
Cover Letter 

 

Dear Editor, 

 

Thank you for giving us the opportunity to submit the revised version of the manuscript, 

“Comparing models of microbial-substrate interactions and their response to warming” by D. 

Sihi, S. Gerber, P. W. Inglett, and K. S. Inglett for consideration of publication in 

Biogeosciences.  

 

The comments of both the reviewers tremendously helped to improve the manuscript. In our 

current version, we followed Will Wieder’s comment and separated different models families 

such that we now have first the base models (forward vs. reverse M-M models), then move on to 

better explain the effect of the short-term equilibrium assumption of microbial biomass, and 

finally modified formulations of respiration (splitting respiration in maintenance and growth 

term) in the base models. Adding subsequent layers in this way helped us to demonstrate clearly 

how different assumptions influence the dynamics of soil organic carbon, microbial biomass, 

carbon use efficiency, and respiration vary in short vs. long time-scale. Further, it allowed us to 

address both of the reviewers’ concerns of short-term result (at microbial time-scale) and 

demonstrate the bridge between microbial decomposition models with the first-order 

decomposition models. The second major modification from the discussion paper is that we now 

let the long-term response deviate by parameterizing such the models have the same initial short 

term (instead of long-term)sensitivity to temperature.  

Below, you find a point by point response to all the reviewers’ comments, as well as a marked up 

version that highlights the differences between the discussion paper and this submission. 

We believe that these improvements makes our revised manuscript an excellent addition to 

Biogeosciences,particularly also, because we show the mechanisms and consequences of 

different formulations of microbial carbon consumption resolved in current microbial models 

The quantification and prediction of soil organic matter decomposition, and its response to global 

change factor is critically important for global carbon cycle feedbacks, and therefore the 

questions raised in our manuscript and our insights in decomposition models are important to the 

readers of this Journal.  

We look forward to hearing from you soon. 

 

Sincerely, 

Debjani Sihi (corresponding author) 
 



Response to Reviewer 1: 

General comments 

As the authors mention, the behavior of models 1 and 2 is very similar [P10872, L23]. How does the 

additional complexity mathematically manifest itself in the emergent dynamics? Can the similarity be 

explained by the structure of the models? In the case of models 1 and 2, it seems that they share the 

same mathematical structure, in that model 2 can be reduced to model 1 as follows: 

 

dS/dt = I – lambda_d*M – D where D = V_max*S*M/(K_E + S)            [same in models 1 & 2] 

 

dM/dt = (D - lambda_r *M)*(1-g) – lambda_d *M                                [form of model 2]  

 = (D – D*g - lambda_r *M + lambda_r *g*M) – lambda_d *M  

 = (D(1-g) – M(lambda_r - lambda_r *g + lambda_d) 

 = alpha*D – beta*M                                                         [same form as model 1] 

 

Where alpha = (1-g) and beta = (lambda_r - lambda_r *g + lambda_d) for model 2.  

How do these relate to epsilon and lambda_d in model 1, respectively? The authors briefly discuss 

concerns associated with adding parameters [P10873]. Is introducing uncertainty through extra 

parameters warranted here? The temperature sensitivity of the partitioned respiration model is indeed 

different, but the model structure is the same. Additional discussion on how the models relate when 

reduced mathematically would be a great addition to this manuscript. For example, why does model 4 

with mu=0 behave so similarly to model 5?  

 

 

Thank you for your detailed comments, which help us greatly to improve our Manuscript. In response to 

the suggestions from Reviewer 2, in our revised manuscript, we change the presentation of the models. 

We first introduce forward (FWD) vs. reverse (REV and OPT) Michaelis-Menten models, where the main 

difference is a decreasing marginal return in the REV model and the subsequent optimisation of enzyme 

productivity in the OPT model, for which we present a new figure 2.  

 

We now put the question of separating maintenance vs. growth respiration into a much broader context of 

time scale partitioning. Across the model development, we assumed quasi-steady states at different 

timescales. For example the Michaelis-Menten equation assumes quasi-steady states of enzyme 

concentrations. Further the direct relationship between microbial biomass and depolymerisation assumes 

a quasi-steady state of dissolved organic carbon. As we move up the time scale we assumed for the REV 

and OPT models, that microbial biomass is at quasi-steady state with substrate supply (See Fig 1b). We 

motivate this by the approximation, that the timescale of the microbial turnover is much shorter than the 

time scale of soil organic matter turnover. That is, microbial biomass adjusts much faster to changes in 

environmental conditions than soil organic matter itself. Thus, over the timescale of microbes, soil 

organic matter can be approximated by a constant (it does not change that much). We can then substitute 

the expression for microbial biomass as obtained from dM/dt = 0 into the function of depolymerisation 

and, microbial death, and respiration, which is the microbial quasi-steady state. In the revised manuscript, 

we add a figure (see Fig 3 in the revised manuscript) that shows how the assumption of microbial 

equilibrium compares well against the fully dynamic models, with respect to the dynamics of 

decomposition and CO2 flux. Further, this analytical trick helps to build the bridge to traditional first 

order models, because the formulations of decomposition are now independent of the microbial biomass. 

For example depolymerisation (D) in Model 3 (now REV model) now becomes 

 

D = V_max*S – K_M*lambda_d/ epsilon 

 



Where V_max is a maximum depolymerisation rate, S soil organic matter carbon, k_M the half saturation 

constant for microbes, and epsilon is carbon use efficiency. 

The expression of depolymerisation above becomes independent of microbial biomass. This expression 

becomes a first order model, if k_M * lambda_d  << V_max *(1-g). Similarly, in model 4 (now, OPT 

model) under mu = 0, and dM/dt = 0 (quasi-steady state) depolymerisation becomes 

 

D = V_max*S 

Microbial death = V_max*S* epsilon 

And thus 

dS/dt = I – V_max*S*(1- epsilon) 

 

where I is the input. 

 

Both reviewers mention that they have trouble seeing the value of the short-term equilibrium in Table 3. 

We explain this better in our revised manuscript.  

 

Next, we compare each of the models (FWD, REV, and OPT) to a variant where we first introduce a 

separation between growth and maintenance respiration (3rd layer in the model families).  As for the 

reviewer’s analysis above, the reduction requires a temperature sensitivity of the term beta (instead of 

alpha, as used in model 1 in our discussion paper), and it does modify the respiration on the short 

microbial time scale. We are convinced that our reorganisation of first considering a microbial model 

without maintenance respiration, then assuming microbial steady state, and ultimately adding 

maintenance respiration helps to explain how nuances of microbial models impact the temperature 

response, and how they compare analytically to traditional first-order (FOD) models. 

Overall, we believe with this new organization, we provide much more context, how one can move across 

the models (FWD, REV, OPT), and across the layers (base, quasi-steady state microbes, separation of 

respiration terms).  

  

Overall, this manuscript is well-written and presents an interesting modeling analysis. It could be 

improved by providing a perspective on future models and giving specific recommendations that 

the reader could take away for model development.  

 

Thank you for your positive review! This comment has also been raised by reviewer 2.  

We add to the discussion, and more importantly in the conclusion how the evaluation of simple models 

can serve larger scale models. Our work clearly shows dynamical differences whether substrate-enzyme 

reactions are considered a rate limiting step, resulting in forward (Models 1 and 2 in the discussion paper) 

vs. reverse models (Model 3 and 4 in the discussion paper). We show that there are potential mechanisms 

(i.e. limitation of reaction sites, microbial enzyme consumption) that support a reverse model. Further, 

our OPT model ask the question, whether it is justified to link microbial enzyme production to microbial 

biomass. If we untether this relationship, but focus an optimizing returns on microbial investment, we 

obtain a first order model. Overall, we sought the make the link from previous thought-through microbial 

models and their formulations to first order models, which will help in analyzing and juxtaposing the 

different models.  

On a minor side note, we discuss that even in simple models, the response to temperature is a composite 

of parameters that are hard to come by, including half saturation constants, sensitivity of microbial 

respiration to temperature, the amount of enzyme produced by microbes, as well as enzyme activity. 

 

Specific comments 

 

P10858, L8: It may be more appropriate to say that you “analyse five microbial decomposition 

models”, as this is not a general analysis of all existing models, nor of models with multiple pools. 



 

This sentence is not in the revised manuscript since we change the model setup from the previous 

submission.  

 

P10858, L10-15: How does your proposed model compare to models that explicitly represent 

enzyme dynamics with finite potential binding sites, such as the MEND and DEB models? 

 

To our knowledge the MEND model does not have finite potential binding sites, based on our reading of 

Wang et al. (2013). Their steady-state solution is fairly similar to our model 1 and 2, although the MEND 

model considers additional pools. However, in the same years Wang and Post, (2013), discuss the 

formulations of forward and reverse Michaelis-Menten Model, and also compare it with the Langmuir 

isotherm theory, and we include their derivation as an additional mechanism towards the diminishing 

return that occurs in the REV model. We highlight in the discussion section, that our suite of models does 

not include sorption onto mineral surfaces of microbes, enzymes and substrate, as it is considered in the 

DEB model. Perhaps of critical importance to the difference between forward and reverse models, which 

– based on your comments elsewhere, and based on Reviewer 2, we are hashing out much more.  

 

P10858, L15: “fast responses” in relation what? 

 

This sentence has been replaced in the revised manuscript.  

 

P10858, L16: Why “short-term adjustment in microbial growth”? From the figures it appears that 

microbial biomass, as with carbon storage, reaches a new (long-term) steady-state. 

 

The response to this question should come out of one of the major changes of the manuscript. We try to 

motivate a short (microbial) timescale and a longer (soil organic matter) timescale. On the short 

timescale, microbial biomass adjusts quickly to new environmental conditions (temperature), and on the 

long timescale, microbial biomass only adjusts to the slow decrease of soil organic matter (it is in quasi-

equilibrium with soil organic matter). See also our response to the main concern above.  

 

P10859, L17: Can add citation for Wieder et al. 2015 here. 

 

We add this reference in our new submission. 

 

P10859, L20: The citation for Li et al. 2014 would be appropriate here regarding CUE response to 

warming across models. 

 

We add this reference in our new submission. 

 

P10860, L15: Although additional parameters were added to separate microbial respiration 

sources, the form of model 2 can be reduced back to model 1, as shown in the main comments 

above. Does the parameterization drive the difference in decomposition dynamics, since the model 

structure is the same? 

 

It is actually the model structure that drives the difference, since now different terms are temperature 

sensitive. That is, in the mathematical derivation under “main comments” parameter beta, instead of 

parameter alpha becomes temperature sensitive, when moving from model 1 to model 2. We further now 

show how the separation of maintenance and growth respiration affects all models, but discuss, why this 

separation is only important on the short (i.e. microbial) timescale.  

 



P10861, L8: For clarity, it would be good to note that enzyme concentrations and microbial biomass 

go together and that you do not represent them as separate pools in the simulated differential 

equations; rather, you focus on the response of 2-pool, substrate-microbe models to warming. Can 

you confidently capture microbe and enzyme allocation/reaction/production dynamics without an 

explicit enzyme pool?  

 

We now specifically discuss the assumption of quasi-steady states that feeds across the scales. I.e. the 

assumption of a quasi-steady state in the enzyme pool substitutes enzyme concentrations with a function 

of the microbial biomass. That is, the enzyme pool does now change in tandem with the microbial 

biomass changes. Given, the simple mechanisms that describe enzyme production and turnover, our 

equilibrium assumption is a valid simplification.  

 

P10861, L19: It would be good to clarify that the “tendency” is the “derivative” when you first use 

it, as I feel that the latter is more commonly used among BG readers. 

 

We have added in parenthesis “derivative with respect to time”. 

 

P10863, L19: To be consistent with the literature, it may be good to mention here that the final 

form you use for model 3 is a reverse Michaelis-Menten formulation, as in Schimel and Weintraub 

2003. 

 

We add the reference in the method, and now make explicit distinction between forward and reverse 

Michaelis-Menten models. 

 

 

P10865, L3: Is there a negative sign missing in Eq. 14? Otherwise, dS/dt = constant*S with a 

constant > 0 would increase exponentially. Also, please check your mass balance: if a (1-epsilon) 

fraction leaves to respiration, then should a net – (1-epsilon) be leaving S, since –k*S +epsilon*ks in 

the mass balance? 

 

Thank you for catching this! This equation should correctly say: 
dS

dt
= I − S ∗ k ∗ (1 − ε)         

where I is input of fresh litter. Also please note that we have a separate section for temperature sensitivity 

terms now in the method section.  

 

 

P10865, L10: Which are the traditional models (cite a few) and how do they represent the 

temperature sensitivity of CUE? Often CUE decreases linearly with temperature in simple models 

and often ‘traditional’, Century-type models include more than one pool of carbon. 

 

We changed the description of how we set up our FOD model (previously model 5)which is the first order 

model  in that we explicitly mention how this setup differs from traditional models such as CENTURY 

and Roth C. The two major differences are that our model only considers a single pool, while traditional 

models consider a series of different quality pools feeding into each other. We also mention that with a 

temperature dependent carbon use efficiency, a temperature increase changes the fraction of carbon 

processed becoming CO2. This is not typical to traditional models, as the fraction respired is not a 

function of temperature.  

 

P10865, L21: What do you mean by tuning factors for V_max1 and K_E and what are they tuned 

to for model 1 in addition to the German et al. parameters? 



 

We have changed the formulation such that it becomes clear that we did not tune this part of the model, 

but instead worked the tuning factors directly into the parameters. It now reads: „ We use parameters as 

reported in German et al. (2012), with a few modification. Here, we report Vmax,FWD and KE by 

considering 15°C as our reference temperature and by working their tuning factors directly into these two 

parameters. In other words, Vmax,FWD and KE are the product of the reference values in German et al. 

(2012), their respective tuning parameters and their adjustment to our reference temperature, 15°C. “  

 

P10866, L7: I think “maintenance estimation” should be “maintenance respiration”. Also, why one-

third of the death rate? Please provide a reference or more reasoning. 

 

Yes, a typo. We re-addressed the partitioning of maintenance vs. growth respiration. We had a hard time 

finding specific values in the literature, but motivated the partitioning based on vegetation models. LPJ 

(Sitch et al., 2003) and ED (Moorcroft et al., 2001) have a growth respiration factor of one-third. We then 

constrain the overall respiration by the carbon use efficiency in German et al., 2012, and obtain a 

maintenance respiration rate that is close to the microbial death rate (lambda_r,0 =1.25 * lambda_d).  

 

P10866, L16: Here you say that you match the equilibrium values for CUE, M, S and 

decomposition. Matching equilibrium decomposition rates had not been mentioned before? 

 

In the discussion paper, matching decomposition is actually not necessary, as it results from matching 

CUE, M, and S. You will notice, though, in our revised manuscript, it is our goal to match 

depolymerisation immediately after the temperature increase, and let the long-term responses deviate.  

 

P10868, L5-15: This confuses me a little, as the two differential equations are coupled and respond 

together by necessity. The magnitude of change within each pool differs, as the pool sizes are 

significantly different. Please provide a bit more explanation and rationalization for this part of 

your analysis. In calculating the true equilibrium, dM/dt = 0 and dS/dt=0. 

 

This confused both reviewers and we take great care in our revised manuscript to show the use of short-

term (quasi) vs long-term (true) equilibrium. The turnover of soil organic matter is much slower than that 

of microbe. Therefore, over the timescale of microbial adjustment, there is little change in S. It therefore 

allows microbe to almost equilibrate with S. In other words, microbes are at quasi-steady state. As soil 

organic matter changes, the short-term equilibrium of microbial biomass (or the quasi-steady state) is 

changing along. In our revised manuscript, we show a plot (Fig 3), with the equilibrium microbial 

biomass as a function of time. We show that, over mid- to long-term the quasi-steady state of microbes is 

a good approximation of the actual microbial biomass. This paragraph is entirely rewritten in the revised 

manuscript. We further explain in the text, that this quasi-steady state assumption is also true for enzyme 

kinetics and for dissolved organic carbon.  

 

P10870, L22: Can you show mathematically how model 4 reduces to the linear model when mu=0? 

 

Equation 7 has the depolymerisation as D = Vmax * S – sqrt(K_P*c*V_max*S). 

 

Where the second term on right hand side is the reduction of depolymerisation if there is a cost associated 

with decomposition (i.e. mu>0). If mu is 0, D becomes V_max*S, which is the form of the first order 

model. We reference the equation and how it changes under zero cost, in order to clarify and support our 

assertion. 

 

P10875, L18: Considering putting (mu=0) for the negligible costs scenario, just to be clear. 

 



We write mu->0 as marginal cost scenario in our improved manuscript.  

 

P10876, L1: How realistic are the equilibrium values you fit to and how much do these vary in 

reality? If the parameters are fit to different values, how much might the dynamics and conclusions 

change? For example, the enzyme-substrate model in Allison et al. 2010 may or may not oscillate 

depending on the parameters. 

