

General comments:

After having reviewed the first version of this manuscript I have now read the revised version. The authors are to commend for improving the paper a lot. In most instances it became much clearer and the figures look much better. However, there are still some major issues in the discussion that need to be solved before the paper can be published. The source/sink calculations are partly contradictory and the organic matter discussion is partly unclear and therefore possibly wrong. Also, I am not sure if the major finding of this study is really pointed out. Isn't it the fact that the flooding of floodplains during the wet season releases large amounts of dissolved organic matter that then is exported by the river? Once these few (but important) issues are solved, the paper will make a valuable contribution to the literature.

We want to thank Dr. Jennerjahn for his time in reviewing the revised version of the manuscript, and appreciate his critical viewpoint. We have once more worked on his suggestions, and feel confident that we have incorporated these in this final revision.

Detail comments:

Abstract:

L. 42-51: There still some weaknesses in the discussion of C/N ratios and stable isotopes which is reflected in this part of the abstract (see comments on discussion). The final statement is not really clear and satisfying. It is not necessary to mention the need for more monitoring.

The last paragraph of the abstract has been rewritten. To avoid confusion, the explanation of the woody encroachment has been removed (can still be found in the conclusion). The final statement has been modified.

"Carbon to nitrogen ratios of particulate organic matter showed that soil-derived material was dominant year round in the Barotse Plains, whereas the Kafue Flats transported particulate organic matter that had been produced in the upstream reservoir during the wet season. Stable carbon isotopes suggested that inputs from the inundated floodplain to the particulate organic matter pool were important during the wet season, whereas permanent vegetation contributed to the material transported during the dry season. This study revealed effects of dam construction on organic matter and nutrient dynamics on the downstream floodplain that only become visible after longer periods, and highlights how floodplains act as large biogeochemical reactors that can behave distinctly different from the entire catchment."

Study sites:

L. 144-145: 6,000 km² is not "slightly" smaller than 7,700 km²; the difference is almost one third of the smaller area.

"Slightly" has been removed.

L. 146-148: Here you should add: ", but the overall annual discharge did not change.". This is what I read in the response letter, right?

This information has been added.

Methods:

Still, the data on accuracy/precision of the methods are partly missing. Though many of the analyses are termed a "standard analysis" by many people does not mean that data quality must not be documented. Please add these numbers.

The following information has been added: limit of quantification for the nutrient analyses, precision for the DOC, DIC, and δ¹⁸O measurements.

"Samples for dissolved nutrient concentrations were filtered through 0.45 μm filters. Dissolved inorganic nitrogen (DIN, limit of quantification LOQ of nitrogen analyses < 4 μM), phosphate (LOQ phosphorus analyses < 0.2 μM), and the sum of nitrate and nitrite were measured by chemoluminescence detection (Antek 9000). Ammonium was determined by standard colorimetric technique. Total dissolved nitrogen and total phosphorus (TDN and TDP) were determined by

chemoluminescence detection (Antek 9000) following persulphate oxidation (Solórzano and Sharp, 1980; Bronk et al., 2000). Samples for particulate phosphorus concentrations during the wet season were collected onto 0.7 µm GF/F filters (Whatman) and measured using a sequential phosphorus extraction method (SEDEX, Ruttenberg (1992) as modified by Slomp et al. (1996)). Samples for dissolved organic carbon (DOC, precision < 10 µM)”

Discussion:

L. 354-355: Shouldn't it read "...primary production AND potentially a minor contribution..."? *This is indeed a summation, and has slipped our attention. It has been corrected.*

L. 360-371: This is where I have a major problem to follow the reasoning. I think, there is a calculation error. Table 1 and figure 5 provide daily loads representative of the whole season. As both seasons are equally long (6 months each) the sum of both seasonal terms subdivided by two provides the annual load. So, if I believe in table 1, on an annual basis the Barotse Plains are a sink for POC and PN and a source for DOC, DIC and DON (DIN=0); the Kafue Flats are a source for all parameters except DIN. Table 1 looks nice and is very clear in its result now, but I do absolutely not understand how numbers in table 2 were produced and how the Kafue Flats that were a source in table 1 now become a sink. Simply normalizing the load to unit area cannot change the algebraic sign, i.e. a source cannot become a sink as a result of this simple mathematical operation; it is simply impossible. The table 2 caption mentions "see methods section for how inundation areas were estimated", but in the methods section there is nothing on it. In "Study sites" the size of both of these areas was mentioned, but not how it was used in the calculations. In the end, the numbers shown in these tables and the statements made in the text are to some extent contradictory. The problem may lie in the way in which differences in flooded areas between seasons are accounted for. The total load given in table 1 should be independent of it, it should simply be the total amount that leaves the floodplain. So, these calculations have to be carefully inspected again and they have to be better documented in the methods section. What is also striking in this context is the one order of magnitude higher POM yield in the Barotse Plains as compared to the Beusen et al. numbers for the whole Zambezi. If the numbers in table 2 are correct, which I doubt, then this is an extraordinary finding which, however, is then not discussed at all. So, if it is true, what could be the reason for it?

Excuses, the information about the inundation areas did indeed drop out of the methods section in a previous version. We felt that the yields per inundated km² of floodplain as expressed in Table 2 were clear, but considering that it continues to be a source of confusion, we have changed table 2 to yields per km² of floodplain, irrespective of whether the floodplain is flooded or not. The section has been changed to

“Over the course of a year, the Barotse Plains were a sink for particulate phases, while both the Barotse Plains and the Kafue Flats were exporting large quantities of dissolved organic matter (Table 2). The export of dissolved organic matter, especially DOC, was two to four times higher than yields previously reported for the Zambezi catchment ([Mayorga et al., 2010](#)). The numbers are closer in magnitude to yields reported for the Amazon and Orinoco rivers, which both drain highly productive tropical rainforest ([Beusen et al., 2005](#); [Harrison et al., 2005](#); [Lewis and Saunders, 1989](#)). Since the Zambezi mainly drains savanna ecosystems, catchment yields are a lot lower than from the other tropical rivers (Table 2). The negative yields of particulate matter show how floodplains can impact the riverine loads in trends opposite to those observed for the whole catchment. Additionally, the high dissolved organic matter yields further indicate that floodplains are intense biogeochemical reactors, which affect riverine transport of organic matter from land to sea significantly.”

L. 361: There is a typo, it is "PN" not "PON".

Corrected.

L. 380-382: This statement appears to be partly wrong, at least contradicting the below statement (l. 384). I don't think that "...organic matter inputs from the floodplain...may have decreased the DOC concentrations" in the Barotse Plains. I would expect that it is similar to what you wrote about the Kafue Flats, that uptake by primary producers lowers DOC and DON concentrations.

Adapted to include primary production.

L. 398-406: I am a bit puzzled by this explanation, because you only mention that your result "corresponds to the general observation that DOC export increases with runoff, caused by shallowing of the flow paths through organic-rich upper soils". Doesn't this touch the major point of your study, the floodplains as an important biogeochemical reactor? Shouldn't the larger area flooded during the wet season and hence the much more intensive leaching and transformation of organic matter from the plants and soils in the flooded areas be the major factor for the high DOC? To my opinion, this is a major finding of the study and needs to be highlighted. It deserves more discussion. Just mentioning other examples is not sufficient. What are the reasons for the high DOC and DON in Hawaii and in the Congo? That is important.

This section has been rewritten to

"The growth of seasonal vegetation on the inundated floodplain resulted in a large leaching potential of dissolved organic substances during the wet season, showing how processes on the floodplain affect the riverine biogeochemistry in this biogeochemical reactor. The increase in DOC and DON concentrations during the wet season in the Barotse Plains compared to the dry season also corresponds to the general observation that DOC export increases with runoff, caused by shallowing of the flow paths through organic-rich upper soils (Mulholland, 2003; Aitkenhead-Peterson et al., 2003). Seasonal variability in DOC and DON concentrations has been previously shown in Hawaii (Wiegner et al., 2009) and Congo (Spencer et al., 2010). In Hawaii, flow paths are thought to change during changing hydrological conditions, and in Congo seasonal changes were considered indicative of different sources of dissolved organic matter, flow paths, and residence times. Runoff from inundated soils, such as found in the Zambezi River Basin during the wet season, also tend to have higher DON concentrations (Aitkenhead-Peterson et al., 2003). This (potentially refractory) source of DON might be responsible for the high DON concentrations found in the Barotse Plains during the wet season."

L. 417-429: The discussion of C/N ratios is still not very satisfying. The use of terms "higher" and "elevated" (elevated over what?) is given without any basis, hence suggests something which is not there. Again, the statements made here are unjustified assertions.

The comparative statements have been extended to explicitly state the reference. For example, L417-418 has been modified to "The higher C:N ratio of the suspended matter in the Barotse Plains compared to the Kafue Flats indicates a year-round soil-derived source in the pristine part of the catchment."

L. 422-425: No, this statement has to be toned down. The small difference in the C/N ratio of suspended matter and reservoir sediment must not necessarily be the result of source differences. The C/N ratio also increases during degradation. So, the sediment in the reservoir may represent quite a long time span during which the organic matter has probably undergone degradation and the C/N ratio has possibly increased. The argument made might be correct, but the discussion is missing. You may have a look on soil C/N ratios in the following papers: Aitkenhead and McDowell, 2000, Global Biogeochemical Cycles 14, 127-138; Kirkby et al., 2011, Geoderma 163, 197-208.

Settling material (sediment traps, Kunz et al. 2011b Water Resources Research) in the reservoir had a higher C:N ratio than that observed in the floodplain area. Therefore, degradation is unlikely to be responsible for the observed change in C:N ratio. The argument in the manuscript has been extended to include this:

"In contrast, C:N ratios found in the Kafue Flats during the wet season were indicative of aquatic production (Zurbürg et al., 2013). This could be attributed to the presence of the ITT reservoir: both sediment trap data (Kunz et al., 2011b) and surface sediments from the reservoir (Supplementary information of Zurbürg et al. (2013)) showed an C:N ratio elevated from that observed in the Kafue Flats (12.1 ± 0.6), similar to the numbers found for the suspended matter in the Barotse Plains. While degradation in the reservoir might also affect the C:N ratios, this typically leads to an increase. The observed difference between C:N ratios in the reservoir and in the river is therefore attributed to different sources."

L. 437-443: Here is a conclusion drawn and then explained by mentioning other examples. This needs

to be done the opposite way: mention other examples and explain (!) the processes/controls/factors responsible and then draw a conclusion on your own findings.

