normally pick an exponential 
representation of production through depth, because the Northern temperate to northern soils 
with which we work would almost always show exponential production, since waterlogged soils at 
depth produce CO2 at a very low rate relative to the surface.  Researchers in other parts of the 
world might want to characterize the production profile differently, and if they have absolutely no 
idea of the expected pattern, a point-in-time gradient measurement would help establish the 
pattern. Like any model, there will always be some site-specific modifications required.  We have 
described the need to understand the generalized shape of the production profile (uniform, linear, 
exponential through depth).  Needing to know the generalized shape is, however, far different than 
knowing the precise e-fold depth value, or the production in each layer (P(i)).  We solve for the 
latter. 
 
We have wondered about the root of the misunderstanding, and we recognize several areas.   
 
We first considered whether the inversion text is misleading.  But, in the very first sentence of the 
inversion section, it is clearly stated what parameters are being varied (and we certainly wouldn’t 
iterate over them if they were known): 
 
“The model is run for Q10 values ranging from 1 to 5.5 in steps of 0.1, and Zp from 0.02 m to 0.3 m 
200 in steps of 0.01 m. “ 
 
So, that seems generally clear, though we suggest an improvement (which appears below as part of 
several bullets). 
 
We also conserved whether the definition of Zp was not clearly defined in the methods section, as 
a parameter within an exponential distribution.   
 
“…Zp is the depth of production (m), defined as the depth below which the total fraction of CO2 
production remaining is 1/e (also called the e-folding depth).” (a related equation is also shown, 
plus a reference is provided to an earlier manuscript) 
 
It seems generally clear but could perhaps be improved too (see bullets below). 
 
We lastly wondered whether the reviewer and editor might be confused in the results and 
discussion, where we talk at length about e-fold (Zp) solving, and error across the simulations.  
Though Zp is perhaps not familiar to many readers, it is well defined.  But, routinely in the results 
and discussion we do use the term: 
 
“depth of production”  
 
when we refer to e-fold depth. This usage was defined in the methods section, and was meant to sit 
as a shortened and more familiar version of the e-fold parameter.  But, this terminology might still 
generate some confusion, as we’re not referring to an actual depth of production, but rather a 
parameter in an exponential equation that can be used to solve for production at each depth, or 
P(i).  So, we have changed the methods, results and discussion to simply read e-fold depth.   
 



In summary, we believe that the best way to clear up any misunderstanding is as follows: 
1. Re-name “depth of production” as “e-fold depth of production” for accuracy and consistency 

with past papers.  We will maintain this usage through the results/discussion. This makes 
the results and discussion sound more technical, but the accuracy is better. 

2. State clearly in the first sentence of the inversion methods that Q10 and Zp are unknowns: 
“The model is run for two unknowns, including Q10 values ranging from 1 to 5.5 in steps of 
0.1, and Zp from 0.02 m to 0.3 m 200 in steps of 0.01 m.” 

3. Clarify that any P(i) can be solved using the e-fold depth, as follows:  “Zp is… the depth 
below which the total fraction of CO2 production remaining is 1/e, from which the 
production at any depth P(i) can be calculated based on equation 4. 

4. We removed this text from the end of the discussion, which was very misleading and would 
have obviously left a different flavor than reality: Some of the soil parameters across which 
we tested are obviously unknown a priori. The unknown value of Q10 has already been 
noted, and depth of CO2 production may also be unknown prior to inversion.  

 
We also noted a significant error in equation 4, which was not previously identified by us, or the 
previous reviewers.  “Zp” was incorrectly labeled “dp”, which could have been figured out – but 
may have misled.  Having fixed this, the relationship of Zp and P(i) should now be much clearer! 
 
Lastly, a probable source of uncertainty was present in the last paragraph of the discussion 
section, which suggested that to better constrain the distribution of production through the soil 
profile (if it were not assumed exponential) one could consider looking to root depth.  
Unfortunately, that text was poorly constructed, and suggested that the depth of production was 
not known.  We meant only the form of the equation.  So, we have reworked this section, and 
included it within a “Limitations and opportunities” section, in combination with another 2 
paragraphs on the topic which deal with constraining data.  This was unfortunate, and conflicted 
with the math, and all previous definitions – but would have left a strong (and incorrect) flavor at 
the end of the paper.  We apologize. 
 
With this regard using random errors (P10147/06) is not sufficient. The treatment of errors is of course a 
valuable step towards modelling real world data, but in real world, measured field data tend to have 
systematic errors (bias in installation, wrong calibration). This, together with soil inhomogeneity at the 
sensor position is probably the reason, why the model inversion approach will finally fail in real world. 
Please include the systematic errors in your analysis in addition to the random errors (action 3). 
 
We did not make any changes in this section, because the 10% maximal error we used should 
generally be in excess of systematic + random errors and is a worst case value.  Plus, there would 
be many possible combinations of systematic + random errors depending on 1) sensors used, 2) e-
fold depth and “sharpness” of the difference between surface and depth production, and other 
factors such as quality of depth measurement during installation.  In a sensitivity test like this 
manuscript, we iterate across all parameters in combination, so when considering the wide variety 
of available sensors and chambers, there seems a very large number of additional factors that we 
could include. Given that the study already took between 2 and 3 CPU-years to cover all our error 
experiments, it seems a very large expansion of the parameter space.  Each additional factor 
would expand the study by a multiple of the factor.  So, if we included 10 levels of systematic bias, 
it would increase the CPU time for our study by a factor of 10.  Also, we recently published a 
random error study on flux measurements (Lavoie et al 2015) and would add that one additionally 
has to random ecosystem “error”, because respiration is not actually always the same every time 
the ecosystem crosses the same value of T.  Our aim was more so to quantify methodological error 



associated with the inversion and sensor placement.  The error across error types would have been 
one direction.  Another possible direction would have been to investigate alternate forms of the 
model solving, such as doing depth-specific Q10 solving when there were multiple sensors 
constraining the production profile and e-fold depth (and where we would not have to solve for it).  
These are all meritorious directions for research.  The error question is an important one, 
however, and we would suggest that as normal Due Diligence, authors of subsequent studies in 
which the inversion technique is should be responsible for quantifying the errors specific to their 
deployment.  These are much easier to determine, and authors bear responsibility for 
communicating error.  Unfortunately, it is extremely rare to see even the most basic error 
analysis, such as a quantified flux error in an autochamber system.  Things are changing slowly, 
but in general most studies have very little discussion of error.  What is clear from our inversion 
error analysis, however, is that the inversion technique leads to far less error than normal 
regression techniques (see Phillips et al 2011) because it takes gas and thermal diffusion lags into 
account.  We would hope that, in light of these comments, the editor might provide some flexibility 
on this point. 
 