 

The equilibrium values can vary a great deal across the globe, depending on climatic conditions and soil 

quality. Perhaps equally important is the question, by how much the parameters are constrained which 

determine the equilibrium values. We find that these values are fairly uncertain. As we compare models 

with each other, we felt that we should not pick arbitrary parameters, but choose them that the models are 

comparable in some way. In our discussion paper, based our parameters based on published values, or we 

use other justification. Our base parameter set starts off with German et al., 2012. In our discussion paper, 

we chose to force the model through equilibrium values at base and elevated temperature. Reviewer 2 

pointed out that some of the results were too derived (in particular the apparent Q_10, Fig 4 in our 

discussion paper). We agree with reviewer 2, and we changed the parameterisation such that the 

equilibrium at reference temperature are the same, and that the initial response to a temperature 

perturbation is equal across the model. 

 

As for the oscillation, Wang et al. (2014) showed the parameter space with respect to the oscillatory 

behavior. Large V_max compared to K_m dampens oscillation quickly. On the other hand, in the Allison 

et al. (2010) model, a large fraction of the input and microbial necromass was assumed to become DOC, 

which does not require enzymes for microbial consumption. This assumption also reduces the positive 

feedback between microbial growth and decomposition, because microbial growth can occur independent 

of enzyme production via consumption of readily available DOC, we added this possibility in the method 

and the discussion section 

 

P10878, L2: Is there a +kr[ES] term missing from the expression given for d[E]/dt? If the 

reversibility of enzyme binding removes –kr[ES] from d[ES]/dt, then where does it go? Also, 

reversibility is not shown in the diagram of Fig. 1. 

 

Yes, this is missing, but the mistake is editorial and does not affect the subsequent math. We show the 

reversibility in our new Fig 1. 

 

P10878, L6: Please explain a little more in the text what P is and that it changes; i.e., that it is a rate 

proportional to microbial biomass. 

 

Our revised manuscript say that P is the production of enzymes, and that in most microbial decomposition 

model, this is assumed to scale to microbial biomass. However, our model 4 (OPT model) relax this 

assumption and P is optimised. 

 

P10878, L13: Why are you most interested in E_t? The Michaelis-Menten derivation using the 

quasi-steady state approximation for short-lived intermediates (i.e., d[ES]/dt = 0) is very standard 

in textbooks, but could be better explained here. 

 

Starting from P26, L 2 we rearrange to the following: 

 



„The Michaelis–Menten approximation for depolymerisation assumes that the system is in quasi-

steady state in which the tendency 
d[ES]

dt
 and 

d[E]

dt
 are zero. This implies also that tendency of the 

total enzyme concentration 
d[Et]

dt
 (with [Et] = [ES] + [E]) becomes zero.“ 

 

 

P10878, L15-16: This sentence seems to cut off prematurely, in which E_t … is? 

 

This is now taken care of with the new formulation, where we explain the quasi-steady state in the 

Michaelis-Menten kinetics. (see our response to the previous comment). 

 

P10878, L17-19: Consider using S_t for total sites instead of [S] which is also used as the transient 

free sites and is certainly not constant, otherwise d[S]/dt=0 would defeat the purpose. I think that 

the condition on S or St is not necessary for the derivation; Eq. (A2) = 0 by the quasi-steady state 

assumption of fast-reacting intermediates. Also note the missing period. 

 

The S stands for the total substrate, and we would like to keep that in the main text. We changed the text, 

such that S refers to the concentration of the substrate. Importantly, we have Sf as the free available sites 

for enzyme-substrate reaction when these sites become limiting Appendix B, limited available substrate. 

You are correct, the condition on S_tot is not necessary. And thus we delete this part. What we meant, 

with Sthough, S_tot changes only marginally (quasi-steady state of E and ES) so that the relative 

concentrations of ES and S do not lag the substrate. 

 

P10879, L10: Similarly to what? I would suggest moving P10879 L18 – P10880 L5 to above P10879 

L10. It might be better to introduce the previous method and then what you do, instead of switching 

back and forth. 

 

We agree. In our revised manuscript we now first deal with the simple enzyme turnover model, as used in 

Allison et al., 2010, introduce the concept of steady state in the enzyme pool, and then move forward to 

discuss the parameterization of differential turnovers of the enzyme substrate complex and the free 

enzymes. .   

 

P10879, L13: Is Eq. (A7) missing a term? From [Et] = [E]+[ES], taking the derivative and 

substituting Eq. (A1) and (A2), you would get d[Et]/dt = P –lambda_E1*[E] – kcat + 

lambda_E2)*[ES]. This would then add a term to the denominators of (A8) and (A9) and carry 

through the expressions presented to (A25), etc. It would also be good to be consistent with your Et 

and [Et] notation, as they are used interchangeably in the appendix.  

 

We actually missed kcat*[ES] in equation A1. However, some enzymes may be destroyed when the 

product is formed.. lambda_E2 is thus a parameter that includes both, the destruction of enzymes when 

products form, as well as denaturizing of enzymes while they are complexed with substrate. We will also 

make sure to maintain consistency on [E_t] notation. 

 

P10882, L4: It would be nice to keep consistent notation for [S]; for example, St = theta (S+ES), 

where S represents free, available sites.  

 

We would like to keep S for the total amount of substrate, to be consistent with the main text. But we 

make sure, here and in the discussion of the Michaelis-Menten equiation, to inform the reader how S (all 

forms of S) relates to the available sites, also when much of the substrate becomes inaccessible. 



 

P10882, L8-9: Can you explain a bit more why you take a Taylor series expansion (linearize) 

around the total sites S=0 versus linearizing around the equilibrium S? Also, you alternate between 

kE and KE. 

 

We expand there. We assume that enzyme concentrations are much bigger than the potential reaction 

sites. That is E_t + K_E >> S/theta. Thus the term S/theta is in the vicinity of zero if compared to E_t + 

K_E. This allows us to expand around zero. We explain this now in the text. We also add that we obtain 

the same result, if S_f << K_E in Equation B7, (small amount of free sites) and thus 

 

Equation B7 

 

S_f = S/theta – S_f*E_t/(K_E + S_f) ~= S/theta – S_f*E_t/K_E 

 

Therefore 

 

S_f = S/theta * K_E/(E_t + K_E) 

We also make sure to maintain consistency on K_E notation. 

 

P10882, L12: Could you explain why the S/theta term is much smaller than E_t and K_E (as on 

P10883, L1) and dropped from the denominator of Eq. (A24)? 

 

We add that this particular solution is for a small amount of binding sites, and enzymes compete for free 

sites. Thus E_t >> S/theta, and it can be dropped within the denominator.   

 

P10884, L5: Is the final expression missing an M in the numerator? 

 

Correct and nice catch! We add the microbial biomass as a factor. 

 

P10885, L1-3: If P is a function of M as before, then M can also be written as a function of P. When 

taking the derivative of G in Eq. (A32) with respect to P, does the lambda_r*M term come into 

play? Similarly with substituting a function of M for P in the denominator of D (A35) when 

determining if an optimum exists. 

 

In this solution, where the microbial community optimises enzyme production, P is independent of the 

microbial biomass, therefore the derivation of lambda_r*M is zero. 

 

P10892, Table 2: For model 4, the value of KP is not given, does this mean that it carries over from 

the fitting of the other models? For clarity, please add𝛍 to the table where Pc/D is given for model 

4. 

 

We realize, the ratio Pc/D in the table is confusing. We will use mu, as suggested, and motivate its usage 

better in the method section (10867 L8-10 in the discussion paper).  

Values for both parameter KP and c are hard to come by. But in our solution they always occur together in 

a product (K_P*c). Moreover, the fraction of enzyme expenditures in relation to depolymerisation can 

easily be expressed as a function of maximum depolymerisation (V_max*S) and the product K_P*c 

(Equation A8). Mu is then the fraction of carbon that is used for enzyme production compared to the 

potential depolymerisation rate, as it would occur without cost, evaluated at steady state. We think this 

makes enzyme expenditures a bit more tangible because we relate these costs to processing rates. Once 

we defined mu, we can derive K_P*c, for any Vmax and S. We note that the potential depolymerisation 

rate at steady state is also the input of fresh litter (I). We added the values of K_P*c to the table 3.   



P10893, Table 3: Should the short/fast time scale and long time scale have the same conditions 

(namely, S =eq. S) in the caption? Please clarify the methodology in the caption. 

 

We improve Table 3, also in response to the improved modeling setup. In the short-term equilibrium 

(quasi-steady state), we let microbial biomass equilibrate with S (any potential value of S). This is 

motivated by the fact that microbial biomass turns over much faster than soil organic matter. We added a 

new column, that calculates depolymerisation if M is at equilibrium (with any given S). We also have 

carried out additional simulations that show the dynamics of soil organic carbon, respiration, and the 

diagnostic equilibrium microbial mass. We can show that the assumption of a microbial steady-state leads 

to similar results in the medium to long-term (but not in the short-term, see our new Fig 3).  

We will explain the assumption of the short-term equilibrium (quasi-steady state) in the new method 

section (see also our response to an earlier comment to P10868, L5-15).  

 

P10895-10897, Figures 2-4: Could you include a short descriptive model name for the four models 

in the legend or in the captions and briefly discuss why you chose a logarithmic x-axis? The log axis 

makes it harder to think through the dynamics and build intuition for shorter time scales; consider 

changing to a regular axis. 1,000 years is very long! Also, it looks like models 4 and 5 have the same 

orange color in the legend. Please make sure the five colors used are clearly distinguishable. 

We changed the model names such that they are more descriptive (now FWD, REV, OPT, and FOR) for 

the forward, and reverse Michalis Menten, model, for optimising enzyme production, and for the 

traditional first order Model. ‘Logarithmic axes are chosen’ to better highlight differences in short-term 

responses’ to the figure caption. If we switch to regular axis, differences with respect to the equilibrium 

assumption, and with respect to the implementation of respiration (explicit growth and maintenance 

respiration) simply disappear. We truncated our time axis to 200 years when the system finally reaches 

equilibrium.  We have changed the color scheme to better highlight the differences between models.  

 

Technical corrections 

 

P10858, L5: “sufficient” should be “sufficiently” 

Done 

 

P10859, L11: Remove the word “a” to read “to more complex dynamics” 

Done 

 

P10860, L20: Sentence fragment – consider revising to: “models, each of which carries a 

single soil organic matter pool…” 

This sentence has been replaced in the revised manuscript. 

 

P10862, L1: “represented” might be a better word choice instead of “parameterized” when 

referring to the mathematical form (structure) of a process. 

Done 

 

P10862, L21: Consider changing “They dynamics…” to “The microbial pool is 

characterized by…” or if keeping the current sentence, change “is” to “are” 

Now it reads as “Partitioning of microbial respiration into growth and maintenance respiration 

characterise the microbial pool as follows:“ 

 

P10864, L11: Consider changing “parameterized” to “represented” again. 

Done 



 

P10867, L8: Remove “the” from before model 4 and consider replacing “…and expressed 

them as…” by “expressed as” 

We keep “the” as we added a name to the model. Now reads as “Here, we analyse the OPT 

model based on different levels of enzyme expenditures and expressed as enzyme costs per unit 

carbon depolymerised (mu =Pc/D), where μ is 0, 10, and 50  percent of the depolymerisation rate 

at reference temperature and at steady state”. 

 

P10868, L14: “response” to “respond” 

This sentence has been replaced in the revised manuscript. 

 

P10868, L23 – P10869, L1: Check sentence punctuation and rephrase; e.g., “response to 

warming: all catalytic…” 

This sentence has been replaced in the revised manuscript. 

 

P10869, L13: Consider changing to “… biomass also converges…” 

This sentence has been replaced in the revised manuscript. 

 

P10870, L19: Consider changing to “warming-induced increase” 

This sentence has been replaced in the revised manuscript. 

 

P10874, L8: Missing the word “of” in “a surplus of free enzymes” 

The word “of” is added now 

 

P10874, L23: Remove the word “they” from “that relate to” 

Done 

 

P10874, L27: Add the word “with” in “occur with infinite enzyme…” 

Done 

 

P10875, L7: Add the word “the” in “found in the…” 

This sentence has been replaced in the revised manuscript. 

 

P10875, L21: “… by introducing a variable…” 

This sentence has been replaced in the revised manuscript. 

 

P10878, L1: Dynamics is plural, so “dynamics… are” 

Done 

 

P10878, L6: [S] “is” instead of “are” 

Done 

 

P10879, L6: Note the missing space. 

Done 

 

P10879, L6: Remove the comma in “we assumed that DOC…” 



Done 

 

P10881, L3-4: Are lambda_E1,0 and lambda_E1 the same? It looks like there may be a 

notation typo.  

No, they are not the same. lambdaE is a general decay rate, lambda_E1 is the decay of free 

enzymes, but in the REV model with microbial enzyme consumption we devided decay of the 

free enzymes further into lambda_E1,0 + lambda_E1,M*M 

 

P10882, L14: No need to capitalize “Equations” 

Done 

 

P10883, L4: Consider changing the wording of “evaluate end member” to, for example, 

“evaluate the following scenarios” 

Done 

 

P10883, L15: The word enzymes should be plural. 
Done 

 

P10884, L11: Change wording to “where P is the…” and also Vmax “is…” versus “may 

be…” 
Done 

 

Thank you for reading the MS carefully and making note of grammatical and spelling mistakes. All these 

technical corrections (where applicable) have been addressed in the revised manuscript.  
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Response to reviewer 2 

 

General comments  

Sihi and co-authors present a nice study examining soil C dynamics projected by a series of 

simple models that make different assumptions about heterotrophic respiration and 

enzyme production. At a high level their findings could be interpreted as: 1) Forward 

Michaelis-Menten (M-M) models are crazy 2) Reverse Michaelis-Menten models look more 

reasonable and 3) Reverse models approximate first-order models so why bother with these 

silly microbial models that are a pain to parameterize and run? I this this paper has more 

to offer, however, and my suggestions are intended to give the paper broader insight and 

appeal. 

 

Thank you for these comments. This is perhaps a little bit too simplified. However, our work was 

intended to contribute to the discussion how microbial decomposition models and microbial 

enzyme models are similar (or dissimilar). The subsequent question the reviewer raises, 

however, are very much to the point, and help us tremendously to sharpen our manuscript. 

 

The discussion around Model 4 (P 10885) may be the most interesting nuance of the paper, 

but I wonder if one has to invoke a optimized enzyme production model to get this same 

result? Could an empirical function between temperature and turnover accomplish the 

same goal? What if a larger (or temperature sensitive) Km value was chosen (implying a 

lower affinity for substrates with increased temperatures)? More importantly, how do we 

quantify the “real” 𝛍 value that should be used for Model 4, if that’s the important value to 

differentiate between first order and microbial explicit models? 

What determines the cost of enzyme expenditures, and how may it be different in different 

soils. 

 

Perhaps the central motivation to put forward the model with optimised enzyme production is 

that earlier models link enzyme production directly with microbial biomass. What determines the 

level of enzyme production? The optimisation of enzyme production may be viewed as an 

alternative to the “proportional” model, allowing microbes to adjust to the soil environment. In 

the REV model, it is always assumed that enzyme production scales to microbial biomass. An 

increase in enzyme production in the REV model is congruent with a reduction of K_M, which 

increases the overall affinity of microbes for substrates. Our OPT model relaxes the fixed 

relationship between M and enzyme production, but introduces instead a cost of enzyme 

production that allows microbes to optimise their growth. This replaces the production rate with 

another unknown parameter. At this point, we do not have a recipe to estimate the cost of 

enzyme expenditures rather we assumed it is a fraction of total carbon depolymerised at 

reference temperature.  

 

We interpret enzyme expenditures in 2 ways: 

1) The cost per unit enzyme produced, which may be related to the enzyme specifically to 

solubilise a particular polymer. This may be the easier term to determine experimentally 

or even theoretically, but may also be a function of temperature.  



2) The cost of enzyme production relative to the amount of carbon depolymerised (roughly 

mu). Clearly, this depends on many parameters, including quality of the substrate, its 

accessibility, and the affinity of the enzyme for the substrate, none of which is easy to 

determine.     

 

Given that all these parameter are unknown, the reviewer is right; there could be an empirical 

function that can get the same result. In fact, the first order solution is very close to the microbial 

model solution, particularly for marginal costs. Nevertheless, the microbial models and their 

analysis serve to lay theoretical fundament to understand microbial dynamics.  

 

There are really two underlying modeling frameworks being used, the forward and reverse 

M-M kinetics (currently models 1 & 3 respectively). Overlying these basic structures the 

authors increase model complexity by adding maintenance respiration (Model 2), and 

enzyme production optimization (Model 4), but the order of these additions makes it 

unclear how maintenance respiration effects the reverse M-M model or how optimizing 

enzyme production may modify results from the forward model? I wonder if it makes more 

sense to restructure the results so we’re able to: A) Compare forward vs. reverse 

configuration (these could be models 1a and 2a); then B) Layer on maintenance respiration 

costs (models 1b & 2b); and finally, C) Add Enzyme production optimization (models 1c & 

2c). 