We have changed the order of the paragraph, with the general conclusion of floodplain inputs (due to connectivity) at high water and terrestrial inputs during low water remaining.

L. 451-455: This is not really clear to me. Do you mean that you have a higher contribution of C4 plants during the dry season? Then say so. And what does the last sentence tell the reader?

We intend to highlight that terrestrial inputs in the Kafue Flats are dominated by inputs from C4 plants as a consequence of the encroaching. The section has been updated to improve this point:

"In the upstream stretch of the floodplain that had more typical dry-season characteristics (i.e., no flooded areas), the dry season value was heavier than the average reported earlier. Encroaching plant species have resulted in a vegetation pattern with C4 species occurring close to the river, and C3 species growing on the higher grounds that are only seasonally flooded (Blaser, 2013; Ellenbroek, 1987). The inputs from these encroaching species can be considered as terrestrial inputs of permanent vegetation, but as such resulted in a pattern contrasting that observed in the Barotse Plains."

L. 460-462: This is more or less a commonplace and not really true. The second half-sentence is rather speculation. Isn't his large amount of dissolved organic matter extracted/leached from the large areas of inundated flood plains during the wet season your major finding? I would highlight that.

The sentence has been rephrased to

"We showed that the interaction of the river with its floodplain is responsible for the changes observed in organic matter characteristics, and that floodplains should be considered as large biogeochemical reactors, which create specific environments that can differ from the processes occurring at the catchment level."

Conclusions:

L. 474-477: This needs to be revised, see previous comments.

Rephrased to "Over an annual cycle, the Barotse Plains retained particulate organic matter, and both floodplains exported more dissolved organic matter than previously reported for the Zambezi. This shows how large floodplain systems are large biogeochemical reactors, that behave distinctly different from the rest of the catchment."

L. 480-481: This statement is unclear, see previous comment.

This has been modified and combined with L486-488 to

"However, the Kafue Flats has a reversed vegetation pattern as a consequence of woody encroachment towards the river since the dam construction. Currently, permanent C4 vegetation is found close to the river, whereas the seasonal growth has larger C3 inputs; this is responsible for the seemingly contrasting patterns in particulate organic carbon $\delta^{13}\text{C}$ signatures. Both floodplains transported floodplain-derived material during the wet season, and inputs from permanent vegetation during the dry season..."

L. 483-485: This statement may be true, but as is is rather speculation. Moreover, the second part of the sentence can hardly be understood.

Combined with L488-490: the final paragraph has been changed to

"Differences between the two systems that can be attributed to the presence of the Itezhi-Tezhi reservoir upstream of the Kafue Flats are linked to altered inputs to the particulate organic matter pool in the Kafue Flats. Besides the effect of woody encroachment on the stable carbon isotopic signature, seasonal inputs of primary production in the upstream reservoir lowered the POC:PN ratio in the Kafue Flats during the wet season, whereas soil material was transported during the dry season and year-round in the Barotse Plains."

Differences between the two systems that can be attributed to the presence of the Itezhi-Tezhi reservoir upstream of the Kafue Flats, which altered the inputs to the particulate organic matter pool in the Kafue Flats. Besides the effect of woody encroachment on the stable carbon isotopic signature, seasonal inputs of aquatic primary production in the upstream reservoir lowered the reactivity and POC:PN ratio in the Kafue Flats during the wet season. By contrast, soil material was transported

during the dry season and year-round in the Barotse Plains. In summary, river damming induced vegetation changes in the floodplain towards more woody plants, and phytoplankton production added nitrogen-rich organic matter to the river system downstream.

L. 486-488: Second part of sentence hard to understand, see previous comment.

See above.

L. 488-490: If you want to stress the importance of dams, you need to expand this a little. Do you mean the altered hydrology has changed floodplain vegetation over time and accordingly also the contributions of OM from various sources? It is not yet coming out that clear (if meant that way).

See above.

Tables:

Table 2 is not really clear. The caption mentions parts of the methods section which are not existing and the way of calculation is not clear.

It appears that the relevant part at some point has indeed been removed from the methods section. Considering the continued confusion over these numbers, we have decided to adjust to yields per km² floodplain, irrespective of the flooded area (see above). The new numbers are:

River	POC	DOC	PN	DON	DIN
This study:					
Barotse Plains	-570	4000	-50	300	-0.1
Kafue Flats	NA	4600	NA	300	-1.5

Figures:

Figure 7 is not absolutely clear. What does the direction of the arrow mean? If I look at a large arrow pointing into the floodplain I would assume that it indicates input into the floodplain. However, if I am right, it means the opposite, e.g. high DOM export from the Barotse Plains during the wet season. That's a bit counterintuitive. You better clarify this in the figure caption. This is a visual summary, the message should be unequivocal and easily extractable for the reader.

The arrows are indeed showing the flow of material relative to the river. Linking the arrows directly to the river would complicate the figure even more, so the suggestion on improving the figure caption has been followed: "Proportional arrows indicate net export from the floodplain to the river (arrow towards the system) and removal rates of material from the river to the floodplain (arrow away from the system) of POM (POC+PN) and DOM (DOC+DON)."

Additional correction: we realized that we hadn't updated the enrichment rate per 100km for the Barotse Plains when we changed to reporting per river-km. For the wet season this enrichment dropped from +0.36 to +0.26‰ per 100 km. This has been updated in the text and in Figure 7.

1 **Seasonal dynamics of carbon and nutrients from two**
2 **contrasting tropical floodplain systems in the Zambezi**
3 **River Basin**

4

5 **A.L. Zuidgeest^{1,2}, R. Zurbrügg^{1,2,a}, N. Blank^{1,2,b}, R. Fulcri^{1,2,c}, D.B. Senn^{1,2,3}, and B.**
6 **Wehrli^{1,2}**

7

8 ¹Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Universitätstrasse 16, CH-8092
9 Zürich, Switzerland

10 ²Eawag: Swiss Federal Institute of Aquatic Science and Technology, Surface Waters – Research and
11 Management, Seestrasse 79, CH-6047 Kastanienbaum, Switzerland

12 ³San Francisco Estuary Institute, 4911 Central Avenue, Richmond, CA 94804, USA

13

14 ^anow at F. Hoffmann-La Roche Ltd, Basel, Switzerland

15 ^bnow at Departement Bau, Verkehr und Umwelt, Aarau, Switzerland

16 ^cnow at Pro Natura Graubünden, Chur, Switzerland

17

18 Correspondence to Alissa Zuidgeest (alissa.zuidgeest@usys.ethz.ch)

19

20

21 **Abstract**

22 Floodplains are important biogeochemical reactors during fluvial transport of carbon and nutrient
23 species towards the oceans. In the tropics and subtropics pronounced rainfall seasonality results in
24 highly dynamic floodplain biogeochemistry. Massive construction of dams, however, has
25 significantly altered the hydrography and chemical characteristics of many (sub)tropical rivers. In this
26 study, we compare organic matter and nutrient biogeochemistry of two large, contrasting floodplains
27 in the Zambezi River Basin in Southern Africa, the Barotse Plains and the Kafue Flats. Both systems
28 are of comparable size, but differ in anthropogenic influence: while the Barotse Plains are still
29 relatively pristine, the Kafue Flats are bordered by two hydropower dams.

30

31 The two systems exhibit different flooding dynamics, with a larger contribution of floodplain-derived
32 water in the Kafue Flats and a stronger peak flow in the Barotse Plains. Distinct seasonal differences
33 have been observed in carbon and nutrient concentrations, loads, and export and retention behavior in
34 both systems. Simultaneous retention of particulate carbon and nitrogen, and net export of dissolved
35 organic and inorganic carbon and nitrogen suggested that degradation of particulate organic matter
36 was the dominant process influencing the river biogeochemistry during the wet season in the Barotse
37 Plains, and during the dry season in the Kafue Flats. Reverse trends during the dry season indicated
38 that primary production was important in the Barotse Plains, whereas the Kafue Flats seemed to have
39 both primary production and respiration occurring during the wet season, potentially occurring
40 spatially separated in the main channel and on the floodplain, respectively.

41

42 Carbon to nitrogen ratios of particulate organic matter showed that soil-derived material was
43 dominant year round in the Barotse Plains, whereas the Kafue Flats transported particulate organic
44 matter that had been produced in the upstream reservoir during the wet season. Stable carbon isotopes
45 suggested that inputs from the inundated floodplain to the particulate organic matter pool were
46 important during the wet season, whereas permanent vegetation contributed to the material
47 transported during the dry season. This study revealed effects of dam construction on organic matter
48 and nutrient dynamics on the downstream floodplain that only become visible after longer periods,
49 and highlights how floodplains act as large biogeochemical reactors that can behave distinctly
50 different from the entire catchment.

51

52 Keywords: Zambezi, tropical floodplain, organic matter, nutrients, yields, dam, Barotse Plains, Kafue
53 Flats

54

Deleted: varied throughout the year in both systems, in opposite patterns

Deleted: In the Kafue Flats, encroachment of woody plants since the construction of the dams could be responsible for the altered pattern. Additionally, the timing of runoff-driven inputs during the wet season has been changed by the presence of the dams.

Deleted: highlighting the need for continued monitoring after dam construction.

65 **1. Introduction**

66 In current global budgets of organic matter and nutrients, large rivers (discharge $> 400 \text{ km}^3 \text{ yr}^{-1}$)
67 account for approximately 35% of the total freshwater-related flux to the ocean (Milliman and
68 Farnsworth, 2011). In studies presenting global budgets and models for carbon, nitrogen and
69 phosphorus export via large rivers, tropical systems are often underrepresented (Alvarez-Cobelas et
70 al., 2008;Alvarez-Cobelas et al., 2012;Alvarez-Cobelas et al., 2009). Global extrapolations based on
71 the well-studied temperate and boreal systems are therefore prone to large errors because they neglect
72 the distinct seasonal flooding of extensive tropical floodplain areas (Junk, 1999;Junk et al., 1989).
73 Floodplain systems have been recognized for their potential to alter fluxes of particulate matter,
74 organic carbon, and nutrients transported by rivers (McJannet et al., 2012;Fisher and Acreman, 2004).

