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Abstract 9 

Recent developments in modelling soil organic carbon decomposition include the explicit 10 

incorporation of enzyme and microbial dynamics. A characteristic of these models is a positive 11 

feedback between substrate and consumers, which is absent in traditional first order decay 12 

models. Under sufficiently large substrate, this feedback allows an unconstrained growth of 13 

microbial biomass. We explore mechanisms that curb unrestricted microbial growth by including 14 

finite potential sites where enzymes can bind and by allowing microbial scavenging for enzymes. 15 

We further developed a model where enzyme synthesis is not scaled to microbial biomass, but 16 

associated with a respiratory cost and microbial population adjusts enzyme production in order to 17 

optimise their growth. We then tested short and long-term responses of these models to a step 18 

increase in temperature and find that these models differ in the long-term when short-term 19 

responses are harmonized. We show that several mechanisms, including substrate limitation, 20 

variable production of microbial enzymes, and microbes feeding on extracellular enzymes 21 
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eliminate oscillations arising from a positive feedback between microbial biomass and 1 

depolymerisation. The model where enzyme production is optimised to yield maximum 2 

microbial growth shows the strongest reduction of soil organic carbon in response to warming, 3 

and the trajectory of soil carbon largely follows that of a first order decomposition model. 4 

Modifications to separate growth and maintenance respiration generally yield short-term 5 

differences, but results converge over time because microbial biomass approaches a quasi-6 

equilibrium with the new conditions of carbon supply and temperature.  7 

 8 

1 Introduction 9 

Traditional soil organic matter decomposition models are based on first order kinetics, where 10 

decomposition scales to the pool size.  The scaling factor represents recalcitrance of a specific 11 

pool and is modified by soil temperature, moisture, and other soil properties (e.g., van Veen et 12 

al., 1984; Parton et al., 1987; Molina et al., 1990; Li, 1996; Chertov and Komarov, 1997). Recent 13 

modelling efforts have specifically included catalysis of polymeric soil organic carbon to 14 

dissolved organic carbon (DOC) by extracellular enzymes. This depolymerisation step is thought 15 

to be a rate-limiting step in organic matter decomposition processes (Schimel and Weintraub, 16 

2003; Fontaine and Barot, 2005).  17 

In traditional models, microbes are only considered as a simple donor-controlled pool (i.e., 18 

microbial biomass has no impact on decomposition), or in an implicit manner (Gerber et al., 19 

2010). In contrast, in microbial models, decomposition rates become a function of enzyme 20 

activity that is linked to microbial biomass (Allison et al., 2010; German et al., 2012). This leads 21 

to more complex dynamics because decomposers feed back into soil organic matter degradation 22 

via microbial enzyme production affecting depolymerisation. This positive feedback between 23 
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microbial biomass and depolymerisation causes soil organic carbon stocks and microbial 1 

biomass to oscillate after a perturbation (Li et al., 2014; Wang et al., 2014). Nevertheless, 2 

microbial decomposition models have been shown to improve the prediction of soil carbon and 3 

perform well when compared against decomposition experiments (Lawrence et al., 2009; Wieder 4 

et al., 2013; Wieder et al., 2014a; Wieder et al., 2014b; Wieder et al., 2015b). Furthermore, when 5 

compared to a traditional first order models, microbial models also display an attenuated loss of 6 

soil organic matter to warming (Allison et al., 2010; Wieder et al., 2013). 7 

Moreover, the response of soil organic matter to warming is very sensitive to microbial carbon 8 

use efficiency (CUE), because this parameter and its climate sensitivity define the fraction of 9 

carbon remaining in the soil as processed organic matter vs. carbon removed via respiratory CO2 10 

(Allison et al., 2010; Frey et al., 2013; Kivlin et al., 2013; Tucker et al., 2013; Wang et al., 2013; 11 

Li et al., 2014). Temperature-dependence of CUE is typically not considered in traditional 12 

decomposition models (but see Frey et al., 2013), rather the ratios between respired CO2 and the 13 

transfer to different quality pools are mostly constant parameters, or vary based on soil texture, 14 

soil recalcitrance, and organic or inorganic nutrient content (Parton et al., 1987; Gerber et al., 15 

2010). Microbial respiration can be partitioned into a series of carbon expenditures that do not 16 

contribute to growth. These expenditures include growth respiration, maintenance respiration, 17 

respiratory cost for enzyme production, and overflow respiration (Manzoni et al., 2012; 18 

Moorhead et al., 2012). Each type of respiratory carbon expenditure may differ in its response to 19 

temperature.  20 

Respiration may be parameterised based on different microbial properties. For example, 21 

maintenance respiration is assumed to scale with microbial biomass (Chapman and Gray, 1986; 22 

Fontaine and Barot, 2005) while growth respiration may scale to the amount of new tissues built. 23 
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On the other hand, overflow respiration occurs during stoichiometric adjustment (Russell and 1 

Cook, 1995; Schimel and Weintraub, 2003; Frost et al., 2005; Franklin et al., 2011) whereas 2 

costs related to enzyme production may be governed by microbial demand and substrate 3 

availability and quality, resource diffusion, and microbial diversity (Allison, 2005). This 4 

differentiation can impact the dynamics of the microbial biomass: For example, maintenance 5 

respiration costs would be incurred even in the absence of carbon uptake, which can lead to a 6 

reduction in microbial biomass. In contrast, growth respiration is only due when substrate for 7 

growth is available. Because of the explicit and mechanistic link between microbial activity and 8 

soil organic matter degradation, inclusion of microbial models in Earth System Models may have 9 

the potential to ultimately reduce uncertainty of climate-carbon feedback in the face of climate 10 

change, because of the explicit link between microbial activity and soil organic matter 11 

degradation (Todd-Brown et al. 2012, 2013; Wieder et al., 2015a).  12 

As microbial models are considered for broader application in Earth System Models, it is 13 

essential to analyse and understand their structure and their dynamics. Here, we compare a series 14 

of microbial decomposition models with each other. Specifically, we analyse feedbacks between 15 

depolymerisation and microbial growth, consider constraints on depolymerisation and enzyme-16 

substrate interactions, investigate the parameterisation of microbial enzyme productivity, and 17 

address the representation of microbial respiration and CUE.  18 

Our main questions are: 19 

a) How do different model implementations of depolymerisation affect the feedback between 20 

microbial biomass and soil organic matter, if subjected to warming? 21 

b) How does the consideration of functional respiration terms (growth, maintenance, and carbon 22 

acquisition expenditures) affect decomposition dynamics? 23 
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We organise the paper in the following way. In the next section, we introduce 3 simple models 1 

that differ in their representation of depolymerisation. Each model will be further modified for 2 

different representation of microbial dynamics and respiration. To analyse model behaviour, we 3 

will evaluate the response of respiration, microbial biomass, CUE, and soil organic matter to a 4 

step increase in temperature. We will then discuss the models’ behaviour and compare their 5 

results with the dynamics of a traditional first order model.  6 

 7 

2 Materials and methods 8 

2.1 Model descriptions  9 

We first introduce three model families that differ in the way depolymerisation is handled.  10 

In all models, the setup consists of a single soil organic matter pool and a single microbial pool 11 

(Fig. 1). All models also implicitly take into account interaction between enzymes and substrate 12 

that results into depolymerisation of substrate into a DOC pool on which microbes can feed. 13 

Enzyme-substrate reactions are based on Michaelis-Menten kinetics (see Appendix A, 14 

Michaelis-Menten kinetics with enzyme denaturation). We do not consider a specific enzyme 15 

pool, nor a specific DOC pool, but assume that the enzyme and DOC pools are in a quasi-steady 16 

state (see Appendix A, DOC and enzyme dynamics). Thus, the amount of enzyme produced 17 

equals the amount of enzyme decay at every time step. Similarly, the amount of DOC produced 18 

is the same as the amount of DOC consumed by microbes. In contrast to Allison et al. (2010), 19 

but congruent with German et al. (2012), there is no “free” DOC, both fresh litter and microbial 20 

necromass need to be depolymerised before they can be ingested by microbes. In all models 21 
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depolymerisation and microbial respiration are temperature dependent, causing increased 1 

depolymerisation and reduced microbial CUE with warming. 2 

2.1.1. Base Models  3 

The tendency (derivative with respect to time) for soil organic carbon and microbes in all of the 4 

models are described with: 5 

dS

dt
= I + λd ∗ M − D                                                                                                                 (1) 6 

dM

dt
= D ∗ ε − λd ∗ M                                                                                                                 (2) 7 

where S and M are the soil organic matter and the microbial pool, respectively, I is the input of 8 

fresh litter, λd is the death rate of microbes, D is the rate of depolymerisation, and ε is the 9 

microbial CUE. 10 

Forward M-M Model (FWD) 11 

In the forward model (FWD), depolymerisation is represented as a Michaelis-Menten process 12 

and stems from the  simple microbial-enzyme decomposition model as proposed by Allison et al. 13 