Per Erik’s first remark is another argument that you only partly tackle in the discussion, why an 
inversion approach in the real world is likely to fail, simply because the Q10 value can vary layer 
specific in your analysis you take it as a global parameter(“Q10 is the temperature sensitivity of soil 
respiration” 10142/14). Please review the literature on changes of Q10 with aging of soil organic matter 
and even with the average temperature level (because it is not the right function) and include in the 
discussion, what this means for the prospects of deriving accurate Q10 values from in situ field 
measurements (action 4). 
 
We agree that this is a good topic for discussion, and have added the following text into our 
discussion, and integrated it with a misleading section that suggested that we do not have adequate 
constraining information on depth of production, which was not strictly true (we were referring to 
distribution of production).  The entire section of modified text now reads as: 
 
 
There are both limitations and future opportunities for the inversion approach.  In general, the better 
an inversion is constrained with data, the better it will do in returning the true value for parameters of 
interest. Some of the soil parameters are distributed in ways that must be assumed. For example, the 
distribution of CO$_2$ production may be unknown.  While most studies in the history of soil 
modelling have assumed an exponential distribution (and it has been seen in many studies using the 
gradient technique), some other considerations might help determine whether additional 
parameterization measurements are needed. For example, knowledge of rooting depth could be one 
aid. On average, root respiration accounts for 50\% of soil respiration \citep{hanson} and 
\cite{jackson} provides root distributions for different terrestrial biomes.  \cite{jackson} found that 
tundra, boreal forest and temperate grasslands had upwards of 80-90\% of roots within the top 30 cm 
of soil whereas deserts and temperate coniferous forests had much deeper rooting profiles, with only 
50\% of roots within the top 30 cm. These and other  methods may be helpful in providing constraint 
data when running inversions on real timeseries. 
\par 
A future opportunity for inversion studies is to determine depth-specific Q$_{10}$, which would be of 
interest to many researchers.  Currently there are few field examples where researchers have 
determined in-situ Q$_{10}$ as a function of depth, but two examples of such data using include 
gradient studies include \cite{riskdiochon,tang}. Incubations might seem useful in this regard, but are 
disputed as a representation of in-situ conditions, especially at depth (Risk et al. 2008).  Ideally, an 



inversion approach could determine depth-specific Q$_{10}$, but the reality is challenging.  If an 
additional 100 Q$_{10}$ values were included as unknowns (one for each layer), it would increase 
computational demand by 100 times. The inversion results would also be confusing, and extreme 
values at one depth could potentially cause a spurious match to the measured data.  The number of 
non-unique and implausible solutions would rise significantly as a result.  A more reasonable 
approach might be to define Q$_{10}$ as we do e-fold, which is as a function of soil depth.  This 
would be computationally compact but whether a function would be realistic is not well known 
because there are so few examples of Q$_{10}$-depth profiles against which we could evaluate this 
approach.  The best approach would be to use many profile concentration sensors for constraining 
data, so that e-fold depth of production could be known, and the inversion could focus instead solely 
on determining layer-specific $_{10}$.   
\par 
Despite the relatively nascent stage of our soil CO$_{2}$ inversion approach, indications are that it 
has better theoretical validity than traditional regression approaches, which do not take thermal- and 
gas-transport lags into account.  Our error results here compare very favourably against error 
analyses generated from detailed examination of regression approaches across thermal- and gas-
transport parameter space (Zhang et al. 2015, Phillips et al. 2011, Graf et al. 2008, and others).   
 
As noted above, the inversion approach is not likely to “fail”.  We were motivated to develop the 
inversion approach because it is more theoretically valid than regression approaches since it is 
rooted in thermal and thermal- and gas-transport physics.  So, one can argue that it is less likely to 
fail than the normal regression technique which is plagued with issues.  Inversion may however 
not yet be at the level of maturity where it could determine depth-specific Q10, but if a suitable 
dataset presented itself where we could eliminate the need to invert for e-folding depth, we could 
easily invert for depth-specific Q10.  We have noted this in the text above – that the right datasets 
would make it possible.  Such is the nature of inversion – that the approach depends on what 
constraining data are available.  The better the constraints, the farther the model can be pushed to 
examine specific parameters in great detail. 
 
In addition to this discussion I have three other comments that I like you to consider in your revision: 

1. Figure 1. In the text I immediately understood why there are time lags, but I was and I still 
am lost with the logic of the figure. Isn’t the temperature sensitive gas production missing 
(link between heat transfer and gas diffusion)? Can you explain what the arrows under 
‘Time’ mean? To shorten this, please consider removing this figure if it has only illustrative 
character (action 5). 

 
Agreed.  We have replaced the word “time” with “CO2”, reflecting CO2 production.  This helps to 
represent the temperature sensitive gas production.  Presumably the time component is obvious.  
What is less obvious to many readers is the impact of thermal diffusion, which is one reason to 
keep the figure.  The most important lags are actually of the thermal variety, and not the gas 
diffusion variety (see Phillips et al 2011). 
 
 

2. Please do not use colloquial language in the revised version. Avoid, e.g., ‘sits in ... as’ (action 
6) 

 
Thank you.  Fixed. 
 



3. 10154/5 Conclusion: why “preliminary”? If the study is preliminary shouldn’t we wait until it 
is finished? Please consider revision. (action 6) 

 
Thank you.  Fixed. 
 
I assume that the manuscript will still considerably change. Therefore, we will need it’s final version to 
evaluate it.  
 
Just to be clear, we have also made the revisions we had suggested in the last round of review.  
They were in general smaller than those recommended here.  Also, you had agreed with them and 
we assume that they were on the mark.  Those changes are listed exhaustively in our last 
communication, and are also shown in our markup.  
 
