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Abstract 19 

Permafrost thaw ponds and lakes are widespread across the northern landscape and may 20 

play a central role in global biogeochemical cycles, yet knowledge about their microbial 21 

ecology is limited. We sampled a set of thaw ponds and lakes as well as shallow rock-22 

basin lakes that are located in distinct valleys along a North-South permafrost 23 

degradation gradient. We applied high-throughput sequencing of the 16S rRNA gene to 24 

determine co-occurrence patterns among bacterial taxa (operational taxonomic units, 25 

OTUs), and then analyzed these results relative to environmental variables to identify 26 

variables controlling bacterial community structure. Network analysis was applied to 27 

identify possible ecological linkages among the bacterial taxa and with abiotic and biotic 28 

variables. The results showed an overall high level of shared taxa among bacterial 29 

communities within each valley, however the bacterial co-occurrence patterns were non-30 

random, with evidence of habitat preferences. There were taxonomic differences in 31 

bacterial assemblages among the different valleys that were statistically related to 32 

dissolved organic carbon concentration, conductivity and phytoplankton biomass. Co-33 

occurrence networks revealed complex interdependencies within the bacterioplankton 34 

communities and showed contrasting linkages to environmental conditions among the 35 

main bacterial phyla. The thaw pond networks were composed of a limited number of 36 

highly connected taxa. This ‘small world network’ property would render the 37 

communities more robust to environmental change but vulnerable to the loss of microbial 38 

keystone species. These highly connected nodes (OTUs) in the network were not merely 39 

the numerically dominant taxa, whose loss would greatly alter the organization of 40 

microbial consortia and ultimately the food web structure and functioning of these 41 

aquatic ecosystems.  42 

  43 
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1 Introduction 44 

Permafrost is widespread in Arctic and boreal regions (Schuur et al., 2008) and is 45 

estimated to contain ca. 1700 Pg of organic carbon (McGuire et al., 2009; Tarnocai et al., 46 

2009). Permafrost thawing and erosion is evident by the northward retreat of the 47 

permafrost boundary (Thibault and Payette, 2009). In some northern regions this has led 48 

to the expansion of permafrost thaw ponds and lakes (thermokarst systems; Grosse et al., 49 

2013), whereas in other regions there has been a contraction and loss of these waterbodies 50 

(e.g., Andresen and Lougheed, 2015). These thermokarst systems are part of circumpolar 51 

and global biogeochemical cycles (Abnizova et al., 2012; Walter et al., 2007). Although 52 

some are carbon sinks (Walter Anthony et al., 2014), others are net sources of carbon 53 

dioxide (CO2) and methane (CH4) to the atmosphere (Walter et al., 2008).  54 

Bacterial communities are among the main drivers of key biogeochemical processes 55 

(Ducklow, 2008), and in thermokarst systems are composed of functionally diverse taxa 56 

(Crevecoeur et al., 2015; Rossi et al., 2013). In particular, these systems are favorable for 57 

bacterial methanotrophs (Crevecoeur et al., 2015) as well as archaeal methanogens 58 

(Mondav et al., 2014), and the relative activity of these two groups will affect methane 59 

balance and the net emission of greenhouse gases. Identifying factors that shape bacterial 60 

communities in these aquatic systems is therefore essential for understanding the 61 

functional significance of these permafrost thaw systems in the global carbon budget.  62 

Aquatic bacterial communities are thought to be selected by a combination of bottom-63 

up (resource availability) and top-down (viral lysis, grazing) controls. Less studied are 64 

bacteria-bacteria interactions (facilitation, competition), which may further contribute to 65 

non-random distributions observed among microbial taxa (e.g., Horner-Devine et al., 66 

2007). Examining co-occurrence patterns has the potential to unveil ecological processes 67 

that structure bacterial communities. Specifically, patterns of co-occurrence may reveal to 68 

what extent groups of microbes share habitat preferences, to what extent there may be 69 

ecological linkages among bacterial taxa and with other planktonic organisms, and the 70 

extent of phylogenetic closeness of co-occurring bacterial taxa given that closely related 71 

taxa may share life strategies and ecological traits.  72 

Across northern landscapes, both regional (e.g., climate and the degradation state of 73 

permafrost) and local (e.g., nutrients, dissolved organic carbon and oxygen) conditions 74 
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are likely to influence the distribution of bacterial communities of thaw ponds and lakes. 75 

These thermokarst systems show a high degree of limnological (Deshpande et al., 2015) 76 

and bacterial heterogeneity (Crevecoeur et al., 2015), making them suitable models to 77 

investigate the co-occurrence patterns among bacterial taxa as well their network 78 

relationships within microbial consortia. The main objectives of this study were to 79 

characterize the ecological linkages within microbial communities as a response to 80 

permafrost thawing. Our hypotheses were that (i) bacterial communities follow co-81 

occurrence patterns along the permafrost degradation gradient, due to distinct habitat 82 

preferences among bacteria, and (ii) these habitat preferences relate to differences in the 83 

phylogenetic structure of bacterial communities.  84 

To test the above hypotheses, we employed high-throughput sequencing of the 16S 85 

rRNA gene to determine the composition of bacterial communities in thaw ponds and 86 

lakes of Nunavik (Quebec, Canada) along a North-South permafrost degradation 87 

gradient. In addition, we sampled rock-basin lakes that were under the same regional 88 

climate but whose formation was not related to climate change. We investigated the 89 

relationships among bacterial taxa and local environmental conditions by means of 90 

network analysis, which has been applied with success elsewhere to evaluate microbial 91 

distribution patterns (Barberan et al., 2012; Peura et al., 2015; Steele et al., 2011) and 92 

responses to environmental perturbation (Araújo et al., 2011). We then examined the 93 

potential linkages between the bacteria and phytoplankton, phototrophic picoplankton 94 

and zooplankton biomass in the ponds.  95 

 96 

2 Methods 97 

2.1 Study sites and sampling 98 

Surface water (0.2 m) from 29 thermokarst ponds was collected from 1 to 13 August 99 

2012 in two types of permafrost landscapes. Thaw ponds were located in the vicinity of 100 

Whapmagoostui-Kuujjuarapik (W-K: lat. 55° 15' N, long. 77° 45' W) and Umiujaq (lat. 101 

56º 32’ N, long. 76º 33’ W), within four valleys in the eastern Canadian subarctic, 102 

Nunavik along a North-South permafrost degradation gradient as described in Comte et 103 

al. (2015): the Sasapimakwananisikw River valley (SAS) and the Kwakwatanikapistikw 104 
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River valley (KWK), in sporadic, highly degraded permafrost landscapes (< 10% 105 

permafrost coverage; see Bhiry et al., 2011 for details); and the Sheldrake River valley 106 

(BGR) and Nastapoka River valley (NAS) that are in discontinuous permafrost 107 

landscapes (10-50% permafrost coverage). In addition, we sampled 5 rock-basin lakes as 108 