 

The Reviewer is right. Rearranging the discussion and the figures generates a much clearer 

picture. The biggest model alterations are forward versus reverse M-M models. We keep the 

enzyme optimisation as part of layer 1 because this is makes a distinct change in the long term, 

and it fits thematically also with the discussion on how formulations of depolymerisation affect 

the models’ dynamics. In revised manuscript, we add a 2nd layer, in which we analyse the model 

behavior under the conditions that microbial biomass adjusts fast to new temperature and new 

carbon availability. We note that this layer was not applicable to the forward M-M model, 

because of unstable microbial equilibrium in the short time scale. We can show that 

decomposition in the reverse model can be more simplified, without much loss of information. 

The exception is the initial response to a temperature increase. In the early phase of the 

temperature response, the microbial decomposition model lags the sudden increase in 

depolymerisation higher v_max vs the model where microbes are assumed to equilibrate quickly 

with the supply (See Fig 3).  The fast adjustment models create a bridge between traditional and 

microbial model in an analytical fashion.  This new set of analysis also highlights the use of the 

fast scale equilibrium for microbes in Table 3 in our revised manuscript, an issue raised by both 

reviewers. Then, we add another layer ofmaintenance respiration costs. 

 

Based on the reviewer’s suggestion we propose new figures to replace previous Figs 2 to 4 (See 

new Figs 2 to 4 in the revised manuscript).  

 

The model simulations nicely compare results of the models evaluated here, but given the 

choice to modify parameters to achieve the same initial and final values of CUE, 

M, and S (P 10869, L 21) it’s unclear how much the results in Fig 2 emerge because of the 

parameter values chosen vs. differences in model structure. Is there some apriori reason to 

expect these predefined responses of CUE, and substrate pools to warming? 



I realize that Fig. 4 and section 4.2 tries to address this concern, but it’s too derived to 

make much intuitive sense (beyond forward M-M models seem really wacky)- but that’s 

a point already made in Fig. 2 and elsewhere (Wang et al. 2014). 

 

Our challenge has been to parameterise each of these different models, such that they are 

comparable to each other. We chose in our first submission that to parameterise in order to create 

the same long-term response. We realise that this may be ‘too derived’ in order for the reader to 

be able to critically compare the models based on the figures themselves. Here we present an 

alternative: In layer 1, we adjust model parameter that  

 

a) microbial biomass,CUE, and soil organic carbon are equivalent at reference temperature as in 

our first submission, and  

b) that the initial response of respiration is the same across models.  

 

This second parameterisation may be motivated, that short-term respiration responses are often 

measured in laboratory settings. This second requirement can be met by simply keeping the 

temperature sensitivity of maximum depolymerisation and of carbon use efficiency the same 

across models. 

As a result, the long term changes in soil organic matter differs across the models (but not 

microbial biomass, (see Table 3 and Figure 2) in the final manuscript. 

When we add the additional layers of microbes in quasi-steady state and maintenance respiration  

we do not change the parameters to fulfill requirement b) 

nor do we change requirement a) when we add enzyme production cost in the enzyme 

optimisation model, keeping the format of our previous submission.  

 

Because both short-term and long-term responses can now be inferred directly from the new 

figures (Figure 2 &3), the previous figures (in discussion the paper) with the apparent Q_10 

become obsolete.  

 

Would it be more illustrative to explore the parameter space that allows each model to hit 

the same initial conditions, but then potentially diverge in their responses to warming? 

This would provide more of a sensitivity analysis for the respective models, and illustrate 

potential issues with equifinality in the more complicated model (#4). Such considerations 

seem important, because I would assume that different parameterizations may project 

either an increase or decrease in microbial biomass, but currently only one set of 

parameters are used for each model (e.g. Model 3, discussed in the middle of page 10870). 

 

Based on the previous comment (see above) we did change the models to hit the same initial 

conditions, and they now diverge in the long-term. We kept the setup for model 4 (OPT model), 

where the initial conditions are different, based on the carbon cost for enzyme production. I think 

this is usefule in such that at higher cost i) fewer microbes are able to live off a given supply of 

carbon, and ii) the rate of decomposition is lower, which then translates into overall higher soil 

organic carbon. 

To address equifinality of the different cost models, we compare the relative change in soil 

organic matter and microbial biomass, which are smaller the higher the cost is. Similar values 

indeed suggest similar model behavior as in the no-cost model. We also found interesting 



dynamics with respect to CUE: CUE sharply decreases, as in previous models. Yet in the model 

associated with cost, CUE further declines, as the substrate depletes. Lower SOM increases the 

fraction of carbon used towards enzyme production.  

 

Specific comments  

Introduction: There are so many clauses in the text that they become distracting to the 

main message being communicated. I understand this is highly editorial, but I’d 

recommend using more direct, precise language throughout the manuscript to directly 

convey the authors’ intent. 

 

We have re-addressed our introduction, and will use shorter sentences to more clearly convey 

our message. We hope that it helps to pose the questions that we address in this manuscript 

which are: 

Microbial models suffer from oscillation, because there is a positive feedback between 

depolymerisation and microbial biomass. How do alternative formulations of depolymerisation 

affect this feedback?  

Simple microbial decomposition models consider 1 respiration term. Does the separation of 

temperature dependent maintenance respiration and temperature-independent growth respiration 

plus other respiration trade-offs such as enzyme expenditures affect response to warming? 

How do different microbial decomposition models compare against the traditional first order 

models? 

 

Paragraph starting on P 10859, L 19-30: I’m not sure these features are unique to 

microbial models alone. (see Frey et al 2013 cited here, which uses CENTURY). Moreover, 

much of the partitioning of respiration fluxes could be done in first-order and microbial 

models. Separately, it’s somewhat misleading to cite Hagerty et al. 2014, which is an 

observation based paper that doesn’t really deal with models (the topic of the sentence 

here). Finally, is seems odd to cite Schimel 2013, which is a non-peer reviewed opinion / 

summary of Wieder et al. (2013). 

 

The reviewer is right. The sensitivity to carbon use efficiency is not restricted to microbial 

models. In our revised manuscript we change that to:  

 

Moreover, the response of soil organic matter to warming is very sensitive to microbial carbon 

use efficiency (CUE), because this parameter and its climate sensitivity defines the fraction of 

carbon remaining in the soil as processed organic matter vs. carbon removed via respiratory CO2 

(Allison et al., 2010; Frey et al., 2013; Kivlin et al., 2013; Tucker et al., 2013; Wang et al., 2013; 

Li et al., 2014).  

We remove the Schimel (2013) reference and add wieder et al. (2013). We also remove the 

Hagerty et al. (2014) reference as it also does not deal with carbon use efficiency, but evaluates 

the effect of microbial turnover.  

 

The paragraphs at end of the Introduction and beginning of the Materials & Methods 

section are nearly identical and summarize the modifications to the basic “German model”. 

I appreciate the clear organization, but wonder if some redundancy can be removed. 

 



We have reorganised both, the end of the introduction and the beginning of the method. The end 

of the introduction now lays out a road map of the paper where we say what kind of models we 

create, and how we analyse them. The beginning of the method we jump right into the specifics 

of the model families. The end of introduction now reads as “In the next section, we introduce 3 

models that differ in their representation of depolymerisation. Each model will be further 

modified for different representation of microbial dynamics and respiration. To analyse model 

behavior we will evaluate the response of respiration, microbial biomass, CUE, and soil organic 

matter to a step increase in temperature. We will then discuss the models’ behavior by comparing 

against traditional first order model.”  

 

Methods: I really appreciate Figure 1, which nicely summarizes the model modifications 

being investigated here. Is it worth adding Fig. 1b that shows the first-order model (#5) 

used too? Alternatively, this could be described more completely in the text (is it just a two 

pool model with SOM and microbial biomass (that doesn’t do anything?) 

 

We have changed Fig 1 now to explicitly show the different model families: Different 

formulations of depolymerisation (Fig 1a), equilibrium microbial model (where the microbial 

uptake at each time step is equal the microbial carbon loss via death or respiration, Fig 1b), 

which in the special case of Model 4 is the first order decomposition model, and and partitioning 

between maintenance and growth respiration (Fig 1c). 

 

Model 3 is a reverse Michaelis-Menten models, which has been proposed and used in other 

microbial explicit models (e.g. Schimel & Wientraub 2003), as opposed to the forward 

configuration used by Allison et al 2010, on which the German model is built. References to 

models and the theory behind forward vs. reverse Michaelis-Menten models are likely 

relevant here. 

 

We will add the Schimel and Weintraub (2003) reference to the reverse Michaelis-Menten model 

in the beginning of the model description section in the revised manuscript. We also provide 

extensive theory in the Appendix, and refer to Wang and Post,2013 for additional theoretical 

cases how it can emerge.  

 

Results: The ‘knife edge’ results are mentioned in both results and discussion, but I’m not 

really clear what this refers to? Is it obvious is any of the display items? If not, could it be- 

it’s such a strongly visual phrase it seems like it should be obvious in a figure?  

 

In both instances, we refer to Schimel and Weintraub (2003), who used this term, and also 

showed the instability of the system (describe again Table 3, 2nd column? In order to get stable 

M, there has to be a perfect balance of parameters, i.e. referred to the knife-edge equilibrium). 

We feel it is not necessary to add a graph, particularly we do not want to create the impression 

that this finding is new (which it is not). 

 

In Table 3 and results I’m not clear of the utility of the short times scale steady-state 

solution for M? Is this just to show that the forward models (#1 & 2) aren’t stable & 

oscillate over short times scales (as evident in Fig 2b)? I’m also curious what causes the 

shift in the steady state equation for M in model 3 over longer times scales? It’s also not 



clear what part of Table 3 if being reference in the results (P 10868, L 10-12), specifically 

what’s independent of ‘M’, steady state S pools? This is generally true of other microbial 

explicit models (see Wang et al. 2014). I’d suggest dropping the shorter times scale M 

response to focus on the longer time scale dynamics, or spend time discussing both. 

 

Both reviewers mention that they have trouble seeing the value of the short-term equilibrium in 

Table 3 of the discussion paper. We reorganized the tables and it is table 2 now.The timescale of 

the microbial turnover is much shorter than the time scale of soil organic matter turnover. That is 

microbial biomass adjusts much faster to changes in environmental conditions than soil organic 

matter itself. Thus, over the timescale of microbes, soil organic matter can be approximated by a 

constant (it does not change that much). This allows microbe to equilibrate with the current level 

of soil organic matter (quasi-steady state, see also Menge et al., 2009). We can then substitute the 

quasi-steady state expression for microbes into the function of depolymerisation and, microbial 

death, and respiration. In the revised manuscript, we added a figure (Fig 3 ) that shows how the 

assumption of microbial equilibrium compares against the fully dynamic models with respect to 

the dynamics of decomposition and CO2 flux. Further, this analytical trick helps to build the 

bridge to traditional first order models, because the formulations of decomposition are now 

independent of the microbial biomass. For example depolymerisation in Model 3 now becomes: 

 

D = V_max*S*epsilon– K_M*lambda_d 

 

Similar, the decomposition in the OPT model is analytically the same as the first order 

decomposition model. 

 

The authors never refer to Fig. 3 in the results, but I assume the first paragraph on P 

10871 refers to these results? 

 

Yes, that is correct, this paragraph described the Fig 3 results.  All figures are referenced in our 

revised manuscript. 

 

I wonder if the lack of apparent changes of Q_10 in the first order model (#5) are an 

artifact of the analysis done here, or the very simplified model structure being considered 

(see Koven et al. 2015). 

 

Q_10 in the first order model is higher than 1, so there is a (albeit small) temperature response 

also in model 5. The much lower Q_10 stems from our initial modeling setup to force the results 

to the same beginning and end values for CUE, soil organic carbon and microbial biomass. This 

required us to set Q_10 for Vmax to be 1, while only respiration was temperature sensitive. 

Based on the reviewer’s suggestion, we now do not force the model to the same end-points, but 

through the same initial response to temperature. The apparent Q_10 figure (Fig 4 in the 

discussion paper) was intended to compare short-term vs. long-term responses. The new 

modeling setup allows us now to compare short-term vs. long-term responses in a more direct 

fashion. Thus the ‘too derived’ Fig 4 in our initial manuscript becomes obsolete. 

 



Discussion: The beginning of the discussion reads too much like the introduction. In my 

mind, the discussion should highlight key finding of the work presented here, not a 

literature review on microbial models. 

 

In our revised manuscript, we shorten the first paragraph of the discussion. It was our intention to 

acknowledge earlier work. We tip our hats to these researchers now in appropriate places 

throughout the section, and more directly in conjunction with the discussion of our results.  

 

I wonder if you really need the nuances of maintenance respiration and CUE to get a 

reverse Michaelis-Menten model to approximate a first order model? Just looking at 

equation 9, if Km is small (relative to M [P 10866, L 23]) then D = V_max * S (basically 

eq. 14). 

 

This is correct, there is no need of nuanced respiration and CUE to get a first order model. We 

can demonstrate that now even better, with the suggested layering of the model. In previous 

model 4 (the OPT model now, and in absence of enzyme production cost), the decomposition 

equation is exactly a first order model. However, what needs to be considered in some way is a 

temperature dependent CUE. That is how much carbon is being rerouted back into soil organic 

carbon pool.  

 

Material in the Appendix is frequently referred to in the discussion; however, it’s not really 

clear what part of the Appendix readers should direct their attention. Moreover, it’s not 

really clear if or how the mathematical derivations in the Appendix are (or are not) used in 

the main display items and results of the paper. If the material in the Appendixes are being 

used for simulations presented they should be clearly referenced in the main text. In my 

mind the Appendixes should NOT be used as a large parenthetical to house fancy 

mathematical derivations that don’t inform the larger manuscript. 

 

Our intention of the appendix was to not clutter the method section with detailed mathematical 

derivations, but provide the readers with the necessary tools to recreate the differential equations 

for depolymerization,  and the quasi- steady state of enzymes and DOC pools.  However, in 

retrospect we can relate to the reviewer (and readers) not seeing the link between the method and 

appropriate parts and equations in the appendices. In our revised manuscript, we have the 

appendix clearer referenced and clearer structured with sections and section titles. 

 

I appreciate the need to use simple models like this to understand the mathematical 

dynamics of microbial explicit models, but how much do we lose by using such a simple 

model that it doesn’t really represent soil C dynamics at large spatial, or long temporal 

scales? There’s some of this at the end of the discussion, but greater introspection into how 

this study may inform ecosystem scale models (or larger) that are used for soil C 

projections would be helpful. 

 

We will add to the discussion, and more importantly in the conclusion how the evaluation of 

simple models can serve larger scale models. In the discussion, we explain, that our framework 

provide ecosystem modelers with a mechanistic handle, when decomposition dynamics is 

expanded to include multiple substrate with different response to microbial processing. In the 



conclusion, we highlighted how specific mechanisms lead to transformations from a forward to a 

backward, and what it means to relax the proportionality of microbial biomass and allow 

microbes to “choose” enzyme investment. Our manuscript also lays out what the specific 

parameters are composed off under these mechanisms.   This provides ecosystem modelers 

insights when expanding to more complex representations, such as multiple quality pools..  

Further, we show that even in simple models, the response to temperature is a composite of 

parameters that are hard to come by, including half saturation constants, sensitivity of microbial 

respiration to temperature, the amount of enzyme produced by microbes, as well as enzyme 

activity. 

Finally, our work shows mathematical linkages between first order decomposition model and 

microbial models, which help to understand and potentially improve first order models, as more 

nuanced microbial models are being developed. 

 

P 10858, L 5-6 This sentence is somewhat awkward and doesn’t seem grammatically 

correct. 

 

Changed to “Under sufficiently large substrate, this new feedback allows an unconstrained 

growth of microbial biomass.” 

 

P 10858, L 6 I’d recommending modifying the beginning of this sentence by adding ‘often’ 

or some other qualifier. For example: “A second phenomenon ‘often’ incorporated in 

microbial decomposition models” 

 

We changed the abstract and talk now about different respiration at the end of the abstract.  

 

P 10859, L 29 Wieder et al. 2014a doesn’t deal with microbial models (as implied by the 

text in the sentence. A better references may be Wieder et al. 2015, Geoscientifc 

Model Development. 

 

We substitute the reference as suggested. 

 

L 10860, L 6 What are “dynamical consequences”? 

 

We change that to “This differentiation can impact the dynamics of the microbial biomass”.   

 

I appreciate thorough documentation supplied in the Appendix, but to aid in reader 

understanding can specific parts of the Appendix be referred to in the main body of the 

text where appropriate (e.g., sections 2.1.3 & 2.1.4)? Were are A1, A2:: etc. referred to in 

the text? (see also P 10873 L 23 and P 10874 L 10) 

 

We have separated appendix in Appendix A (short-term dynamics of  the enzymes and DOC), B 

(derivation of the REV model), and C (derivation of the OPT model). Now, our revised 

manuscript have a clearer link to the specific parts in the appendix in the method section and 

throughout the text. 