Overall, we have made considerable changes to the manuscript, and it is more straightforward 
and cohesive. Thanks kindly for your comments, and consideration of this manuscript. 
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Abstract. Physical soil properties create lags between temperature change and corresponding soil

responses, which obscure true Q10 values and other biophysical parameters such as depth of produc-

tion. This study examines an inversion approach for estimating Q10 and depth of production (Zp)

using physically based soil models, constrained by observed high-frequency surface fluxes and/or

concentrations. Our inversion strategy uses a 1-D multi-layered soil model that simulates realistic5

temperature and gas diffusion. We tested inversion scenarios on synthetic data using a range of con-

straining parameters, time averaging techniques, mechanisms to improve computational efficiency,

and various methods of incorporating real data into the model. Overall, we have found that with

carefully constrained data, inversion was possible. While inversions using exclusively surface flux

measurements could succeed, constraining the inversion using multiple shallow subsurface CO210

measurements proved to be most successful. Inversions constrained by these shallow measurements

returned Q10 and Zp values with average errors of 1.85% and 0.16% respectively. This work is a

first step toward building a reliable framework for removing physical effects from high frequency

soil CO2 data. Ultimately, we hope that this process will lead to better estimates of biophysical soil

parameters and their variability on short timescales.15

1 Introduction

Soil respiration, which includes both root and microbial respiration, represents the largest outward

flux of CO2 from terrestrial ecosystems, with a magnitude far above that of anthropogenic emis-

sions (Raich and Schlesinger, 1992). Small changes in the soil CO2 flux could therefore have a

significant impact on the carbon balance and global atmospheric CO2 concentrations. In predictions20

of atmospheric CO2 over the 21st century, uncertainties surrounding the response of land flux to

1



climate change are second only to uncertainties surrounding future anthropogenic emissions (Meir

et al., 2006). In order to accurately predict future atmospheric CO2 concentrations, it is crucial to

gain a better understanding of how land systems will respond to changing temperature and moisture

regimes.25

Soil CO2 production originates from plant root respiration and microbial decomposition of organic

matter. The temperature sensitivity of soil respiration describes how the flux of CO2 from soils will

respond to a change in temperature. Normally soil microbial and plant root processes are treated

together because they are not readily distinguished from one another. Temperature sensitivity is

often quantified by a parameter Q10, which describes the factor increase in soil respiration with30

a temperature increase of 10oC. This Q10 parameter is used in global climate models to quantify

soil feedbacks to climate change. It has been found that Q10 values are influenced by a range of

environmental factors including soil temperature (Lloyd and Taylor, 1994; Luo et al., 2001), soil

volumetric water content (Davidson et al., 1998; Reichstein et al., 2002) and soil organic matter

content (Taylor et al., 1989; Wan and Luo, 2003). As these factors exhibit high spatial heterogeneity35

across ecosystems as well as within a given ecosystem, it has long been expected that Q10 will also

exhibit high spatial variability. Despite this, most existing models continue to use a globally constant

Q10 value. This may reduce or enhance predicted release of CO2 from soils, leading to large over- or

under- estimates of the contribution of soil respiration to terrestrial CO2 flux in the face of climate

change. There has been considerable debate over the usage and magnitude of Q10 (Davidson et al.,40

2006; Mahecha et al., 2010), with different studies producing widely variant values. While most

studies agree that CO2 flux feedback will be positive, there is no consensus on how best to estimate

the magnitude of Q10.

Historically, Q10 values have been determined through regression analysis of soil temperature

and CO2 surface flux measurements. A known source of error in this approach originates in the45

physics of soil heat and gas transport, which might separate a change in surface soil temperature

(normally a 5 cm or 10 cm temperature is used for deriving Q10) from the resultant change in

CO2 flux measured at the surface. The lags depend most heavily on soil heat transport (Phillips

et al., 2011), because changes in surface temperature are shifted and dampened significantly as a

function of depth, with each successive soil layer experiencing a reduced temperature change in50

amplitude. Gas diffusion also plays an important role, and even if soil microbes and roots produced

CO2 instantaneously upon receipt of thermal energy at the characteristic production depths, gases

still take time to diffuse upward. Soil properties including heat and gas diffusion, and the production

depth (Zp), all contribute to these lags (Fig. 1). Phillips et al. (2011) demonstrated that such lags can

lead to severe misinterpretation of data when attempting to extract true Q10 values through regression55

of surface flux and a temperature measurement at a single depth.

These thermal and gas diffusion processes, and the resulting lags, can be captured in a simple

1-D physical heat and gas transport soil model (Nickerson and Risk, 2009; Phillips et al., 2011).

2



Though not done to date for the soil respiration system, it is possible to use such a model in in-

verse fashion for estimating the value of parameters like Q10 and Zp by looping the forward model60

iteratively through possible parameter combinations, with observed measurements as a constraint.

Normally, an objective function is used for helping decide which parameter set best minimizes the

difference between modelled and measured data. This method has been identified as a promising

tool for determining unknown soil parameters (Zhou et al., 2009), with an increasing availability of

high frequency data sets allowing for rigorous constraints on known model parameters.65

This study seeks to develop a reliable inversion framework for determining the Q10 and Zp of

different sites given continuous soil measurements. It also seeks to provide guidance for researchers

who would like to build field observational sites suited for inversion analysis. Working exclusively

with synthetic soil data that mimics the form of collected field data and of which all parameters

are known, we first undertake sensitivity tests to determine optimal sensor placing in the field, and70

decide whether soil CO2 surface flux, and/or profile measurements, are more suited for anchoring

inversion approaches with the necessary field data for parameter constraint. Using the best sensor

combination, we are able to evaluate the accuracy of the inversion approach in returning the original

Q10, and Zp, across many realistic soil type scenarios.

2 Methods75

This study uses a one dimensional CO2 and heat transport model described by Phillips et al. (2011),

originally developed by Nickerson and Risk (2009). This model, with existing versions in Perl and

R (R Core Team, 2015), was recoded in C to increase computational efficiency for the parameter

solving routine.