75

76 During transport from land to sea, riverine organic matter is modified by processes in biogeochemical
77 reactors, specifically natural and artificial lakes and wetlands or floodplains. In the past decades,
78 increasing energy demands have resulted in the construction of hydropower dams in most of the
79 world's large river systems (Nilsson et al., 2005). These man-made biogeochemical reactors
80 significantly change the characteristics of river flow. Since water flow is restricted in most lakes,
81 particles have time to settle. The water exiting the lake is therefore depleted in particulate matter and
82 its associated organic carbon and nutrients. Lake stratification favors hypoxia or anoxia in the
83 hypolimnion, which can lead to methane outgassing (Barros et al., 2011;Bastviken et al.,
84 2008;DelSontro et al., 2011), low oxygen concentrations and potentially toxic levels of reduced
85 substances in the outflow from turbines (Kunz et al., 2013). In addition to the direct effects of
86 hydropower reservoirs, energy demands often require flow regimes that deviate from the natural
87 tropical situation, changing the hydrography in the downstream reaches of the river (Lu and Siew,
88 2006;Maingi and Marsh, 2002;Rood et al., 2005).

89

90 Floodplains make up a large fraction of all tropical wetlands (which cover about 2.5-3.5% of the
91 Earth's surface), with areas of $>10^6 \text{ km}^2$ in South America and $>10^5 \text{ km}^2$ in Africa (Tockner and
92 Stanford, 2002). Because of the large area, the periodic flooding and corresponding changing redox
93 conditions, the high temperatures, and the intense rates of primary production (Junk and Piedade,
94 1993;Robertson et al., 1999;Ward and Stanford, 1995), the impact of tropical floodplains on riverine-
95 transported organic matter and nutrients can be significant (Hamilton et al., 1997). River-floodplain
96 exchange has been identified as a key process for the ecological and biogeochemical functioning in
97 temperate (Hunsinger et al., 2010;Tockner et al., 2010) and tropical systems (e.g. Melack et al.
98 (2009)). Lateral exchange between a river and its floodplain was shown to affect sediment erosion and
99 transport (Dunne et al., 1998), the composition of the particulate matter (Devol et al., 1995), carbon
100 fluxes (Pettit et al., 2011), and nutrient supply (Villar et al., 1998).

101

102 The type of organic matter transported by tropical rivers co-varies with discharge. Both the Tana
103 River in Kenya (Tamooh et al., 2014) and the Sanaga River in Cameroon (Bird et al., 1998)
104 transported mainly organic matter from the degradation of C₄ plants during the wet season, while dry
105 season runoff is characterized by organic matter originating from C₃ plants. Spencer et al. (2010) also
106 showed that the properties of organic carbon transported by a tributary of the Congo River vary
107 during different hydrographic phases, with highest dissolved organic carbon and lignin concentrations
108 during peak flow. In the same river, the particulate organic carbon concentration increased when the
109 discharge increased (Mariotti et al., 1991).

110

111 Following the construction of dams, the hydrological and sediment-related changes have been
112 assessed in several systems, including the Tana River in Kenya (Maingi and Marsh, 2002) and the
113 Lower Mekong River in China (Kummu and Varis, 2007;Fu et al., 2008;Lu and Siew, 2006).
114 However, the impacts of these changes in hydrography on the biogeochemistry of tropical floodplain
115 systems have hardly been studied. Considering the importance of floodplains within the catchment of
116 large tropical rivers, changes in flooding and inundation might have pronounced effects on the
117 biogeochemical behavior of floodplains and can have far-reaching consequences for the downstream
118 catchment.

119

120 In this study, we assessed the dynamics and export rates of organic matter and nutrients in two large,
121 understudied floodplains in the Zambezi River Basin, the pristine Barotse Plains and the dam-
122 impacted Kafue Flats, during wet and dry season conditions. This comparative analysis aims at
123 identifying effects of damming on floodplain biogeochemistry and builds on previous studies on
124 river-floodplain interactions in the Kafue Flats (Zurbrügg et al., 2012;Wamulume et al.,
125 2011;Zurbrügg et al., 2013). Based on field campaigns from contrasting seasons, we were able to
126 describe seasonal variability in the two systems. We further quantified the changes in the
127 concentration, speciation, origin, and loads of carbon, nitrogen, and phosphorus along the floodplains
128 in order to assess the implications of river damming and an altered hydrological regime on floodplain
129 biogeochemistry.

130

131

132 **2. Study sites**

133

134 <<Figure 1>>

135

136 At $1.4 \times 10^6 \text{ km}^2$, the Zambezi River Basin is the fourth largest in Africa, and the only major African
137 river draining into the Indian Ocean. Due to its geographic location, the catchment experiences a
138 pronounced wet season during the passage of the Inter Tropical Convergence zone (Dec-Mar) and a
139 dry season (Apr-Nov) during the remainder of the year.

140

141 <<Figure 2>>

142

143 The Barotse Plains are a near-pristine floodplain area in the upstream part of the Zambezi River in the
144 Western part of Zambia (Fig. 1). The hydrography in the Barotse Plains clearly reflects the climatic
145 conditions, with peak flow around April/May and low flow between July and November (Fig. 2a).
146 The total inundatable area is estimated at around 7,700 km^2 (Hughes and Hughes, 1992). The Kafue
147 Flats are located along the Kafue River, one of the largest tributary of the Zambezi River. Upstream
148 of the Flats, the Itezhi-Tezhi dam (ITT, closed in 1978) stores a significant part of the wet-season
149 runoff in order to allow for a continuous operation of the power station at Kafue Gorge (dam closed in
150 1972) downstream of the Kafue Flats. Evaporation from the reservoir changes the water level by 780
151 mm year⁻¹, according to Beilfuss (2012). The maximum inundated area of the Kafue Flats is ~~smaller~~
152 than of the Barotse Plains, at 6,000 km^2 (Hughes and Hughes, 1992). The hydrography of the Kafue
153 Flats has been significantly altered by the presence of the dams (Fig. 2b), but the annual discharge did
154 not change. Over the last decades, peak flow has been reduced (approximately -50%) and base flow
155 has increased (roughly +50%, Fig. 2b). In consequence, timing and extent of inundation in the Kafue
156 Flats have changed (Mumba and Thompson, 2005). The floodplain area has been reduced by 40% due
157 to permanent inundation, a direct result of elevated base flow sustained by the dam operation.

158

159 The vegetation in the Kafue Flats has been described as a gradient, ranging from open water to
160 floodplain grasslands, water meadows, littoral zones, termitaria grasslands, to woodland areas
161 (Ellenbroek, 1987). After the construction of the dams, the area covered by shrubs has increased
162 (Mumba and Thompson, 2005; Blaser, 2013). For the Barotse Plains a detailed overview of the
163 vegetation zones is lacking, but several sources hint to grasslands, combined with Miombo woodland
164 and deciduous forest patches (Zambezi Society, 2000; Timberlake, 2000).

165

166

Deleted: slightly

168 **3. Methods**

169 **3.1 Sampling**

170 Sampling of the main river channel at multiple locations along the floodplains (Fig. 1) was conducted
171 during peak flow, hereafter called the wet season (April/May; Barotse Plains 2009, 2013; Kafue Flats
172 2008, 2009, 2010) and low flow, referred to as the dry season (October; Barotse Plains 2008, 2013;
173 Kafue Flats 2008). Samples were collected in the middle of the well-mixed channel from surface
174 water (50cm, Barotse Plains), or at mid-depth (Kafue Flats) using a peristaltic pump. The similarity of
175 the results from different years (Zurbrügg et al., 2013; Zurbrügg et al., 2012) allowed combination and
176 averaging of the data sets in order to obtain generalized patterns for the two systems and seasons.
177 Discharge in the main channel was measured using a RiverRay ADCP (for Barotse Plains dry season
178 data from the Zambezi River Authority were used).

179

180 **3.2 Laboratory analyses**

181 Samples for dissolved nutrient concentrations were filtered through 0.45 μm filters. Dissolved
182 inorganic nitrogen (DIN, limit of quantification LOQ of nitrogen analyses < 4 μM), phosphate (LOQ
183 phosphorus analyses < 0.2 μM), and the sum of nitrate and nitrite were measured by
184 chemoluminescence detection (Antek 9000). Ammonium was determined by standard colorimetric
185 technique. Total dissolved nitrogen and total phosphorus (TDN and TDP) were determined by
186 chemoluminescence detection (Antek 9000) following persulphate oxidation (Solórzano and Sharp,
187 1980; Bronk et al., 2000). Samples for particulate phosphorus concentrations during the wet season
188 were collected onto 0.7 μm GF/F filters (Whatman) and measured using a sequential phosphorus
189 extraction method (SEDEX, Ruttenberg (1992) as modified by Slomp et al. (1996)). Samples for
190 dissolved organic carbon (DOC, precision < 10 μM) and dissolved inorganic carbon (DIC, precision <
191 10 μM) were filtered through 0.7 μm GF/F filters (Whatman) and analyzed on a Shimadzu TOC-L
192 (Barotse Plains) or on a Shimadzu 5050 TOC analyzer (Kafue Flats, DOC only). DIC concentrations
193 for the Kafue Flats were calculated from pH and alkalinity measurements (data not shown). Stable
194 oxygen isotopes were determined on filtered water samples (0.45 μm nylon filters) using a Picarro
195 L2120-I Cavity Ringdown Spectrometer (Barotse Plains, precision 0.05‰) or a MultiFlow
196 preparation module connected to a continuous flow IRMS (Isoprime, UK, precision 0.2‰; Kafue
197 Flats) and calibrated against in-house standards ranging from 0 to -22.5‰_{VSMOW}. Riverine suspended
198 matter was collected on pre-weighed GF/F filters (Whatman). After freeze-drying of samples,
199 suspended matter concentrations were determined by weight difference. Particulate organic carbon
200 and nitrogen and their stable isotopic compositions (POC, PN, $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$, respectively) were
201 determined using EA-IRMS (Thermo-Fischer MAT 253 or ThermoFinnigan FlashEA 1112 coupled
202 to a DeltaV Advantage Continuous-Flow IRMS), and calibrated against in-house standards ($\delta^{13}\text{C}$: -15
203 to -30‰_{VPDB}, precision 0.1‰; $\delta^{15}\text{N}$: -1.1 to +32.7‰_{air}, precision 0.2‰).

204

205 **4. Results**

206

207 **4.1 Hydrology and oxygen isotopes**

208

209 << Figure 3>>

210

211 During the wet season, the runoff in the main channel of both floodplains was characterized by a
212 discharge minimum roughly in the middle of both systems (Fig. 3). Located around 100 km and 200-
213 300 km downstream in the Barotse Plains and in the Kafue Flats, respectively, constrictions in the
214 river bed were present, which promoted flooding of the surrounding floodplain area (Zurbrügg et al.,
215 2012). During the dry season, the discharge remained rather constant in both systems with a gain due
216 to tributaries along the Barotse Plain and a slight loss in the ~~Kafue~~ Flats. Notice, however, that the
217 peak discharge in the wet season was about four times higher in the Zambezi crossing the Barotse
218 Plains compared to the dammed Kafue River (Fig. 2).