(2010) and modified by German et al. (2012) (Fig 1a).  14 

D =
Vmax,FWD∗S∗M

Km+S
                                                                                                        (3)          15 

Where D is the rate of depolymerisation, Vmax,FWD is the maximum depolymerisation rate and Km 16 

the half saturation constant of enzymes. Appendix A shows the derivation of this function based 17 

on enzyme-substrate dynamics.   18 

Diminishing Return (REV) Model  19 
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In Appendix B, we derive two depolymerisation models which show a diminishing increase of 1 

depolymerisation as microbial mass increases. These models include a) a case where microbes 2 

are scavenging for free enzymes, and b) where potential sites for enzyme-substrate reactions are 3 

finite. The implementation of these factors lead to a reverse Michaelis-Menten type model 4 

(REV) as in Schimel and Weintraub (2003): 5 

D =
Vmax,REV∗S∗M

Ke+M
                                                                                                                        (4) 6 

Where Vmax,REV is the maximum depolymerisation rate for this model, Ke is a half saturation 7 

constant that determines the diminishing return function. In the cases developed in the Appendix, 8 

Ke incorporates factors indicating the finite sites for enzyme substrate interactions (Appendix B, 9 

model with limited available substrate), or the efficiency with which microbes scavenge for free 10 

extracellular enzymes (Appendix B, microbial consumption of enzymes). A version of the 11 

reverse Michaelis-Menten model also has been derived for the case where an enzyme can adsorb 12 

to only a fraction of soil organic matter due to inaccessible binding sites from surface limitation 13 

or phyiscal protection (Wang and Post, 2013). A major difference from the FWD model is the 14 

inclusion of the amount of microbial biomass in the denominator in lieu of soil organic matter. 15 

Therefore, the depolymerisation per unit biomass decreases as biomass increases, plateauing at 16 

Vmax,REV*S (diminishing return).  17 

Optimised Enzyme Production (OPT) Model 18 

In our OPT model, we relax the condition that microbial enzyme production scales to microbial 19 

biomass, an assumption that is present in many microbial models and which is also assumed in 20 

the FWD and the REV model above. Instead, we probe a model where microbial enzyme 21 

production is optimised for growth. We motivate this by microbial competition (Allison, 2005), 22 
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which allows microbes to succeed if microbial enzyme production allows the highest possible 1 

return. Optimisation only has meaningful results for the case of limited substrate availability (i.e. 2 

a diminishing return, possibly through constraints in potential sites for enzyme-substrate 3 

reaction) and if there is a cost associated with microbial enzyme production.  4 

Depolymerisation as a function of enzyme production can be represented by  5 

D(P) =
P∗Vmax,OPT∗S

Kp+P
                                                                  (5) 6 

Vmax,OPT is the maximum rate of depolymerisation, P is the enzyme production rate, and Kp 7 

carries information on the affinity of the enzyme for the substrate and longevity of the enzyme 8 

(see Appendix C, for  full derivation of depolymerisation in the OPT model).  9 

Microbial growth (G) is as in previous models but accounts for carbon expenditure of enzyme 10 

production: 11 

G = ε ∗ (D(P)– Pc)        (6) 12 

Where c is the respiratory cost per unit enzyme produced (Schimel and Weintraub, 2003).   13 

Optimising growth by setting  
dG

dP
= 0 yields:  14 

D =  Vmax,OPT ∗ S – √Kp ∗ c ∗ Vmax,OPT ∗ S          (7) 15 

And the cost per unit carbon depolymerised is then: 16 

Pc

D
= √

Kpc

S Vmax,OPT
        (8) 17 

2.1.2. Quasi-steady state (QSS) microbe models 18 

While the previous models are fairly simple, we further reduce the complexity by removing 19 

microbial biomass as a state variable but instead consider M at a quasi-steady state (QSS). In the 20 
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QSS microbe models, the microbial uptake at each time step is thus equal to the microbial carbon 1 

loss via death or respiration (Fig 1b). This is identical to our treatment of DOC and enzymes, 2 

where production and removal of these substances are always balanced. This simplification is 3 

motivated by the fact that microbial biomass turns over much faster than soil organic matter, and 4 

therefore microbial biomass adjusts much faster to changes in environmental conditions than soil 5 

organic matter itself. The fast turnover of M compared to S allows microbial biomass to (quasi)-6 

equilibrate with the current level of soil organic matter (see also Menge et al., 2009).  7 

In our QSS microbe models, we solve 
dM

dt
= 0, in order to obtain a quasi-steady state microbial 8 

biomass, M̅. M̅ replaces the state variable M in the functions for depolymerisation and microbial 9 

death. We note that this is only possible for the REV and the OPT model as the FWD model 10 

yields no solution for M in 
dM

dt
= 0. The QSS microbe models effectively become a one-pool 11 

model, where depolymerisation is not a direct function of microbial biomass, but an expression 12 

of S and a series of parameters. Table 2 (see formulations for Short/Fast timescale) shows the 13 

quasi-steady state for M, and the resulting depolymerisation function for the QSS microbe 14 

models. M̅ can be diagnosed at each time step based on S and parameters that determine 15 

depolymerisation and microbial turnover (Table 2, second column). In the QSS microbe models 16 

a fraction  (1 − ε) of depolymerisation is immediately recycled back into the soil organic matter 17 

pool, thus the dynamics of the soil pool becomes  18 

dS

dt
= I −  (1 − ε) ∗ D    (9) 19 

In turn, depolymerisation is immediately partitioned into respiration and a returning carbon flux, 20 

which mimics microbial death.  21 

2.1.3. Partitioning between maintenance and growth respiration  22 
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While the dynamics of the soil organic matter pool remains the same as in the base model setup, 1 

we alter all models (FWD, REV, OPT) to treat growth and maintenance respiration as separate 2 

processes (Fig 1c). Partitioning of microbial respiration into growth and maintenance respiration 3 

characterise the microbial pool as follows:  4 

dM

dt
= (D−λr ∗ M)(1 − g)−λd ∗ M   (10) 5 

Where g is the growth respiration fraction and λr the maintenance respiration rate. The separation 6 

of microbial respiration in growth and maintenance terms is motivated by a similar formulation 7 

in other microbial (Beefting et al., 1990; Van Bodegom, 2007), vegetation growth (Foley et al., 8 

1996; Cannell and Thornley, 2000; Arora, 2002; Thornley, 2011; Pretzsch et al., 2014), and 9 

ecosystem-scale (Sistla et al., 2014) models. Growth respiration is applied after requirements for 10 

maintenance respirations are met and is proportional to new microbial tissues built. Maintenance 11 

respiration (respiration related to non-growth components) is typically proportional to microbial 12 

biomass (Van Bodegom, 2007).  13 

2.1.4. First-Order Decomposition (FOD) Model  14 

The last model represents the structure of traditional decomposition models such as CENTURY 15 

(Parton et al., 1987) or Roth-C (Coleman et al., 1996) and their derivatives, where decomposition 16 

is considered as a first-order reaction: 17 

dS

dt
= I − S ∗ k ∗ (1 − ε)         (11) 18 

where k is the first order decomposition constant. The two major differences between our first-19 

order decomposition (FOD) model and traditional models are that we consider only a single 20 

carbon pool whereas traditional models consider multiple pools with different turnover times that 21 

feed into each other. We also consider a temperature-dependent CUE on top of a temperature-22 
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dependent processing rate (k, see parameterisation and implementation section). This increases 1 

the fraction of carbon processed with warming to become CO2. Respiration (R) is then  2 