  

P 10869, L1-2 this statement is not obviously supported by results presented in this paper. 



This part of the result section is different in the improved manuscript, due to the altered 

modeling setup.  

 

Figure 3: It’s not immediately obvious to what model this figure refers? The green color 

chosen is painful to look at. 

 

We change the caption to make clear that the simulations refer to OPT model. We also have 

changed the color scheme. 

 

P 10873 L 23: It’s nice that the authors derived a reverse M-M model (from the forward 

configuration), but it seems like a lot of work to replace a term in the denominator of an 

established model seem like a lot of work. I’m not sure how much the derivation is 

warranted in the Appendix. 

 

Respectfully, we would like to keep this part in the appendix, since we explicitly point to two 

specific mechanisms that can change a forward M-M model into a reverse model. Showing the 

full derivation helps the reader to understand that transition. We make a point to give specific 

examples how one arrives at a reverse Michaelis-Menten formulation, since they provide a 

juxtaposition to enzyme limited models. 

 

Paragraph beginning on P 10875, L 10 should reference Fig 3. 

 

This paragraph has changed. The warming response in model 4 is now not confined to the 

temperature sensitivity of microbial respiration, but also to the depolymerisation rate. We make 

clea reference to our new Fig 4 in the result and discussion section of the revised manuscript.  

 

P 10877 L 17-19 This sentence is completely unsubstantiated and should be qualified 

& reference or removed. 

 

The reviewer is right. Through the modifications of the modeling setup, this sentence is not 

needed.  

 

P 10877 L 20-21 This seems like completely throw away sentence that should be removed 

since no discussion of experiments and observations are used or discussed earlier in the 

paper. 

 

Both comments are taken care of by rewriting the conclusion. ).  
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 7 

Abstract 8 

Recent developments in modelling soil organic carbon decomposition include the explicit 9 

incorporation of enzyme and microbial dynamics. A characteristic of these models is a 10 

positive feedback between substrate and consumers, which is absent in traditional first order 11 

decay models. Under sufficientlysufficient large substrate, this new feedback allows an 12 

unconstrained growth of microbial biomass. WeA second phenomenon incorporated in the 13 

microbial decomposition models is decreased carbon use efficiency (CUE) with increasing 14 

temperature. Here, first we analyse microbial decomposition models by parameterising 15 

changes in CUE based on the differentiation between growth and maintenance respiration. We 16 

then explore mechanisms that curb unrestricted microbial growth by including finite potential 17 

sites where enzymes can bind and by allowing microbial scavenging for enzymes. We further 18 

developedFinally, we propose a model where enzyme synthesis is not scaled to microbial 19 

biomass, but associated with a respiratory cost and microbial population adjusts enzyme 20 

production in order to optimise their growth. We then tested short and long-term responses of 21 

these models to a step increase in temperature, and find that these models differ in the long-22 

term, when short-term responses are harmonized. Oscillations that arise from a positive 23 

feedback between microbial biomass and depolymerisation are eliminated if limitations other 24 

than through enzyme-substrate interactions are considered. The model, where enzyme 25 

production is optimised to yield maximum microbial growth shows the strongest reduction of 26 

soil organic carbon in response to warming, and the trajectory of soil carbon largely follows 27 

that of a first order decomposition model. Modifications to separate growth and maintenance 28 

respiration generally yield short-term differences, but results converge over time, because 29 
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microbial biomass approaches a quasi-equilibrium with the new conditions of carbon supply 1 

and temperature.     2 

When applying a step increase in temperature, we find fast responses that reflect adjustments 3 

to enzyme dynamics and maintenance respiration, a short-term adjustment in microbial 4 

growth, and the long-term change in carbon storage. We find that mechanisms that prevent 5 

unrestricted microbial growth lead to a similar response to warming as traditional first order 6 

decomposition models.  7 

 8 

1 Introduction 9 

Traditional soil organic matter decomposition models are based on first order kinetics, where 10 

decomposition scales to the pool size.  The and the scaling factor represents recalcitrance of a 11 

specific pool, and is modified by soil temperature, moisture, and other soil propertiesfactors 12 

(e.g. van Veen et al., 1984; Parton et al., 1987; Molina et al., 1990; Li, 1996; Chertov and 13 

Komarov, 1997). Recent modelling efforts have specifically included catalysis of polymeric 14 

soil organic carbon to dissolved organic carbon (DOC) by extracellular enzymes. This 15 

depolymerisation step produced by microorganisms in soil, which is thought to be athe rate-16 

limiting step in organic matter decomposition process (Schimel and Weintraub, 2003; 17 

Fontaine and Barot, 2005). Further, these microbial models explicitly consider carbon use 18 

efficiency (CUE) as a function of soil temperature. The resulting prediction of soil carbon 19 

dynamics suggests that an increasing temperature attenuates the loss of soil organic matter 20 

compared to traditional models (Allison et al., 2010).     21 

In traditional models, microbes are only considered as a simple donor-controlled pool (i.e, 22 

microbial biomass has no impact on decomposition), or in an implicit manner (Gerber et al., 23 

2010). In contrast, in the microbial models, decomposition rates become a function of enzyme 24 

activity that is linked to microbial biomass. This leads to a more complex dynamics because 25 

decomposers feed back into soil organic matter degradation via microbial enzyme production 26 

affecting depolymerisation., the first step of organic matter decomposition. This positive 27 

feedback between microbial biomass and depolymerisation causes soil organic carbon stocks 28 

and microbial biomass to oscillate after a perturbation (Li et al., 2014; Wang et al., 2014). 29 

Nevertheless, microbialMicrobial decomposition models have been shown to improve the 30 

prediction of soil carbon and perform well when compared against decomposition 31 

experiments (Lawrence et al., 2009; Wieder et al., 2013; Wieder et al., 2014a; Wieder et al., 32 
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2014b; Wieder et al., 2015b). A comparison to traditional first order model show further that 1 

microbial model display an attenuated loss of soil organic matter to warming (Allison et al., 2 

2010; Wieder et al., 2013). 3 

MoreoverFurther, the response of soil organic matterthe microbial decomposition models to 4 

warming is very sensitive to microbial carbon use efficiency (CUE), because this parameter 5 

and its climate sensitivity defines the fraction of carbon remaining in the soil as processed 6 

organic matter vs. carbon removed via respiratory CO2 (Allison et al., 2010; Frey et al., 2013; 7 

Kivlin et al., 2013; Schimel, 2013; Tucker et al., 2013; Wang et al., 2013; Li), and turnover 8 

(Hagerty et al., 2014). Temperature-dependence of CUE is typically not considered in 9 

traditional decomposition models, rather the ratios between respired CO2 and the transfer to a 10 

different quality pool are mostly constant parameters, or vary based on soil texture, and soil 11 

quality, and organic or inorganic nutrient (Parton et al., 1987; Gerber et al., 2010; but see Frey 12 

et al., 2013). Microbial respiration can be partitioned into a series of carbon expenditures that 13 

do not contribute to growth. These expenditures , which include growth respiration, 14 

maintenance respiration, respiratory cost expenditures for enzyme production, and overflow 15 

respiration (Manzoni et al., 2012; Moorhead et al., 2012). Each type of respiratory carbon 16 

expenditures may differdiffers in itstheir response to temperature. In addition, respiration may 17 

be parameterised based on different microbial properties: Maintenance respiration is assumed 18 

to scale with microbial biomass (Chapman and Gray, 1986; Fontaine and Barot, 2005) while 19 

growth respiration may scale to the amount of new tissues built. On the other hand, overflow 20 

respiration (Russell and Cook, 1995; Franklin et al., 2011) occurs during stoichiometric 21 

adjustment (Russell and Cook, 1995; Schimel and Weintraub, 2003; Frost et al., 2005; 22 

Franklin et al., 2011) whereas costs related to enzyme production may be governed by 23 

microbial demand and substrate availability and quality, resource diffusion, and microbial 24 

diversity (Allison, 2005). This differentiation can impact the dynamics of the microbial 25 

biomasshave dynamical consequences: For example, maintenance respiration costs would 26 

incur even in the absence of carbon uptake, which can lead to a reduction in microbial 27 

biomass. In contrast, growth respiration is only due when substrate for growth is available. 28 

However, inclusionInclusion of these microbial models in Earth System Modelsto the coupled 29 

climate models by following the framework of Todd-Brown et al. (2012, 2013) may have the 30 

potential to ultimately reduce uncertainty of climate-carbon feedback in the face of climate 31 

change, because of the explicit link between microbial activity and soil organic matter 32 

degradation (Todd-Brown et al. 2012, 2013; Wieder et al., 2015a). . 33 Formatted
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As microbial models are considered critical towards improvement of Earth System model, it is 1 

key to analyse and understand their structure and their dynamics. Here, we compare a series of 2 

microbial decomposition models with each other. Specifically, we analyse feedbacks between 3 

depolymerisation and microbial growth, consider constraints on depolymerisation and enzyme 4 

substrate interactions, the parameterisation of microbial enzyme productivity, and investigate 5 

the representation of microbial respiration and CUE.  6 

Here, we apply a series of simple microbial decomposition models and investigate how 7 

different formulations of carbon use efficiency and depolymerisation of soil organic matter 8 

affect decomposition.  9 

Our main questions are: 10 

aa) How does separating microbial respiration into growth, maintenance, and enzyme 11 

production terms affect decomposition dynamics? 12 

b) How do different model implementations of depolymerisation affect the feedback between 13 

microbial biomass and soil organic matter, if subjected to warming? 14 

b) How does the consideration of functional respiration terms (growth, maintenance, and 15 

carbon acquisition expenditures) affect decomposition dynamics? 16 

We organise the paper in the following way. In the next section: First, we introduce 3 simple 17 

models that differ in their representation of depolymerisation. Each model will be further 18 

modified for different representationa series of microbial dynamics and respiration. To 19 

analyse model behaviour we will evaluate the response of respiration, microbial biomass, 20 

CUE, and decomposition models. Each of which carries single soil organic matter to a step 21 

increase in temperature.and a single microbial pool. In sequential model modifications, we 22 

include differentiation between growth and maintenance respiration, introduction of 23 

mechanisms where depolymerisation may be curbed by limited sites of enzyme-substrate 24 

reaction or by microbial scavenging for enzymes, and by respiratory costs associated with 25 

enzyme production. We will then discuss the models’ behavior by comparingpresent 26 

analytical equilibrium solutions to infer long-term values of carbon use efficiency, soil 27 

organic matter, and microbial biomass. For each model, we test its response to a 5°C 28 

warming. Finally, we compare the results against a traditional first orderdecomposition model.  29 
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 1 

2 Materials and methods 2 

2.1 Model descriptions  3 

We first introduce three model families that differ in the way depolymerisation is handled.  4 

In all models the setup consists of a single soil organic matter pool and a single microbial pool 5 

(Fig. 1).We apply five different microbial decomposition models (Fig. 1, Table 1). We start 6 

off with a simple microbial-enzyme decomposition model as proposed by Allison et al. (2010) 7 

and modified by German et al. (2012). We sequentially alter the model as we make distinction 8 

between growth and maintenance respiration (model 2), then different implementations of 9 

depolymerisation: we develop a case for diminishing return where increasing enzyme 10 

concentrations or microbial biomass result in decreasing marginal depolymerisation (model 11 

3), and provide a model, where the microbial population adjusts enzyme production to 12 

optimise growth (model 4). All models describe the dynamics of a single soil organic matter 13 

pool and a single microbial pool. However, all models also implicitly take into account 14 

interaction between enzymes and substrate, depolymerisation of substrate into a DOC pool on 15 

which microbes can feed. Enzyme-substrate reactions are based on Michaelis-Menten kinetics 16 

(see Appendix A, Michaelis-Menten kinetics with enzyme denaturation). We do not consider 17 

a specific enzyme pool, nor a specific DOC pool, but assume that the enzyme and DOC pool 18 

are in a quasi-steady state (Appendix A, DOC and enzyme dynamics). Thus, the amount of 19 

enzyme produced equals the amount of enzyme decay at every time step. Similarly, the 20 

amount of DOC produced is the same as the amount of DOC consumed by microbes. In 21 

contrast to Allison et al. (2010), but congruent with German et al. (2012), there is no “free” 22 

DOC, both fresh litter, and microbial necromass need to be depolymerised before it can be 23 

ingested by microbes.dissolved organic carbon pool on which microbes can feed. Further, 24 

both depolymerisation and microbial respiration are temperature dependent, causing increased 25 

depolymerisation and reduced microbial CUE with warming.carbon use efficiency with 26 

warming. We then will evaluate these models under a step increase in temperature.  27 

2.1.1. Base Models  28 

Model 1: German Model 29 
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The tendency (derivative with respect to time) for soil organic carbon and microbes in all of 1 

the models areGerman et al. (2012) model is described with: 2 

dS

dt
= I + λd ∗ M − D                                                                                                                 (1) 3 

dM

dt
= D ∗ ε − λd ∗ M                                                                                                                 (2) 4 

where S and M are the soil organic matter and the microbial pool, respectively, I the input of 5 

fresh litter, λd the death rate of microbes, D the rate of depolymerisation, and ε the microbial 6 

CUE. 7 

Forward M-M Model (FWD) 8 

In the forward model (FWD), depolymerisationgrowth efficiency. Depolymerisation is 9 

representedparameterised as a Michaelis-Menten process, and stems from the  simple 10 

microbial-enzyme decomposition model as proposed by Allison et al. (2010) and modified by 11 

German et al. (2012) (Fig 1a).  12 

 with   13 

D =
Vmax,FWD∗S∗M

KE+S

Vmax1∗S∗M

KE+S
                                                                                                        (3)          14 

Where D is the rate of depolymerization, Vmax,FWDVmax1 is the maximum depolymerisation 15 

rate and KE the half saturation constant for enzymes. Both, Vmax1 and KE are temperature 16 

dependent, where   17 

Vmax1 = Vmax1,0 ∗ Q10

(
ΔT

10
)
                                                                                                            (4) 18 

KE = KE,0 ∗ Q10

(
ΔT

10
) 

                                                                                                                 (5) 19 

where Vmax1,0 and KE,0 are the maximum rate of depolymerisation and the half saturation 20 

constant at reference temperature, respectively, and ΔT is the temperature difference 21 

compared to reference temperature.  22 

ε depends linearly on temperature:  23 

ε(ΔT) = ε0 + ΔT ∗ εslope     (6)                                                                                                                24 
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where ε0 is the carbon use efficiency at reference temperature, and εslope the change in carbon 1 

use efficiency per °C temperature (ΔT) change. Implicit in this model is that microbial 2 

enzyme productivity scales to microbial biomass (see also Appendix A shows the derivation), 3 

and that depolymerised carbon is at steady state with rates of this function, based on enzyme-4 

substratedepolymerisation and microbial uptake (German et al., 2012).  5 

Model 2: Modified German Model (include maintenance respiration rate) 6 

While the dynamics.  of the soil organic matter pool remains the same as in model 1, we 7 

partition microbial respiration into growth and maintenance respiration. The dynamics of the 8 

microbial pool is then characterised with  9 

dM

dt
= (D−λr ∗ M)(1 − g)−λd ∗ M   (7) 10 

Where g is the growth respiration fraction and λr the maintenance respiration rate. The 11 

separation of microbial respiration in growth and maintenance terms is motivated by similar 12 

formulation in other microbial (Beefting et al., 1990; Van Bodegom, 2007), vegetation growth 13 

(Foley et al., 1996; Cannell and Thornley, 2000; Arora, 2002; Thornley, 2011; Pretzsch et al., 14 

2014), and ecosystem-scale (Sistla et al., 2014) models. Growth respiration is applied after 15 

requirements for maintenance respirations are met. Maintenance respiration (respiration 16 

related to non-growth components) is typically proportional to microbial biomass (Van 17 

Bodegom, 2007). Growth respiration is typically much less sensitive to warming than 18 

maintenance respiration (Frantz et al., 2004). Hence, we apply a constant growth respiration 19 

and parameterise the temperature sensitivity of maintenance respiration with a Q10 function: 20 

λr =  λr,0 ∗ Q10

(
ΔT

10
) 

  (8) 21 

Where λr,0 is the maintenance respiration rate at reference temperature. 22 

Model 3: Diminishing Return (REV) Model  23 

In the Appendix B, we derive two depolymerisation models which show a diminishing 24 

increase of  25 

depolymerisation as microbial mass increases. These models include a) a case where microbes 26 

are scavenging for free enzymes, and b) where potential sites of enzyme-substrate reactions 27 

are finite. The implementations of We simplified depolymerisation in these factors lead 28 
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todiminishing return models such that it becomes again a reverse Michaelis-Menten type 1 

model (REV) as in Schimel and Weintraub (2003):function: 2 

D =
Vmax,REV∗S∗M

KM+M
D =

Vmax3∗S∗M

KM+M
                                                                                                                        3 