2.1 Model description80

This model (Fig. 2) simulates the movement and production of CO2 through the soil profile and into

the free atmosphere. The model consists of one atmospheric layer and a soil profile 1 m in length,

divided into 100 layers of uniform thickness. Each layer can exchange CO2 with its two nearest

neighbouring layers using the 1-D discrete form of Fick’s first law:

Fij =−Dij
∆Cij

∆zij
(1)85

where Dij is the effective diffusion coefficient between two soil layers, ∆Cij is the CO2 concentra-

tion difference (µmol m−3) and ∆zij is the difference in depth (m) between the two layers.

For every modelled time step, each soil layer has a defined temperature, biological CO2 produc-

tion, CO2 flux, thermal diffusivity and gas diffusivity. Temperature varies sinusoidally on daily and

annual timescales. Changes in surface temperature are shifted and dampened through the soil profile90
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using:

T [i] = Tavg + ∆TDe
−zi
dTd sin

(
ωDt−

−zi
dTd

)
+ ∆TY e

−zi
dTy sin

(
ωY t−

−zi
dTy

)
(2)

dTd =

√
2DT [i]

ωD
,dTy =

√
2DT [i]

ωY
(3)

which simulates the lags related to the rates of thermal diffusion. In this equation, Tavg is the av-95

erage temperature in the air and soil profile for the duration of the simulation, ∆TD is the amplitude

of the daily temperature fluctuation, ∆TY is the amplitude of the yearly temperature fluctuation, ωD

is the radial frequency for daily oscillations (ωD=2π/86400s), ωY is the radial frequency for annual

oscillations, zi is the layer depth (m), and DT is the thermal diffusivity of the soil (m2 s−1).

Biological CO2 production in each layer is calculated using an exponentially decreasing function100

(Nickerson and Risk, 2009):

P [i] =
Γ0∑N

i=1 e
−zi
Zp

e
−zi
Zp Q

T [i]−Tavg
10

10 (4)

where Γ0 is the total basal soil production (µmol m−3 s−1), N is the number of soil layers, Q10 is the

temperature sensitivity of soil respiration, zi is the depth of the layer (m) and Zp is the e-folddepth

of production (m), defined as the depth below which the total fraction of CO2 production remaining105

is 1/e (also called the damping depth), from which the production at any depth P(i) can be calculated

based on equation 4.

Initially, the diffusivity of CO2 in the soil profile is calculated using the Millington Model (Millingon,

1959), an empirically derived approximation for calculating diffusivity in the field:

Dc =
θ

10
3
w

Dfw

H + θ
10
3
g Dfg

θ2T
(5)110

Dfw and Dfg are the diffusivity of CO2 in free water and free air (m2 s−1), H is the dimensionless

form of Henry’s solubility constant for CO2 in water, and θw, θg and θT are the water filled, air filled

and total soil porosities, respectively.

At each time step, the diffusivity of each soil layer is calculated using a temperature correction on

this Millington diffusivity:115

D[i] =Dc

(
T [i]

Tavg

)1.75

(6)

As previously mentioned, the flux from each layer is determined by Fick’s first law, written ex-

plicitly as:

F [i] =D[i]
(C[i]−C[i− 1])

dz
dt (7)
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where C[i] is the CO2 concentration of layer i (µmol m−3), C[i-1] is the concentration of the layer120

above, and dt is the time step (s).

Finally, at each time step CO2 concentration in each layer i is calculated using:

C[i] =
Ct−1θgdz−F [i] +F [i+ 1] +P [i]

θgdz
(8)

where Ct−1[i] is the layer concentration at the previous time step, F[i] is the flux of CO2 leaving

layer i, F[i+1] is the flux of CO2 entering the layer from the layer below, P[i] is the CO2 production125

within layer i.

2.2 Model execution and validation

Before beginning the simulation, the system is initialized using input parameters seen in Table 1.

Atmospheric CO2 concentration remains constant for the duration of the simulation; it is assumed

that any flux from the soil will quickly dissipate into the atmosphere. Flux from the bottom soil130

boundary is set to zero, as production at this depth is negligible according to the exponentially

decreasing production function. These system parameters were changed depending on the soil type

being simulated.

After initialization, the system undergoes spin-up, during which layer temperatures are held con-

stant at their initial values, and the model is run until the CO2 concentration in each layer is constant.135

The duration of the spin up period is dependent on soil diffusivity (and therefore θw), and is deter-

mined by plotting concentration vs time through the soil profile. This period ranges from 5 to 23

model days within the range of θw (0.1 to 0.25). The CO2 concentration in each layer after spin up

is the initial layer concentration at the beginning of the actual simulation.

For each modelled time step (dt=1.0 s), temperature, CO2 diffusivity, CO2 production and CO2140

flux are calculated in each soil layer. Every soil layer is then revisited, and the new CO2 layer

concentrations are calculated. The progress of the simulation is monitored by outputting the CO2

concentration and temperature of specified layers.

2.2.1 Validation

To ensure the model was performing correctly, steady state concentrations through depth (following145

spin-up) were compared to the steady state solution proposed by Cerling (1984). Daily and yearly

temperature fluctuations were removed from the model, and the model was run until CO2 concentra-

tions in each layer were constant. Deviations of modelled from analytic concentrations were found

to be far less than 1%.

In order to model soil conditions, real (or synthetic in the case of this study) measurements must150

be used to drive the simulation. Measurements of temperature through depth, soil volumetric water

content, CO2 surface flux and CO2 concentrations take place at 1800 s intervals in the field, and in
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our forward synthetic simulations in which we created idealized field data. Soil temperature is an

explicit model driver, while CO2 surface flux and concentration are used as model constraints. Soil

volumetric water content is not formally incorporated as a driver of respiration, so simulations are155

performed over periods of constant soil volumetric water content. Soil volumetric water content is

also assumed to be constant through the soil profile.