R = S ∗ k ∗ (1 − ε) (12) 3 

2.2 Temperature response 4 

We implement the response of decomposition to warming by modifying the depolymerisation 5 

and the microbial respiration.  6 

In the FWD, REV and OPT model, Vmax is modified as 7 

Vmax,i(ΔT) = Vmax,i ∗ Q10

(
ΔT

10
)
            (13) 8 

Where Vmax,i and Vmax,i(ΔT) are the reference and temperature-dependent maximum 9 

depolymerisation rate of the model i = (FWD, REV, OPT, see Table 3). Similarly, the 10 

decomposition rate k is modified by the Q10 function in the FOD model.  11 

Further, we also parameterise CUE as a linear function of the temperature change, following 12 

Allison et al. (2010) and German et al. (2012) 13 

ε(ΔT) = ε0 + ΔT ∗ εslope     (14) 14 

where ε0 is the CUE at reference temperature, and εslope is the change in CUE per °C 15 

temperature (ΔT) change. Finally, in the models where we partition growth and maintenance 16 

respiration, we formulate maintenance respiration as a Q10 function of temperature 17 

λr(ΔT) =  λr,0 ∗ Q10

(
ΔT

10
) 

  (15) 18 

Where λr,0 and λr(ΔT) are maintenance respiration rate at reference and elevated temperature. 19 

Growth respiration is typically much less sensitive to warming than maintenance respiration 20 
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(Frantz et al., 2004), and we therefore do not consider a temperature dependence of this 1 

particular respiration term.  2 

In our simplified model we further neglect the weaker temperature dependence of the half 3 

saturation constants (see Davidson et al., 2012; German et al., 2012; Stone et al., 2012), and also 4 

do not consider changes in cost of enzyme production as temperature increases in the case of the 5 

OPT model. 6 

2.3 Parameterisation and implementation  7 

All models are implemented in STELLA, version 10.0.3. To enable comparison among the 8 

models, we adjust parameters in the following way: The models have the same initial soil 9 

organic carbon and the same initial microbial biomass. Both CUE (ε), and its temperature 10 

dependence (εslope) are the same across models.  Further, the temperature sensitivities of Vmax 11 

are identical across models so that we obtain the same increase of depolymerisation in the first 12 

time step after the temperature perturbation. We motivate this kind of parameterisation by 13 

acknowledging that many of these parameters are largely unknown, but it will provide us with 14 

the possibility of comparing the functional response to long-term warming across these models.   15 

We use parameters as reported in German et al. (2012), with a few modifications. Here, we 16 

report Vmax,FWD and Km by considering 15°C as our reference temperature and by incorporating 17 

German et al. (2012) tuning coefficients (aK, aV) directly into these two parameters (Table 3). In 18 

other words, Vmax,FWD and Km are the product of the reference values in German et al. (2012), 19 

their adjustment to our reference temperature, 15°C, and the German et al.‘s (2012) tuning 20 

parameters. Further, we have converted the exponential temperature sensitivity of Vmax,FWD into a 21 

Q10 term.    22 
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To allow a diminishing return mechanism, we assumed that most of the enzyme decay/loss in a 1 

scavenging model is attributed to microbial consumption instead of denaturation. Alternatively, 2 

under conditions of limited enzyme-substrate reaction sites, we assumed that there is an excess 3 

of free enzymes, and therefore, enzyme concentrations are higher than their corresponding half 4 

saturation concentrations. Overall, these assumptions would suggest a Ke that is smaller than M 5 

(Ke <M). Here, we chose Ke considerably but not diminishingly smaller than M equilibrated at 6 

reference temperature (Ke = 0.37 times equilibrated M). Note, that the half saturation constant in 7 

the REV model has a different unit (mg M cm
-3

) than in the FWD model (mg S cm
-3

) (see 8 

Appendix A for the FWD model and Appendix B for the REV model). This leaves the 9 

determination of Vmax,REV, which is tuned here to such that the REV model yields equivalent 10 

equilibrium values of S at the reference temperature as the FWD model. 11 

In the OPT model, we adjust Vmax,OPT (in the same manner as in the REV model) such that the 12 

system again yields equilibrium values for S at the reference temperature (15°C) and the same 13 

initial response to warming as in the other models. In the OPT model, we have to work with two 14 

additional parameters, namely the cost of enzyme production (c), and the term that contains the 15 

affinity of enzymes for the substrate (Kp). We chose to have the OPT models comparable to 16 

others if the cost (c) is zero. Higher costs (c>0) therefore, will yield different equilibrium result 17 

of S and a different response to warming, depending on the cost of enzyme production.  18 

Both, the half saturation constant (affinity parameter, Kp) and the cost per enzyme produced are 19 

parameters that are hard to come by. Instead, the relationship between enzyme production cost 20 

and overall depolymerisation allows us to quantify the product of Kp and c. (see Eq. 8 in the 21 

main text). We define a fractional expense μ that quantifies the enzyme expenditures relative to 22 

overall depolymerisation at the base temperature steady state, and at zero cost (μ = 
Pc

D
|

𝐸𝑞,∆𝑇=0
). 23 
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We chose μ to be 0, 10, and 50  percent of the depolymerisation rate at the reference temperature 1 

and at steady state. Based on the relationship given in Eq. 8 we then obtain an expression for the 2 

combined cost (c) and the half saturation constant (Kp) without having to specify the value of the 3 

individual parameters (see also the variable Y in Table 2):   4 

Kp ∗ c =  μ2 ∗ DEq.,ΔT=0                                                          (16) 5 

Where DEq.,ΔT=0 is the rate of depolymerisation at zero enzyme cost and reference temperature.   6 

When separating growth and maintenance respiration, we sought to equalise steady state CUE, 7 

M, and S by tuning g and λr. We first parameterised maintenance respiration, where, the 8 

coefficient for maintenance respiration is scaled to microbial turnover (Van Bodegom, 2007). 9 

We motivate the partitioning between growth and maintenance respiration based on vegetation 10 

models. LPJ (Sitch et al., 2003) and ED (Moorcroft et al., 2001) have a growth respiration factor 11 

of one-third of the carbon allocated to growth. We then constrain the overall respiration by the 12 

CUE in German et al. (2012), and obtain a maintenance respiration rate by difference. This 13 

yields a maintenance respiration rate that is close to the microbial death rate such that: 14 

λr,0 =  1.25 ∗ λd       (17) 15 

The second parameter, g is adjusted, such that the CUE at the steady state and reference 16 

temperature remains the same. This constrains g to 17 

g =  
λd−ε0∗(λd+ λr,0)

λd−ε0∗ λr,0
        (18) 18 

To obtain the same equilibrium values of CUE at 20°C as in the base models, we adjust Q10,𝝺r 19 

such that models with maintenance respiration have the same CUE as the base models.  20 
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Finally, in the FOD model, the traditional decomposition model, we adjust the parameters k and 1 

ε0 to obtain the same S, and CUE as in all other models at 15°C and employ a Q10,k value 2 

identical  to the Q10 values of Vmax in the other models. We keep the decreasing CUE – a feature 3 

not typically set up in traditional models.    4 

All parameter values are given in Table 3.    5 

 6 

3 Results 7 

3.1 Base Model Simulations  8 

Fig. 2 shows the transient response of the different models (FWD, REV, OPT, and FOD) to a 9 

temperature step from 15°C to 20°C. Recall, that the perturbation occurs after all models were 10 

equilibrated at 15°C and are forced through the same initial values of M, S, and CUE by way of 11 

parameter adjustments. Also, by identical Q10 of Vmax and CUE’s, the initial response to a 12 

warming is equal across the models.  13 

In all models, warming leads to a decline of soil organic matter and microbial biomass (Fig. 2). 14 

In this initial comparison, we assume that there is no cost associated with microbial enzyme 15 

production. Across all the models, microbial biomass first increases because of higher 16 

depolymerisation. Increased depolymerisation causes soil organic matter to decrease. In the 17 

longer term, M decreases as rates of depolymerisation decline due to a reduction in S, and due to 18 

lower CUE. We note that M becomes identical across all models in the long term when soil 19 

organic carbon has equilibrated with microbial processing at higher temperature (see also Table 20 

2). 21 
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The FWD Model shows the oscillations in M and S, as noted earlier (Wang et al., 2014). The 1 

warming triggers an increase in depolymerisation, which in turn feeds microbial biomass, 2 

causing an even higher rate of depolymerisation. This positive feedback experiences a break only 3 

when the substrate (S) is sufficiently depleted, such that microbial biomass begins to decline. 4 