219

220 The intense river-floodplain exchange left a distinct $\delta^{18}\text{O}$ signal in both systems: the rivers lost water
221 to the floodplain during the wet season. Downstream of the stretch where discharge in the river
222 decreased, the $\delta^{18}\text{O}$ of the river water sharply turned towards heavier values (Fig. 3). The overall ^{18}O -
223 enrichment of the channel water between the upstream and downstream sampling locations was more
224 pronounced in the Kafue Flats during the wet season. In the Barotse Plains, the $\delta^{18}\text{O}$ signal showed an
225 overall shift from $-2.0\text{\textperthousand}$ in the upstream part to $-0.9\text{\textperthousand}$ at the downstream end. In the Kafue Flats a
226 sharp increase towards heavier values was observed downstream of the channel constriction. To
227 correct for different travel distances along the river stretches, the change in $\delta^{18}\text{O}$ per 100 km of river
228 length was estimated: for the Barotse Plains this enrichment was $+0.26\text{\textperthousand}$ and for the Kafue $+0.56\text{\textperthousand}$
229 per 100 km. During the dry season, no significant increase in isotopic signal of oxygen was observed
230 in the Barotse Plains, while in the Kafue Flats enrichment occurred at $+0.17\text{\textperthousand}$ per 100 km.

231

232

233 **4.2 Concentrations and loads**

234

235 <<Figure 4>>

236

237 For comprehensive comparison of the concentrations of carbon, nitrogen, and phosphorus species
238 along the two floodplains during contrasting seasons, all measurements along the floodplain have
239 been considered, irrespective of spatial trends (Fig. 4). The occurrence of large spatial variations

Deleted: dry

Deleted: 3

242 along the floodplain, or differences between measurement methods between the different years,
243 resulted in larger ranges.

244

245 The dissolved inorganic fraction dominated the total carbon concentration in both seasons and both
246 systems (Fig. 4). Dissolved organic nitrogen (DON) was always the main nitrogen species. In the
247 Barotse Plains particulate phosphorus (PP) was the dominant form during the wet season, while
248 dissolved inorganic phosphorus (DIP) was generally the prevailing species during the dry season.
249 Phosphorus concentrations were largely close to detection limit in both systems, and were therefore
250 excluded from the calculation of loads.

251

252 While both systems exhibited very low inorganic nutrient concentrations during the dry season, the
253 Barotse Plains were substantially lower in organic carbon and nitrogen species concentration
254 compared to the Kafue Flats. Differences between the dry season and wet season C and N
255 concentrations within both systems ~~were~~ statistically significant (paired analysis, p-values <0.05) for
256 all species, except for the Kafue Flats DOC (p = 0.23), DON (0.084) and DIN (0.284). The
257 differences in concentrations between the Barotse Plains and Kafue Flats in similar seasons ~~were~~
258 significant (hypothesis testing, p-values <0.05) for all species, except PP (wet season, p = 0.121) and
259 DIP (dry season, p=0.053).

260

261 <<Figure 5>> <<Table 1>>

262

263 Loads were calculated from the discharge and concentration data for the respective species, as the
264 water column was well mixed (see Supplementary Information for details). Total carbon and nitrogen
265 loads increased along the Barotse Plains during the wet season, mainly due to larger contribution by
266 the dissolved organic form (Fig. 5). The increase in total carbon load in the Kafue Flats during the wet
267 season was mainly attributed to the dissolved inorganic fraction. The magnitude of the wet season
268 carbon loads leaving the floodplain area ~~was~~ comparable between the two systems (roughly 1500 t C
269 d⁻¹, Fig. 5), while the nitrogen loads in the Barotse Plains were almost twice as high as those in the
270 Kafue Flats (44 t N d⁻¹ and 20 t N d⁻¹) During the dry season the loads decreased~~d~~ slightly.

271

272 Net export was determined as the difference between the load at the downstream end of the floodplain
273 and the load at the upstream end of the floodplain (Table 1). During the wet season, the Barotse Plains
274 were a sink for all particulate phases, while the Kafue Flats acted as a source (Table 1). Both systems
275 were sources of DOC and DIC. Dissolved organic nitrogen was exported from both floodplains, but
276 the Barotse Plains retained the small DIN flux, while the Kafue Flats were a minor source. During the
277 dry season, the Barotse Plains acted as source of particulate matter. For the Kafue Flats this could not
278 be determined due to lack of POC and PN measurements in the downstream stretches of the river.

Deleted: a

Deleted: a

Deleted: i

282 DOC and DIC were retained by both systems. The Barotse Plains were a minor source of dissolved
283 nitrogen, while the Kafue Flats retained both organic and inorganic nitrogen.

284

285

286 **4.3 C:N ratios and isotopes**

287

288 <<Figure 6>>

289

290 The C:N ratios of particulate organic matter (Fig. 6) remained fairly constant along the floodplain in
291 the Barotse Plains and Kafue Flats during the wet season (10.8 ± 0.7 and 7.5 ± 0.7 , respectively
292 (statistically significant difference at 95% confidence intervals)). During the dry season the along-
293 floodplain variability within each of the floodplains was larger (10.3 ± 1.5 and 10.3 ± 1.8 ,
294 respectively), but no significant difference was observed between the two systems. On average,
295 particulate carbon was more depleted in ^{13}C in the Kafue Flats compared to the Barotse Plains during
296 the wet season ($\delta^{13}\text{C} = -28.5 \pm 0.9$ and $-26.9 \pm 1.1 \text{‰}$, respectively (statistically significant $p < 0.05$)).
297 During the dry season mean $\delta^{13}\text{C}$ values were $-28.5 \pm 1.0 \text{‰}$ in the Barotse Plains and $-26.5 \pm 1.9 \text{‰}$ in
298 the Kafue Flats, again a significant difference. The organic matter in the Barotse Plains became more
299 enriched in ^{13}C during the wet season compared to the dry season, while in the Kafue Flats lower $\delta^{13}\text{C}$
300 values were observed during the wet season than during the dry season (both significant, $p < 0.05$).

301

302 The C:N ratio of the dissolved organic phase was more variable: While the wet season values of 17.5 ± 1.9
303 and 23.7 ± 3.4 were fairly similar for the Barotse Plains and Kafue Flats, respectively, they
304 differed widely during the dry season: 166 ± 20 and 22.7 ± 11.3 . The two systems differed
305 significantly ($p < 0.05$) from each other during a given season.

306

307 Paired analysis showed that there was no statistically significant ($p < 0.05$) difference in particulate
308 C:N ratios in the Barotse Plains between contrasting seasons, while there was a difference in
309 dissolved C:N ratios and C-isotopic signals. In the Kafue Flats, there was a significant decrease in
310 particulate C:N ratio from the dry to the wet season (as previously reported in Zurbrügg et al. (2013)).

311

312

313 **5. Discussion**

314 **5.1 Hydrology and inundation dynamics**

315 The discharge patterns (Fig. 3) showed how the bankfull capacity of the Zambezi and Kafue Rivers
316 varied along the floodplain stretch. In both systems water has moved from the main channel onto the
317 floodplain, roughly 600 and $400 \text{ m}^3 \text{ s}^{-1}$ in the Barotse Plains and the Kafue Flats, respectively. Where

318 the capacity of the channel increases again further downstream, water from the floodplains (and
319 potential tributaries) returned to the main channel at higher rates. On the floodplain, flow velocities
320 were extremely low (< 1 mm s⁻¹ on the Kafue Flats in May 2008, unpublished data), which led to
321 prolonged residence times of the water on the floodplain, during which evaporation might occur,
322 resulting in heavier $\delta^{18}\text{O}$ signatures in floodplain water.

323

324 Using a mass balance approach based on oxygen isotopic data, Zurbrügg et al. (2012) calculated that
325 >80% of the water in the Kafue Flats had spent time on the floodplain during the wet season.
326 Logistical constraints prevented the collection of similar remote floodplain samples in the Barotse
327 Plains. Assuming a similar floodplain signal in the Barotse Plains as in the Kafue Flats, a first
328 approximation was made to determine how much water in the Barotse Plains has spent time on the
329 floodplain. This resulted in 50% of the water leaving the pristine floodplain area having spent time
330 outside the channel. This estimate shows that the interaction between river and floodplain was
331 stronger in the Kafue Flats than in the Barotse Plains, and reinforces the observation that a larger
332 fraction of the river discharge in the Kafue Flats was forced onto the floodplain at the constriction
333 location, compared to the Barotse Plains. In the published literature, high contributions of floodplain-
334 derived water are also reported for the Tonle Sap Lake-floodplain system, where water from the
335 Mekong contributed over 50% to the inflows of the lake, and more than 80% of the outflows from the
336 lake returned to the main river channel of the Mekong (Kummu et al., 2014). At peak flow in the
337 Amazon, 97% of the river inflow occurred at overbank flow at the Curuai floodplain, and this water
338 spent on average 19 days on the floodplain, according to the modeling results by Rudorff et al. (2014).

339

340 During the dry season, the increasing discharge along the Barotse Plains is most likely caused by
341 inflow of the Luanginga tributary. By contrast, the decreasing discharge in the Kafue Flats combined
342 with a calculated 16% of the downstream discharge having spent time on the floodplain (Zurbrügg et
343 al., 2012) indicated that there was still exchange between the river channel and some permanently
344 inundated areas in the downstream reaches of the Kafue Flats. In a regional perspective, the along-
345 floodplain increase in the $\delta^{18}\text{O}$ signal in the Barotse Plains and Kafue Flats during the wet (flooding)
346 season (+0.21‰_{VSMOW} to +0.56‰_{VSMOW} per 100 km) was considerably lower than the increase in the
347 Okavango delta during the dry (flooding) season (+2.04‰ per 100 km) and during wet season
348 (+0.74‰_{VSMOW} per 100 km; calculated from Akoko et al. (2013)), indicating that there was
349 significantly less extensive evaporation on the Zambezi catchment floodplains than in the inland
350 Okavango delta.

351

352 **5.2 Seasonality of C and N export and retention**

353 During the wet season, the Barotse Plains were characterized by a net export of dissolved phases and
354 retention of particulate material. Degradation processes or settling of particulate organic matter, either

355 in the main channel or on the floodplain could result in apparent retention of POC and PN. The
356 concurrent export of DOC, DIC, and DON could similarly be a result of degradation, or of leaching of
357 vegetation or soils. During the dry season, the patterns were reversed, indicative of inputs of organic
358 matter from the Plains.