Accurately modelling soil temperature through depth and time is crucial, as temperature is the

known determinant of soil lags (Phillips et al., 2011). For each set of temperature measurements

through depth, a linear regression (in R) is performed, resulting in a 5th order polynomial for160

temperature through depth every 1800 s. A linear interpolation through time is performed to obtain

temperature values in each layer for every modelled time step. The resultant temperature values

replace our originally sinusoidally varying temperature function in the model. The value of thermal

diffusivity is implicitly built into these measurements and is no longer required as a direct model

input.165

2.3 Incorporating constraining data

In this study, we incorporated external data in the same way we would with field studies. We started

with real measurements of temperature through depth, and soil volumetric water content, from a local

field site. One of the largest challenges in preparing data for inversion is to accurately model soil

temperature through depth and time, as temperature is the known determinant of soil lags (Phillips170

et al., 2011). For each set of temperature measurements through depth, a linear regression (in R)

was performed, resulting in a 5th order polynomial for temperature through depth every 1800 s. A

linear interpolation through time was performed to obtain temperature values in each layer for every

modelled time step. The resultant temperature values replaced our originally sinusoidally varying

temperature function in the model. The value of thermal diffusivity was therefore implicitly built175

into these measurements and is no longer required as a direct model input.

These physical variables were used in a forward instance of the soil model to create CO2 sur-

face flux and CO2 concentration timeseries. Datasets were created using many e-folding depths of

production, and Q10s of interest, so that we had many idealized datasets on hand in which concen-

tration, fluxes and associated temperatures, e-folding depths of production, and Q10s, were known.180

Soil volumetric water content was not formally incorporated as a driver of respiration in these syn-

thetic datasets, so all simulations were performed over periods of constant soil volumetric water

content. During inversion we pretended not to know e-folding depths of production, and Q10s, of

these synthetic datasets, and hoped the inversion process would return the known values. Since the

same forward soil model that generated the synthetic datasets was also embedded within the inver-185

sion scheme, errors in e-folding depths of production, or Q10, would be due entirely to the inversion

process itself.
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2.4 Inversion process

The soil profile CO2 concentrations and soil CO2 surface flux are outputs of the simulation. Their

values are dependent on all of the system input parameters. A method called inverse parameter190

estimation is employed to determine the values of Q10 and e-fold depth of production that would

have given rise to the observed concentrations and fluxes. Through this process, model outputs are

compared to measured field data or synthetic data over a range of model input parameters. The field

measurements used in this process will be referred to as the model constraints; these constraints

consist of CO2 concentration measurements at various depths in the soil profile, as well as CO2195

surface flux measurements.

2.4.1 Inversion steps

The model is run for two unknowns, including Q10 values ranging from 1 to 5.5 in steps of 0.1, and

Zp from 0.02 m to 0.3 m in steps of 0.01 m. This results in a total of 1260 parameter combinations.

Inversion seeks to identify the parameter set that minimizes the objective function200 √
(S1−M1)2 + (S2−M2)2 + (S3−M3)2 + ... (9)

where Si and Mi correspond to modelled and measured CO2 concentrations at various profile depths.

For each parameter set, this objective function is calculated every 1800 timesteps and averaged at

the end of the simulation. The pair that minimizes Eq. (9) is output as the inversion result.

2.5 Validation of the inverse method205

Before applying the inversion method to real field data, tests must be done to ensure method accu-

racy, and this manuscript focuses on such tests. We created synthetic timeseries using the original

soil model, that mimic the form of real data sets. The values of Q10 and Zp were known for each

synthetic timeseries, as these parameters are required to run the model. This synthetic data included

temperature measurements at six depths in the profile, volumetric water content, CO2 surface flux210

and CO2 concentration measurements at various depths in the soil profile.

The inverse method was applied to these synthetic data sets, and the output value of Q10 and Zp

could then be compared to the actual values of these parameters used to create the timeseries.

2.5.1 Constraint, sensitivity, and random error testing

To determine which model constraints resulted in the highest accuracy of the inversion method,215

the error (Eq. (9)) was calculated using a large range of constraining parameters and combinations

thereof. A total of 35 different constraint combinations were tested, representing various combi-

nations of surface CO2 flux, and subsurface CO2 concentration measurements up to 0.6 m depth.

These combinations are illustrated in Table 2. Testing which constraints consistently returned the

most accurate values of Q10 and Zp aids in determining optimal sensor placing the field.220
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To ensure model validity across all possible parameter values that may be encountered in the

field, extensive sensitivity testing was done using these synthetic timeseries. These timeseries were

created across a range of combinations of Q10, Zp, volumetric water content (diffusivity) and total

soil production. Table 3 illustrates the ranges tested for each parameter.

Field-deployable CO2 sensors typically have 1-5 % error. To see how the model and inversion225

would perform under these conditions, errors of 1, 5 and 10 % were added into all components of

the synthetic data. The effect of these errors on the inverse method were observed.

3 Results and discussion

Inversions on synthetic timeseries were successful across all tested soil parameters, though some

CO2 concentration measurement depth combinations (surface flux, single or multiple profile mea-230

surements) helped to minimize the overall error, as well as the error in Q10 and Zp individually.

Errors discussed in this section represent an average from 64 inversions across values of Q10, e-

fold depth of production, and soil diffusivity as presented in Table 3. In this section, we use either

fractional error ( |actual−result|actual ), or absolute deviation from the actual value (|actual− result|).

3.1 Best measurement configurations to obtain Q10 and Zp via inversion235

In Fig. 3 we show the average fractional error in the returned Q10 value for every combination of

subsurface CO2 sensor measurements. Observations of CO2 concentration shallow in the soil were

found to be necessary for highly accurate Q10 estimates. The lowest inversion error for Q10 was

1.85%, in a scenario where subsurface measurements were made at 5, 10 and 15 cm. Single con-

centration measurements at or above 10 cm also proved successful, with errors < 2.3 %. The least240

accurate inversions for Q10 occurred when the constraint consisted of (single or multiple) CO2 con-

centration measurements deep in the soil profile. We propose that the poor performance of inversion

when using deep profile constraints could be related to the low magnitude of thermal and concentra-

tion variability at these depths. Deep soil layers are subject to much smaller thermal fluctuations than

layers close to the surface. In this less variable environment, CO2 concentrations are less variable245

and provide less of a signal upon which to anchor inversion. In contrast, CO2 concentrations shallow

in the soil exhibited larger variations in temperature and concentration, which presumably allowed

Q10 to be extracted more easily. If the primary interest is to obtain Q10 from inversion, multiple

CO2 concentration measurements in the soil were found to be important. It should be noted that,

while differences in error rate were noted, errors for all scenarios could be considered tolerably low250

relative to the normal variance expected from regression-based Q10, considering the gas transport

lags inherent in those data (Phillips et al., 2011).