Thereafter, the positive feedback takes over again, the decreasing microbial biomass spirals 5 

down along with depolymerisation until microbial biomass is low enough for soil organic matter 6 

to recover. The amplitude of the oscillations dampens over time (Fig. 2). Rates of respiration 7 

oscillate along with microbial biomass, before settling at the initial rate in the long term (after ca. 8 

200 years).  9 

The transient dynamics in the REV model with a diminishing return as enzyme (or microbial) 10 

concentration increases are smoother compared to FWD model (Fig. 2). The mechanism of 11 

allowing a finite site for enzyme-substrate reaction or microbial scavenging for enzymes curbs 12 

the growth of microbial biomass. Warming still leads to an initial increase of microbial biomass, 13 

owing to the fact that the gains of depolymerisation outweigh losses from increased respiration 14 

(i.e. decreased CUE). As soil organic matter depletes, microbial biomass is reduced, ultimately 15 

below the initial levels.  16 

The OPT model considers the metabolic cost of enzyme production and allows optimisation of 17 

microbial growth. In Fig. 2, the temporal evolution of M, S, respiration, and CUE is shown for a 18 

setup without any costs associated with enzyme production. Among the 3 microbial models 19 

presented here (FWD, REV, OPT), the OPT model shows the strongest soil organic matter 20 

decrease in response to warming. The response in the OPT model is also almost identical with 21 

the traditional FOD model. The transient response also shows a smaller initial growth of M in the 22 

OPT vs. the REV model.  23 



17 
 

3.2 Analytical steady state solutions 1 

The analysis of equilibria helps to understand the model behaviour. We first address the “long 2 

time scale” in Table 2 where we solve for the steady state of the entire system (i.e. 
dM

dt
= 0 and 3 

dS

dt
= 0). In the long-term, the steady state microbial biomass is identical in the FWD and the 4 

REV model and depends on the input of fresh organic matter, the microbial CUE, and microbial 5 

turnover (Table 2, right-most column). The same microbial biomass is also realised in the OPT 6 

model under zero cost (=0) (see Eq. 16 and Table 2, right-most column). In contrast, the 7 

analytical steady state solutions of S are different among the models: For the REV and the OPT 8 

model, the input of fresh litter is a determining variable for the steady state, but not for the FWD 9 

model. In the OPT model the resulting equilibria of S and M end up being complex expressions, 10 

and we did not calculate the long-term equilibria of M but expressed them simply as a function 11 

of soil organic matter. Further, the steady states of S are the same in the traditional first order 12 

model (FOD) and the OPT model with zero cost. As expected, the effect of enzyme production 13 

cost has a negative impact on microbial biomass. 14 

The analysis of the short-term quasi-steady state of the microbial biomass (
dM

dt
= 0) is useful to 15 

understand the trajectory of the coupled S-M system. Typically, microbial turnover is much 16 

faster than the turnover of bulk soil organic matter (Stark and Hart, 1997; Schmidt et al., 2007). 17 

Thus, we would expect that microbial biomass is approaching a quasi-steady state given any 18 

level of S.   19 

In the FWD model, we find that the quasi-steady state for M requires a perfect balance of 20 

parameters that govern growth- and death rates (Table 2, second column). This has been referred 21 

to as knife-edge equilibrium (Schimel and Weintraub, 2003). The absence of such a balance 22 
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leads to either an exponential growth (if positive balance) or decay (if balance is negative) of the 1 

microbial biomass in the short term, where changes in S are small. It becomes clear that the soil 2 

organic matter pool must respond on a similar time scale with microbes in order to maintain 3 

microbial biomass within realistic boundaries. In the REV and the OPT models, the short-term 4 

equilibria are a function of soil organic matter (Table 2, second column). In the REV and the 5 

OPT model, M̅ is strongly determined by the rate of depolymerisation at a given S, the CUE and 6 

the microbial death rate. A weaker affinity for the substrate (larger half-saturation constant) and 7 

higher enzyme production cost act to reduce M̅ in these models.  8 

3.3 Quasi-Steady State (QSS) of Microbial Biomass 9 

Given the quasi-equilibrium biomass, and the resulting decomposition at quasi-steady state, we 10 

set up a second line of modelling experiments, where depolymerisation rates, as well as 11 

microbial respiration and death, are calculated based on microbial biomass at quasi-steady state 12 

(QSS microbe, Table 2, second and third columns, see also method section 2.1.2). Compared to 13 

the base models, the QSS-microbe models yield very similar results for S and respiration, but 14 

they do not reproduce the early adjustment of the microbial biomass to the temperature step (Fig 15 

3).  Instead of a slow adjustment to the sudden warming,  M̅ increases with the instantaneous 16 

increase of depolymerisation. However, over a timescale of <1 year, M̅ and R converge to the 17 

values of the base models in REV and the OPT model, and therefore, the quasi-steady state 18 

appears to be an acceptable assumption over medium to long time scales. Our results further 19 

show that the depolymerisation in the OPT model at quasi-equilibrium and at marginal enzyme 20 

production cost (μ 0) yields a depolymerisation formulation that is functionally the same as a 21 

first order decomposition model. Depolymerisation in the OPT model becomes Vmax*S in 22 
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absence of enzyme production cost (see Table 2), and therefore, the entire dynamics has the 1 

familiar first order characteristics (compare Eqs. 9 and 11). 2 

3.4 Partitioning between maintenance and growth respiration 3 

In the third modification of our base models, we partition respiration in our models into a 4 

temperature independent growth respiration and a temperature (and biomass) dependent 5 

maintenance respiration. This affects the transient pattern of the FWD in that it increases the 6 

feedback between microbes and substrate (evidenced by higher amplitudes in M, S, and 7 

respiration, Fig. 3). This is because part of respiration is now tied to microbial biomass, which 8 

lags depolymerisation. CUE initially decreases less than in the base model, as maintenance 9 

respiration lags the growing microbial biomass. The maintenance term also introduces a mild 10 

oscillation into CUE, as microbial biomass waxes and wanes. Interestingly, the inclusion of 11 

maintenance respiration increases oscillation frequency and amplitude of S and M. In the REV 12 

and the OPT model, microbial biomass is slightly higher and respiration is slightly below the 13 

values of the base models shortly after the step increase, however, this difference diminishes 14 

over time (Fig. 3). The nuanced consideration of microbial respiration causes CUE to declines in 15 

2 stages. The initial drop occurs via the immediate increase in maintenance respiration. This drop 16 

is followed by further changes in CUE as M oscillates (FWD model), or as M net growth is 17 

diminishing (REV and OPT). Similar to microbial biomass, differences disappear within <1 year 18 

after the step warming. We note that in our modelling setup, we adjusted the temperature 19 

sensitivity of the maintenance respiration such that CUE is the same at the reference (15°C) and 20 

the elevated (20°C) temperature. 21 

3.5.  Enzyme production expenditures 22 
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Finally, we analyse in the OPT model how levels of costs associated with enzyme production 1 

affects soil carbon storage and response to temperature (Fig. 4). Because of largely unknown 2 

parameters we express enzyme expenditures as the fraction of respiratory carbon for enzyme 3 

production per unit carbon depolymerised at the reference state (see Eq. 8 and Eq. 16). We tested 4 