359

360 In contrast, the Kafue Flats were a net source for both particulate and dissolved phases during the wet
361 season, indicating a different balance. The high proportion of DIC to the net dissolved C export
362 suggests that degradation was a dominant process during flooding. While the constant POC:PN ratios
363 contradict large soil inputs, a combination of primary production around the edges of the main
364 channel, and degradation and leaching of soil and vegetation from the inundated floodplain (indicated
365 by low oxygen concentrations of the water from the floodplain (Zurbrügg et al., 2012)) could be
366 responsible for the observed patterns. During the dry season, the retention of DOC, DIC, DON, and
367 DIN pointed towards primary production and potentially a minor contribution from sorption of
368 dissolved organic phases onto particulate material.

369

370 The observed net export of particulate organic matter might not have effects beyond the downstream
371 reservoirs of Lake Kariba and Kafue Gorge, respectively (Fig. 1). Both impoundments will trap
372 mobilized particles, and 70% and 90% of incoming total N and P are retained within Lake Kariba
373 (Kunz et al., 2011a). Over the course of a year, the Barotse Plains were a sink for particulate phases,
374 while both the Barotse Plains and the Kafue Flats were exporting large quantities of dissolved organic
375 matter (Table 2). The export of dissolved organic matter, especially DOC, was two to four times
376 higher than yields previously reported for the Zambezi catchment (Mayorga et al., 2010). The
377 numbers are closer in magnitude to yields reported for the Amazon and Orinoco rivers, which both
378 drain highly productive tropical rainforest (Beusen et al., 2005;Harrison et al., 2005;Lewis and
379 Saunders, 1989). Since the Zambezi mainly drains savanna ecosystems, catchment yields are a lot
380 lower than from the other tropical rivers (Table 2). The negative yields of particulate matter show
381 how floodplains can impact the riverine loads in trends opposite to those observed for the whole
382 catchment. Additionally, the high dissolved organic matter yields further indicate that floodplains are
383 intense biogeochemical reactors, which affect riverine transport of organic matter from land to sea
384 significantly.

385

386 <<Table 2>>

387

Deleted: retain

Deleted: Nevertheless, on a catchment scale, mobilization of particulate organic matter from the inundated area of the river-floodplain systems resulted in specific POC and PON yields (net export per inundated area per year; Table 2) from the Barotse Plains, which were close to an order of magnitude higher than previously reported values for the entire Zambezi River (Beusen et al., 2005;Mayorga et al., 2010). Despite the behavior as a sink during the wet season, the normalization to inundated area has resulted in positive annual export from the floodplain. Also, DOC yields from the Barotse Plains were higher than previously estimated for the Zambezi, but comparable to those measured in the Amazon and Orinoco rivers (Table 2);

Deleted:). Similarly, DON yields from the pristine floodplain were similar to values measured in the Amazon and Orinoco (Table 2). The Kafue Flats show negative DOC, DON, DIN yields, i.e. are retaining these species. These negative yields show how floodplains can impact the riverine loads in trends opposite to those observed for the whole catchment. Similarly, the high yields from the Barotse Plains underlined the dominant role of floodplains as biogeochemical reactors in riverine transport of organic matter from land to sea.

419 **5.3 Sources of organic matter**

420 **5.3.1 Dissolved organic matter**

421 Based on the export and retention behavior of the two floodplains, degradation of floodplain-derived
422 organic matter may be a large source of DOC in the Barotse Plains during the wet season. During the
423 dry season, primary production, organic matter inputs from the floodplain and sorption of dissolved
424 organic phases to particles may have decreased the DOC concentrations. In the Kafue Flats,
425 degradation of organic matter on the floodplain was contributing to in-stream DOC during the wet
426 season, whereas during the dry season, similarly to the Barotse Plains, primary production and
427 sorption of dissolved phases onto particles were lowering DOC and DON concentrations. The high
428 contribution of DON to TDN further indicates that the Zambezi and Kafue Rivers are still relatively
429 pristine, as anthropogenic activities mainly add nitrogen, in the form of DIN to aquatic systems
430 (Berman and Bronk, 2003).

Deleted: N

431
432 The elevated C:N ratio of the dissolved organic matter was indicative of terrestrial origin of the
433 organic material in both systems. The ITT reservoir did not have a pronounced impact on the
434 dissolved phase (C:N around 23 during both seasons), which has previously been attributed to a
435 mostly refractory dissolved organic matter phase (Zurbrügg et al., 2013). The comparison with the
436 Barotse Plains revealed a much larger variability in C:N of the dissolved matter reaching dry season
437 values of 166 compared to the wet season signatures around 18. While DOC concentrations were
438 fairly similar during both seasons, the large decrease in DON concentrations from the wet to the dry
439 season (Fig. 4) has resulted in this shift in dissolved C:N ratio.

440

441 The growth of seasonal vegetation on the inundated floodplain resulted in a large leaching potential of
442 dissolved organic substances during the wet season, showing how processes on the floodplain affect
443 the riverine biogeochemistry in this biogeochemical reactor. The increase in DOC and DON
444 concentrations during the wet season in the Barotse Plains compared to the dry season also
445 corresponds to the general observation that DOC export increases with runoff, caused by shallowing
446 of the flow paths through organic-rich upper soils (Mulholland, 2003; Aitkenhead-Peterson et al.,
447 2003). Seasonal variability in DOC and DON concentrations has been previously shown in Hawaii
448 (Wiegner et al., 2009) and Congo (Spencer et al., 2010). In Hawaii, flow paths are thought to change
449 during changing hydrological conditions, and in Congo seasonal changes were considered indicative
450 of different sources of dissolved organic matter, flow paths, and residence times. Runoff from
451 inundated soils, such as found in the Zambezi River Basin during the wet season, also tend to have
452 higher DON concentrations (Aitkenhead-Peterson et al., 2003). This (potentially refractory) source of
453 DON might be responsible for the high DON concentrations found in the Barotse Plains during the
454 wet season. For the Kafue Flats, there was no significant seasonal change in DOC and DON

Deleted: This s

Deleted:

Deleted:

Deleted:

Deleted:

461 concentrations between the wet and dry seasons. This might be due to the fact that an increase in
462 DOC and DON concentration in the upstream catchment would be diluted and delayed by the
463 presence of the Itezhi-Tezhi dam, showing after peak flow. With a residence time of 0.7 years, large
464 fractions of organic carbon ($\pm 16\%$) and nutrient loads (50% N, 60% P) were trapped in the sediments
465 of the reservoir (Kunz et al., 2011b). Monthly measurements showed that the highest TOC
466 concentrations occurred in the main channel in the floodplain area in May/June, after the peak flow
467 (Wamulume et al., 2011). This could be a delayed effect of the increased concentrations at higher
468 runoff during the wet season (November-March).

469

470 **5.3.2 Particulate organic matter**

471 The higher C:N ratio of the suspended matter in the Barotse Plains compared to the Kafue Flats
472 indicates a year-round soil-derived source in the pristine part of the catchment. In contrast, C:N ratios
473 found in the Kafue Flats during the wet season were indicative of aquatic production (Zurbrügg et al.,
474 2013). This could be attributed to the presence of the ITT reservoir: both sediment trap data (Kunz et
475 al., 2011b) and surface sediments from the reservoir (Supplementary information of Zurbrügg et al.
476 (2013)) showed an C:N ratio elevated from that observed in the Kafue Flats (12.1 ± 0.6), similar to the
477 numbers found for the suspended matter in the Barotse Plains. While degradation in the reservoir
478 might also affect the C:N ratios, this typically leads to an increase. The observed difference between
479 C:N ratios in the reservoir and in the river is therefore attributed to different sources. The presence of
480 the dam significantly affected the chemical composition of the suspended matter, and while soil-
481 derived suspended matter settled in the reservoir, mainly photosynthetically produced organic matter
482 from the reservoir surface waters reached the Kafue Flats and eventually the Kafue-Zambezi
483 confluence. The decrease in C:N ratio along the floodplain in the Kafue Flats during the dry season
484 could be indicative of gradual organic matter input from nitrogen-fixating vegetation. As a
485 consequence of nutrient elimination in the ITT reservoir, widespread encroachment of N-fixing
486 woody plants onto the floodplain has been observed (Blaser, 2013).

487

488 While the C:N ratio showed little variation throughout the year in the Barotse Plains, the stable C-
489 isotopic signatures of the particulate matter further suggest different contributors to the POC in the
490 river. During the wet season, the particulate organic matter in the Barotse Plains is ^{13}C enriched
491 compared to the dry season (-26.9 and -28.5‰, respectively). Organic matter sources on the
492 floodplain (soils on average -18‰, abundant reeds between -12 and -27‰, unpublished data) had
493 distinctly heavier $\delta^{13}\text{C}$ signatures than the permanent vegetation in the area (average of 6 different tree
494 species $-28.3 \pm 1.22\text{‰}$, unpublished data). Shifts to isotopically heavier organic matter during the wet
495 season as observed in the Barotse Plains, have been described for the Tana River in Kenya (Tamooh
496 et al., 2014), the Sanaga River in Cameroon (Bird et al., 1998), and the Congo River in Central Africa

Deleted: indicates a

Deleted: elevated

Deleted: , Supplementary information of

Deleted: Zurbrügg et al. (2013)

Deleted: Hence, t

Moved (insertion) [1]

502 (Mariotti et al., 1991). For all these tropical rivers, the source of the organic matter transported by the
503 river was changing with inundation. Connectivity of floodplains during high water conditions resulted
504 in enriched stable isotopic values in the riverine organic matter. During the dry season, inputs from
505 permanent terrestrial vegetation would resulted in more depleted $\delta^{13}\text{C}$ signatures.

506
507 In contrast, the particulate organic matter in the Kafue Flats was more enriched during the dry season
508 compared to the wet season (-26.5 and -28.5‰, respectively). The average dry season $\delta^{13}\text{C}$ value for
509 the Kafue Flats should be interpreted with caution, since there was a clear spatial pattern: values
510 became more depleted towards the end of the floodplain. This spatial pattern has previously been
511 attributed to floodplain-derived particulate organic matter, which would consist of phytoplankton and
512 periphyton material in the permanently inundated area in the downstream reaches of this floodplain
513 (Zurbrügg et al., 2013). In the upstream stretch of the floodplain that had more typical dry-season
514 characteristics (i.e., no flooded areas), the dry season value was heavier than the average reported
515 earlier. Encroaching plant species have resulted in a vegetation pattern with C_4 species occurring close
516 to the river, and C_3 species growing on the higher grounds that are only seasonally flooded (Blaser,
517 2013; Ellenbroek, 1987). The inputs from these encroaching species can be considered as terrestrial
518 inputs of permanent vegetation, but as such resulted in a pattern contrasting that observed in the
519 Barotse Plains.