‘reference lakes’ (RBL) in catchments near the W-K village as a fifth ‘valley’; these 109 

waters occupy glacially scoured basins, and their origin is not related to permafrost 110 

degradation.  111 

At each site, temperature, conductivity, dissolved oxygen and pH were measured using 112 

a 600R multiparametric probe (YSI, Yellow Springs, OH, USA). Water for dissolved 113 

organic carbon (DOC) and chlorophyll-a (Chl-a) was filtered through MilliQ water pre-114 

rinsed 47-mm diameter, 0.22-µm pore size acetate filters and onto GF/F filters, 115 

respectively (Whatman, GE Healthcare Life Sciences, Little Chalfont, Buckinghamshire, 116 

UK). Water samples for total phosphorus (TP) and total nitrogen (TN) were preserved 117 

with H2SO4 (0.15% final concentration) until further analyses.  118 

Samples for zooplankton were collected using a 35 µm net, fixed in ethanol (final 119 

concentration: 75%, v/v), and stored in cold (4 °C) dark conditions until analysis by 120 

inverted microscopy. Microbial abundance samples for flow cytometry (FCM) analysis 121 

were further collected and fixed with glutaraldehyde (final concentration: 2%, v/v) and 122 

stored frozen at -80 °C until analysis. 123 

 124 

2.2 Chemical and plankton analyses  125 

DOC concentrations were analyzed on a Shimadzu TOC-5000A carbon analyzer and 126 

nutrients were analyzed using standard methods (Stainton et al., 1977). Colored dissolved 127 

organic matter (CDOM) was measured by spectrophotometric analysis of absorbance at 128 

254 nm by water filtered through 0.2 µm pore-size filters and the dissolved aromatic 129 

carbon content was determined using the SUVA254 index (Weishaar et al., 2003).   130 

Phytoplankton biomass was estimated as chlorophyll a concentrations (Chl-a), which 131 

were determined using high performance liquid chromatography (ProStar HPLC system, 132 

Varian, Palo Alto, CA, USA) following the procedures described in Bonilla et al. (2005). 133 

Zooplankton, specifically copepods, rotifers and cladocerans, were enumerated following 134 

the Utermöhl procedure (1958) and inverted microscopy (Zeiss Axiovert, Carl Zeiss 135 
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Microscopy GmbH, Jena, Germany). Bacteria, picocyanobacteria and phototrophic 136 

picoeukaryotes were enumerated using a FACScalibur flow cytometer (BD, Mississauga, 137 

ON, Canada), equipped with an argon laser, at the lowest flow rate (12 µl min-1), using 1 138 

µm yellow green microspheres (Polysciences Inc, Warrington, PA, USA) in suspension 139 

as an internal standard. Bead concentration was controlled using Truecount Absolute 140 

counting tubes (BD, Mississauga, ON, Canada). Bacteria were stained by adding 20 µl of 141 

a 50X SYBR Green I (Life Technologies, Thermo Fisher Scientific, Waltham, MA, 142 

USA) to 500 µl of sample for 10 min in the dark. Bacterial cells were then discriminated 143 

on the basis of their green fluorescence (FL1) and side scatter signals (SSC) while excited 144 

at 488 nm, whereas phototrophic picoeukaryotes and picocyanobacteria were 145 

discriminated from unstained samples on the basis of their red autofluorescence (FL3) 146 

with a threshold in orange (FL2) and SSC. The resulting data were analyzed using the 147 

CellQuest Pro software with manual gating.  148 

 149 

2.3 Bacterial community composition 150 

Bacterial community composition (BCC) was determined by 454-pyrosequencing of 151 

the V6-V8 regions of the 16S rRNA gene. In brief, water was sequentially filtered 152 

through a 20 µm mesh net to remove larger organisms, a 47-mm diameter, 3 µm pore size 153 

polycarbonate filter (Whatman) and a 0.2 µm pore size Sterivex unit (EMD Millipore, 154 

Billerica, MA, USA) using a peristaltic pump. The filters were preserved with 1.8 ml of 155 

RNAlater (Life Technologies) and stored at -80°C until further processing. For this 156 

study, the bacterial community composition of the free-living fraction (< 3 µm) was 157 

examined. DNA was extracted from cells collected onto Sterivex units using the 158 

PowerWater Sterivex DNA Isolation Kit (MO BIO Laboratories Inc., Carlsbad, CA 159 

USA) following the manufacturer instructions. Extracted DNA was amplified in three 160 

separate 20 µl PCR reactions using 1 µl of template (3 concentrations: 1, 0.5, and 0.2X) 161 

and a Phusion high-fidelity DNA polymerase kit (New England Biolabs, Whitby, ON, 162 

USA), and reverse 1406R and forward 969F primers with sample specific tags as in 163 

Comeau et al. (2011). Amplicons were purified using a PCR purification kit from Feldan 164 

(QC, Canada), quantified spectrophotometrically (Nanodrop, ND-1000, Wilmington, DE, 165 

USA) and sequenced using Roche/454 GS FLX Titanium technology at Plateforme 166 
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d'Analyses Génomiques, Institut de Biologie Intégrative et des Systèmes, Université 167 

Laval (Québec, Canada). The raw reads have been deposited in the NCBI database under 168 

the accession number SRP044372.  169 

All sequence data processing was within the QIIME v1.8.0 pipeline (Caporaso et al., 170 

2010b). Reads were first pre-processed by removing those with a length shorter than 300 171 

nucleotides. The remaining reads were then processed through QIIME denoiser. 172 

Denoised sequence reads were quality controlled and chimeras were detected using 173 

UPARSE (Edgar, 2013). Operational taxonomic unit (OTU) sequence representatives 174 

were aligned using PyNAST (Caporaso et al., 2010a) with the pre-aligned Greengenes 175 

16S core set (DeSantis et al., 2006) as a template and taxonomically classified using 176 

Mothur Bayesian classifier (Schloss et al., 2009). The reference database was the SILVA 177 

reference database (Pruesse et al., 2007) modified to include sequences from our in-178 

house, curated northern 16S rRNA gene sequence database. Sequences classified as 179 

plastid or mitochondrial 16S were removed from the analyses. 180 

 181 

2.4 Phylogenetic analyses 182 

All phylogenetic analyses were based on a phylogenetic tree constructed with an 183 

approximate maximum-likelihood (ML) approach using FastTree v.2.1 (Price et al., 184 

2010) following the procedures described in Monier et al. (2015). UniFrac dw4000 185 

(weighted) and duw4000 (unweighted) distances (Lozupone and Knight, 2005) among 186 

the different microbial communities were all computed based on the OTU approximate 187 

ML phylogenetic tree. Clustering of UniFrac distances was performed using the 188 

unweighted pair group method with arithmetic mean (UPGMA) algorithm, and cluster 189 

robustness was assessed using 1000 jackknife replicates (on 75% subsets). β-Diversity 190 

significance was assessed using UniFrac Monte Carlo significance test on dw4000 with 191 