The average fractional error in Zp for different model sensor combination constraints is also shown

in Fig. 3. Out of the 35 combinations tested, only 5 resulted in an average Zp error greater than 2%.

8



Single concentration measurements shallow or deep in the soil profile caused this larger error, but on255

average, single concentration measurements at any depth in the soil were less accurate. Inversions

constrained by at least one measurement shallow (< 15 cm) and one deep (≥ 30 cm) in the profile

returned Zp with 100% accuracy across all sensitivity tests. We did expect that single measurements

deep in the profile would perform poorly relative to others, because with the exponentially decreasing

production defined in the model, CO2 production approaches zero at significant depths regardless260

of the value of Zp and thus cannot perform well as an inversion anchor. The large Zp error of

almost 25% associated with soil surface CO2 flux measurements, was also not surprising. In this

situation the inversion scheme must reconstruct Zp mainly via the temporal delay, and damping,

between sinusoids of temperature through depth, and soil surface CO2 flux. Without a concentration

measurement in the soil, the gas transport regime is black boxed from the perspective of the inversion265

scheme, resulting in the large error. Overall, surface CO2 flux measurements alone are less suited for

elucidating information on e-fold depth of production, whereas a combination of shallow and deep

measurements is best for reconstructing the distribution of CO2 production in the soil profile.

In examining inversion accuracy for both parameters Q10 and Zp simultaneously (Fig. 3), we

found that multiple concentration measurements shallow in the soil (≤ 15 cm), or combinations270

shallow in the soil with one deep concentration measurement (≥ 30 cm) were the best constraints.

Deep soil measurements and surface flux constraints should therefore be avoided if the aim is the

minimize overall error. This overall result is a combination of what was found for Q10 and Zp

individually, where shallow measurements were best for Q10 and a combination of shallow and deep

measurements resulted in most accurate Zp.275

Depending on error tolerance for the final parameter estimates, it is conceivable that the accuracy

of all inversions performed here might be sufficient for the community of soil scientists. Out of

the 35 combinations tested, 19 resulted in an overall average error less than 5%. The top constraint

(measurements at 5,10 and 15 cm) had an average error of 2.01%, and the top 6 combinations all

had error less than 3%. These errors are small compared to the degree of random error in CO2 flux280

studies (Lavoie et al., 2015). These results are summarized in Table 4, where the top and bottom 5

combinations are listed individually and overall.

This assessment was performed using synthetic data, and even the most ideal field settings will

depart from these modelled profiles. For example, we represented CO2 production through depth

using an exponential production function, but a field site may show a linear decrease in production285

at increasing depths. Clearly users of the inversion process will want to characterize as many site-

specific parameters as possible so as to provide proper guideposts and constraints for the inversion,

otherwise additional error will be introduced. The sensitivity of the inversion to error is an important

question, and will be addressed in a later section.
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3.2 Effect of soil-specific parameters on inversion success290

Having determined the best CO2 sensor concentration measurement depth to constrain inversions,

we can examine how site-specific parameters such as soil diffusivity, depth of CO2 production and

Q10 affect inversion results. For this assessment, we will use the best performing measurement

configurations established. Even when not a top choice, we will always include CO2 surface flux

measurements in this section, because of the likelihood that scientists will want to use inversion to295

analyze these data which are increasing in number rapidly.

Figure 4 a) and b) illustrate how deviation in Q10 and Zp were affected by the diffusivity of

site soils. When subsurface sensor combinations were used as a constraint, there was an overall

downward trend in Q10 and Zp error with increasing diffusivity. As diffusivity increases (drier soils),

CO2 travels through the soil layers to the surface more quickly which results in decreased lag times,300

more rapid concentration changes, and more distinct soil responses. Under these conditions of rapid

diffusion, inversions were most successful. Sites that are frequently waterlogged with limited air

filled pore space tended to be less ideal for inversion, but the optimal instrument configuration still

helps ensure reasonably small error throughout the entire range of diffusivities, so there is no strict

limitation on the use of the inversion approach in low diffusivity soils.305

Figure 4 c) and d) demonstrate the impact of the Zp parameter value on inversion success in terms

of deviation in returned Q10 and Zp values. For small Zp values, shallow CO2 concentration mea-

surements (≤ 15 cm) were the best constraints, presumably because the soil is most active in these

top layers. As e-fold depth of production increases, the production of CO2 is no longer limited to the

shallow soil, the exponential production function decreases more slowly. With increasing Zp, CO2310

production in deeper soil layers is higher, and more useful as an inversion constraint. Some matching

of deployment depth was also found, where for example shallow concentration measurements were

more accurate for returning the correct value of shallow CO2 production.

Sensitivity tests indicate that increasing the temperature sensitivity of respiration had opposite

effects on Q10 and Zp error. Deviation in returned Q10 values increased rather uniformly across315

the best subsurface measurements, while for most subsurface combinations the Zp error decreased.

With increasing Q10, respiration becomes more sensitive to temperature changes, leading to larger

variations in production in the event of a temperature fluctuation. Figure 4 e) and f) illustrate the

impact of this parameter on Q10 and Zp error.

With large amounts of existing surface flux data, it is also worth examining the effectiveness of the320

soil CO2 surface flux as a constraint, even when it is not the preferred constraint. It is immediately

evident from Fig. 4 that inversions constrained by the surface flux resulted in Q10 and Zp deviations

that responded much differently to changes in soil diffusivity, e-fold depth of production and Q10.