3 levels of enzyme production cost: 0%, 10%, and 50% of equilibrium depolymerisation at our 5 

reference condition (i.e. 15°C). As expected, increasing enzyme production cost reduced the rate 6 

of depolymerisation, and S is therefore maintained at a higher level. The increasing costs also 7 

resulted in a smaller relative decline of S in response to warming, whereas the absolute loss is 8 

larger, as indicated by the consistently higher rates of respiration. Similarly, the response of CUE 9 

to warming is smaller and the decline of M is less pronounced if enzyme production costs are 10 

considered.      11 

 12 

4 Discussion 13 

Recently developed microbial decomposition models (Schimel and Weintraub, 2003; Allison et 14 

al., 2010; German et al., 2012) highlight the importance of microbial processes and microbial 15 

physiology during decomposition. Their application specifically highlights the role of 16 

extracellular enzymes during decomposition and how these constraints will further affect the 17 

release of soil organic matter as a consequence of warming. While microbial decomposition 18 

models are able to improve prediction of organic carbon stock globally, and can successfully 19 

recreate litter decomposition dynamics, the long-term trajectory of a warming response needs 20 

further evaluation (Wang et al., 2014; Hararuk et al., 2015). In particular, a positive feedback 21 

between depolymerisation and microbes can only be curbed via the longer term adjustment of 22 

soil organic matter and therefore lead to oscillation in both microbial biomass and soil organic 23 
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matter (Wang et al., 2014). The oscillation is the consequence of a positive feedback between 1 

depolymerisation and microbial growth caused by a knife’s edge or unstable equilibrium in the 2 

short term (unstable QSS for microbes, Schimel and Weintraub, 2003). A break in this feedback 3 

and stabilisation only occurs via the slow changing soil organic matter pool. We note that some 4 

attenuation of the oscillation may occur via direct input into a DOC pool that does not require 5 

depolymerisation (Allison et al., 2010), a feature not considered here. 6 

The display of oscillation in the FWD model has been a point of critique as it has not been 7 

observed in laboratory and field incubation studies (Wang et al., 2014). Here, we introduce 8 

mechanisms that curb the positive feedback between substrate and microbial biomass.We portray 9 

two scenarios, where each increment in microbial biomass or enzyme concentration yields a 10 

smaller increase in depolymerisation than the previous increment (i.e. diminishing return).  The 11 

scenarios we worked out are 1) microbial biomass feeds on active extracellular enzymes, and 2) 12 

limited sites for substrate/enzyme reactions (see Appendix B). We derived the forms of 13 

depolymerisation from the original Michaelis-Menten kinetics and the resulting formulations 14 

presented in the method section are simplified and more illustrative versions of more complex 15 

functions. The simplified formulation of depolymerisation and microbial consumption we 16 

obtained has been dubbed a reverse Michaelis-Menten formulation (Schimel and Weintraub, 17 

2003), because microbial biomass (or enzyme concentration) instead of the substrate 18 

concentration is now occurring in the denominator of the depolymerisation term, invoking the 19 

diminishing return. Wang and Post (2013) arrived at reverse Michaelis-Menten depolymerisation 20 

function if enzymes only adsorb to a fraction of binding sites because of complex substrates. 21 

Transitions between FWD and REV model behaviour has also been detailed in the more complex 22 

Equilibrium Chemistry Approximation model that also included sorption of enzymes and 23 



22 
 

substrates to mineral surfaces (Tang and Riley, 2015; Tang, 2015). Our analysis shows that the 1 

positive feedback between decomposition and microbial growth is removed, as our REV model 2 

now has a stable short-term QSS.  3 

Limited sites may play a role if the substrate has a high volume to surface ratio, or if the 4 

substrate is associated with minerals (Davidson and Janssens, 2006; Gillabel et al., 2010; Conant 5 

et al., 2011; Davidson et al., 2012, 2014; Cotrufo et al., 2013; Wagai et al., 2013; Benbi et al., 6 

2014; Wieder et al., 2014a; Tang and Riley, 2015). Our implementation of limited substrate 7 

causes a surplus of free enzymes that compete for binding to substrates similar to the Langmuir 8 

adsorption isotherm theory (Vetter et al., 1998; Schimel and Weintraub, 2003, Wang and Post, 9 

2013, and see Appendix B, Model with limited available substrate), leading to diminishing 10 

depolymerisation returns and a REV model formulation. Effects of microbial scavenging for 11 

enzymes cause a diminishing return because more microbial biomass will lead to an increased 12 

probability of enzymes being consumed before they interact with soil organic matter. Other 13 

mechanisms of diminishing return as enzyme increase may be the stabilisation of enzymes into 14 

organic matter-humate complex (Allison, 2006), or sorption to minerals, soil organic matter, or 15 

microbes (Tang and Riley, 2015). Diminishing returns also occur with rate-yield tradeoffs 16 

(Allison, 2014). 17 

Many microbial decomposition models work under the assumption that enzyme production is 18 

proportional to microbial biomass, however it is also conceivable that microbes are adjusting 19 

production to maximise return or growth (Cooney, 2009; Merchant and Helmann, 2012, Tang 20 

and Riley, 2015). In our OPT model, we relax the proportionality of microbial enzyme 21 

production and microbial biomass and instead allow a best possible return given the cost of 22 

enzyme synthesis. While the exact cost of enzyme production is not known, we fixed parameters 23 
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(the product of Kp and c) that relate to the fractional expense of carbon depolymerised upon 1 

initialization (i.e. at steady state and reference temperature, Eqs. 8 and 16). Importantly, enzyme 2 

production optimisation is not possible for some of the models presented here. Higher enzyme 3 

production would always lead to further microbial growth in the FWD model, and the highest 4 

yield would occur with infinite enzyme production. Similarly, in the case of microbial 5 

scavenging for enzymes, additional investments into enzymes always increases 6 

depolymerisation.  7 

The response to temperature in our OPT model closely resembles the traditional first order decay 8 

model (FOD). In the limit of enzyme production cost approaching zero, depolymerisation occurs  9 

at the maximum rate (Vmax*S), essentially turning the OPT model into a first order model (Fig. 10 

2). In the OPT model, reductions in depolymerisation via Kp are alleviated when enzyme 11 

synthesis is inexpensive, where the reduction of the maximum depolymerisation rate becomes a 12 

function of the product of Kp*c (Eq. 7 and Table 2). The results of the OPT model also show the 13 

effects on assumptions on microbial enzyme production rates. In many microbial models, 14 

enzyme production is scaled to microbial biomass. Lifting the tight coupling between microbial 15 

biomass and enzyme prodcition leads to a more dynamic enzyme concentrations and ultimately 16 

affects the temperature sensitivity of decomposition. Thus, the cost and trade-offs associated 17 

with microbial enzyme production are potential important areas to better quantify the long-term 18 

response of soil carbon storage to climate change.  19 

The response of decomposition to warming can be viewed as a response occurring on multiple 20 

timescales. For example, while enzyme activity likely produces an immediate response, 21 

microbial respiration responses may also be triggered quickly, although longer term acclimation 22 

may occur (Frey et al., 2013). It may take longer for microbial biomass to respond to temperature 23 
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changes (weeks to months). Finally, because the rate of decomposition is slow compared to the 1 

overall abundance of soil organic matter, discernible changes in this pool occur on timescales of 2 

months to years.  Based on the distinct rates of adjustments, timescales can – in principle – be 3 

separated by assuming a quasi-steady state of pools that turn over fast.   4 

The assumption that both enzyme concentrations and DOC (i.e. the depolymerisation products) 5 

are at quasi-steady state cuts across all models presented here (FWD, REV and OPT, see 6 

Appendix A). When we extend our assumption of steady state to the microbial timescale (quasi-7 

steady state of microbial biomass), we find that for both the REV and the OPT model, the short-8 

term response of microbial biomass and respiration is influenced by the adjustment of microbial 9 

dynamics to the warmer temperature (Fig. 3). Because microbial biomass jumps immediately to 10 

a higher level after the temperature increase in our QSS assumption, depolymerisation, and thus 11 

respiration, are affected. However, the QSS assumption affects the trajectory of the soil carbon 12 

pool only minimally. At timescales that allow microbes to turn over a couple of times (several 13 

months), the quasi-steady state poses a suitable approximation to represent respiration and 14 

microbial biomass, even after a sharp perturbation in the form of a step change. In the QSS 15 

assumption, depolymerisation becomes independent of the microbial biomass (but is still 16 

dependent on a combination of microbial parameters, see Table 2).  17 

The introduction of QSS microbial biomass allows addressing and comparing the long-term 18 

responses of the different models to warming. In particular, the comparison of the QSS derived 19 

depolymerisation of the FOD with the REV and the OPT directly show the effect of how 20 

enzyme-substrate affinity and enzyme production costs dampen the rate of depolymerisation and 21 

its response to temperature. In other words, the long-term response of the FOD is equivalent to 22 

the long-term response of our OPT or REV model, when 1) Ke is low (high enzyme production, 23 
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high enzyme-substrate affinity, and low enzyme turnover), and/or 2) costs of enzyme 1 

productions are low, and 3) and CUE (the fraction of depolymerised not respired but cycled back 2 

into soil organic matter pool) is also temperature dependent in the FOD, a feature typically not 3 