10 000 randomizations, as implemented in QIIME. 192 

We investigated community phylogenetic diversity as defined by Faith (1992), along 193 

with other diversity metrics such as phylogenetic species richness and evenness (Helmus 194 

et al., 2007), using the R package ‘picante’ v1.5 (Kembel et al., 2010). Community 195 

phylogenetic structure was investigated with the calculation of the net relatedness index 196 
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(NRI) that measures the phylogenetic relatedness for each community. Specifically NRI 197 

determines if OTUs are more closely related to co-occurring relatives than expected by 198 

chance (Webb et al., 2002). 199 

 200 

2.5 Statistical analyses 201 

All statistical analyses were carried out using R 3.0.3 (R Core Team, 2014). Abiotic 202 

and biotic environmental variables were log-transformed, with the exception of pH 203 

(already on a log scale). All analyses were performed on the subsampled dataset (4000 204 

sequences per sample) with a total number of 2166 OTUs.  205 

Dissimilarities in community composition among the different valleys were visualized 206 

using cluster and principal coordinate analyses. A rank abundance plot was generated to 207 

identify the bacterial dominants.  208 

The taxonomic uniqueness of sites as well as the taxa that contribute the most to these 209 

compositional differences were evaluated by means of local contribution to beta-diversity 210 

(LCBD; Legendre and De Cáceres, 2013). Differences in LCBD, phylogenetic diversity, 211 

species richness and structure across spatial scales were tested using ANOVA followed 212 

by Tukey’s HSD test and regression models to identify links between site uniqueness and 213 

environmental variables. 214 

Significant associations between the abundance of bacterial OTUs and the five valleys 215 

were further assessed by correlation indices (as a measure of habitat preferences), 216 

including the point biserial correlation statistic rpb and its group-equalized value r.g. as 217 

defined by De Cáceres and Legendre (2009). Permutation tests (1000 permutations) 218 

tested the null hypothesis that the abundance of OTUs in ponds of a given valley was not 219 

different from their abundances in ponds located in other valleys. Correction for multi-220 

testing was applied using the method of Benjamini and Hochberg (1995) that controls the 221 

false discovery rate and is a less stringent condition than Bonferroni. OTUs that were 222 

significantly associated with valleys were submitted to BLASTn search in NCBI 223 

GenBank (http://blast.ncbi.nlm.nih.gov/Blast.cgi) to identify the lowest level of 224 

classification possible. A heatmap was produced to examine the variability in the 225 

ecological preference among the 30 most abundant OTUs. 226 

 227 
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2.6 Co-occurrence patterns  228 

Co-occurrence analyses were performed using the overall dataset and each of the 229 

datasets for the 5 individual valleys. The data were filtered by using only those OTUs 230 

with a minimum of 20 reads and that were detected in at least three different ponds. This 231 

filtering step removed poorly represented OTUs and reduced the network complexity, 232 

resulting in a core community of 294 OTUs.  233 

Randomness in co-occurrence of OTUs in the regional and individual valley datasets 234 

was tested in a null model using the quasiswap algorithm (Miklós and Podani, 2004) and 235 

C-score metric (Stone and Roberts, 1990) under 50000 simulations. SES (standardized 236 

effect size) was used as a measure of OTU segregation as described in Heino and 237 

Grönroos (2013) in order to determine whether this may relate to the overall 238 

environmental heterogeneity, the heterogeneity in biotic and abiotic variables separately, 239 

or to specific environmental variables. Environmental heterogeneity was determined 240 

using homogenization of group dispersion (Anderson et al., 2006) and defined as the 241 

mean distances of ponds to the centroid (central point) of each valley. Analyses were 242 

conducted on Euclidean distances on standardized variables and based on 1000 243 

permutations. Similarly, the homogenization of group dispersion method was used to 244 

determine whether communities among ponds within a given valley were more similar 245 

than within other valleys. 246 

Network analyses were conducted on the filtered OTU dataset. In addition, a total of 8 247 

physicochemical variables (DOC, TP, TN, pH, SUVA254, COND: conductivity, T: water 248 

temperature, DO: dissolved oxygen concentration) and 7 biotic variables (Chl-a: 249 

phytoplankton biomass, BA: bacterial abundance, PC: abundance of picocyanobacteria, 250 

PE: abundance of phototrophic picoeukaryotes, Rot: abundance of rotifers, Clad: 251 

abundance of cladocerans, Cop: abundance of copepods) data were also included in the 252 

network. For each environmental variable, any missing data were estimated as the mean 253 

for the corresponding valley and all data were then normalized by subtracting the mean 254 

value for the overall study and dividing by the corresponding standard deviation.  255 

To examine associations between the bacterial OTUs and their environment, we 256 

analyzed the correlations of the OTUs with each other and with biotic and abiotic 257 

variables using the maximal information coefficient (MIC; Reshef et al., 2011). The MIC 258 
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value indicates the strength of the relationship between two variables and is analogous to 259 

R2 in general linear models. MIC does not provide information on the sign of the 260 

association between two nodes, and we therefore extracted the linearity metric (MIC-ρ2) 261 

from the edges of the network, which indicates the type of association: an MIC-ρ2 value 262 

greater than 0.2 implies a strong non-linear association and likely ‘non co-existence’ 263 

among OTUs (Reshef et al., 2011). Computations were carried out using MINE (Reshef 264 

et al., 2011). Following the procedure described in Peura et al. (2015), relationships with 265 

p<0.05 were selected to construct networks, which corresponded to a MIC cutoff of 0.44 266 

depending on the number of samples in our dataset. Parameters for analysis were set to 267 

default, and false discovery rates (Benjamini and Hochberg, 1995) were below 0.03. MIC 268 

matrices were translated into networks using Cytoscape 3.2.0 (Shannon et al., 2003). 269 

Nodes represented bacterial OTUs as well as both biotic and abiotic variables, which 270 

were connected by edges that denote the strength of the relationship between two 271 

variables (MIC). The topology of the resulting undirected network was investigated using 272 

the package igraph (Csardi and Nepusz, 2006) in R and compared to an Erdős–Rényi 273 

random network of similar size. Following Peura et al. (2015), high degree nodes were 274 

defined as ‘hubs’ and the implication of their removal for network topology was 275 

evaluated. Networks were then visualized in Gephi 0.8.2 (Bastian et al., 2009) using the 276 

Fruchterman Reingold layout algorithm. Unconnected nodes were removed along with 277 

self-loops and duplicated edges.  278 

The relationship between the connectivity of OTUs (as indicated by the degree value 279 

in the network) and their corresponding abundance was examined in generalized linear 280 

models in order to relax the normality assumptions. OTU abundance was first calculated 281 

per individual pond as the product of % of total reads and total bacterial abundance. The 282 

total abundance of an OTU in the dataset was then obtained by summing the abundance 283 

calculated for each pond. A heatmap was produced to examine the variability in the 284 

ecological preference among the 30 most connected OTUs. 285 

 286 

3 Results 287 

3.1 Bacterial phylogenetic structure 288 

The phylogenetic composition of bacterial communities differed significantly among 289 
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valleys (dw4000, UniFrac weighted significance test; p ≤ 0.01). The clustering and 290 

principal coordinate analyses (PCoA) based on weighted UniFrac distances (dw4000; 291 