 (49) 4 

Where KM is a half saturation constant that determines the diminishing return function. In the 5 

cases developed in the Appendix, KM incorporates factors indicating the finite sites for 6 

enzyme substrate interactions (Appendix B, model with limited available substrate),, or the 7 

efficiency with which microbes scavenge for free extracellular enzymes (Appendix B, 8 

microbial consumption of enzymes). A version of the reverse Michaelis-Menten model also 9 

has been derived if only a fraction of the binding sites where a particular enzyme can adsorb 10 

to (Wang and Post, 2013).. A major difference to the FWD modelmodels 1 and 2 is that now 11 

the microbial biomass, instead of the amount of soil organic matter appears in the 12 

denominator. Therefore, the depolymerisation per unit biomass decreases as biomass 13 

increases (diminishing return).  14 

Model 4: Optimised Enzyme Production (OPT) Model 15 

In this model, we relax the condition that microbial enzyme production scales to microbial 16 

biomass, an assumption that is present in many microbial models and which is also assumed 17 

in the FWD and the REV model above. Instead weWe further probe a model where microbial 18 

enzyme production is optimised for growth. We motivate this by microbial competition 19 

(Allison, 2005), which will allow microbes to succeed if microbial enzyme production allows 20 

the highest possible return. Optimisation only has meaningful results for the case of limited 21 

substrate availability (i.e. a diminishing return, possibly through constraints in potential sites 22 

for enzyme-substrate reaction) and if there is a cost associated with microbial enzyme 23 

production.  24 

Depolymerisation as a function of enzyme production can be representedparameterised by  25 

D(P) =
P∗Vmax,OPT∗S

KP+P

P∗Vmax4∗S

KP+P
                                                                  (510) 26 

Vmax,OPTWhere P is the maximum rate of depolymerisationmicrobial enzyme production and 27 

KP carries information on the affinity of the enzyme for the substrate and longevity of the 28 

enzymea half saturation constant (see the Appendix C, for  full derivation of depolymerisation 29 

in the OPT model).and interpretations of Vmax4 and KP) .  30 
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Microbial growth (G) is as in previous models but accounts for carbon expenditure of enzyme 1 

production: 2 

G = ε ∗ (= (1 − g) (D(P)– Pc)        (6 – λr ∗ M)         (11) 3 

Where c is the respiratory cost per unit enzyme produced (Schimel and Weintraub, 2003)..   4 

Optimising growth by setting  
dG

dP
= 0 yields:  5 

D =  Vmax,OPTVmax4 ∗ S – √KP ∗ c ∗ Vmax,OPT ∗ S √KP ∗ c ∗ Vmax4 ∗ S          (712) 6 

AndA nd the cost per unit carbon depolymerised is then 7 

Pc

D
= √

KPc

S Vmax,OPT
        (8) 8 

2.1.2. Equilibrium microbial models 9 

While the previous models are fairly simple, we further reduce the complexity by removing 10 

microbial biomass as a state variable, but instead consider M at a quasi-steady state. In the 11 

equilibrium microbial models, the microbial uptake at each time step is thus equal to the 12 

microbial carbon loss via death or respiration (Fig 1b). This is similar to our treatment of 13 

DOC and enzymes, where production and removal of these substances are always balanced. 14 

This simplification is motivated by the fact that microbial biomass turns over much faster than 15 

soil organic matter, and therefore microbial biomass adjusts much faster to changes in 16 

environmental conditions than soil organic matter itself. The fast turnover of M compared to S 17 

allows microbial biomass to (quasi)-equilibrate with the current level of soil organic matter 18 

(see also Menge et al., 2009).  19 

In our equilibrium microbial models, we solve 
dM

dt
= 0, in order to obtain a quasi-steady state 20 

microbial biomass, M̅. M̅ substitutes state variable M in the functions for depolymerisation 21 

and microbial death. We note that this is only possible for the REV and the OPT model. The 22 

FWD model yields no solution for M in 
dM

dt
= 0, and the first order model does not consider a 23 
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microbial biomass in the first place. The equilibrium models, effectively becomes a one-pool 1 

model, where depolymerisation is not a direct function of microbial biomass, but an 2 

expression of S and a series of parameters. Table 2 (see formulations for Short/Fast timescale) 3 

shows the quasi-steady state for M, and the resulting depolymerisation function for the 4 

equilibrium models.   5 

2.1.3. Partitioning between maintenance and growth respiration  6 

While the dynamics of the soil organic matter pool remains the same as in base model setup, 7 

we alter the forward and the reverse Michaelis-Menten models as we make distinction 8 

between growth and maintenance respiration (Fig 1c). Partitioning of microbial respiration 9 

into growth and maintenance respiration characterise the microbial pool as follows:  10 

dM

dt
= (D−λr ∗ M)(1 − g)−λd ∗ M   (9) 11 

Where g is the growth respiration fraction and λr the maintenance respiration rate. The 12 

separation of microbial respiration in growth and maintenance terms is motivated by similar 13 

formulation in other microbial (Beefting et al., 1990; Van Bodegom, 2007), vegetation growth 14 

(Foley et al., 1996; Cannell and Thornley, 2000; Arora, 2002; Thornley, 2011; Pretzsch et al., 15 

2014), and ecosystem-scale (Sistla et al., 2014) models. Growth respiration is applied after 16 

requirements for maintenance respirations are met. Maintenance respiration (respiration 17 

related to non-growth components) is typically proportional to microbial biomass (Van 18 

Bodegom, 2007).  19 

2.1.4. First-Orderμ = √
KPc

S Vmax4
        (13) 20 

Model 5: Traditional Decomposition (FOD) Model  21 

The last model representsis the structure of traditional decomposition model such as 22 

CENTURY (Parton et al., 1987) or Roth-C (Coleman et al., 1996) and their derivatives, where 23 
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decomposition is considered as a first-order reaction, with the modification that carbon use 1 

efficiency changes with temperature: 2 

dS

dt
= I − S ∗ k ∗ (1 − ε)         (10S ∗ k ∗ Q

10,k

(
ΔT

10
)

∗ ε(ΔT)         (14) 3 

where k is the first order decomposition constant. The two major differences between our 4 

first-order , and Q10,k is the temperature sensitivity factor of the decomposition rate.  Model 5 5 

can also be considered as a special case of model 4, where the cost of enzyme production is 6 

zero, and the microbial biomass is at an instantaneous equilibrium with the rate of 7 

decomposition (FOD) model and . Respiration (R) is then  8 

R = S ∗ k ∗ Q
10,k

(
ΔT

10
)

∗ (1 − ε) (15) 9 

We note, that here – in contrast to traditional models are that we consider only a single carbon 10 

pool whereas traditional models consider several quality pools that feed into each other. We 11 

also consider a temperature dependent- CUE on top of a temperature dependent processing 12 

rate (k, see parameterisation and implementation section). This increases the fraction of 13 

carbon processed with warming to become CO2. Respiration (R) is thendecreases with 14 

temperature.   15 

R = S ∗ k ∗ (1 − ε) (11) 16 

2.2 Temperature response 17 

We implement the response of decomposition to warming by modifying the depolymerisation 18 

and the microbial respiration.  19 

In the FWD, REV and OPT model, Vmax is modified as 20 

Vmax,i(ΔT) = Vmax,i ∗ Q10

(
ΔT

10
)
            (12) 21 

Where Vmax,i and Vmax,i(ΔT) are reference and the temperature dependent maximum 22 

depolymerisation rate of the model i = (FWD, REV, OPT). Similarly, k is modified by the Q10 23 

function in the FOD model.  24 

Further, we also parameterise CUE as a linear function of the temperature change 25 
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ε(ΔT) = ε0 + ΔT ∗ εslope     (13) 1 

where ε0 is the CUE at reference temperature, and εslope the change in CUE per °C 2 

temperature (ΔT) change. Finally, in the models where we partition growth and maintenance 3 

respiration, we formulate maintenance respiration as a Q10 function of temperature 4 

λr(ΔT) =  λr,0 ∗ Q10

(
ΔT

10
) 

  (14) 5 

Where λr,0 and λr(ΔT) are maintenance respiration rate at reference and elevated temperature. 6 

Growth respiration is typically much less sensitive to warming than maintenance respiration 7 

(Frantz et al., 2004), and we therefore do not consider a temperature dependence of this 8 

particular respiration term.  9 

In our simplified model we further neglect the weaker temperature dependence of the half 10 

saturation constants (see Davidson et al., 2012; German et al., 2012; Stone et al., 2012), and 11 

also do not consider changes in cost of enzyme production as temperature increases in the 12 

case of the OPT model. 13 

2.32.2 Parameterisation and implementation  14 

All models are implemented in STELLA, version 10.0.3. To enable comparison among the 15 

models we adjustWe tune parameters in the following way: Thefive microbial-enzyme models 16 

such that all models haveresult in the same initial soil organic carbon and the same 17 

initialequal amount of microbial biomass. Both CUE (ε) , ,  substrate,  and carbon use 18 

efficiency, at equilibrium for two temperatures, 15°C and its temperature dependence (εslope) 19 

20°C. We are the same across models.  Further, the temperature sensitivities of Vmax are 20 

identical accross models so that we obtain the same increase of depolymerisation in the first 21 

time step after the temperature perturbation. We motivate this kind of parameterisation by 22 

acknowledgingaware that many of thesethe parameters are largely unknown, but it will 23 

provide us and there is ample room for parameter adjustment. Here, we seek congruency of 24 

the models in their long-term response of 3 crucial variables, namely carbon use efficiency, 25 

soil organic matter, and microbial biomass, and evaluate their transient response instead. 26 
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We start off with the possibility of comparing the functional response to long-term warming 1 

across these models.   2 

Wemodel 1 where we use the parameters as reported in German et al. (2012), with a few 3 

modification. Herehowever, we report Vmax,FWDVmax1 and KE by including tuning factors and 4 

by considering 15°C as our reference temperature and by working their tuning factors directly 5 

into these two parameters.. In other words, Vmax,FWDVmax1 and KE are the product of the 6 

reference values in German et al. (2012), their respective tuning parameters and their 7 

adjustment to our reference temperature, 15°C. Further, we have converted the exponential 8 

temperature sensitivity of Vmax,FWD intoVmax1 and KE in model 1 to a Q10 term.    9 

In  model 2, to obtain the same equilibrium values for substrate, microbial biomass, and 10 

carbon use efficiency, we adjust g, λr, and Q10,λr. We first parameterised maintenance 11 

respiration, where, the coefficient for maintenance respiration is scaled to microbial turnover 12 

(Van Bodegom, 2007). We assume that carbon turnover from maintenance estimation is ca. 13 

one-third of microbial death rate such that: 14 

λr,0 =  0.334 ∗ λd       (16) 15 

this constrains g at reference temperature to 16 

g =  
λd−ε0∗(λd+ λr,0)

λd−ε0∗ λr,0
        (17) 17 

To obtain the same equilibrium values of CUE, S, and M, at 20°C as in model 1, we adjust 18 

Q10,Vmax2 and Q10,𝝺r such that model 2 has the same carbon use efficiency as model 1 (which in 19 

turn results into the same microbial biomass and soil organic carbon).    20 

In model 3, we again seek to obtain the same equilibria values for carbon use efficiency, 21 

microbial biomass, soil organic matter, and decomposition at 15°C and 20°C. To allow a 22 

diminishing return mechanism, we assumed that most of the enzyme decay/loss in a 23 

scavenging model is attributed to microbial consumption instead of denaturation. 24 

Alternatively, under conditions of limited enzyme-substrate reaction sites, we assumed that 25 

there is an excess of free enzymes, and therefore, enzyme concentrations are higher than their 26 

corresponding half saturation concentrations. Overall, these assumptions would suggest a KM 27 

that is smaller than M (KM <M). Here, we chose KM to be 0.37 of M at the reference 28 

temperature. Note, that the half saturation constant in the REVthis model has a different 29 

formulations (unit (:mgM cm
-3

) than in the FWD model (previous models (unit:mgS cm
-3

) 30 
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(see Appendix A for the FWD model). Vmax3 and Appendix B for the REV model). 1 

Vmax,REVQ10,Vmax3 are then tuned to yield equivalent equilibrium values of S at the reference 2 

temperature. 3 

In the OPT model 4, we adjust Vmax,OPTVmax4 and Q10,Vmax4 (in a similar manner as in the 4 

REVlike model 3) such that the system again yields equilibrium values for S at the reference 5 

temperature (15°C) and the same initial response to warming and at 20°C as in the other 6 

models. In the OPT model, we have to work in two additional parameters, namely the cost of 7 

enzyme production (c), and the term that contains the affinity of enzymes for the substrate 8 

(KP). We chose to have the OPT models comparable to others if the cost (c) is zero. Higher 9 

costs (c>0) therefore will yield different equilibrium result of S and a different response to 10 

warming, depending on the cost of enzyme production. Both, the half saturation constant 11 

(affinity parameter, KP) and the cost per enzyme produced are parameters that are hard to 12 

come by. Instead, the solution allows us to quantify these based on how much of carbon 13 

depolymerised is allocated to enzyme productionvariable fractions of depolymerisation (see 14 

Eq. 8 in the main text).Appendix).   15 

Here, we analyse the OPT model 4 based on different levels of enzyme expenditures and 16 

expressed them as enzyme costs per unit carbon depolymerised (μ = 
Pc

D
), where μ is 0, 10, and 17 

50  percent of the depolymerisation rate at reference temperature and at steady state.. This 18 

yields an expression for the combined cost (c) and the half saturation constant (KP) (Y in 19 

Table 2):   20 

KP ∗ c =  μ2 ∗ DEq.,ΔT=0                                                          (15∗ Q10
(

ΔT

10
)                                                          (18) 21 

Where DEq.,ΔT=0 is the rate of depolymerisation at zero0 enzyme cost and reference 22 

temperature.   23 

When separating growth and maintenance respiration we sought to equalise steady state CUE, 24 

M, and S by tuning g and λr. We first parameterised maintenance respiration, where, the 25 

coefficient for maintenance respiration is scaled to microbial turnover (Van Bodegom, 2007). 26 

We motivate the partitioning between growth and maintenance respiration based on 27 

vegetation models. LPJ (Sitch et al., 2003) and ED (Moorcroft et al., 2001) have a growth 28 

respiration factor of one-third of the carbon allocated to growth. We then constrain the overall 29 

respiration by the CUE in German et al. (2012), and obtain a maintenance respiration rate by 30 
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difference. This yields a maintenance respiration rate that is close to the microbial death rate 1 

such that: 2 

λr,0 =  1.25 ∗ λd        (16) 3 

The second parameter, g is adjusted, such that the CUE at the steady state and reference 4 

temperaturetemperature remainssensitivity of half saturation constant is the same. This 5 

constrains g to 6 

g =  
λd−ε0∗(λd+ λr,0)

λd−ε0∗ λr,0
        (17) 7 

To obtain the same equilibrium values of CUE at 20°C as in the base models, we adjust Q10,𝝺r 8 

such that models with maintenance respiration has the same CUE as in the base models.to 9 

other models.   10 

Finally, in the FOD model 5, the traditional decomposition model, we adjust the parameters k, 11 

ε0, and ε0Q10,k to obtain the same S, M, and CUE as in all other models at 15°C and employ a 12 

Q10,k value identical  to the Q10 values of Vmax in the other models. We keep the decreasing 13 

CUE – a feature not typically set up in at 20°C. The difference to a traditional models. 14 

formulation of first order decomposition is a variable (i.e. decreasing) carbon use efficiency.   15 

All parameter values are given in Table 3table 2.     16 

2.3 Determination of apparent Q10 17 

We determined an apparent Q10, Q10(t) by relating the changes of the respiration per unit soil 18 

organic matter to the changes in temperature (ΔT) at any given time (t):  19 

R(t)

S(t)
=

R0

S0
∗ Q10

(
10

ΔT
)(t)         (19) 20 

Where R(t) and S(t) are the instantaneous rates of respiration and soil organic matter, 21 

respectively, and R0 and S0 the equilibrium respiration rates and equilibrium substrate at 22 

reference temperature.  23 

 24 
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3 Results 1 

Base We first analyse the equilibrium state of microbial biomass by setting the tendency for 2 

the microbial biomass to zero (
dM

dT
= 0), while assuming a constant soil organic matter pool. 3 

This is useful since in many cases microbial turnover is much faster than the turnover of bulk 4 

soil organic matter (Stark and Hart, 1997; Schmidt et al., 2007). In model 1 and 2 (German 5 

and modified German model), the microbial biomass would hold an unstable equilibrium 6 