520
521 The difference in composition and origin between dissolved and particulate phases, i.e. DOM from
522 terrestrial sources, POM more aquatic influence has previously been described for the Amazon
523 (Aufdenkampe et al., 2007; Hedges et al., 1986) and the Fly-Strickland system in Papua New Guinea
524 (Alin et al., 2008). We showed that the interaction of the river with its floodplain is responsible for the
525 changes observed in organic matter characteristics, and that floodplains should be considered as large
526 biogeochemical reactors, which create specific environments that can differ from the processes
527 occurring at the catchment level.

528
529

Deleted: Inputs from permanent vegetation were the dominant source of organic matter during the dry season, whereas inputs from the floodplain during the wet season led to more enriched values. Shifts to isotopically heavier organic matter during the wet season as observed in the Barotse Plains, have been described for the Tana River in Kenya (Tamooh et al., 2014), the Sanaga River in Cameroon (Bird et al., 1998), and the Congo River in Central Africa (Mariotti et al., 1991). These studies clearly showed how the source of organic matter transported by tropical rivers is changing with inundation.

Moved up [1]: Shifts to isotopically heavier organic matter during the wet season as observed in the Barotse Plains, have been described for the Tana River in Kenya (Tamooh et al., 2014), the Sanaga River in Cameroon (Bird et al., 1998), and the Congo River in Central Africa (Mariotti et al., 1991). These studies clearly showed how the source of organic matter transported by tropical rivers is changing with inundation.

Deleted: i

Deleted: o

Deleted: more typical

Deleted: however

Deleted: even

Deleted: The e

Deleted: , but that influence of aquatic production in the systems only originated from the reservoir.

563 **6. Conclusions**

564 << Figure 7 >>

565

566 While the pristine Barotse Plains and dam-impacted Kafue Flats seem to have similar properties in
567 terms of timing and dynamics of seasonal flooding, there are several marked differences between the
568 two systems with respect to hydrology, carbon and nutrient dynamics, and sources of the organic
569 matter (Fig. 7). Based on an oxygen isotope mass balance, a larger fraction of water has spent time on
570 the floodplain at the outflow of the Kafue Flats compared to the Barotse Plains. The two floodplains
571 have significantly different concentrations of dissolved carbon and nutrient species during both wet
572 and dry seasons. Over an annual cycle, the Barotse Plains retained particulate organic matter, and both
573 floodplains exported more dissolved organic matter than previously reported for the Zambezi. This
574 illustrates how large floodplain systems act as large biogeochemical reactors that behave distinctly
575 different from the rest of the catchment. Particulate organic carbon $\delta^{13}\text{C}$ values indicated a larger
576 contribution of floodplain-derived organic matter in the Barotse Plains than in the Kafue Flats during
577 the wet season, and the reversed situation during the dry season. However, the Kafue Flats has a
578 reversed vegetation pattern as a consequence of woody encroachment towards the river which was
579 first observed after dam closure. Currently, permanent C₄ vegetation is found close to the river,
580 whereas the seasonal growth has larger C₃ inputs; this is responsible for the seemingly contrasting
581 patterns in particulate organic carbon $\delta^{13}\text{C}$ signatures. Both floodplains transported floodplain-derived
582 material during the wet season, and inputs from permanent vegetation during the dry season.

583

584 Differences between the two systems that can be attributed to the presence of the Itezhi-Tezhi
585 reservoir upstream of the Kafue Flats, which altered the inputs to the particulate organic matter pool
586 in the Kafue Flats. Besides the effect of woody encroachment on the stable carbon isotopic signature,
587 seasonal inputs of aquatic primary production in the upstream reservoir lowered the reactivity and
588 POC:PN ratio in the Kafue Flats during the wet season. By contrast, soil material was transported
589 during the dry season and year-round in the Barotse Plains. In summary, river damming induced
590 vegetation changes in the floodplain towards more woody plants, and phytoplankton production
591 added nitrogen-rich organic matter to the river system downstream.

592

593

594 **Author contributions**

595 A. L. Zuidgeest, R. Zurbrügg, D. B. Senn, and B. Wehrli were responsible for the study design. A. L.
596 Zuidgeest, R. Zurbrügg, N. Blank, and R. Fulcri performed the fieldwork and the laboratory analyses.
597 Data analysis was performed by A. L. Zuidgeest, R. Zurbrügg, and D. B. Senn, and supported by N.

Deleted: illustrates howact asreactors thatbehave distinctly different Over an annual cycle, the Barotse Plains export more carbon and nutrients normalized to the floodplain area (yields) than previously reported for the Zambezi and other tropical rivers. The Kafue Flats are exhibiting negative yields, effectively retaining and accumulating organic matter and nutrients over a full hydrological cycle.

Deleted: which was first observed afterclosure

Deleted: The spatial distribution of C₃ and C₄ plants in the floodplains disrupts the signal of floodplain inputs during the wet season in the Kafue Flats.

Deleted: which included a delay of the input of runoff-derived floodplain soil organic matter and altered the inputs to the particulate organic matter pool in the Kafue Flats. aquatic reactivity and. By contrast,

Deleted: The difference between sources of organic matter in the two floodplains partly also results from the presence of the Kafue River dams: since the dam construction, woody encroachment onto the Kafue Flats floodplain has increased, contributing to the wet-season signal of permanent vegetation. This is a result of the presence of the dams that only became evident with time, and shows the importance for monitoring after dam construction.

629 Blank, R. Fulcri, and B. Wehrli. The manuscript was prepared by A. L. Zuijdgeest with contributions
630 from all co-authors.

631

632 **Acknowledgements**

633 The authors thank Wilma Blaser, Griffin Shanungu, Cristian Teodoru, Jason Wamulume, Mongu
634 harbor personnel, and the Zambia Wildlife Authority for fieldwork assistance. Laboratory analyses
635 were supported by Stewart Bishop, Madalina Jaggi, Daniel Montluçon (ETH Zürich) Kate Ashe,
636 Chantal Freymond, Patrick Kathriner, Gijs Nobbe, Ruth Stierli, Stephan Suter, Prosper Zigah
637 (Eawag), Moritz Lehmann, and Mark Rollog (University of Basel). Comments from Tim Kalvelage
638 (ETH Zürich), and our two reviewers (Lex Bouwman and Tim Jennerjahn) improved the manuscript.
639 Institutional support was provided by Imasiku Nyambe (University of Zambia and its Integrated
640 Water Resource Management Center), the Zambia Wildlife Authority, the Zambezi River Authority,
641 and the Zambia Electricity Supply Corporation. Funding for this study came from the Competence
642 Center for Environment and Sustainability (CCES) of the ETH domain, the Swiss National Science
643 Foundation (Grant No. 128707) and Eawag.

644

645

646 **References**

647 Aitkenhead-Peterson, J. A., McDowell, W. H., and Neff, J. C.: 2 - Sources, Production, and
648 Regulation of Allochthonous Dissolved Organic Matter Inputs to Surface Waters, in: *Aquatic
649 Ecosystems*, edited by: Findlay, S. E. G., and Sinsabaugh, R. L., Academic Press, Burlington, 25-70,
650 2003.

651 Akoko, E., Atekwana, E., Cruse, A., Molwalefhe, L., and Masamba, W. L.: River-wetland interaction
652 and carbon cycling in a semi-arid riverine system: the Okavango Delta, Botswana, *Biogeochemistry*,
653 114, 359-380, 10.1007/s10533-012-9817-x, 2013.

654 Alin, S. R., Aalto, R., Goni, M. A., Richey, J. E., and Dietrich, W. E.: Biogeochemical
655 characterization of carbon sources in the Strickland and Fly rivers, Papua New Guinea, *Journal of
656 Geophysical Research-Earth Surface*, 113, F01S05, 10.1029/2006jf000625, 2008.

657 Alvarez-Cobelas, M., Angeler, D. G., and Sánchez-Carrillo, S.: Export of nitrogen from catchments:
658 A worldwide analysis, *Environmental Pollution*, 156, 261-269, 10.1016/j.envpol.2008.02.016, 2008.

659 Alvarez-Cobelas, M., Sánchez-Carrillo, S., Angeler, D. G., and Sánchez-Andrés, R.: Phosphorus
660 export from catchments: a global view, *Journal of the North American Benthological Society*, 28,
661 805-820, 10.1899/09-073.1, 2009.

662 Alvarez-Cobelas, M., Angeler, D. G., Sánchez-Carrillo, S., and Almendros, G.: A worldwide view of
663 organic carbon export from catchments, *Biogeochemistry*, 107, 275-293, 10.1007/s10533-010-9553-z,
664 2012.

665 Aufdenkampe, A. K., Mayorga, E., Hedges, J. I., Llerena, C., Quay, P. D., Gudeman, J., Krusche, A.
666 V., and Richey, J. E.: Organic matter in the Peruvian headwaters of the Amazon: Compositional
667 evolution from the Andes to the lowland Amazon mainstem, *Organic Geochemistry*, 38, 337-364,
668 10.1016/j.orggeochem.2006.06.003, 2007.

669 Barros, N., Cole, J. J., Tranvik, L. J., Prairie, Y. T., Bastviken, D., Huszar, V. L. M., del Giorgio, P.,
670 and Roland, F.: Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude,
671 *Nature Geoscience*, 4, 593-596, 10.1038/ngeo1211, 2011.

672 Bastviken, D., Cole, J. J., Pace, M. L., and Van de Bogert, M. C.: Fates of methane from different
673 lake habitats: Connecting whole-lake budgets and CH₄ emissions, *Journal of Geophysical Research*,
674 113, G02024, 10.1029/2007JG000608, 2008.

675 Beilfuss, R.: A Risky Climate for Southern African Hydro - Assessing hydrological risks and
676 consequences for Zambezi River Basin dams, Technical Report, International Rivers, Berkeley,
677 California, 2012.

678 Berman, T., and Bronk, D. A.: Dissolved organic nitrogen: a dynamic participant in aquatic
679 ecosystems, *Aquatic Microbial Ecology*, 31, 279-305, 10.3354/ame031279, 2003.

680 Beusen, A. H. W., Dekkers, A. L. M., Bouwman, A. F., Ludwig, W., and Harrison, J.: Estimation of
681 global river transport of sediments and associated particulate C, N, and P, *Global Biogeochemical
682 Cycles*, 19, GB4S05, 10.1029/2005gb002453, 2005.