Fig. 1A, 1B) suggested that communities within the SAS valley tend to clustered 292 

together, as did the KWK communities. However, a test for homogeneity of multivariate 293 

dispersions did not support this as no significant difference in the distance to group 294 

(valley) centroid was detected (P=0.39, F=1.08). Permafrost landscape type had a 295 

significant, effect on phylogenetic composition (Permutational analysis of variance on 296 

dw4000; R2= 0.31, P=0.001). The reference lakes did not group together, likely reflecting 297 

their disparate catchment properties. The cluster analysis based on unweighted UniFrac 298 

distances indicated a stronger clustering according to permafrost landscape type 299 

(Permutational analysis of variance on duw4000; R2=0.51; P=0.001) by comparison with 300 

weighted UniFrac distances (SI Fig. 1; UniFrac unweighted significance test, p ≤ 0.01). 301 

The discrepancy between dw4000 and duw4000 patterns indicated the presence of a 302 

small number of highly abundant OTUs within different valleys (SI Fig. 2). In fact, only 303 

18 OTUs had a >1% contribution to the total number of sequence reads.  304 

Community phylogenetic analysis based on NRI indices showed that all site clusters 305 

had significant phylogenetic structure (positive NRI values; one sample t-test, t = 18.9, df 306 

= 33, P< 0.0001; SI Table 1), indicating that bacterial communities within each valley 307 

were more closely related to each other than expected by chance. There was no 308 

significant difference in phylogenetic structure among valleys (ANOVA, P=0.4; Fig.1C), 309 

but large differences within individual valleys, with some ponds less phylogenetically 310 

clustered than others. For example, the NAS valley two ponds had higher NRI values 311 

than the majority of the ponds located within the valley. Ponds located within the SAS 312 

valley showed significantly higher phylogenetic species richness and diversity than the 313 

KWK, NAS and BGR valleys (PSR: P=0.002, F=5.6, R2=0.36; PD: P<0.0001, F=11.3, 314 

R2=0.55).  315 

3.2 Spatial bacterial taxonomic distribution 316 

The local contribution to beta-diversity (LCBD) values indicated the compositional 317 

uniqueness of local bacterial communities. One-way ANOVA showed that pond location 318 

had a significant influence on compositional uniqueness (F= 2.8, R2=0.27, P=0.04), with 319 

the rock basin lakes having the highest LCBD estimates (SI Fig. 3). There was high 320 
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variability among ponds within the same valley, and there was no significant difference 321 

in taxonomic uniqueness among permafrost valleys. Stepwise backward selection 322 

identified the best regression model for LCBD as a function of environmental variables 323 

(SI Table 2), with four environmental variables (F=3.2, R2=0.22, P=0.03): DOC, 324 

conductivity, SUVA254 and Chl-a. Sites with a high degree of taxonomic uniqueness had 325 

high DOC content and conductivity but low level Chl-a. SUVA254 made no significant 326 

contribution to the model (P=0.07), and there was no relationship between LCBD, 327 

species richness and distance to the closest neighbor.  328 

The thaw pond communities were dominated by OTUs that were assigned to 329 

Betaproteobacteria, particularly the order Burkholderiales that was well represented in all 330 

communities (35.4% of the total number of reads). Actinobacteria (24.5% of total reads) 331 

were mainly represented by OTUs assigned to the family ACK-M1 (60.5% of 332 

Actinobacteria reads). Among Bacteroidetes, which accounted for up to 15.7% of the 333 

total number of reads, Shingobacteriales were highly represented and were dominated by 334 

the family Chitinophagaceae that contributed up to 4.7% of total number of reads. Other 335 

dominant OTUs were within the Verrucomicrobia (6.8% of total reads) (Table 1). Among 336 

the 30 most abundant taxa, some were highly associated with a specific valley whereas 337 

others were not detected in certain valleys (Fig. 2A). This pattern remained when 338 

considering the ensemble of the 2166 OTUs (SI Fig 4). Specifically, 272 OTUs (11.3% of 339 

the 2166 detected in this dataset) showed a significant association in the indicator value 340 

analysis (the point biserial statistic r.g) considering habitat combinations. Among the 272 341 

OTUs showing a significant habitat preference, 246 were associated with a single valley: 342 

13, 12, 31, 99 and 91 OTUs were associated with the BGR, NAS, KWK, SAS and RBL 343 

valleys respectively. Four OTUs were associated with the discontinuous permafrost 344 

landscape and three with the sporadic permafrost landscape (Table 2). There were 345 

distinctions between ponds located in the sporadic versus discontinuous permafrost 346 

landscapes. In particular, OTUs closely related to methanotrophs were prominent within 347 

the sporadic permafrost landscape type: OTUs closely related to Methylotenera (OTU 10) 348 

and Methylobacter (OTU 9) were among the five most abundant taxa at SAS sites (3.5 349 

and 3.6 % of the total number of SAS reads respectively) and OTUs assigned to 350 
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methanotrophic Verrucomicrobia LD19 (in the class Methylacidiphilae) was one of the 351 

most abundant at the KWK site (Fig. 2A, 1.4 % of KWK reads).  352 

 353 

3.3 Bacterial co-occurrence patterns 354 

To test for differences in co-occurrence patterns between microbial communities 355 

across the permafrost landscape, we first selected OTUs that had at least 20 reads and 356 

were detected in at least 3 different ponds. The bacterial OTUs were not randomly 357 

distributed among the different valleys when considering the entire region (C-score 358 

=35.7, P< 0.0001, SES=25.4). At the individual valley scale, the OTUs were not 359 

randomly distributed among ponds except for BGR valley (Table 3). No significant 360 

relationship was detected between the level of OTUs segregation, determined by SES, 361 

and the overall environmental heterogeneity, and both abiotic and biotic heterogeneity. In 362 

addition, no significant relationship between SES and individual environmental variables 363 

was detected. 364 

The OTU co-occurrence patterns as well as the relationships among both biotic and 365 

abiotic variables were investigated by network analysis. The most connected nodes 366 

(degree >10) were related to three abiotic variables (DOC, conductivity and TP) and one 367 

biotic variable (phototrophic picoeukaryotes). The topology of the networks is presented 368 

in Table 4. For the whole regional network, a total of 248 nodes and 968 edges were 369 

detected, which was fragmented in 3 components including 2 small components 370 

composed of 2 and 3 nodes (SI Fig. 5). The observed characteristic path length of 3.06 371 

and clustering coefficient of 0.25 were both greater than estimates originating from the 372 

random network of similar size. In addition, the observed:random network clustering 373 

coefficient ratio (log response ratio of 0.92) showed that the network had ‘small world’ 374 

properties; i.e., the nodes were more connected than expected in a random network 375 