(also termed a knife-edge equilibrium, see Schimel and Weintraub, 2003). The equilibrium 7 

solution is independent of M and requires thus a perfect balance of the parameters that govern 8 

growth- and death rates (Table 3). This means, that microbial biomass would thus either grow 9 

indefinitely or decay to zero. It becomes clear that the soil organic matter pool must response 10 

on a similar time scale as microbes in order to maintain microbial biomass within acceptable 11 

boundaries.  12 

Modification of the model to allow a diminishing return with increasing enzyme production or 13 

with increasing microbial mass (models 3 and 4), will result into a stable microbial biomass 14 

under constant substrate concentration (Table 3, leftmost column). The inclusion of enzyme 15 

production costs and optimisation of microbial growth yields an equilibrium biomass where 16 

the half saturation constant (KP) becomes important as it is, next to the direct enzyme 17 

expenditure, a central determinant of how much effort is being put into the production of 18 

enzyme. The equilibrium biomass under constant substrate allows to gauge the short-term 19 

response to a warming: All, catalytic rates, microbial respiration rates, and half saturation 20 

constants are temperature sensitive, therefore microbes will benefit from warming as 21 

depolymerisation is faster (increased Vmax), but  this benefit is reduced by the concomitant 22 

temperature response of  λr and the half saturation constants. As a consequence, microbial 23 

biomass in models 3 and 4 can both increase or decrease with warming. 24 

In the long term (Table 3, 3 rightmost columns) soil organic matter will adjust to the short-25 

term microbial changes. Soil organic matter is inversely related to the maximum catalytic rate 26 

in all models. Rates of litter input are important determinants of soil organic matter in models 27 

3 to 5. In contrast, in the microbial model based on German et al. (2012) and our derivative 28 

with maintenance respiration (model 1 and 2) the soil carbon pool is independent of the rate of 29 

new carbon added to the soil and solely a function of microbial parameters. Allowing soil 30 

organic matter to adjust to microbial growth and decay allows now a stable microbial biomass 31 

in models 1 and 2. Both, the maximum catalytic rate and the half saturation constant have no 32 
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impact on the long-term microbial biomass in models 1 to 3. Therefore, if carbon use 1 

efficiency is set to be equal in these three models, biomass, too converges to the same values. 2 

For model 4, the optimised enzyme production model, the resulting equilibria of S, M, and 3 

CUE end up being complex expressions, and we did not calculate the long-term equilibria of 4 

M and CUE, but expressed them simply as a function of soil organic matter. As expected, the 5 

effect of enzyme production cost has a negative impact on carbon use efficiency and 6 

microbial biomass and feeds back into the soil organic matter. 7 

3.1 Model Simulations  8 

The transient response for the different models to a temperature step from 15°C to 20°C is 9 

shown in Fig.figure 2. We note that all models are forced through the same initial and final 10 

values of M, S, and CUE by way of parameter adjustments. Further, the initial response is 11 

equal across, and we focus on the models by not allowing Q10‘ transient behaviours (See 12 

method section). The long-term adjustments to warming are reduction in S, M, and CUE 13 

while rates of Vmax and Q10respiration return to the initial value, equilibrating with the amount 14 

of CUE to differnew carbon entering the system.  15 

In all models, warming leads to a decline of soil organic matter and microbial biomass (Fig. 16 

2). In this initial comparison, we assume that there is no cost associated with microbial 17 

enzyme production. Across all the models, microbial biomass first increases because of higher 18 

depolymerisation. Increased depolymerisation causes soil organic matter to decrease. In the 19 

longer term, M decreases as rates of depolymerisation decline due to a reduction in S, and due 20 

to lower CUE. We note that M becomes identical across all models in the long term, when 21 

soil organic carbon has equilibrated with the microbial processing at higher temperature (see 22 

also Table 2). 23 

The FWD Model 1 shows oscillations in M and S, as noted earlier (Wang et al., 2014). The 24 

warming triggers an increase in depolymerisation, which in turn feeds microbial biomass, 25 

causing an evena higher rate of depolymerisation. This positive feedback experiences a break 26 

only when the substrate (S) is sufficiently depleted, such that microbial biomass begins to 27 

decline. Thereafter,However the positive feedback takes over again, the decreasing microbial 28 
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biomass spirals down along withresults in reduced depolymerisation until microbial biomass 1 

is low enough for soil organic matter to recover. The amplitude of the oscillations dampens 2 

over time (Fig. 2). Rates of respiration oscillate along with microbial biomass, before settling 3 

at the initial rate in the long-term (after ca. 200 years). dampen over time (Fig. 2). 4 

Separating out maintenance and growth respiration in model 2 increases the feedback between 5 

microbes and substrate (evidenced by higher amplitudes in M, S, and respiration). This is 6 

because part of respiration is now tied to microbial biomass, which lags depolymerisation. 7 

Carbon use efficiency initially decreases less than in model 1 (Fig. 2), because maintenance 8 

respiration lags the growing microbial biomass. The maintenance term introduces therefore 9 

also mild oscillation into the instantaneous carbon use efficiency, as microbial biomass waxes 10 

and wanes. Interestingly, including maintenance respiration decreases oscillation frequency. 11 

The transient dynamics in the REV model 3 with a diminishing return as enzyme (or 12 

microbial) concentration increases, is smoother compared to FWD modelmodels 1 and 2 (Fig. 13 

2). The mechanism of allowingAllowing a finite site for enzyme-substrate reaction or 14 

microbial scavenging for enzymes curbs the growth of microbial biomass. Warming stillIn 15 

contrast to models 1 and 2, warming in model 3 leads to an initial increase a decrease of 16 

microbial biomass, owing tobecause the fact that the gains of(curbed) carbon gain from the 17 

increase in depolymerisation outweigh losses from increasedcan not balance the warming 18 

induces increase in maintenance respiration (i.e. decreased CUE). As soil organic matter 19 

depletes, microbial biomass is reduced, ultimately below the initial levelslosses.  20 

The OPT modelModel 4 considers the metabolic cost of enzyme production and allows 21 

optimising microbial growth. In Fig. 2, the temporal evolution of M, S, respiration, and CUE 22 

is shown for a setup without any costs associated with In absence of  costs towards enzyme 23 

production. Among the 3 microbial models presented here (FWD, REV, OPT), the OPT 24 

model shows the strongest soil organic matter decrease in response to warming. The response 25 

in the OPT model is also almost identical with the traditional FOD model. The transient 26 

response also shows a smaller initial growth of M in the OPT vs. the REV model.  27 
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3.2 Analytical steady state solutions 1 

The analysis of equilibria helps to understand the model behaviour. We first address the “long 2 

time scale” in Table 2 where we solve for the steady state of the entire system (i.e. 
dM

dt
= 0 and 3 

dS

dt
= 0). In the long-term, the steady state microbial biomass is identical in the FWD and the 4 

REV model and depends on input of fresh organic matter, the microbial CUE, and microbial 5 

turnover (Table 2, right-most column). The same microbial biomass is also realised in the 6 

OPT model under zero cost (=0) (see Eq. 15 and Table 2, right-most column). In contrast, 7 

the analytical steady state solutions of S are different among the models: For the REV and the 8 

OPT model, the input of fresh litter is a determining variable for the steady state, but not for 9 

the FWD model. In the OPT model the resulting equilibria of S and M end up being complex 10 

expressions, and we did not calculate the long-term equilibria of M, but expressed them 11 

simply as a function of soil organic matter. The OPT model has – under the assumption of 12 

marginal costs ( 0) the same steady state solution for M as the other models. Further, the 13 

steady states of S are the same in the traditional first order model (FOD) and the OPT model 14 

with zero cost. As expected, the effect of enzyme production cost has a negative impact on 15 

microbial biomass. 16 

The analysis of the short-term quasi-steady state of the microbial biomass (
dM

dt
= 0) is useful 17 

to understand the trajectory of the coupled S-M system. Typically, microbial turnover is much 18 

faster than the turnover of bulk soil organic matter (Stark and Hart, 1997; Schmidt et al., 19 

2007). Thus, we would expect that microbial biomass is approaching a quasi-steady state 20 

given any level of S.   21 

In the FWD model, we find that the quasi-steady state for M requires a perfect balance of 22 

parameters that govern growth- and death rates (Table 2, second column). In absence of such 23 

Formatted: German (Germany)



 

20 
 

a balance (referred to as knife-edge equilibrium, see Schimel and Weintraub, 2003), M would 1 

therefore grow or decay indefinitely. It becomes clear that the soil organic matter pool must 2 

respond on a similar time scale as microbes in order to maintain microbial biomass within 3 

acceptable boundaries. In the REV and the OPT models, the short-term equilibria are a 4 

function of soil organic matter (Table 2, second column). In the REV, and the OPT model, M̅ 5 

is strongly determined by the rate ofμ = 0), depolymerisation at a given S, the CUE and the 6 

microbial death rate. A weaker affinity for the substrate (larger half-saturation constant) and 7 

higher enzyme production cost act to reduce M̅ in these models.  8 

3.3 Quasi-Steady State of Microbial Biomass 9 

Given the equilibrium biomass, and the resulting becomes a first order decomposition at 10 

quasi-steady state, we set up a second line of modelling experiment, where depolymerisation 11 

rates as well as microbial respiration and death are calculated based on microbial biomass at 12 

quasi-steady state (Table 2, second and third columns). It follows that a fraction  (1 − ε) of 13 

depolymerisation is immediately recycled back into the soil organic matter pool, yielding the 14 

equation 
dS

dt
= (1 − ε) ∗ D. Depolymerisation is immediately partitioned into respiration and 15 

into a returning carbon flux, which mimics microbial death. In this modelling setup, microbial 16 

biomass is thus no longer a state variable and the models are reduced to single pool setup (Fig. 17 

1b). M̅ is diagnosed from S and parameters that determine depolymerisation and microbial 18 

turnover (Table 2, second column). Compared to the base models, the steady state models 19 

yield very similar results for S and respiration, but they do not reproduce the early adjustment 20 

of the microbial biomass to the temperature step. Instead of a slow adjustment to the sudden 21 

warming,  M̅ increases with the instantenous increase of depolymerisation. However, over a 22 

timescale of <1 year, M̅ and R converge to the values of the base models in REV and the OPT 23 

model, and therefore the quasi-steady state appears to be an acceptable assumption over 24 
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medium to long time scales. Our results further show that the depolymerisation in the OPT 1 

model at quasi-equilibrium and at marginal enzyme production cost (μ 0) yields a 2 

depolymerisation formulation that is functionally the same as a first order decomposition 3 

model, and therefore respiration and the dynamics of S are the same for the quasi-steady state 4 

OPT model and the traditional first order model.  5 

3.4. Partitioning process. The transient behaviour of S and M is similar between 6 

maintenance and growth respiration 7 

In the third modification of our base models, we partition respiration in our models into a 8 

temperature independent growth respiration and a temperature (and biomass) dependent 9 

maintenance respiration. This affects the transient pattern of the FWD in that it increases the 10 

feedback between microbes and substrate (evidenced by higher amplitudes in M, S, and 11 

respiration). This is because part of respiration is now tied to microbial biomass, which lags 12 

depolymerisation. CUE  initially decreases less than in the base model, because maintenance 13 

respiration lags the growing microbial biomass. The maintenance term introduces also a mild 14 

oscillation into CUE, as microbial biomass waxes and wanes. Interestingly, including 15 

maintenance respiration decreases oscillation frequency. In the REV and the OPT model, 16 

microbial biomass is slightly higher and respiration is slightly below the values of the base 17 

models shortly after the step increase, however, this difference diminishes over time. The 18 

nuanced consideration of microbial respiration causes CUE to declines in 2 stages. Themodel 19 

3 and model 4 (without respiratory costs of enzyme production). However, the absence of a 20 

half saturation constant in model 4 (Equation 10) yielded a quicker adjustment of microbial 21 

biomass to temperature, a slightly slower degradation of soil organic matter initially, and a 22 

much more pronounced initial drop occurs via thein CUE. Decomposition in model 4 without 23 

enzyme costs behaves the same way as decomposition in the traditional linear model (model 24 

5), therefore, values of soil organic matter are almost equal with an indistinguishable 25 

difference that stems from an immediate increase in maintenance respiration. This drop is 26 

followed by further changes in CUE as M oscillates (FWD model), or as M net growth is 27 

diminishing (REV and OPT). Similar as in the case with equilibrium microbes, differences 28 

disappear within < 1 year after the step warming. We note that in our modelling setup, we 29 

Formatted: Line spacing:  1.5 lines

Formatted: German (Germany)

Formatted: German (Germany)



 

22 
 

adjusted the temperature sensitivity of the maintenance respiration such that CUE is the same 1 

at reference (15°C) and elevated (20°C) temperature.return of dead microbial biomass in 2 

model 5.  3 

3.5.  Enzyme production expenditures 4 

Finally, we analyse how levels of costs associated with enzyme production affects soil carbon 5 

storage and response to temperature (Fig. 4). Because of largely unknown parameters we 6 

express enzyme expenditures as the fraction of respiratory carbon for enzyme production per 7 

unit carbon depolymerised at the reference state (see Eq. 8). We tested 3 levels of enzyme 8 

production cost:Next, we employed different levels of enzyme production costs in model 4. 9 

That is, we set cost per enzyme production such that total enzyme expenditure is 0%, 10%, 10 

and 50% of equilibrium depolymerisation at our reference condition (i.e. 15°C). As expected, 11 

increasing enzyme production cost reduced the rate of depolymerisation, and S is therefore 12 

maintained at a higher level. The increasing costs also resulted into a smaller relative decline 13 

of S in response of soil organic matter to warming, whereas the absolute loss is larger, 14 

indicated by higher rates of respiration. Similarly, the response of CUE to warming is smaller 15 

and the decline of M is less pronounced if enzyme production costs are considered.     Initial 16 

hikes in respiration rates are lowest under the highest costs of enzyme production.      17 

We calculated an apparent Q10 by relating respiration per unit soil organic matter to its value 18 

at 15°C. Q10 values would converge as the system reaches a new steady state, since we 19 

adjusted relevant parameters such that equilibrium values of microbial biomass, S, and CUE 20 

are the same across all models and for both temperatures. The initial change of respiration Q10 21 

was highest in model 2, followed by model 1. In both models transient Q10 oscillates while 22 

oscillation amplitude is dampening over time. All models which consider microbial dynamics 23 

show higher Q10 with a downward adjustment over time. Initial hikes in respiration and 24 

apparent Q10 occur because of increased growth and associated growth respiration (model 1 25 

and 2). Immediately after warming, the higher than equilibrium microbial biomass causes 26 

increased maintenance respiration (models 3 and 4) driving up the apparent Q10. In the 27 

enzyme production optimisation model (model 4) Q10 decreases under higher enzyme 28 

production costs while later attenuation is smaller (Fig. 4). Finally, in the traditional model 29 

with no (or implicit) microbial biomass Q10 does not change over time.  30 

 31 
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4 Discussion 1 

4.1 Key differences between Models   2 

Recently developed microbial decomposition models (Schimel and Weintraub, 2003; Allison 3 

et al., 2010; German et al., 2012) highlight the importance of microbial processes and 4 

microbial physiology during decomposition. TheirThe application of these models specifically 5 

highlights the role of extracellular enzymes during decomposition and how these constraints 6 

will further affect the release of soil organic matter as a consequence of warming. Further, it 7 

has been shown that carbon use efficiency and microbial turnover are central parameters in 8 

the prediction of soil carbon storage to warming (Hagerty et al., 2014). While microbial 9 

decomposition models are able to improve prediction of organic carbon stock globally, and 10 

can successfully recreate litter decomposition dynamics, the long-term trajectory of a 11 

warming response needs further evaluation (Wang et al., 2014). In particular, a positive 12 

feedback between depolymerisation and microbes can only be curbed via the longer term 13 

adjustment of soil organic matter and therefore lead to oscillation in both microbial biomass 14 

and soil organic matter (Wang et al., 2014).  The oscillation is the consequence of a positive 15 

feedback between depolymerisation and microbial growth, and is evidenced by a knife’s edge 16 

or unstable equilibrium under constant substrate condition (Schimel and Weintraub, 2003). A 17 

break in this feedback only occurs via interplay with the reduction of soil organic matter. 18 

Here, we build on recent advances of microbial decomposition models and ask how nuanced 19 

representation of CUE (in the form of maintenance respiration and enzyme production cost), 20 

and how mechanisms that constrain the depolymerisation at high enzyme or microbial 21 

biomass concentration would affect model behaviour and response to warming. 22 

Such interplay occurs on a longer timescale than that of microbial turnover, causing the 23 

swings in M and S. We note that some attenuation of the oscillation may occur via direct input 24 

into a DOC pool that does not require depolymerisation (Allison et al., 2010), a feature not 25 

considered here. 26 

The display of oscillation in the FWD modelModels 1 and 2, i.e. the microbial decomposition 27 

model as proposed by German et al. (2012) and our variation that includes a partitioning 28 

between growth and maintenance respiration show qualitatively similar characteristics. Most 29 

importantly, the equilibrium solution under a constant substrate concentration (S) shows a 30 
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knife’s edge or unstable equilibrium (Schimel and Weintraub, 2003). As a consequence, 1 

changes in microbial biomass result in a positive feedback between depolymerisation and 2 

growth. That is, in the case of a temperature increase, depolymerisation picks up, feeds 3 

microbe, which produce more extracellular enzymes causing faster rates of depolymerisation. 4 