included in traditional decomposition models.  4 

CUE ultimately is the result of different microbial respiration terms. Here, we consider 3 5 

processes that may affect microbial respiration under a warming scenario. We first consider a 6 

partitioning into growth and maintenance respiration across our 3 models. Growth respiration is 7 

simply assumed to be a proportion of carbon allocated to microbial growth. In contrast, 8 

maintenance respiration scales to microbial biomass in our models, where the proportionality 9 

factor increases with temperature. We motivate the partitioning by formulations of plant 10 

respiration in terrestrial biosphere models. We find that this separation affects the short-term 11 

responses of respiration because microbial biomass lags the increase of depolymerisation. The 12 

temperature response of CUE is thus delayed. The partitioning of the respiration terms also has a 13 

particular impact on the transient dynamics of the FWD model, in that the lag in maintenance 14 

respiration amplifies the oscillation (Fig. 3). However, in the REV and the OPT model, effects of 15 

separation are only discernible on the microbial time scale, before microbial biomass is 16 

approaching quasi-steady state values.  17 

In the OPT model, we introduce an additional respiration term, namely the cost of enzyme 18 

production. In this model, we allow microbes to adjust enzyme production in order to optimise 19 

growth. It is interesting that increasing costs lead to a smaller immediate response in respiration 20 

and more resilient soil organic matter pool in the long term, when subject to warming (Fig. 4). 21 

The early respiration response in the OPT model is both a product of higher rates of 22 

depolymerisation (increased Vmax), but also a higher rate of enzyme production. However, the 23 
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enhancement relative to the rates at the reference temperature becomes smaller with higher 1 

enzyme production cost. In the long term, the decrease in soil organic matter is reduced when 2 

enzyme production costs are considered. This reduction is accompanied by a smaller reduction in 3 

CUE under higher enzyme production, even though there is a subsequent CUE reduction 4 

occurring as S declines. The changing yield tradeoff overall acts to buffer respiration increases 5 

that could be expected from physiological responses alone (Vmax), although the effects are 6 

smaller and may be well within the uncertainty of the temperature response of any parameters 7 

considered here. We note that enzyme expenditure relative to depolymerisation is a function of 8 

the product of Kp and c.  9 

We acknowledge that we used a simplified set-up of our model suite. For example, we assumed 10 

that depolymerised carbon in soil solution (DOC) is always at steady state with the microbial 11 

biomass (see also German et al., 2012 and Moorhead et al., 2012). This simplification can be 12 

justified with fast and efficient scavenging of microbes and thus, fast turnover of the DOC pool. 13 

Further sensitivity analysis may shed light on the dynamics across the full parameter space, 14 

while using the simplified linear terms (Appendices B and C, Tang, 2015), particularly also 15 

because many of the parameters are difficult to estimate. We further did not include nutrient 16 

requirements of microbes, where considering the stoichiometric requirements can change the 17 

allocation of resources to optimise enzyme synthesis. Finally, our model does not include 18 

interaction that may occur with adsorption to mineral surfaces, which may occur with the 19 

substrate, the enzymes and microbial biomass, and which has important short and long-term 20 

consequences to temperature flctuations and changes (Wieder et al., 2014a; Tang and Riley, 21 

2015). Nevertheless, our suite of models shows the importance of formulating the 22 
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depolymerisation step in mathematical models when evaluating the response of decomposition 1 

under warming.  2 

Microbial models are considered to be more realistic because of mechanistic representation of 3 

the decomposition steps, yet the oscillatory behavior has been viewed as an unrealistic response 4 

to perturbation (Wang et al., 2014). Perhaps on a more fundamental level, first order 5 

decomposition models inherently assume substrate limitation while the FWD model incorporates 6 

enzyme availability (and enzyme production) as the limiting step during decomposition. Here, 7 

we show that first order models can be viewed as a special case of a microbial model that 8 

considers limitation other than enzyme availability (i.e., diminishing returns) and low values of 9 

the half saturation constant (REV Model), or alternatively, a decoupling of microbial enzyme 10 

production from microbial biomass (OPT model). While moving from the FWD to the REV 11 

model (diminishing return) introduced a form of substrate limitation, optimising enzyme 12 

production can be viewed as a further alleviation (or removal under marginal production cost) of 13 

enzyme limitation. Since the response to warming is vastly different across our suite of models, 14 

our results suggest that the degree of enzyme limitation and the microbial response to enzyme 15 

limitation are potential areas that could help constrain the quantification of the long-term 16 

response of soil organic matter to warming. 17 

 18 

5 Conclusions 19 

Our findings suggest that different formulation of microbial substrate acquisition will have a 20 

significant impact on the short vs. long-term consequences of warming. Here, we present simple, 21 

yet feasible mechanisms of microbial dynamics. We show that substrate limitation in the form of 22 

decreasing marginal return can create a break in the positive feedback between microbial 23 
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biomass and depolymerisation, turning a forward Michaelis-Menten model into a reverse model. 1 

We further separate out 3 types of respiration, that have possible have consequences on the 2 

temporal trend of CUE in response to warming. Although such separation is more mechanistic, it 3 

remains open whether the addition of extra parameters is justified at this point, given the 4 

uncertainty in models, and because much of the effects of this separation diminishes on 5 

timescales longer than the microbial lifespan. Finally, among our suite of models, our OPT 6 

model most closely resembles the traditional first order decomposition model. In our modeling 7 

framework, a first order model is a special case of a microbial decomposition model where 1) 8 

mechanisms of diminishing returns break the feedback between substrate and microbes, 2) the 9 

proportionality of enzyme production and microbial biomass is relaxed and adjusted to yield 10 

optimum return of enzyme investments, 3) costs associated with enzyme synthesis are small 11 

(and/or enzyme-substrate affinity is high), and 4) and microbes turn over relatively fast 12 

compared to soil organic matter. Our results thus suggest that a better grasp of the limiting steps 13 

of decomposition and mechanisms of microbial enzyme production will help to constrain the 14 

long-term response to warming.  15 

 16 

Appendix A 17 

Michaelis-Menten kinetics with enzyme denaturation 18 

The dynamics of the enzyme-substrate complex are 19 

d[E]

dt
= P − KS[S][E] − λE1 ∗ [E] + Kr + K([ES]                                      (A1)                                                        20 

d[ES]

dt
= −(Kcat + Kr + λE2)[ES] + KS[S][E]                                                                         (A2) 21 
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Where P is the microbial production of new enzymes, [S] is the concentration of the substrate, 1 

[E] the concentration of enzymes, [ES] the substrate-enzyme complex, Ks, Kcat, and Kr are 2 

reaction constants that denote substrate-enzyme binding, actual depolymerisation rate, the 3 

reversibility of the enzyme-binding process. λE1 and λE2 are enzyme decay parameters that lead 4 

to enzyme denaturation or render enzymes inactive in the free enzyme pool or in the enzyme-5 

substrate complex, respectively. In the FWD and REV model, P is proportional to microbial 6 

biomass. The Michaelis–Menten approximation for depolymerisation assumes that the system is 7 

in quasi-steady state in which the tendency 
d[ES]

dt
 and 

d[E]

dt
 are zero. This implies also that tendency 8 

of the total enzyme concentration 
d[Et]

dt
 (with [Et] = [ES] + [E]) becomes zero. 9 

Setting Eq. (A2) to zero, and substituting [Et] = [ES] +  [E], it follows   10 

[E] =
[Et] Km

([S]+Km)
                  (A3)  11 

[ES] =
[Et] [S]

([S]+Km)
                (A4) 12 

And the rate of depolymerisation  13 

D =
[Et]∗Vmax∗[S]

([S]+Km)
                  (A5) 14 

where D is the familiar Michaelis-Menten equation with Km =  
Kcat+Kr + λE2

KS
 and Vmax is 15 

equivalent to Kcat.  16 

DOC and enzyme dynamics 17 

We assumed that DOC concentrations are in equilibrium with substrate and microbial uptake. In 18 

microbial decomposition models, the only DOC sink is microbial consumption, which by way of 19 
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mass conservation, leads to microbial consumption being equivalent to the rate of 1 

depolymerisation.  2 

Previous models (Allison et al., 2010; German et al., 2012) assumed a general decay of the total 3 

enzyme pool, where: 4 

d[Et]

dt
= P − λE ∗ [Et]                       (A6) 5 

Because enzyme turn over fast, we can assume a quasi-steady state of the total enzyme pool by 6 

setting Eq. A6 to zero. We obtain: 7 

[Et] =
P

λE
           (A7) 8 

And depolymerisation as:  9 

D =

P

λE
∗Kcat∗[S]