These deviations were often significantly larger than when subsurface constraints were used. Devi-

ations in Q10 and Zp generally increased as all three parameters increased. This suggests that for325

low diffusivity, e-fold depth of production and Q10, surface flux was a reasonable model constraint,
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producing errors comparable to the subsurface measurements. This constraint was much less effec-

tive for determining depth of CO2 production. However, Zp was always returned within at least 3.5

cm of its actual value, which for some uses may be an acceptable level of uncertainty. Inversions

constrained by surface flux were quite effective in returning Q10. Returning to Fig. 3, the overall330

average Q10 error associated with surface flux was less than 5%, which is significantly better than

results using deep subsurface measurements. Figure 4 e) suggests that inversions using large Q10

values were responsible for the majority of this error. For Q10 of 1.5, these inversions returned Q10

with 100% accuracy. For the largest Q10, deviation from the true value climbed as high as 0.6-0.7,

which is non-negligible. A shorter model time step could potentially reduce this error, as it may be335

able to better capture the larger and faster responses associated with high Q10 and diffusivity. As we

cannot estimate the Q10 of a site prior to inversion, however, this insight may not be overly useful

in site selection. Overall, inversions constrained by the CO2 surface flux are possible but should be

performed with caution, and with reasonable expectations as to the resultant error level.

It is also of interest to examine how the amount of CO2 production in the soil profile affects340

inversion. The bulk of our sensitivity tests were performed using a basal CO2 production of 10 µmol

m−3 s−1, which is a fairly high. In order to test the other extreme, several inversions were performed

using a production level of 1 µmol m−3 s−1. These inversions performed with exactly the same

accuracy as those with a production level of 10. From this, we can conclude that the magnitude of

production has no effect on inversion success.345

3.2.1 Random error and inversion

The measurements performed by sensors in the field will always be uncertain to some degree. It

is therefore important to examine how these uncertainties in recorded temperature, CO2 and soil

volumetric water content measurements will impact the accuracy of the inversion method. Inversions

performed on synthetic data to which random errors of 1, 5 and 10% had been added were indeed350

less accurate than those performed on idealized data. However the resulting errors in returned Q10

and Zp were not proportional to the amount of error added to the input data, but actually much lower.

That is, errors of 5% in the input data did not result in an additional 5% error in output values. An

example of this is illustrated in Fig. 5. This plot demonstrates that with random measurement errors

in the ranges of 1-5%, Q10 values were still determined with reasonable accuracy. Prior to error355

addition, deviation in Q10 was around 0.12. This deviation increased to 0.14 for 1% error and 0.17

for 5% error. As sensors in the field are typically uncertain by 1 to 5% , the inversion method remains

feasible. We can thus conclude that the inversion process is rather tolerant of error in measurement.
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3.3 Multi-parameter error landscape

It is worth investigating in detail the error landscape of the inversion process using a multi-parameter360

sensitivity tests. For this test, we chose the combination of measurements at 5, 10 and 15 cm which

had resulted in the most accurate inversions on average.

The results from the sensitivity tests are shown in Fig. 6, panels a) to f). In all combinations,

the error in Zp was very small, with the maximum error for any single inversion being just over

2%. Despite this small error, it remains evident which soil conditions should be avoided for most365

accuracy. Sites with low diffusivity, production deep in the soil and low Q10 are the most problematic.

This is consistent with the results from Fig. 4 a), c) and e). Trends were not as evident for error in

Q10. In panels a), e) and c) the most notable error was found in panel a) for high e-fold depth of

production, low Q10. There is an error in Q10 here of almost 15%, which equates to a deviation

in Q10 of about 0.225 from its actual value. This result is not unreasonable, but it is significantly370

higher than results from the other inversions. Plot e) demonstrates an interesting result, where there

seems to be a valley in the Q10 error, illustrating a tradeoff between e-fold depth of production and

diffusivity. This is not evident in the other plots, and does not have an intuitive physical explanation.

The effect of Q10 on inversion varies, but success hinges quite clearly on soil diffusivity and depth

of CO2 production. Choosing a site in the appropriate ranges of these two parameters will maximize375

chances of success.

Some of the soil parameters across which we tested are obviously unknown a priori. The unknown

value of Q10 has already been noted, and depth of CO2 production may also be unknown prior to

inversion. Knowledge of root distribution in the soil could be one aid in site selection and instrumental

configuration. On average, root respiration accounts for 50 percent of soil respiration (Hanson et al.,380

2000) and Jackson et al. (1996) provides root distributions for different terrestrial biomes. Jackson

et al. (1996) found that tundra, boreal forest and temperate grasslands had upwards of 80-90 percent

of roots within the top 30 cm of soil whereas deserts and temperate coniferous forests had much

deeper rooting profiles, with only 50 percent of roots within the top 30 cm. These and other methods

may help inform the configuration of field experiments, and may be helpful in providing constraint385

data when running inversions on real timeseries.

3.4 Limitations and opportunities

There are both limitations and future opportunities for the inversion approach. In general, the better

an inversion is constrained with data, the better it will do in returning the true value for parameters of

interest. Some of the soil parameters are distributed in ways that must be assumed. For example, the390

distribution of CO2 production may be unknown. While most studies in the history of soil modelling

have assumed an exponential distribution (and it has been seen in many studies using the gradient

technique), some other considerations might help determine whether additional parameterization

12



measurements are needed. For example, knowledge of rooting depth could be one aid. On average,

root respiration accounts for 50% of soil respiration (Hanson et al., 2000) and Jackson et al. (1996)395

provides root distributions for different terrestrial biomes. Jackson et al. (1996) found that tundra,

boreal forest and temperate grasslands had upwards of 80-90% of roots within the top 30 cm of soil

whereas deserts and temperate coniferous forests had much deeper rooting profiles, with only 50%

of roots within the top 30 cm. These and other methods may be helpful in providing constraint data

when running inversions on real timeseries.400

A future opportunity for inversion studies is to determine depth-specific Q10, which would be

of interest to many researchers. Currently there are few field examples where researchers have de-

termined in-situ Q10 as a function of depth, but two examples of such data using include gradient

studies include Risk et al. (2008); Tang et al. (2003). Incubations might seem useful in this regard,

but are disputed as a representation of in-situ conditions, especially at depth (Risk et al. 2008). Ide-405

ally, an inversion approach could determine depth-specific Q10, but the reality is challenging. If an

additional 100 Q10 values were included as unknowns (one for each layer), it would increase compu-

tational demand by 100 times. The inversion results would also be confusing, and extreme values at

one depth could potentially cause a spurious match to the measured data. The number of non-unique

and implausible solutions would rise significantly as a result. A more reasonable approach might be410

to define Q10 as we do e-fold, which is as a function of soil depth. This would be computationally

compact but whether a function would be realistic is not well known because there are so few exam-

ples of Q10-depth profiles against which we could evaluate this approach. The best approach would

be to use many profile concentration sensors for constraining data, so that e-fold depth of production

could be known, and the inversion could focus instead solely on determining layer-specific Q10.415