A break in this feedback only occurs via reduction of soil organic matter. The positive 5 

feedback in conjunction with a break in a slower responding soil carbon pool leads to 6 

oscillation in M, S, and respiration. Separating respiration into growth and maintenance terms 7 

changes the model behaviour marginally. In fact, the positive feedback between microbial 8 

biomass and soil organic matter depolymerisation in model 2 is slightly amplified compared 9 

to model 1 because maintenance respiration lags depolymerisation.  10 

While the partitioning between growth and maintenance respiration in the microbial pool is 11 

slightly more realistic (Sinsabaugh et al., 2013), the changes between models 1 and 2 are 12 

small overall. For example, changes in frequency and amplitude can easily be introduced by 13 

other parameter changes (Wang et al., 2014). Although it is more mechanistic to separate 14 

growth and maintenance respiration, it remains open whether the addition of extra parameters 15 

is justified at this point, particularly since this requires knowledge of climate sensitivity of 16 

these different respiration terms. 17 

The oscillatory behaviour arising from the spiraling between microbial growth and 18 

depolymerisation in models 1 and 2 has been a point of critique as it has not been observed in 19 

laboratory and field incubation studies (Wang et al., 2014). Here, we introduce mechanisms 20 

that curbintroduce a break in the positive feedback between substrate and microbial 21 

biomass.We portray two scenarios, where each increment in microbial biomass or enzyme 22 

concentration yields a smaller increase in depolymerisation than the previous increment (i.e. 23 

diminishing return).  The scenarios we worked out are 1) microbial biomass feeds on active 24 

extracellular enzymes, 2) limited sites for substrate/enzyme reactions (see Appendix B). We 25 

derived the forms of depolymerisation from the original Michaelis-Menten kinetics and the 26 

resulting formulations presented in the method section are simplified and more illustrative 27 

versions of more complex functions. Wang and Post (2013) arrived at the same function for 28 

depolymerisation of the reverse Michaelis-Menten model, where an enzyme only adsorbs to a 29 

fraction of binding sites because of complex substrates. (see Appendix). The simplified 30 

formulation of depolymerisation and microbial consumption we arrived at has been dubbed 31 

reverse Michaelis-Menten formulation (Schimel and Weintraub, 2003), because microbial 32 
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biomass (or enzyme concentration) instead of the substrate concentration is now occurring in 1 

the denominator of the depolymerisation term, invoking the diminishing return. Our analysis 2 

shows that the positive feedback between decomposition and microbial growth is removed, as 3 

our REV model 3 has now a stable equilibrium.  4 

Limited sites may play a role if the substrate has a high volume to surface ratio, or if the 5 

substrate is associated with minerals (Davidson and Janssens, 2006; Gillabel et al., 2010; 6 

Conant et al., 2011; Davidson et al., 2012, 2014; Cotrufo et al., 2013; Wagai et al., 2013; 7 

Benbi et al., 2014; Wieder et al., 2014a; Tang and Riley, 2015). Our implementation of 8 

limited substrate causes a surplus of free enzymes that compete among themselves for binding 9 

to substrates similar to the Langmuir adsorption isotherm theory (Vetter et al., 1998; Schimel 10 

and Weintraub, 2003, Wang and Post, 2013, and see Appendix B, Model with limited 11 

available substrate).). Effects of microbial scavenging for enzymes cause a diminishing 12 

returnnegative feedback because more microbial biomass will lead to an increased probability 13 

of enzymes being consumed before they interact with soil organic matter. Other mechanisms 14 

of diminishing return as enzyme increase may be stabilisation of enzymes into organic matter-15 

humate complex (Allison, 2006), or sorption to minerals, soil organic matter, or microbes 16 

(Tang and Riley, 2015). Diminishing returns also occur with rate-yield tradeoffs (Allison, 17 

2014). 18 

Many microbial decomposition models work under the assumption that enzyme production is 19 

proportional to microbial biomass. It is conceivable, that microbes are adjusting production to 20 

maximise return or growth (Cooney, 2009; Merchant and Helmann, 2012). In our OPT model, 21 

we relax the proportionalityWe consider such an optimisation of microbial enzyme production 22 

and microbial biomass but instead allow a best possible return, givengrowth under the 23 

consideration of an acquisition cost in the cost of form of respiratory expenditures for enzyme 24 

synthesis. (Model 4). While the exact cost of enzyme productionsynthesis is not known, we 25 

fixed parameters (the product of KP and c) that they relate to the fractional expense of carbon 26 

depolymerised upon initialization (i.e. at steady state and reference temperature, Eqs. 8 and 27 

15Equation 13). Importantly, enzyme production optimisation is not possible for some of the 28 

models presented here. Higher enzyme production would always lead to further microbial 29 

growth in the FWD modelmodels 1 and 2 and the highest yield would occur with infinite 30 

enzyme production. Similarly, in the case of microbial scavenging for enzymes, additional 31 

investments into enzymes always increases depolymerisation.  32 
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The response to temperature in our OPT model with no-cost enzyme production closely 1 

resembles the traditional first order decay model (FOD). Inwith the limitvariation of enzyme 2 

production cost is zeroan explicit microbial pool and variable carbon use efficiency. In this 3 

model, depolymerisation occurs  at the maximum reaction rate (Vmax*S), confirming). Fixing 4 

the resemblance to the first order model. This steady state values of S, M, and CUE of the no-5 

cost model shows4 to the strongest responserespective values of Model 1 required us to 6 

choose Q10 for Vmax4 close to warming in the long term because the temperature dependence 7 

of 1, indicating no change in maximum depolymerisation is not reduced via a half saturation 8 

constants (KE in forward, KM in OPT, and KP in OPT model) as in with warming, which 9 

confirms the lower climate sensitivity found in microbial decomposition model (Allison et al., 10 

2010). Therefore, the response to warming for the FWD or REVno-cost model. We note that 11 

half saturation constants in our models combine several parameters such as enzyme 12 

productivity relates to microbial biomass, and turnover of the enzyme pool. In the REV and 13 

the OPT model, smaller the half saturation constant is, the closer we arrive at the formulation 14 

of decomposition in a first order model, this occurs via an  4 (Fig. 2) mainly stems from the 15 

increase of enzyme concentration by way of higher production or reduced enzyme turnover. 16 

Both, parameter are hard to come by.  17 

The response of decomposition to warming can be viewed as a response ocurring on multiple 18 

timescale. For example, enzyme activity produces likely an immediate response, microbial 19 

respiration responses may also be triggered quickly, although longer term acclimation may 20 

occur (Frey et al., 2013). It may take longer for microbial biomass to respond to the changes 21 

(weeks to months). Finally, because the rate of decomposition is slow compared to the overall 22 

abundance of soil oganic matter, discernible changes in this pool occur on timescales of 23 

months to years.  Based on the distinct rates of adjustements, timescales can – in principle – 24 

be separated by assuming a quasi-steady state of pools that turn over fast.   25 
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The assumption that both enzyme concentrations and DOC (i.e. the depolymerisation 1 

products) are at quasi-steady state cuts across all models presented here (FWD, REV and 2 

OPT, see Appendix A). When we extend our assumption of steady state to the microbial 3 

timescale (quasi-steady state of microbial biomasss), we find that for both the REV and the 4 

OPT model, the short-term response of microbial biomass and respiration is influenced by the 5 

adjustment of microbial dynamics to the warmer temperature. Because microbial biomass 6 

jumps immediately to higher level after the temperature increase in such an equilibrium 7 

assumption, depolymerisation and thus respiration are affected. However, the equilibrium 8 

assumption does not affect the trajectory of the soil carbon pool, S. At timescales that allow 9 

microbes to turn over a couple of times (several months), the quasi-steady state poses a 10 

suitable approximation to represent respiration and microbial biomass, even after a sharp 11 

perturbation in form of a step change. Perhaps more intruiging is the fact that a traditional first 12 

order model is the special case of the OPT model with microbial quasi-steady state and with 13 

marginal enzyme production costs (μ0). Here, we maintain reduction of CUE under 14 

increasing temperature in the FOD, a feature typically not include in traditional first order 15 

models.  16 

CUE ultimately is the result of different microbial respiration terms. Here, we considered 3 17 

processes that may affect microbial respiration under a warming scenario. We first considered 18 

a partitioning into growth and in maintenance respiration across our 3 models. Growth 19 

respiration was simply assumed to be a proportion of carbon allocated to microbial growth. In 20 

contrast, maintenance respiration scales in our models to microbial biomass, where the 21 

proportionality factor increases with temperature. We motivate the partitioning by 22 

formulations of plant respiration in terrestrial biosphere models. We find that this separation 23 

affects the short-term responses of respiration, because microbial biomass lags the increase of 24 

depolymerisation. The temperature response of CUE is thus delayed. The partitioning of the 25 

respiration terms has particularly also an impact on the transient dynamics of the FWD model, 26 

in that the lag in maintenance respiration amplifies the oscillation. However, in the REV and 27 
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the OPT model, effects of separation are only discernible on the microbial time scale, before 1 

microbial biomass is approaching quasi-steady state values.and the associated decline in 2 

carbon use efficiency.   3 

InPerhaps the OPT model, we introduce an additional respiration term, namely most 4 

intriguing feature of the cost ofoptimised enzyme production, which we allow microbes to 5 

adjust in order to optimise growth.  It model is interesting that increasing costs lead to a 6 

smaller immediate response in respiration and more resilient soil organic matter pool in the 7 

long term, when subject to warming.  The earlyimmediate respiration response incan be 8 

attributed to the OPT model is both a product of higher rates of depolymerisation, but also a 9 

higher rate of enzyme production. However, the enhancement relative to the rates at reference 10 

temperature is smaller, the higher the enzyme production cost.microbial biomass that can be 11 

maintained if enzyme expenditures are low. A warming then increases maintenance 12 

respiration much more in the low-cost scenario. In the long term, soil organic matter decreases 13 

much less when enzyme production costs are considered. This yield tradeoff thus actThe 14 

decrease in the soil organic matter pool in the high cost scenario (μ = 0.5) is a mere 3 % under 15 

a 5°C warming, compared to buffer respiration increases that could be expected from 16 

physiological responses alone (Vmax), although12.5 % if costs are negligible.    17 

Model 4 (at low cost) is among our suite of models, the one that most closely resembles the 18 

effects are smallertraditional first order decomposition model. Here, we modified a traditional 19 

model by a variable carbon use efficiency and may be well withinwe obtain a qualitative 20 

similar result as in model 4. The nuances are small and mainly caused by the uncertainty of 21 

the temperaturelag of carbon returned, as it passes through the microbial biomass. Even if the 22 

enzyme production costs are higher, the functional form of the response to warming can easily 23 

be captured by a first order decomposition model.  24 

4.2 Short-term and long-term response to temperature  25 

Because many of anythe parameters considered here.in these models are hard to come by, we 26 

chose the strategy to start off with a previously used set and adjust the different models such 27 

that their equilibrium values of microbial biomass, soil carbon storage, and carbon use 28 

efficiency are the same at the reference temperature (15°C) and at the warmed temperature 29 

(20°C). We obtained this mainly by adjusting first Vmax (maximum depolymerisation), and λr 30 

(per M maintenance respiration rate) to obtain a match at the reference temperature, followed 31 
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by tuning temperature sensitivity (Q10)  for Vmax and λr to obtain identical values across 1 

models for M, S, and CUE at the warmed equilibrium. The tuning of Vmax and the Q10 of Vmax 2 

and λr yield different values across the models.  3 

We investigate the consequence of this tuning by analysing the transient changes in the 4 

„apparent“ Q10. We define apparent Q10 as the Q10 response of the relative respiration 5 

(respiration per unit substrate, see method section). While the apparent Q10  converges over 6 

time, the differences in physiological temperature responses (Q10 for Vmax and λr) have 7 

different impact in the short term. These differences in physiological responses are evident 8 

immediately after the temperature increase, as they are displaying very disparate responses in 9 

respiration, and consequently in the apparent Q10  (Fig. 4). Models 1 and 2 show the strongest 10 

initial response before the apparent Q10 adjusts to its long-term value. In the models with 11 

diminishing return (models 3 to 5) the long-term temperature response is much closer to the 12 

short-term (physiological) response. But also the models with diminishing return show 13 

considerable differences. The major difference in the model structure between model 3 and 14 

model 4 (assuming where costs of enzyme synthesis are 0) is a non-negligible half saturation 15 

constant (KM = 0.37 of microbial biomass at reference temperature). The respiration in model 16 

3 increases much more dramatically than in model 4, causing Q10 to increase to a higher level, 17 

before slowly adjusting down. A sizeable cost for enzyme synthesis with optimisation of 18 

microbial growth, further reduces a long-term adjustment of the temperature sensitivity. 19 

Similar to the first order decomposition model, the initial response to a temperature increase is 20 

quasi-locked in and does not change much over time.    21 

The difference in the apparent Q10 critically shows, that understanding the mechanisms, how 22 

microbial biomass acquires its building blocks, insights in what limits this acquisition, and 23 

also how the microbial community responses to limitation are central to our understanding of 24 

how soil organic matter responds to warming.    25 

We acknowledge that we used a simplified set-up of our model suite. For example, we 26 

assumed that depolymerised carbon in soil solution (DOCdissolved organic carbon) is always 27 

at steady state with the microbial biomass. We justified this simplification by assuming fast 28 

and efficient scavenging of microbes. Further sensitivity analysis may shed further light on 29 

the dynamics across the full parameter space, while using the simplified linear terms 30 

(Appendices B and C, Tang, 2015), particularly also because many of the parameters are hard 31 

to come by.for microbes. We further did not include nutrient requirements of microbes. 32 
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Considering the stoichiometric requirements can in particular change the allocation of 1 

resources to optimise enzyme synthesis. Finally, our model does not include interaction that 2 

may occur with adsorption to mineral surfaces, which may occur with the substrate, the 3 

enzymes and microbial biomass, and which has important short and long-term consequences 4 

to temperature flctuations and changes (Wieder et al., 2014a; Tang and Riley, 2015). 5 

Nevertheless, our suite of models show the importance of how the depolymerisation step is 6 

formulated in mathematical models when evaluating the response of decomposition under 7 

warming, and it provides ecosystem modelers a mechanistic handle when expanding 8 

microbial frameworks into to more complex, models with multiple substrates of different 9 

quality and different propensities to microbial processing. 10 

 11 

5 Conclusions 12 

Our findings suggest that different formulation of how microbes acquire substrate will have 13 

significant impact on the short vs. long-term consequences of warming. Here, we present 14 

simple, yet feasible mechanisms of microbial dynamics. We show that substrate limitation in 15 

the form of decreasing marginal return can create a break in the positive feedback between 16 

microbial biomass and depolymerisation, turning a forward Michaelis-Menten model into a 17 

reverse model. We further seperate out 3 types of respiration, that possibly have consequences 18 

on the temporal trend of CUE in response to warming. Although such seperation is more 19 

mechanistic, it remains open whether the addition of extra parameters is justified at this point, 20 

given the uncertainty in models, and because much of the effects of this separation diminishes 21 

on timescales longer than the microbial lifespan. Finally, our OPT model is among our suite 22 

of models, the one that most closely resembles the traditional first order decomposition 23 

model, and can be converted to such a model by applying a series of tangible mechanisms and 24 

simplfication. These include 1) mechansims of dimishing returns that breaks the feedback 25 

between substrate and microbes 2) relaxing the proportionality of enzyme production and 26 

microbial biomass, 3) small cost associated with enzyme synthesis, 4) assumption of 27 

microbial quasi-steady state.but also opens the possibility of microbes to optimise carbon 28 

uptake. We find that decreasing marginal return leads to apparent temperature responses that 29 

are closer to the physiological responses, even more so when microbes adjust enzyme 30 

production to optimise growth. Carefully designed long-term experiments, can therefore, 31 

provide insights and can further help with the interpretation of short-term incubations.   32 
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 1 

Appendix A   2 

Michaelis-Menten kinetics with enzyme denaturation 3 

The dynamics of the enzyme-substrate complex areis 4 

d[E]

dt
= P − KS[S][E] − λE1 ∗ [E] + Kr + K([ES]                                                                                            5 

 (A1)                                                        6 

d[ES]

dt
= −(Kcat + Kr + λE2)[ES] + KS[S][E]                                                                         (A2) 7 

Where P is the microbial production of new enzymes, [S] isare the concentration of thefree 8 

sites available for enzyme substrate complexation, [E] the concentration of enzymes, [ES] the 9 

substrate-enzyme complex, Ks, Kcat, and Kr are reaction constants that denote substrate-10 

enzyme binding, actual depolymerisation rate, the reversibility of the enzyme-binding process. 11 

λE1 and λE2 are enzyme decay parameters that lead to enzyme denaturation or render enzymes 12 

inactive in the free enzyme pool or in the enzyme-substrate complex, respectively. In the 13 