[S]+Km
        (A8) 10 

Finally, microbial decomposition models assume that enzyme production is proportional to the 11 

microbial biomass (M): P = b*M, hence: 12 

D =
Vmax∗M∗[S]

[S]+Km
                (A9) 13 

With  Vmax =
b∗Kcat

λE
 14 

Yet, it is conceivable, that the enzyme-substrate complex, and free enzymes decay at different 15 

rates (see also Eqs A1 and A2).  16 

d[Et]

dt
= P − λE2[ES] − λE1[E]      (A10) 17 

Substituting Eq. A3 and Eq. A4 for [E] and [ES], and applying a quasi-steady state as before 18 

yields:  19 
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[Et] =
P([S]+KE)

λE1Km+λE2[S]
        (A11) 1 

And the overall depolymerisation is thus: 2 

D =
P∗Kcat∗[S]

λE1Km+λE2[S]
                   (A12) 3 

Which can be converted into a Michaelis-Menten form 4 

D =
Vmax∗M∗[S]

[S]+KS
        (A13) 5 

where  Vmax =
b∗Kcat 

λE2
 and  KS = Km

λE1 

λE2
 6 

Appendix B 7 

Microbial consumption of enzymes 8 

Microbes feeding on free enzymes can be represented as: 9 

F = λE,M*[E]*M      (B1) 10 

Where F is microbial enzyme consumption and λE,M the feeding rate. We can then represent the 11 

decay of the free enzymes with    12 

[E]* λE1 = [E]( λE1,0 + λE,M*M)      (B2)  13 

where the total λE,0 is the spontaneous enzyme decay rate.  14 

Substituting the new enzyme decay formulation into the depolymerisation (Eq. A12) yields   15 

D =
P∗Kcat∗[S]

  λE2∗[S] +λE1,0∗Km+ λE,M∗M∗Km
       (B3) 16 

For the REV model, we simplify Eq. B3 and assume that enzymes associated with substrate do 17 

not undergo denaturation (λE2=0), which yields: 18 
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D =
P∗Kcat∗[S]

λE1,0∗Km+ λE,M∗M∗Km
     (B4) 1 

And, in the case where enzyme production scales to microbial biomass (P = b*M) 2 

D =
M∗Vmax∗[S]

Kes+M
        (B5) 3 

Which is again the familiar Michaelis-Menten function with  Vmax =
b∗Kcat

λE,M∗KE
 and  Kes =

λE1,0  

λE,M
 4 

Model with limited available substrate  5 

Access to substrate might be finite, for example, if organic matter is associated with mineral soil 6 

or if the rate of depolymerisation is constrained by the surface area. In this case, the relationship 7 

between the total available substrate and the free sites can be calculated as  8 

[ S] = θ ∗ ([Sf] + [ES])       (B6) 9 

Where Sf are the available sites for enzyme reaction, θ a scalar relating the total amount of 10 

substrate to the total potentially free sites (e.g. a surface to mass conversion), and [ES] represents 11 

the sites with enzyme-substrate complexes. We note that [S] in this case is not the available 12 

substrate anymore, but reduced by a fraction θ. 13 

Substituting [ES] from Eq. A4, but knowing that [S] has now become [Sf], we obtain:  14 

[Sf]  =
[S]

θ 
−

[Sf][Et]

Km+ [Sf]
        (B7) 15 

[Sf] is thus the solution of a quadratic polynomial: 16 

 [Sf] =
1

2
{− ([Et] + Km −

[S]

θ 
) ± √([Et] + Km −

[S]

θ 
)

2

+ 4 ∗
[S]

θ 
∗ Km }      (B8) 17 
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The scenario of limited reaction site is relevant if 
[S]

θ
 is small (i.e. 

[S]

θ
<< [Et]).Under this scenario, 1 

we simplify Eq. B8 using a Taylor expansion around (
[S]

θ
= 0) 2 

[Sf]  =
[S]

θ 
∗ (

KE

[Et] +Km
) + O[(

[S]

θ
)2]         (B9) 3 

Plugging this into the depolymerisation 4 

D =
Kcat∗[Et]∗

[S]

θ

[Et]+Km+ 
[S]

θ

≅
Kcat∗[Et]∗

[S]

θ

[Et]+Km
       (B10) 5 

which has a Michaelis-Menten form with a saturating enzyme concentration. This particular 6 

solution is for a small amount of binding sites, and enzymes compete for free sites. Thus [Et]>> 7 

[S]

θ
, and it can be dropped from within the denominator. On a side note: we obtain the same 8 

expression if we approximate from Eq. B7: 9 

[Sf] =
[S]

θ
− [Sf]

[Et]

[Sf]+Km
  (B11) 10 

[Sf] ≅
[S]

θ
−

[Sf][Et]

Km
  (B12) 11 

Which assumes very few free sites ([Sf] >> Km). Therefore: 12 

[Sf] =
[S]

θ

Km

[Et] +Km
  (B13) 13 

We can also include equations for enzyme turnover (Eq. A7) to calculate [Et]: 14 

However, we need to substitute [S] in this equation with [Sf], and thus: 15 

d[Et]

dt
= P −

λE2∗[Et]∗
[S]

θ

[Et]+Km+ 
[S]

θ

−
λE1∗[Et]∗([Et]+Km)

[Et]+Km+ 
[S]

θ

         (B14) 16 

Maintaining 
[S]

θ
<< ([Et] + Km)  we obtain  17 
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d[Et]

dt
≅ P −

λE2∗[Et]∗
S

θ

[Et]+Km
− λE1 ∗ [Et]     (B15) 1 

The quasi-equilibrium solution (
d[Et]

dt
=  0) yields a quadratic expression for [Et], however, we 2 

can evaluate the following scenarios: 3 

a) suppose 
λE2∗[Et]∗

S

θ

[Et]+Km
≫ λE1 ∗ [Et], this assumes that enzyme decay occurs mainly when 4 

bound to the substrate.  5 

setting 
d[Et]

dt
=  0, we obtain 6 

[Et] =
Km∗P

λE2∗
S

θ
−P

    (B16) 7 

and with P proportional to microbial biomass (M)  8 

D =
Kcat∗P

λE2
= Vmax ∗ M      (B17) 9 

Where Vmax =
Kcat∗b

λE2
 10 

In this case, depolymerisation and microbial consumption is  independent of the substrate but is 11 

determined by the relative rate of catalysis and irreversible destruction of the enzyme-substrate 12 

complex. 13 

b) suppose 
λE2∗[Et]∗

S

θ

[Et]+Km
≪ λE1 ∗ [Et] 14 

This implies that enzymes mainly decay if they are not associated with the substrate and that 15 

there is an appreciable amount of free enzymes. This is realistic under substrate limiting 16 

conditions, as there will be a  sizeable amount of free enzymes compared to enzyme substrate 17 

complexes. 18 



35 
 

We then obtain: [Et] =
P

λE1
 1 

And 2 

D =
Kcat∗P∗

S

θ

P+λE1∗Km
      (B18) 3 

With P = b*M, we have 4 

D =
M∗Vmax∗S

Ke+M
           (B19) 5 

Where Vmax =
Kcat

θ
, and Ke =

λE1∗Km

b
 6 

Appendix C 7 

Optimising depolymerisation   8 

Microbes may be able to optimise their growth, and thus, depolymerisation becomes a function 9 

of the metabolic costs of enzyme production. Depolymerisation based on enzyme production, 10 

assuming fixed turnover of free enzymes yields: 11 

D(P) =
P∗Vmax∗[S]

Kp+P
       (C1) 12 

Where P is the amount of new enzyme produced, Vmax is 
Kcat

θ
 and Kp = λE1Km, based on the 13 

model with limited available substrate. 14 

Microbial growth (G) will be 15 

G = (1-g) * (D-Pc-λr*M)      (C2) 16 

Where g is the growth respiration factor, c the respiratory cost per unit enzyme production, and 17 

λr the maintenance respiration factor.  18 
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Enzyme production (P) can be optimised by substituting Eq. C1 into Eq. C2 and setting 
dG

dP
= 0.  1 

This yields: 2 

Pc =  − Kpc + √Vmax ∗ [S] ∗ Kpc    (C3) 3 

The proportion of carbon expended for enzyme production relative to depolymerisation is  4 

Pc

D
= √

Kpc

[S] Vmax
                                    (C4) 5 

Instead of specifying c, we used Eq. C4 to express overall microbial carbon expenditure for 6 

enzyme production. After assigning a value to μ, we calculate c based on equilibrium S at 7 

reference temperature.  8 

In contrast, the microbial scavenging scenario does not provide an optimum enzyme production. 9 

In this case, depolymerisation is:  10 

       D =
P∗Vmax∗[S]

(Ke +M)∗λE
                               (C5) 11 

And thus, 
dG

dP
 will yield a constant where growth scales with the rate of enzyme production.  12 
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Table 1. Key features of the microbial decomposition models and subsequent modifications 1 

presented in this study.  2 

 FWD Model  

 
German et al., 2012 

FWD Model with maintenance respiration  

 
As FWD model but microbial respiration is partitioned into temperature insensitive growth 

and temperature sensitive maintenance respiration terms. 