(Table 4). The frequency distribution of nodes followed a power law function, which 376 

indicated that the network was composed of few highly connected nodes, as opposed to 377 

an even distribution of connectivity (SI Fig. 6).  378 

Four main bacterial phyla were well represented in the networks: Proteobacteria (83 379 

nodes), Bacteroidetes (56 nodes), Actinobacteria (42 nodes), and Verrucomicrobia (24 380 

nodes). Although edges between nodes that referred to bacterial OTUs dominated the 381 
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network, connection between bacterial OTUs and both biotic and abiotic variables were 382 

detected (SI Fig. 5). For example, conductivity and DOC were amongst the most 383 

connected nodes, illustrating their importance in the network. The subnetwork built 384 

around DOC showed a diverse bacterial consortium with a slight dominance of 385 

Actinobacteria (Fig. 3A). Phototrophic picoeukaryotes were the most connected node 386 

among biotic variables. The subnetwork built around that variable showed strong co-387 

occurrence between picoeukaryotes and Actinobacteria (Fig. 3B). The co-occurrence 388 

network around the group Chitinophagaceae showed that these OTUs were associated 389 

with different environmental variables including DOC, dissolved oxygen, conductivity, 390 

abundance of picoeukaryotes, cladocerans and rotifers (Fig. 4A) and had recurrent, strong 391 

co-occurrences with Actinobacteria, especially with organisms closely related to ACK-392 

M1 (Fig. 4B). The analysis of the linearity of the latter association indicated a positive 393 

co-occurrence between OTUs closely related to members affiliated to the ACK-M1 (aka 394 

AcI) group of Actinobacteria and Chitinophagaceae (Fig. 5C). Other examples of strong 395 

linkages between OTUs are given in Figure 5, with illustrations of positive co-occurrence 396 

(Fig. 5A) and non co-existence (Fig. 5B).  397 

In general, our results indicated that the most abundant OTUs were also the most 398 

connected ones (R2=0.25, P<0.001, SI Fig. 7). However, some of the most connected 399 

nodes (OTUs) had low abundance (SI Table 3, Fig. 2B). Noteworthy, some of these 400 

bacterial hubs showed some level of habitat preference, especially within KWK valley 401 

(Fig. 2B). In addition, these ‘valley specific’ hubs were mainly related to Actinobacteria 402 

and Betaproteobacteria (Fig. 2B).  403 

We further investigated the implications of the removal of the top 24 connected OTU 404 

nodes (hubs), which represented a removal of 10% of nodes and the results showed a 405 

high level of fragmentation of the network and a drop in node degree (Table 4, SI Fig 8).  406 

Analysis of the network hubs further showed that the top 24 were mainly composed of 407 

Actinobacteria OTUs, in particular members of Actinomycetales and Acidimicrobiales. 408 

In addition, OTUs assigned to Betaproteobacteria represented a large fraction of these 409 

highly connected OTUs including the typical freshwater Limnohabitans, whereas 410 

Verruccomicrobia and Bacteroidetes were represented by only a few highly connected 411 
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OTUs. Interestingly, the anaerobic photosynthetic sulphur bacterium Chloroflexi was also 412 

identified as a hub in the overall network (SI Table 3).  413 

 414 

4 Discussion 415 

The main goal of the present study was to identify co-occurrence patterns among 416 

bacterial communities in thaw ponds and lakes in the changing subarctic landscape. 417 

Consistent with our first hypothesis, there was a non-random distribution of bacterial taxa 418 

across the distinct valleys sampled in this study. The results showed that thaw ponds 419 

communities from the same valley, especially those located in the sporadic permafrost 420 

landscape, tended to be more similar in terms of bacterial community composition than 421 

communities originating from ponds located in other valleys. Furthermore, the thaw 422 

ponds differed taxonomically from the rock-basin reference lakes, with specific bacterial 423 

OTUs associated with a particular valley or permafrost landscape type. Contrary to our 424 

second hypothesis, that differences in habitat preferences among bacterial communities 425 

were related to distinct phylogenetic structure, we found no evidence for differences in 426 

the community phylogenetic relatedness between the different valleys. The same bacterial 427 

phyla occurred throughout the region, and variability among ponds in the same valley 428 

was greater than the differences among valleys.  429 

 430 

4.1 Local community composition uniqueness and habitat preference among 431 

bacterial communities  432 

Non-random distribution patterns among bacterial taxa were detected, indicating that 433 

bacterial taxa in our study region tended to co-occur more than expected by chance. Non-434 

random assembly patterns indicate the dominance of deterministic processes such as 435 

environmental filtering in shaping community composition (Horner-Devine et al., 2007). 436 

The bacterial communities of freshwater ecosystems elsewhere (Eiler et al., 2011), as 437 

well as in certain terrestrial (Barberan et al., 2012) and marine (Steele et al., 2011) 438 

ecosystems, have also been reported to have distributional patterns that relate to the 439 

environment. Such patterns may depend on niche breadth and competitive abilities 440 

(Székely et al., 2013), grazing and viral lysis susceptibilities (Chow et al., 2014; Miki, 441 

2008) and dispersal capabilities (Fahlgren et al., 2010; Hervas and Casamayor, 2009). 442 
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The patterns described here are for the free-living fraction of bacterial assemblages, 443 

which raises the question of whether such patterns remain for the attached fraction of the 444 

communities. The latter may represent a substantial part of the total communities given 445 

that these waterbodies can contain a large content of suspended solids. Previous studies 446 

comparing the compositional patterns in bacterial communities between the free-living 447 

and attached fractions showed that these two distinct life-style have a similar community 448 

composition (Crevecoeur et al., 2015), indicating that the patterns described here may 449 

reflect patterns for the entire community. 450 

No significant relationship was found between distribution patterns and environmental 451 

heterogeneity. This was unexpected, as previous studies have shown that thermokarst 452 

systems are heterogeneous environments with marked differences in community 453 

composition across the different valleys associated with distinct environmental variables 454 

(Crevecoeur et al., 2015; Comte et al., 2015). In agreement with Heino and Grönroos 455 

(2013), we suggest that the relationship between distribution pattern and environmental 456 

heterogeneity may be scale-dependent such that environmental heterogeneity may have 457 

effects on the bacterial taxa distribution patterns at the overall study region scale and not 458 

at the valley scale as tested here. The results did show differences in the phylogenetic 459 

composition of bacterial communities among the different valleys, which highlight 460 

distinct habitat preferences among taxa (Fig. 2, SI Fig. 4). In particular, the combination 461 

of LCBD and regression analyses indicated that the compositional uniqueness of thaw 462 

ponds and lakes was positively related to DOC concentrations, a well known determinant 463 

of bacterial communities and processes (Kritzberg et al., 2006; Ruiz-González et al., 464 