683 Bird, M. I., Giresse, P., and Ngos, S.: A seasonal cycle in the carbon-isotope composition of organic
684 carbon in the Sanaga River, Cameroon, *Limnology and Oceanography*, 43, 143-146,
685 10.4319/lo.1998.43.1.0143, 1998.

686 Blaser, W. J.: Impact of woody encroachment on soil-plant-herbivore interactions in the Kafue Flats
687 floodplain ecosystem [Ph.D. thesis], Ph.D., Swiss Federal Institute of Technology, ETH Zürich,
688 Switzerland, 2013.

689 Bouillon, S., Yambélé, A., Gillikin, D. P., Teodoru, C., Darchambeau, F., Lambert, T., and Borges, A.
690 V.: Contrasting biogeochemical characteristics of the Oubangui River and tributaries (Congo River
691 basin), *Scientific Reports*, 4, 10.1038/srep05402, 2014.

692 Bronk, D. A., Lomas, M. W., Glibert, P. M., Schukert, K. J., and Sanderson, M. P.: Total dissolved
693 nitrogen analysis: comparisons between the persulfate, UV and high temperature oxidation methods,
694 *Marine Chemistry*, 69, 163-178, 10.1016/S0304-4203(99)00103-6, 2000.

695 DelSontro, T., Kunz, M. J., Kempfer, T., Wüest, A., Wehrli, B., and Senn, D. B.: Spatial
696 Heterogeneity of Methane Ebullition in a Large Tropical Reservoir, *Environmental Science &
697 Technology*, 45, 9866-9873, 10.1021/es2005545, 2011.

698 Devol, A. H., Forsberg, B. R., Richey, J. E., and Pimentel, T. P.: Seasonal variation in chemical
 699 distributions in the Amazon (Solimões) River: A multiyear time series, *Global Biogeochemical
 700 Cycles*, 9, 307-328, 10.1029/95GB01145, 1995.

701 Dunne, T., Mertes, L. A. K., Meade, R. H., Richey, J. E., and Forsberg, B. R.: Exchanges of sediment
 702 between the flood plain and channel of the Amazon River in Brazil, *Geological Society of America
 703 Bulletin*, 110, 450-467, 10.1130/0016-7606(1998)110<0450:EOSBTF>2.3.CO;2, 1998.

704 Ellenbroek, G. A.: Ecology and productivity of an African wetland system: The Kafue Flats [Ph.D.
 705 thesis], Junk Publisher, Zambia, 1987.

706 Esser, G., and Kohlmaier, G. H.: Modelling terrestrial sources of nitrogen, phosphorus, sulphur, and
 707 organic carbon to rivers, in: *Biogeochemistry of major world rivers*, edited by: Degens, E. T., Kempe,
 708 S., and Richey, J. E., Wiley, 297-322, 1991.

709 Fisher, J., and Acreman, M. C.: Wetland nutrient removal: a review of the evidence, *Hydrology and
 710 Earth System Sciences*, 8, 673-685, 10.5194/hess-8-673-2004, 2004.

711 Fu, K. D., He, D. M., and Lu, X. X.: Sedimentation in the Manwan reservoir in the Upper Mekong
 712 and its downstream impacts, *Quaternary International*, 186, 91-99, 10.1016/j.quaint.2007.09.041,
 713 2008.

714 Hall, A., Valente, I. M. C. B. S., and Davies, B. R.: The Zambezi River in Mozambique: The physico-
 715 chemical status of the middle and lower Zambesi prior to closure of the Cabora Bassa Dam,
 716 *Freshwater Biology*, 7, 187-206, 1977.

717 Hamilton, S. K., Sippel, S. J., Calheiros, D. F., and Melack, J. M.: An anoxic event and other
 718 biogeochemical effects of the Pantanal wetland on the Paraguay River, *Limnology and
 719 Oceanography*, 42, 257-272, 10.4319/lo.1997.42.2.0257, 1997.

720 Harrison, J. A., Caraco, N., and Seitzinger, S. P.: Global patterns and sources of dissolved organic
 721 matter export to the coastal zone: Results from a spatially explicit, global model, *Global
 722 Biogeochemical Cycles*, 19, GB4S04, 10.1029/2005gb002480, 2005.

723 Hedges, J. I., Clark, W. A., Quay, P. D., Richey, J. E., Devol, A. H., and Santos, U. D.: Compositions
 724 and fluxes of particulate organic material in the Amazon River, *Limnology and Oceanography*, 31,
 725 717-738, 1986.

726 Hughes, R. H., and Hughes, J. S.: A directory of African wetlands, UNEP, Nairobi & IUCN, Gland
 727 Switzerland/WCMC, Cambridge, 820 pp., 1992.

728 Hunsinger, G. B., Mitra, S., Findlay, S. E. G., and Fischer, D. T.: Wetland-driven shifts in suspended
 729 particulate organic matter composition of the Hudson River estuary, New York, *Limnology and
 730 Oceanography*, 55, 1653-1667, 10.4319/lo.2010.55.4.1653, 2010.

731 Junk, W. J., Bayley, P. B., and Sparks, R. E.: The flood pulse concept in river-floodplain systems in:
 732 *Proceedings of the International Large River Symposium*, edited by: Dodge, D. P., Canadian Special
 733 Publication of Fisheries and Aquatic Sciences 106, 110-127, 1989.

734 Junk, W. J., and Piedade, M. T. F.: Biomass and primary-production of herbaceous plant-communities
 735 in the Amazon floodplain, *Hydrobiologia*, 263, 155-162, 10.1007/BF00006266, 1993.

736 Junk, W. J.: The flood pulse concept of large rivers: learning from the tropics, *Large Rivers*, 11, 261-
 737 280, 10.1127/lr/11/1999/261, 1999.

738 Kummu, M., and Varis, O.: Sediment-related impacts due to upstream reservoir trapping, the Lower
 739 Mekong River, *Geomorphology*, 85, 275-293, 2007.

740 Kummu, M., Tes, S., Yin, S., Adamson, P., Józsa, J., Koponen, J., Richey, J., and Sarkkula, J.: Water
 741 balance analysis for the Tonle Sap Lake–floodplain system, *Hydrological Processes*, 28, 1722-1733,
 742 10.1002/hyp.9718, 2014.

743 Kunz, M. J., Anselmetti, F. S., Wüest, A., Wehrli, B., Vollenweider, A., Thüring, S., and Senn, D. B.:
 744 Sediment accumulation and carbon, nitrogen, and phosphorus deposition in the large tropical reservoir
 745 Lake Kariba (Zambia/Zimbabwe), *Journal of Geophysical Research*, 116, G03003,
 746 10.1029/2010jg001538, 2011a.

747 Kunz, M. J., Wüest, A., Wehrli, B., Landert, J., and Senn, D. B.: Impact of a large tropical reservoir
 748 on riverine transport of sediment, carbon, and nutrients to downstream wetlands, *Water Resources
 749 Research*, 47, W12531, 10.1029/2011wr010996, 2011b.

750 Kunz, M. J., Senn, D. B., Wehrli, B., Mwelwa, E. M., and Wüest, A.: Optimizing turbine withdrawal
 751 from a tropical reservoir for improved water quality in downstream wetlands, *Water Resources
 752 Research*, 49, 5570-5584, 10.1002/wrcr.20358, 2013.

753 Lewis, W., Jr., and Saunders, J., III: Concentration and transport of dissolved and suspended
 754 substances in the Orinoco River, *Biogeochemistry*, 7, 203-240, 10.1007/BF00004218, 1989.

755 Lu, X. X., and Siew, R. Y.: Water discharge and sediment flux changes over the past decades in the
 756 Lower Mekong River: possible impact of the Chinese dams, *Hydrology and Earth System Sciences*,
 757 10, 181-195, 10.5194/hess-10-181-2006, 2006.

758 Maingi, J. K., and Marsh, S. E.: Quantifying hydrologic impacts following dam construction along the
 759 Tana River, Kenya, *Journal of Arid Environments*, 50, 53-79, 10.1006/jare.2000.0860, 2002.

760 Mariotti, A., Gadel, F., Giresse, P., and Kinga, M.: Carbon isotope composition and geochemistry of
 761 particulate organic matter in the Congo River (Central Africa): Application to the study of Quaternary
 762 sediments off the mouth of the river, *Chemical Geology: Isotope Geoscience section*, 86, 345-357,
 763 10.1016/0168-9622(91)90016-P, 1991.

764 Mayorga, E., Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H. W., Bouwman, A. F.,
 765 Fekete, B. M., Kroeze, C., and Van Drecht, G.: Global Nutrient Export from WaterSheds 2 (NEWS
 766 2): Model development and implementation, *Environmental Modelling & Software*, 25, 837-853,
 767 10.1016/j.envsoft.2010.01.007, 2010.

768 McJannet, D., Wallace, J., Keen, R., Hawdon, A., and Kemei, J.: The filtering capacity of a tropical
 769 riverine wetland: II. Sediment and nutrient balances, *Hydrological Processes*, 26, 53-72,
 770 10.1002/hyp.8111, 2012.

771 Melack, J. M., Novo, E. M. L. M., Forsberg, B. R., Piedade, M. T. F., and Maurice, L.: Floodplain
 772 Ecosystem Processes, in: *Amazonia and Global Change*, edited by: Keller, M., Bustamante, M., Gash,
 773 J., and Silva Dias, P., *Geophysical Monograph Series*, American Geophysical Union, Washington,
 774 DC, 525-541, 2009.

775 Milliman, J. D., and Farnsworth, K. L.: *River Discharge to the Coastal Ocean*, Cambridge University
 776 Press, 2011.

777 Mulholland, P. J.: 6 - Large-Scale Patterns in Dissolved Organic Carbon Concentration, Flux, and
 778 Sources, in: *Aquatic Ecosystems*, edited by: Findlay, S. E. G., and Sinsabaugh, R. L., Academic
 779 Press, Burlington, 139-159, 2003.

780 Mumba, M., and Thompson, J. R.: Hydrological and ecological impacts of dams on the Kafue Flats
 781 floodplain system, southern Zambia, *Physics and Chemistry of the Earth*, 30, 442-447,
 782 10.1016/j.pce.2005.06.009, 2005.

783 Nilsson, C., Reidy, C. A., Dynesius, M., and Revenga, C.: Fragmentation and Flow Regulation of the
 784 World's Large River Systems, *Science*, 308, 405-408, 10.1126/science.1107887, 2005.