Despite the relatively nascent stage of our soil CO2 inversion approach, indications are that it

has better theoretical validity than traditional regression approaches, which do not take thermal-

and gas-transport lags into account. Our error results here compare very favourably against error

analyses generated from detailed examination of regression approaches across thermal- and gas-

transport parameter space (Zhang et al., 2015; Phillips et al., 2011; Graf et al., 2008).420

4 Conclusion

Overall, this inversion method proved successful in preliminary testing on synthetic data. Depending

on the tolerable level of error for a given application, almost every tested combination resulted

in reasonably accurate returned Q10 and Zp values. The subsurface concentration measurements

that yielded the highest error were typically those that would be of least convenience to install and425

maintain deep in the soil profile. The other constraint associated with high overall error was CO2

surface flux, which would likely be the data with highest availability. Most of the error from this

constraint arises in estimating the Zp parameter. The CO2 surface flux is still a reasonable means
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of estimating Q10 values via inversion. While in most cases the error was lower for high diffusivity,

shallow production soils, the application of this method is certainly not limited to such regions.430

This method is computationally intensive as it performs a sweep through all possible combinations

in parameter space. This study used roughly 2.5 core-years of time despite the fact that synthetic

timeseries were short. This full sweep ensures that the global minimum in the objective function is

located every time, and when solving inversely for two unknown parameters (as we are), this is not

an unreasonable approach. However, if it was of interest in the future to examine longer timeseries,435

or additional parameters such as the depth dependence of Q10, resulting in additional unknown

parameters, it may be beneficial to explore other search algorithms to increase efficiency, such as

Simulated Annealing.

The next step for this work would be to perform inversions on real timeseries with appropriate

measurement constraints, to obtain temperature sensitivity and CO2 production depth estimates for440

various sites. With the increasing availability of high frequency soil data, there would be no shortage

in data to analyze. Applying this method for periods of varying constant moisture levels could also

help build an understanding of moisture effects on temperature sensitivity of respiration.
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Figure 1. Thermal and gas diffusion lags through a soil profile.
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Figure 2. Conceptual representation of the 1-D layered soil model. Overall profile length is denoted with L,

and N represents the number of individual layers in the model soil profile.
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Figure 4. Error in Q10 and Zp as a function of Q10 (Panels C,F), Zp (Panels B,E) and D (Panels A,D), for

a grouping of the best sensor measurement depth combinations. Individual 5 cm and 10 cm observational

scenarios are shown in light blue and dark blue, respectively. The 5+15 cm measurement scenario is shown in

green. Orange and red illustrate sensitivity of the 5+10+15 cm and 5+10+30 cm scenarios, respectively. Finally,

the 4-point 5+15+30+60 cm measurement sensitivity is represented in grey while the surface flux scenario is

shown in black. For these sensitivity tests, the known Q10 was 2.0, and a Zp of 0.2 m was used.
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For this sensitivity test, the known Q10 was 2.0.
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Figure 6. Error in Q10 and Zp as a function of Q10, Zp and Diffusivity for the constraint 5+10+15 cm. For these

sensitivity tests, the known Q10 was 2.0, and a Zp of 0.2 m was used.
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Table 1. Default parameter values for simulations

Parameter Value/Range

Soil porosity (θT ) 0.40 (v/v)

Thermal diffusivity (DT ) 5 x 10-7 (m2 s−1)

Average air and soil temperature (Tavg) 15oC

Daily air temperature amplitude (∆TD) 5oC

Yearly air temperature amplitude (∆TY ) 12oC

Atmospheric CO2 380 ppm

Total basal CO2 production (Γ0) 1 -10 µmol m−2 s−1

Production exponential folding depth (Zp) 0.05-0.20 m

Q10 1.5-4.5

Volumetric water content (θw) 0.10-0.25 (v/v)
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Table 2. Measurement combinations used for the simulations. The combination number is listed at the begin-

ning of each row. The columns represent the type of measurement (e.g. CO2 surface flux), or the depth of

concentration measurement in centimetres. The "X" values denote whether the type or depth of measurement

was included in the combination.

Combination Flux 5 10 15 20 25 30 35 40 45 50 55 60

1 X

2 X

3 X

4 X

5 X

6 X

7 X

8 X

9 X

10 X

11 X

12 X

13 X

14 X X

15 X X

16 X X

17 X X

18 X X

19 X X

20 X X

21 X X

22 X X

23 X X

24 X X X

25 X X X

26 X X X

27 X X X

28 X X X

29 X X X

30 X X X X

31 X X X X

32 X X X X

33 X X X

34 X X X

35 X X X
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Table 3. Default parameter values for sensitivity testing.

Parameter Abbr. Minimum Maximum Increment

Total basal CO2 production (µmol m−2 s−1) Γ0 1 10 10

Production exponential folding depth (m) Zp 0.05 0.2 0.05

Q10 1.5 4.5 1

Volumetric water content (v/v) θw 0.1 0.25 0.05

Table 4. Best and worst sensor combinations for determining Q10, Zp and overall through inversion.

Combination

Rank Q10 Zp Overall

1 5+10+15 cm n/a 5+10+15 cm

2 5+15 cm n/a 5+15 cm

3 5 cm n/a 5+15+30 cm

4 10 cm n/a 5+15+30+60 cm

5 5+15+30 cm n/a 5+30 cm

31 45 cm 55 cm 50 cm

32 50 cm 50 cm 50+60/50+55+60 cm

33 50+60/50+55+60 cm 60 cm 55 cm

34 55 cm 5 cm 60 cm

35 60 cm Surface Flux Surface flux
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