2015). Along with the variations in permafrost degradation state across the study region, 465 

there were also differences among valleys in terms of availability and origin of carbon 466 

subsidies. The northern sites are located within the discontinuous permafrost area where 467 

most of the soil remains frozen and is thus not available for microbial degradation, while 468 

in the southern sporadic area, permafrost is highly degraded (Bouchard et al., 2014) and 469 

large amounts of ancient permafrost carbon may be available for microbial processes. 470 

Consistent with this pattern, elevated concentrations and high rates of CO2 and CH4 471 

emission to the atmosphere have been reported among the southern sites within the most 472 

degraded area of permafrost (Laurion et al., 2010; Deshpande et al., 2015). This may in 473 
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turn explain the significantly higher bacterial richness and diversity observed in SAS 474 

thaw ponds communities and why OTUs assigned to methanotrophic bacteria such as 475 

Methylobacter and Methylotenera were amongst the most abundant detected in this valley 476 

(Fig. 2). In addition, SAS sites originated from palsas (organic permafrost mounds) and 477 

were likely different in DOC composition relative to other valleys, where the ponds were 478 

formed by the thawing of lithalsas (mineral permafrost mounds). This is consistent with 479 

recent observation of a direct link between community composition and the degradation 480 

of terrestrially derived DOM (Logue et al., 2015).  481 

 482 
4.2 Bacterial phylogenetic structure  483 

The mean NRI across all communities was significantly greater than zero. This 484 

provides evidence for a dominant role of environmental filtering on community 485 

composition (Kembel, 2009). The corollary is that a set of environmental variables 486 

constrained community composition, resulting in taxa that were closer phylogenetically 487 

and more ecologically similar than if stochastic processes (including dispersal) drove 488 

community assembly. In fact, there is no corridor such as streams that connects the 489 

ponds, and thus local dispersal processes are unlikely to explain the local phylogenetic 490 

structure of the thaw pond communities (Comte et al., 2015). Similar results were 491 

obtained for microbial community studies in the ocean (Monier et al., 2015) and on 492 

groundwater communities (Stegen et al., 2012). 493 

No significant difference in NRI was found among the different valleys, but this result 494 

likely reflects the high variability within individual valleys. In particular, two ponds in 495 

the NAS valley had higher values of NRI in comparison to their neighboring ponds. 496 

These two ponds had specific environmental characteristics including high concentrations 497 

of suspended clay particles and low phytoplankton concentrations, which may have 498 

favored certain environmental specialists. The rock-basin waters had higher NRI values 499 

than the thaw ponds, indicating that their assemblages were more ecologically similar to 500 

each other than those originating from thaw ponds and lakes. This could relate to their 501 

respective histories in that the rock- basin lakes originate from deglaciation followed by 502 

retreat of the Tyrell Sea ca. 8000 years ago and have thus been exposed to longer term 503 

ecological processes.  504 
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The extent of permafrost erosion (permafrost landscape type) appeared to influence 505 

phylogenetic structure. When controlling for the two outliers mentioned above (NAS-A 506 

and NAS-B), the northern communities (BGR, NAS) had a greater phylogenetic distance 507 

among co-occurring taxa than expected by chance (lower NRIs) in comparison to 508 

communities from the thaw ponds located in valleys from sporadic permafrost (KWK, 509 

SAS). This suggests that taxa from SAS valley (and to a lesser extent KWK), tend to be 510 

more ecologically similar to each other than those from northern valleys, reflecting strong 511 

environmental filtering by variables such as DOC concentration, as previously 512 

documented in this valley (Comte et al., 2015). These findings are in line with studies 513 

elsewhere that showed that clustered communities are mainly retrieved from 514 

environments that have constrained environmental conditions (Monier et al., 2015). 515 

 516 
4.3 Network associations  517 

The extent to which closely related bacterial taxa may coexist is still a subject of 518 

considerable discussion (Mayfield and Levine, 2010). Previous studies on aquatic 519 

microbial communities have shown that closely related taxa have coherent temporal 520 

dynamics and share similar ecological niches (Andersson et al., 2009; Eiler et al., 2011). 521 

Co-occurrence networks enable the depiction and visualization of co-occurrence patterns 522 

among OTUs, and they provide a way of identifying potential ecological niches within 523 

microbial consortia. Network analyses have recently been applied to a wide range of 524 

microbial communities and biomes, and specific associations among bacterial OTUs and 525 

with environmental variables have been reported (Barberan et al., 2012; Chow et al., 526 

2014; Eiler et al., 2011; Steele et al., 2011).  527 

Our results point toward the importance of environmental filtering for community 528 

assembly in thaw ponds and lakes. In co-occurrence networks, correlations between 529 

OTUs and environmental variables highlight the conditions that may favor particular 530 

assemblages. Specifically, our co-occurrence networks identified two abiotic variables 531 

(DOC and conductivity) to be among the most connected nodes (SI Fig. 5B), and these 532 

variables separated according to landscape type: the northern ponds located in the 533 

discontinuous permafrost landscape had high conductivity and low DOC, whereas 534 

southern sites within the sporadic permafrost landscape had high DOC and lower 535 
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conductivity (SI Table 2; further details are given in Comte et al., 2015). The analysis of 536 

the DOC subnetwork showed that only a few OTUs were significantly and directly 537 

related to DOC; these included OTUs assigned to Actinobacteria as well as OTUs closely 538 

related to bacterial methanotrophs and taxa involved in the degradation of complex 539 

organic polymers (Fig. 3A). Among phylogenetically related microbes, unique 540 

combinations tended to co-occur (Fig. 4A). For example, some OTUs assigned to the 541 

Chitinophagaceae appeared to be significantly related to different abiotic and biotic 542 

variables, which in turn suggested niche separation.  543 

In addition to the bottom-up factors that shape bacterial communities, recent work on 544 

microbial networks has highlighted the role of top down processes such as grazing and 545 

viral lysis in affecting prokaryotic community structure and co-occurrence patterns 546 

(Chow et al., 2014; Steele et al., 2011). In the present study, phototrophic picoeukaryote 547 

abundance (degree=14) was the most connected biotic node. Only phototrophic 548 

picoeukaryotes were enumerated in this study, and although some may have a 549 

mixotrophic grazing capacity, their network importance may be the result of other 550 

factors, for example the release of photosynthate or their occurrence under conditions that 551 

mutually favor both themselves and certain bacterial taxa.  552 

In general, relationships among microbes dominated the network, rather than those 553 

between microbes and abiotic or biotic environmental parameters (SI Fig.5). There was 554 

overlap in terms of community composition among the different valleys (Fig 1), with 555 

shared dominant taxa (Table 1, SI Fig. 2). Although this may indicate that some OTUs 556 

may respond similarly to specific environmental factors and outcompete others, some 557 

associations may be the result of substrate interdependencies. One example is the 558 

relationship between bacteria able to degrade chitin and others that take up the resulting 559 

hydrolysis products (Beier and Bertilsson, 2013). OTUs closely related to bacteria in the 560 