785 Pettit, N. E., Bayliss, P., Davies, P. M., Hamilton, S. K., Warfe, D. M., Bunn, S. E., and Douglas, M.
 786 M.: Seasonal contrasts in carbon resources and ecological processes on a tropical floodplain,
 787 *Freshwater Biology*, 56, 1047-1064, 10.1111/j.1365-2427.2010.02544.x, 2011.

788 Robertson, A. I., Bunn, S. E., Walker, K. F., and Boon, P. I.: Sources, sinks and transformations of
 789 organic carbon in Australian floodplain rivers, *Marine and Freshwater Research*, 50, 813-829,
 790 10.1071/MF99112 1999.

791 Rood, S. B., Samuelson, G. M., Braatne, J. H., Gourley, C. R., Hughes, F. M. R., and Mahoney, J. M.:
 792 Managing river flows to restore floodplain forests, *Frontiers in Ecology and the Environment*, 3, 193-
 793 201, 10.1890/1540-9295(2005)003[0193:MRFTRF]2.0.CO;2, 2005.

794 Rudorff, C. M., Melack, J. M., and Bates, P. D.: Flooding dynamics on the lower Amazon floodplain:
 795 2. Seasonal and interannual hydrological variability, *Water Resources Research*, 50, 635-649,
 796 10.1002/2013WR014714, 2014.

797 Ruttenberg, K. C.: Development of a sequential extraction method for different forms of phosphorus
 798 in marine sediments, *Limnology and Oceanography*, 37, 1460-1482, 10.4319/lo.1992.37.7.1460,
 799 1992.

800 Slomp, C. P., Epping, E. H. G., Helder, W., and Van Raaphorst, W.: A key role for iron-bound
 801 phosphorus in authigenic apatite formation in North Atlantic continental platform sediments, *Journal
 802 of Marine Research*, 54, 1179-1205, 10.1357/0022240963213745, 1996.

803 Solórzano, L., and Sharp, J. H.: Determination of total dissolved nitrogen in natural waters,
 804 *Limnology and Oceanography*, 25, 751-754, 10.4319/lo.1980.25.4.0751, 1980.

805 Spencer, R. G. M., Hernes, P. J., Ruf, R., Baker, A., Dyda, R. Y., Stubbins, A., and Six, J.: Temporal
 806 controls on dissolved organic matter and lignin biogeochemistry in a pristine tropical river,

807 Democratic Republic of Congo, *Journal of Geophysical Research: Biogeosciences*, 115, G03013,
808 G03013 10.1029/2009jg001180, 2010.

809 Tamooh, F., Meysman, F. J. R., Borges, A. V., Marwick, T. R., Van Den Meersche, K., Dehairs, F.,
810 Merckx, R., and Bouillon, S.: Sediment and carbon fluxes along a longitudinal gradient in the lower
811 Tana River (Kenya), *Journal of Geophysical Research: Biogeosciences*, 119, 2013JG002358,
812 10.1002/2013JG002358, 2014.

813 Tockner, K., and Stanford, J. A.: Riverine flood plains: present state and future trends, *Environmental
814 Conservation*, 29, 308-330, 10.1017/s037689290200022x, 2002.

815 Tockner, K., Pusch, M., Borchardt, D., and Lorang, M. S.: Multiple stressors in coupled river-
816 floodplain ecosystems, *Freshwater Biology*, 55, 135-151, 10.1111/j.1365-2427.2009.02371.x, 2010.

817 Villar, C. A., de Cabo, L., Vaithyanathan, P., and Bonetto, C.: River-floodplain interactions: nutrient
818 concentrations in the Lower Parana River, *Archiv für Hydrobiologie*, 142, 433-450, 1998.

819 Wamulume, J., Landert, J., Zurbrügg, R., Nyambe, I., Wehrli, B., and Senn, D. B.: Exploring the
820 hydrology and biogeochemistry of the dam-impacted Kafue River and Kafue Flats (Zambia), *Physics
821 and Chemistry of the Earth*, 36, 775-788, 10.1016/j.pce.2011.07.049, 2011.

822 Ward, J. V., and Stanford, J. A.: The serial discontinuity concept: extending the model to floodplain
823 rivers, *Regulated Rivers: Research & Management*, 10, 159-168, 10.1002/rrr.3450100211, 1995.

824 Wiegner, T. N., Tubal, R. L., and MacKenzie, R. A.: Bioavailability and export of dissolved organic
825 matter from a tropical river during base- and stormflow conditions, *Limnology and Oceanography*,
826 54, 1233-1242, 10.4319/lo.2009.54.4.1233, 2009.

827 Zambezi Society: *Biodiversity of the Zambezi Basin Wetlands: Volume III: Land use change and
828 human impacts*, Zambezi Society and Biodiversity Foundation for Africa, 2000.

829 Zurbrügg, R., Wamulume, J., Kamanga, R., Wehrli, B., and Senn, D. B.: River-floodplain exchange
830 and its effects on the fluvial oxygen regime in a large tropical river system (Kafue Flats, Zambia),
831 *Journal of Geophysical Research*, 117, G03008, 10.1029/2011jg001853, 2012.

832 Zurbrügg, R., Suter, S., Lehmann, M. F., Wehrli, B., and Senn, D. B.: Organic carbon and nitrogen
833 export from a tropical dam-impacted floodplain system, *Biogeosciences*, 10, 23-38, 10.5194/bg-10-
834 23-2013, 2013.

835

836

Tables

Table 1. Net export (in t C d^{-1} and t N d^{-1}), calculated as the difference between loads at the downstream and upstream ends of the respective floodplain, from the two floodplains during wet and dry seasons. Positive numbers indicate that the floodplain acted as a source (export), negative numbers indicate the floodplain acting as a sink (retention). POC and PN export from the Kafue Flats during the dry season could not be estimated due to lack of measurements at downstream locations.

System		POC	DOC	DIC	PN	DON	DIN
Barotse	<i>Wet season</i>	-38	170	270	-3.7	12	0.0
	<i>Dry season</i>	14	-1.5	-78	1.6	0.0	0.0
Kafue Flats	<i>Wet season</i>	6.5	160	640	0.6	11	0.1
	<i>Dry season</i>	NA	-11	-89	NA	-0.8	-0.2

Table 2. Yields of carbon, nitrogen and phosphorus in kg (C or N) km⁻² yr⁻¹ from large river basins and floodplain yields from the Barotse Plains and Kafue Flats. Yields for this study are calculated from the maximum inundated areas mentioned in the Study Sites, assuming 6 months of dry-season export, and 6 months of wet-season export. POC and PN yields from the Kafue Flats during the dry season could not be estimated due to lack of measurements at downstream locations, so no yearly yields were calculated.

Sources: a Beusen et al. (2005), b Bouillon et al. (2014), c Esser and Kohlmaier (1991), d Harrison et al. (2005), e Lewis and Saunders (1989), f Mayorga et al. (2010), g Hall et al. (1977).

River	POC	DOC	PN	DON	DIN
Amazon	2900 ^a	5200 ^d	500 ^a	330 ^d , 180 ^f	170 ^f
Congo	1400 ^a , 400 ^c	3300 ^a , 1600 ^c	200 ^a	92 ^c , 58 ^f	32 ^f
Orinoco	1500 ^c	5600 ^d , 5200 ^e	190 ^c	310 ^d , 190 ^e , 170 ^f	
Oubangui	180-300 ^b	660-1500 ^b	20-29 ^b		
Zambezi	800 ^a	1000-2000 ^f	100 ^a	-	14 ^f , 100-300 ^g

This study:

Barotse Plains	570	4000	50	300	0.1
Kafue Flats	NA	4600	NA	300	-1.5

Deleted: . Inundation areas should be considered conservative estimates (see methods section for how inundation areas were estimated)

Deleted: Dry-season areas were estimated based on river length and width.

Deleted: 8000

Deleted: 3000

Deleted: 880

Deleted: 3

Deleted: 10

Deleted: 0

Deleted: -2700

Deleted: -200

Deleted: 110

Deleted: -

Figures

Figure 1. Map of the Zambezi catchment, with floodplains (in green) and large dams (red arrows) marked. Inserts show sampling stations during the dry (circles) and wet season (stars) in the Barotse Plains and Kafue Flats. Sampling stations will be further presented in distance along the river (km).

Figure 2. River discharge (a) at Senanga, the downstream boundary of the Barotse Plains (1988-2006 average and standard deviation) and (b) at the outflow of Itezhi-Tezhi (ITT) dam, the upstream boundary of the Kafue Flats. Discharge for the Kafue Flats are means of pre-dam (1960-1971), and post-dam construction (Kafue Gorge dam: 1972-1977; ITT dam: 1978-2010) periods. Data from the Department of Water Affairs and Zambezi River Authority, permission for reprint first granted to Blaser (2013).

Figure 3. Discharge and stable oxygen isotope signals in the Barotse Plains and the Kafue Flats during wet and dry seasons. Discharge and $\delta^{18}\text{O}$ data for the Kafue Flats have been published previously in Zurbrügg et al. (2012).

Figure 4. Boxplots of the concentrations of dissolved and particulate carbon, nitrogen and phosphorus species along the Barotse Plains and the Kafue Flats during wet and dry seasons along the floodplain. The boxes represent the first and third quartiles, and the median. No measurements of particulate phosphorus were made on samples from the dry seasons. Carbon and nitrogen data of the Kafue Flats have been previously published in Zurbrügg et al. (2013).

Figure 5. Dissolved and particulate carbon and nitrogen loads along the Barotse Plains and the Kafue Flats during wet and dry seasons. The loads of particulate carbon and nitrogen at the two most downstream locations in the Kafue Flats could not be determined for the dry season due to lack of POC and PN measurements.

Figure 6. Carbon to nitrogen (C:N) ratios of particulate and dissolved organic matter as well as carbon isotopic signatures of particulate organic matter during wet (blue triangles) and dry (orange circles) seasons. The Kafue Flats data have been previously published in Zurbrügg et al. (2013).

Figure 7. Summary of the organic matter characteristics ($\delta^{13}\text{C}$, POC:PN, DOC:DON), oxygen isotopic enrichment along the floodplain during the wet and dry season in the Barotse Plains and Kafue Flats. Proportional arrows indicate net export from the floodplain to the river (arrow towards the system) and removal rates of material from the river to the floodplain (arrow away from the system) of POM (POC+PN) and DOM (DOC+DON).

Deleted: , and p

Deleted: for

Deleted:

Deleted: in the Barotse Plains and Kafue Flats during the wet and dry season