REV Model  

 
Depolymerisation and uptake relative to microbial biomass decreases with increasing M 

(diminishing return mechanism). 

REV Model with equilibrium microbes 

As REV model but fast microbial adjustments. 

REV Model with maintenance respiration 

 
As REV model but maintenance respiration added. 

OPT Model 

Optimisation of microbial enzyme production to maximise microbial growth, and 

consideration of carbon costs associated with enzyme synthesis. 

OPT Model with equilibrium microbes 

As OPT model but fast microbial adjustments. 

OPT Model with maintenance respiration 

 
As OPT model but maintenance respiration added. 

FOD Model 

 
First order decomposition model, modified to account for temperature sensitive carbon use 

efficiency. 

  3 
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Table 2. Quasi-steady state values for microbial biomass (M), and decomposition at the short/fast timescale (at any given S) and “true” 1 

long-term equilibria for M and S across the models. Note, for simplicity, we did not substitute S in the long-term microbial 2 

equilibrium for OPT model.  3 

 4 

X = √S Vmax,OPT, Y = √KP ∗ c  5 

* requires λd =  
Vmax,FWDS ε

 S+ KE
  6 

Model Short/Fast time scale Long time scale 

 
M Decomposition S M  

FWD 
no solution * no solution * λdKE

Vmax,FWD ε − λd 
 

I ε

(1 − ε) λd 
 

REV Vmax,Rev  S ε − KM λd

λd 
 

(Vmax,REV S − KM λ𝑑/𝜀) I   

Vmax,REV (1 − ε)  
+

KM λd 

Vmax,REV ε   
 

I ε

  λd (1 − ε) 
 

OPT (X − Y)2 ε 

λd
 

X2 − XY 1

2 Vmax,OPT   (1−ε)2  
[−Y (2ε − 1)√4IY (1 − ε) + Y2 +

(1 −  ε) (2I − 2εY2) +  Y2] 

(X − Y)2 ε

λd
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Table 3. Parameters used in microbial decomposition models (Down the model list, we provide 1 

only those parameters where modifications have been made.) 2 

 Parameter Unit Value Description Source 

FWD Model  

 

 

 

 

 

I mg S cm-3 hr-1 0.001 Input of fresh litter  

 

 

 

German 

et al., 

2012 

 

λd hr-1 0.0005 Death rate of microbes 

Vmax ,FWD,0 (mg M)-1  hr-1 0.0049 Maximum catalytic rate @ 15°C 

Q10, Vmax ,FWD - 1.9 Q10 of maximum catalytic rate 

Km mg S cm-3 270 Half-saturation constant @ 15°C 

ε0 - 0.39 Microbial growth efficiency @ 15°C 

εslope °C-1 -0.016 Microbial growth efficiency 

temperature slope 

FWD Model with maintenance respiration  

 

 
λr,0 hr-1 0.0006 Maintenance respiration @ 15°C 

 

 

This 

study 

Q10,λr - 2.2 Q10 of maintenance respiration 

G - 0.24 Growth respiration coefficient 

REV Model 

 

 

 

Vmax,REV hr-1 2.61*10-5 Maximum catalytic rate @ 15°C  

This 

study 

Ke mg M cm-3 0.68 Half-saturation constant @ 15°C 

OPT Model 

 

 

Vmax,OPT hr-1 1.71*10-5 Maximum catalytic rate @ 15°C  

 

This 

study 

μ  - 0 ,  

0.1,  

0.5 

Enz production costs ( as % of 

decomposition @ 15°C steady state) 

 
Kp ∗ c mg S cm-3 hr

-1
 0,  

1.64*10-5, 

4*10-4   

Combined cost and the half 

saturation constants at  
μ = 0, 0.1, and 0.5, respectively. 

FOD Model 

 k* hr-1 1.71*10-5 First order decay constant @ 15°C This 

study 

* k in FOD model is identical to Vmax,OPT in OPT model.  3 
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Figure Captions 1 

Figure 1. Conceptual diagrams of our microbial-enzyme models. The difference across the 2 

models  is in the formulation of depolymerisation of soil organic matter (S),  where the FWD 3 

model is based on German et al. (2012), the REV model considers diminishing return and the 4 

OPT model includes optimised enzyme production to maximise microbial growth. E, S, E-S, D, 5 

DOC, M represent enzyme, substrate, enzyme-substrate complex, depolymerisation, dissolved 6 

organic carbon, and microbial biomass carbon, respectively. I denotes input from fresh litter and 7 

D represents depolymerisation. Solid lines represent material (carbon) flow  and dashed lines 8 

represent information flow affecting enzyme concentration (in microbial enzyme predation in 9 

REV model and enzyme production rate in OPT models). E, E-S, and DOC pools were implicitly 10 

represented in the model but not explicitly simulated based on the assumption of quasi-steady 11 

state. We analyse the different models in three ways: a) Comparison among different 12 

parameterisation of depolymerisation (FWD, REV and OPT models), b) A second suite of 13 

simulations operate under the assumption, that microbes are instantaneously in steady with 14 

substrate delivery (similar to the treatment of enzymes and DOC, for REV and OPT models 15 

only, indicated by dashed outline of the pools), c) A third series of simulations considered 16 

partitioning between a biomass-dependent maintenance respiration and a growth respiration that 17 

scales to new tissues built, applied to all (FWD, REV, and OPT) models.  18 

Figure 2. Responses of a) soil organic carbon, b) microbial biomass carbon, c) CUE, and d) 19 

respiration to a 5°C warming in the base models (FWD vs REV and OPT, Fig. 1a). The black 20 

line represents initial values, which are model equilibria at15°C. We chose logarithmic axes for 21 

time to better highlight the differences in short-term responses. We note that the differences in 22 

simulated soil organic carbon and respiration for the OPT and the FOD are almost equal and 23 
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therefore not discernible. Also, values of CUE at warmed temperature are identical in all models, 1 

and therefore, the orange line is superimposed on blue and green lines. In the OPT model, 2 

simulations are carried out at zero enzyme production cost, i.e. μ
2
 = Kp*c = 0).  3 

Figure 3. Responses of a) soil organic carbon, b) microbial biomass carbon, c) CUE, and d) 4 

respiration to a 5°C warming for all models, if microbial biomass is assumed to be at quasi-5 

steady state (QSS, dotted lines), and if separation of maintenance and growth respiration are 6 

considered (dashed lines). Colored thin lines represent base models. The black thin line 7 

represents initial values, equilibrated at 15°C. Dashed lines (growth and maintenance) and dotted 8 

lines (quasi-steady state) represent modifications for REV and OPT models respectively. In the 9 

OPT model, simulations are carried out at zero enzyme production cost (i.e., μ
2 

= kp*c = 0).    10 

Figure 4. Long-term responses of optimised enzyme production (OPT) model to a 5°C warming 11 

in a) soil organic carbon, b) microbial biomass carbon, c) CUE, and d) respiration operating at 12 

different relative enzyme production costs (μ, see Eq. 16). Thick lines represent warming 13 

response and thin lines represent corresponding equilibrium at the reference temperature. 14 
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