Chitinophagaceae, a group known to be involved in the degradation of chitin and other 561 

complex polymeric organic matter (del Rio et al., 2010), were well represented in our 562 

study area, and have also been found in other cold terrestrial environments (Franzetti et 563 

al., 2013; Ganzert et al., 2011). The subnetwork built around this group showed that these 564 

OTUs are linked to other phyla (Fig. 4A), notably certain Actinobacteria (Fig. 4B). The 565 

dominants were closely related to clade Ac1, which is known to include specialists that 566 



 20 

use hydrolysis products from chitinolytic bacteria (Beier and Bertilsson, 2011). The 567 

analysis of linearity of the associations between the corresponding OTUs showed a 568 

positive co-occurrence (Fig. 5C), consistent with bacterial network relationships. 569 

Although other examples of positive co-occurrence among bacterial OTUs were 570 

identified in the dataset (Fig. 5A), there was also evidence of ‘non co-existence’ (sensu 571 

Reshef et al., 2011) among certain OTUs: In the northern, less degraded permafrost 572 

valley (BGR), OTU 1242 (Betaproteobacteria Limnohabitans) dominated, whereas in the 573 

southern highly degraded permafrost valleys (SAS, KWK), OTU 14 (Actinobacteria 574 

ACK-M1) dominated (Fig. 5B). These trade-offs among OTUs were partially explained 575 

by the geographic location of the valleys, suggesting that environmental variables not 576 

only drive the composition of the bacterial assemblages within the individual valleys but 577 

may also determine the ecological associations within microbial consortia. Furthermore, 578 

the positive relationship found between the connectivity and the habitat specificity among 579 

the most abundant OTUs (Fig. 2A) is most likely driven by the dominance of highly 580 

connected OTUs in the southern highly degraded permafrost valleys in comparison to the 581 

northern less degraded permafrost valleys. In addition, the OTUs retrieved from the 582 

southern thaw ponds were closely related to specific bacterial functional groups such as 583 

methanotrophs and nitrogen fixing bacteria (Fig. 5).  584 

 585 

The microbial networks for the thermokarst systems had ‘small world’ properties, with 586 

only a few, highly connected nodes, which can be viewed as ‘keystone species’. This 587 

property would render the networks more resilient to environmental change, but 588 

vulnerable to the loss of these nodal species (Montoya et al., 2006). The bacterial hubs 589 

were identified as typical freshwater, terrestrial and marine taxa (SI Table 3), and some of 590 

them were closely related to taxa that are involved in key biogeochemical processes such 591 

as nitrogen fixation and degradation of complex polymers, or that are known to be 592 

restricted in niche breadth, for example to cold environments. In accordance with Peura et 593 

al. (2015), the importance of a taxon in a microbial network may be less associated with 594 

its abundance, but instead determined by its connectivity, as represented by node degree 595 

for example. Thus many of the hub taxa identified in this study could be defined as a 596 

keystone microbial species (SI Table 3). These ‘keystone’ OTUs identified as hubs were 597 
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not merely the abundant OTUs (Fig. 2B), but some were rare and potentially important 598 

actors for the functioning of these ecosystems. For example, the nitrogen-fixing 599 

bacterium Beijerinckia was among the most connected node in the co-occurrence network 600 

despite its low relative abundance. This in turn highlights the potentially important 601 

ecological role of diazotrophs in these nutrient-rich aquatic systems.  602 

 603 

Conclusions 604 

The thaw ponds and lakes sampled in the present study showed large variability in 605 

their bacterial community structure, even among waterbodies in a single valley. This 606 

underscores the heterogeneous nature of permafrost aquatic environments, and is 607 

consistent with their known limnological variability. A small number of taxa occurred in 608 

high abundance and dominated many of the communities; these northern dominants 609 

included members of the betaproteobacterial order Burkholdiales and the Actinobacterial 610 

family ACK-M1; other dominants included members of the Bacteroidetes family 611 

Chitinophagaceae and Verrucomicrobia. Despite this variability and the existence of 612 

common taxa, there were taxonomic differences among different valleys and between 613 

permafrost landscape types, implying some degree of habitat selection.  614 

The bacterial networks further showed that DOC and conductivity played an important 615 

role in the co-occurrence patterns of bacterial OTUs, corresponding at least in part to 616 

differences in these two environmental variables among valleys (SI Table 2). Strong 617 

positive associations as well as non-coexistence among OTUs were detected, and the 618 

resultant networks were composed of a limited number of highly connected OTUs. This 619 

‘small world network’ property would render these communities more resilient to 620 

environmental change, but sensitive to the loss of their hub OTUs, which themselves 621 

showed some degree of habitat specificity. With ongoing global warming, these waters 622 

are likely to experience the effects of increased permafrost erosion and associated 623 

changes in their chemical environment, including shifts in DOC and conductivity. If such 624 

changes eventually cause the loss of ‘keystone species’ that form the hubs of the present 625 

microbial networks, there would be a major disruption of thaw ponds and lakes 626 

community structure, with potentially large biogeochemical consequences.  627 

 628 
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Table 1: Five most abundant (number of reads) OTUs across spatial scales. Finest taxonomy assignments are presented with a 
minimum confidence of 0.8.  
 
 

Geographic Categories 
All sites Landscapes Valleys 

 Discontinuous 
(BGR+NAS) 

Sporadic 
(SAS+KWK) 

BGR NAS KWK SAS RBL 

        
Polynucleobacter Polynucleobacter Polynucleobacter Polynucleobacter Polynucleobacter Polynucleobacter Polynucleobacter Comamonadaceae 

ACK_M1 ACK_M1 ACK_M1 ACK_M1 ACK_M1 ACK_M1 Comamonadaceae Polynucleobacter 
Comamonadaceae Comamonadaceae Comamonadaceae Comamonadaceae Comamonadaceae ACK_M1 Polynucleobacter ACK_M1 
Flavobacterium Flavobacterium ACK_M1 Flavobacterium Comamonadaceae ACK_M1 Methylobacter Burkholderiales 

Arcicella Arcicella ACK_M1 Arcicella Arcicella Limnohabitans Methylotenera Arcicella 
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Table 2: Results of indicator species analysis. Valley refers to the valley (or combination of valleys) for which the OTU obtained the highest correlation. 
We indicate the correlation value (r.g) and its statistical significance (P) at α=0.05. Only OTUs with r.g ≥ 0.6 are presented when associated to one valley 
(top 10 are presented for the KWK and SAS valleys). OTUs were classified at their finest taxonomic levels based on similarity to sequences in Genbank.  

OTUs Valley r.g P OTUs Valley r.g P 
Discontinuous permafrost    Sporadic Permafrost    
Alterococcus BGR 0.78 0.004 Oxalobacteraceae KWK 0.81 0.010 
Pseudoclavibacter BGR 0.75 0.004 Candidatus Planktoluna KWK 0.80 0.012 
Variovorax BGR 0.71 0.004 Actinomycetales KWK 0.79 0.010 
Alterococcus BGR 0.65 0.012 Opitutae KWK 0.74 0.010 
Leifsonia BGR 0.63 0.012 Gammaproteobacteria KWK 0.67 0.013 
Candidatus Protochlamydia BGR 0.62 0.009 Lacibacter KWK 0.67 0.012 
Thermodesulfobacteriaceae NAS 0.69 0.012 Burkholderia KWK 0.64 0.013 
Methylosinus NAS 0.67 0.012 Unknown Proteobacteria KWK 0.62 0.024 
Flavobacterium NAS 0.67 0.012 Alphaproteobacteria KWK 0.61 0.024 
Ferruginibacter NAS 0.64 0.012 Mycobacterium KWK 0.60 0.019 
Klugiella NAS 0.6 0.024 Polynucleobacter SAS 0.86 0.005 
Sporichthya BGR+NAS 0.59 0.036 Flavobacteriaceae SAS 0.84 0.005 
Arcicella BGR+NAS 0.53 0.036 Caenimonas SAS 0.84 0.005 
Microbacteriaceae BGR+NAS 0.51 0.036 Firmicutes SAS 0.82 0.005 
Ferruginibacter BGR+NAS 0.50 0.043 Polynucleobacter SAS 0.82 0.005 
    Alphaproteobacteria SAS 0.81 0.005 
Rock basin lakes    Anaeomyxobacter SAS 0.80 0.005 
Sphingobium RBL 0.85 0.011 Unclassified bacteria SAS 0.80 0.005 
Bordetella RBL 0.78 0.011 Flavobacterium SAS 0.80 0.005 
Neochlamydia RBL 0.74 0.011 Planctomycetaceae SAS 0.79 0.005 
Wolbachia RBL 0.74 0.019 Actinobacteria KWK+SAS 0.72 0.008 
Burkholderiaceae RBL 0.73 0.011 Citrobacter KWK+SAS 0.59 0.014 
Arcicella RBL 0.71 0.011 Chlamydiales KWK+SAS 0.56 0.017 
Legionella RBL 0.71 0.018 Unknown Proteobacteria KWK+SAS 0.51 0.030 
Acetobacteraceae RBL 0.69 0.019     
Legionella RBL 0.69 0.019     
Derxia RBL 0.69 0.019     
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Table 3: Results of co-occurrence analyses for the dominant OTUs (20 reads, 3 sites). 

Significant results are presented in bold. SES refers to standardized effect size. 

 

 

Geographic location C-score P SES 

SAS 0.37 <0.0001 13.66 

KWK 1.54 <0.0001 8.70 

BGR 0.45 0.39 0.84 

NAS 1.04 <0.0001 8.19 

RBL 0.36 0.015 2.87 

REGION 35.7 <0.0001 25.4 
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Table 4: Topology of the thermokarst systems co-occurrence networks. Regional 
corresponds to a network built around the selected 294 OTUs whereas Hubs refers to a 
network where the most connected 24 OTUs from the whole network (SI Fig. 5A) were 
removed prior to this analysis. Grey shading refers to topology characteristics of Erdős–
Rényi random networks of similar size. 
 

Network parameter Regional Hubs 
Nodes  248 224 
Nodes random 248 224 
Edges  968 433 
Edges random 968 433 
N. components  3 26 
N. components random 1 4 
Diameter (radius)  7 (1) 9 (1) 
Diameter (radius) random 5 (4) 9 (6) 
Degree 7.81 3.87 
Degree random 7.81 3.93 
Density 0.03 0.02 
Density random 0.03 0.02 
Heterogeneity 1.06 0.96 
Heterogeneity random 0.34 0.48 
Centralization 0.16 0.08 
Centralization random 0.02 0.03 
Clustering coefficient (Cl) 0.25 0.15 
Clustering coefficient random (Clr) 0.03 0.02 
Characteristic path length (L) 3.06 3.90 
Characteristic path length random (Lr) 2.89 4.13 
Log response ratio Cl 0.92 0.87 
Log response ratio L 0.02 -0.02 
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Figure captions  

 

Figure 1: (A) UPGMA clustering based on weighted and normalized UniFrac distances 

among bacterial community samples. Clustering statistics were computed using 100 

jackknife replicates. (B) Principal coordinate analysis (PCoA) using UniFrac weighted 

distance metric. The SAS and KWK valleys are located in sporadic (highly degraded) 

permafrost landscapes, while the NAS and BGR valleys are located in discontinuous (less 

degraded) permafrost landscapes, and reference rock-based lakes are located in the RBL 

valleys. (C) Differences in the phylogenetic structure (NRI, net relatedness index) of 

bacterial communities among the different valleys. The solid black horizontal and vertical 

lines represent the mean and SD respectively. The dashed line represents the mean NRI 

value of NAS valley, with the 2 outliers excluded. Black dots represent individual pond 

and lakes. 

 

Figure 2: Heatmap representation of habitat preference of the 30 most abundant (panel A) 

and most connected (panel B) bacterial OTUs. Habitat preference was determined by 

point biserial correlation. The connectivity of OTUs was defined by the degree (number 

of edges) of nodes from an association network (SI Fig. 5A). Taxonomic assignment of 

OTUs is provided at the lowest level of classification possible after BLASTn search in 

GenBank database. 

 

Figure 3: Subnetworks organized around DOC (A) and phototrophic picoeukaryotes (B). 

Sub-networks were extracted from the entire co-occurrence network (SI Figure 5). In 

panel A, edge color refers to the type of relationship with significant connection between 

OTUs and both biotic and abiotic variables presented in black whereas relationships 

between bacterial taxa are presented in grey. In panel B, edge color is proportional to the 

association strength, with strong associations shown in black. The size of the nodes is 

proportional to node degree (the number of connections that a node has with other nodes). 

 

Figure 4: Subnetworks organized around bacterial OTUs closely related to 

Chitinophagaceae. Panel A corresponds to the ensemble of co-occurrences between 
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members of Chitinophagaceae and other bacteria. Panel B refers the specific linkages 

between Chitinophagaceae and Actinobacteria. The size of the nodes is proportional to 

node degree (the number of connection that a node has with other nodes). 

 

Figure 5: Associations between bacterial OTUs in permafrost thaw pond and lakes. (A) 

Co-occurrence between two representatives of Gammaproteobacteria that is partially 

explained by total nitrogen. (B) Non co-existence that is explained by the valley identity. 

(C) Co-occurrence between OTUs closely related to Actinobacteria ACK-M1 and 

Bacteroidetes Chitinophagaceae bacteria. 
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