FWD and REV model, P is proportional to microbial biomass. The Michaelis–Menten 14 

approximation for depolymerisation assumes that the system is in quasi-steady state in which 15 

the tendency 
d[ES]

dt
 and 

d[E]

dt
 are zero. This implies also that tendency of the total enzyme 16 

concentration 
d[Et]

dt
 (with [Et] = [ES] + [E]) becomes zero. 17 

Setting Eq. (We are mostly interested in total enzyme concentration  18 

[Et]=[ES]+[E]           (A3) 19 

The Michaelis-Menten approximation for depolymerisation assumes that the system is in 20 

quasi steady state in which the total enzyme concentration [Et]. Here we include also that the 21 

total available sites do not change (S is constant) within the timescale of enzyme reactions. 22 

This implies that Equation A2) to becomes zero, and substituting [Et] = [ES] +  [E], it follows 23 

as the different reactants will approach a steady state  24 

And thus   25 

[E] =
[Et] KE

([S]+KE)
                  (A3A4)  26 

[ES] =
[Et] [S]

([S]+KE)
                (A4A5) 27 

Formatted: Font: Arial

Formatted: Line spacing:  1.5 lines

Formatted: Font: Arial

Formatted: Line spacing:  1.5 lines, Tab stops:
Not at  4.44"

Formatted: Line spacing:  1.5 lines

Formatted: Line spacing:  1.5 lines



 

32 
 

And the rate of depolymerisation  1 

D =
[Et]∗Vmax∗[S]

([S]+KE)
                  (A5A6) 2 

where D is the familiar Michaelis-Menten equation with KE =  
Kcat+Kr + λE2

KS
 and Vmax is 3 

equivalent to Kcat.   4 
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DOC and enzyme dynamics 1 

We assumed that, DOC concentrations are in equilibrium with substrate and microbial uptake. 2 

In microbial decomposition models, the only DOC sink is microbial consumption, which by 3 

way of mass conservation leads to microbial consumption being equivalent to the rate of 4 

depolymerisation.  5 

Similarly, we estimate the equilibrium total enzyme concentration by setting its tendency to 6 

zero:  7 

dEt

dt
= P − λE2[ES] − λE1[E] = 0      (A7) 8 

where P is the production of enzymes. Substituting Equation A4 and Equation A5 for E and 9 

ES yields  10 

Et =
P([S]+KE)

λE1KE+λE2[S]
        (A8) 11 

And the overall depolymerisation yields 12 

D =
P∗Kcat∗[S]

λE1KE+λE2[S]
                   (PreviousA9) 13 

We note, that previous models (Allison et al., 2010; German et al., 2012) assumed a general 14 

decay of the total enzyme pool, where 15 

d[Et]

dt

dEt

dt
= P − λE ∗ [Et]                       (A6Et                       (A10) 16 

Because enzyme turn over fast, we can assume a quasi-steady state of the total enzyme pool 17 

by setting Eq. A6 to zero. We obtain 18 

[Et] =
P

λE
This is the special case of λE1 = λE2 = λE.  This case leads to an equilibrium 19 

concentration of   20 

Et =
P

λE
           (A7A11) 21 

And depolymerisation as:  22 

D =

P

λE
∗Kcat∗[S]

[S]+KE
        (A8A12) 23 
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Finally, microbial decomposition models assume that enzyme production is proportional to 1 

the microbial biomass (M):: P = b*M, hence, in the special case of a general decay of 2 

enzymes 3 

D =
Vmax∗M∗[S]

[S]+KE
                (A9A13) 4 

With  Vmax =
b∗Kcat

λE
 5 

Yet, it is conceivable, that the enzyme-substrate complex,We used A13 in models 1 and free 6 

enzymes 2.  7 

More generally (with specific decay at differeent rates see also Eqs A1for free enzyme and 8 

A2. enzymes associated with the substrate) 9 

d[Et]

dt
= P − λE2[ES] − λE1[E]      (A10) 10 

Substituting Eq. A3 and Eq. A4 for [E] and [ES], and applying a quasi-steady state as before 11 

yields  12 

[Et] =
P([S]+KE)

λE1KE+λE2[S]
        (A11) 13 

And the overall depolymerisation is thus 14 

D =
P∗Kcat∗[S]

λE1KE+λE2[S]
                   (A12) 15 

Which can be converted into a Michaelis-Menten form 16 

D =
Vmax∗M∗[S]

[S]+KS
        (A13A14) 17 

where  Vmax =
b∗Kcat 

λE2
 and  KS = KE

λE1 

λE2
 18 

Appendix B 19 

Microbial consumption of enzymesEnzymes 20 

Microbes feeding on free enzymes can be represented as: 21 

F = λE,M*[E]*M      (B1A15) 22 
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Where F is microbial enzyme consumption and λE,M the feeding rate. We can then represent 1 

the decay of the free enzymes with    2 

[E]* λE1 = [E]( λE1,0 + λE,M*M)      (B2A16)  3 

where the total λE,0 is the spontaneous enzyme decay rate.  4 

Substituting the new enzyme decay formulation into the depolymerisation (Eq. A12A9) yields   5 

D =
P∗Kcat∗[S]

  λE2∗[S] +λE1,0∗KE+ λE,M∗M∗KE
       (B3A17) 6 

For the REV model, we simplify Eq. B3 and assumeAssuming that enzymes associated with 7 

substrate do not undergo denaturation (λE2=0), which yields) 8 

D =
P∗Kcat∗[S]

λE1,0∗KE+ λE,M∗M∗KE
     (B4A18) 9 

And in the case where enzyme production scales to microbial biomass (P = b*M) 10 

D =
M∗Vmax∗[S]

KM+M
        (B5A19) 11 

Which is again the familiar Michaelis-Menten function withWhere  Vmax =
b∗Kcat

λE,M∗KE
 and  12 

KM =
λE1,0  

λE,M
 13 

Model with limited available substrate  14 

Access to substrate might be finite, for example, if organic matter is associated with mineral 15 

soil or if the rate of depolymerisation is constrained by the surface area. In this case, the 16 

relationship between the total available substrate and the free sites can be calculated as  17 

[ S] == θ ∗ ([Sf] + [ES])       (B6A20) 18 

Where Sf are the available sites for enzyme reaction, θ a scalar relating the total amount of 19 

substrate to the total potentially free sites (e.g. a surface to mass conversion), and [ES] 20 

represents the sites with enzyme-substrate complexes. We note that [S] in this case is not the 21 

available substrate anymore, but reduced by a fraction θ. 22 

Substituting [ES] from Eq. A4Equation A5, but knowing that [S] has now become [Sf],, we 23 

obtain:  24 

[Sf]  =
[S]

θ 

S

θ 
−

[Sf][Et]

KE+ [Sf]
        (B7A21) 25 
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[Sf] is thus the solution of a quadratic polynomial: 1 

 [Sf] =
1

2
{− ([Et] + KE −

[S]

θ 
) ± √([Et] + KE −

[S]

θ 
)

2

+ 4 ∗
[S]

θ 
∗ KE } {− ([Et] + KE −

S

θ 
) ±2 

√(Et + KE −
S

θ 
)

2

+ 4 ∗
S

θ 
∗ KE }      (B8A22) 3 

The scenario ofAs we assume there are limited reaction site is relevant if 
[S]

θ
 is small (i.e. 

[S]

θ
<< 4 

[Et]).Under this scenario,sites (
S

θ 
), we simplify Eq. B8this function using a Taylor expansion 5 

around (
[S]

θ

S

θ 
= 0) 6 

[Sf]  =
[S]

θ 
∗ (

KE

[Et] +KE
) Sf  =

S

θ 
∗ (

kE

Et +kE
) + O[(

[S]

θ
)2 S

θ
)2]         (B9A23) 7 

Plugging this into the depolymerisation 8 

D =
Kcat∗[Et]∗

[S]

θ

[Et]+KE+ 
[S]

θ

≅
Kcat∗[Et]∗

[S]

θ

[Et]+KE
       (B10) 9 

D =
Kcat∗Et∗

S

θ

Et+KE+ 
S

θ

≅
Kcat∗Et∗

S

θ

Et+KE
       (A24) 10 

which has a Michaelis-Menten form with a saturating enzyme concentration. This particular 11 

solution is for a small amount of binding sites, and enzymes compete for free sites. Thus 12 

[Et]>> 
[S]

θ
, and it can be dropped from within the denominator. On a side note: we obtain the 13 

same expression if we approximate from Eq. B7: 14 

[Sf] =
[S]

θ
− [Sf]

[Et]

[Sf]+KE
  (B11) 15 

[Sf] ≅
[S]

θ
−

[Sf][Et]

KE
  (B12) 16 

Which assumes very few free sites ([Sf] >> KE). Therefore 17 

[Sf] =
[S]

θ

KE

[Et] +KE
  (B13) 18 

We can also include equationsEquations for enzyme turnover (Eq.Equation A7) to calculate 19 

[Et]:Et: 20 

However, we need to substitute [S] in this equationEquation with [Sf], thus 21 
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d[Et]

dt
= P −

λE2∗[Et]∗
[S]

θ

[Et]+KE+ 
[S]

θ

−
λE1∗[Et]∗([Et]+KE)

[Et]+KE+ 
[S]

θ

         (B14) 1 

dEt

dt
= P −

λE2∗[Et]∗
S

θ

Et+KE+ 
S

θ

−
λE1∗[Et]∗[Et+KE]

Et+KE+ 
S

θ

         (A25) 2 

Maintaining 
[S]

θ
<< ([Et] + KE)

S

θ
<< [Et + KE]  we obtain  3 

d[Et]

dt

dEt

dt
≅ P −

λE2∗[Et]∗
S

θ

[Et]+KE
− λE1 ∗ [Et]     (B15A26) 4 

The quasi-equilibrium solution (
d[Et]

dt

dEt

dt
=  0) yields a quadratic expression for [Et],Et, 5 

however, we can evaluate the following scenarios:end member 6 

a) suppose 
λE2∗[Et]∗

S

θ

[Et]+KE

λE2∗[Et]∗
S

θ

Et+KE
≫ λE1 ∗ [Et], this assumes that enzyme decay occurs 7 

mainly when bound to the substrate.  8 

setting 
d[Et]

dt

dEt

dt
=  0, we obtain 9 

[Et] =
KE∗P

λE2∗
S

θ
−P

    (B16) 10 

Et =
KE∗P

λE2∗
S

θ
−P

    (A27) 11 

and with P proportional to microbial biomass (M)  12 

D =
Kcat∗P

λE2
= Vmax ∗ M      (B17A28) 13 

Where Vmax =
Kcat∗b

λE2
 14 

In this case, depolymerisation and microbial consumption is  independent of the substrate but 15 

is determined by the relative rate of catalysis and irreversible destruction of the enzyme-16 

substrate complex. 17 

b) suppose 
λE2∗[Et]∗

S

θ

[Et]+KEEt+KE
≪ λE1 ∗ [Et] 18 

This implies that enzymesenzyme mainly decay if they are not associated with the substrate 19 

and that there is an appreciable amount of free enzymes. This is realistic under substrate 20 

limiting conditions, as there will be a  sizeable amount of free enzymes compared to enzyme 21 

substrate complexes. 22 
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We then obtain: [Et] =
P

λE1
Et =

P

λE1
 1 

And 2 

D =
Kcat∗P∗

S

θ

P+λE1∗KE
      (B18A29) 3 

With P = b*M, we have 4 

D =
M∗Vmax∗S

KM+M
           (B19A30) 5 

Where Vmax =
Kcat

θ
, and KM =

λE1∗KE

b
 6 

Appendix C 7 

Optimising depolymerisation   8 

Microbes may be able to optimise their growth, and thus depolymerisation becomes a function 9 

of the metabolic costs of enzyme production. Depolymerisation based on enzyme production, 10 

assuming fixed turnover of free enzymes yields: 11 

D(P) =
P∗Vmax∗[S]

KP+P

P∗Vmax∗S

KP+P
       (C1A31) 12 

Where P is the amount of new enzyme produced, Vmax ismay be 
Kcat

θ
 and KP = λE1KE, based 13 

on the model with limited available substrate. 14 

Microbial growth (G) will be 15 

G = (1-g) * (D-Pc-λr*M)      (C2A32) 16 

Where g is the growth respiration factor, c the respiratory cost per unit enzyme production, 17 

and λr the maintenance respiration factor.  18 

Enzyme production (P) can be optimised by substituting Eq. C1Equation A31 into Eq. 19 

C2Equation A32 and setting 
dG

dP
= 0.  This yields: 20 

Pc =  − KPc + √Vmax ∗ [S] ∗ KPc√Vmax ∗ S ∗ KPc    (C3A33) 21 

The proportion of carbon expended for enzyme production relative to depolymerisation (μ) is  22 

Pc

D
μ =

Pc

D
= √

KPc

[S] Vmax
√

KPc

S Vmax
                                    (C4A34) 23 
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Instead of specifying c, we used Eq. C4Equation A34 to express overall microbial carbon 1 

expenditure for enzyme production. After assigning a value to μ, we calculate c based on 2 

equilibrium S at reference temperature.  3 

In contrast, the microbial scavenging scenario does not provide an optimum enzyme 4 

production. In this case depolymerisation is  5 

       D =
P∗Vmax3∗[S]

(KM +M)∗λE

P∗Vmax3∗S

(KM +M)∗λE
                               (C5A35) 6 

And thus 
dG

dP
 will yield a constant where growth scales with the rate of enzyme production.  7 
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Table 1. Key features of the five microbial decomposition models.  1 

FWD Model  Description 

Model 1 German et al., 2012 

FWD Model with maintenance respiration  

Model 2 As FWD model 1 but microbial respiration is partitioned into 

temperature insensitive growth and temperature sensitive maintenance 

respiration terms. 

REV Model  

Model 3 Depolymerisation and uptake relative to microbial biomass decreases 

with increasing M (diminishing return mechanism). 

REV Model with equilibrium microbes 

As REV model but fast microbial adjustments. 

REV Model with maintenance respiration 

 
As REV model but maintenance respiration added. 

OPT Model 

Model 4 Optimisation of microbial enzyme production to maximise microbial 

growth, and consideration of carbon costs associated with enzyme 

synthesis. 

OPT Model with equilibrium microbes 

As OPT model but fast microbial adjustments. 

OPT Model with maintenance respiration 

 
As OPT model but maintenance respiration added. 

FOD Model 

Model 5 First order decomposition model, modified to account for temperature 
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sensitive carbon use efficiency. 
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Table 2. Quasi-steady state values for forParameters used in the five microbial biomass (M), and decomposition at the short/fast timescale (at 1 

any given S) and “true” long term equilibria for M and S across the models. Note, for simplicity (In models 2 to 5, we did not substitute S in 2 

the long-term microbial equilibrium for OPT model.provide only those parameters where modifications have been made).   3 

Model  Short/Fast 

time 

scalePara

meter 

Long time 

scaleUnit 

Value Description Source 

 

 

 

 

Model 1 

MI Decompositionmg 

cm
-3

 hr
-1

 

S0.001 M Input of fresh litter  

 

 

 

German 

et al., 

2012 

 

FWD 
no solution * no solution * 𝛌𝐝𝐊𝐄

𝐕𝐦𝐚𝐱,𝐅𝐖𝐃 𝛆 − 𝛌𝐝 
 

𝐈 𝛆

(𝟏 − 𝛆) 𝛌𝐝 
 

REV Vmax,Rev  S ε − KM λd

λd 
 

(Vmax,REV S − KM λ𝑑/𝜀) I   

Vmax,REV (1 − ε)  
+

KM λd 

Vmax,REV ε   
 

I ε

  λd (1 − ε) 
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X = √S Vmax,OPT, Y = √KP ∗ c 1 

  2 

* requires λd =  
Vmax,FWDS ε

 S+ KE
  3 

OPT (X − Y)2 ε 

λd
 

X2 − XY 1

2 Vmax,OPT   (1−ε)2  
[−Y (2ε − 1)√4IY (1 − ε) + Y2 +

(1 −  ε) (2I − 2εY2) +  Y2] 

(X − Y)2 ε

λd
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Table 3. Parameters used in microbial decomposition models (In subsequent models, we 1 

provide only those parameters where modifications have been made.) 2 

 Parameter Unit Value Description Source 

FWD Model  

 

 

 

 

 

I mg cm-3 hr-1 0.001 Input of fresh litter  

 

 

 

German 

et al., 

2012 

 

 λd hr
-1

 0.0005 Death rate of microbes  

 Vmax 

,FWDVmax1,0 
mg

 
cm

-3 
hr

-1
 0.0049 Maximum catalytic rate @ 15°C  

 Q10, Vmax 

,FWDVmax1 

- 1.9 Q10 of maximum catalytic rate  

 KE,0 mg S cm
-3

 270 Half-saturation constant @ 15°C  

 Q10,KE - 1.07 Q10 of half-saturation constant  

 ε0 - 0.39 Microbial growth efficiency @ 15°C  

 εslope °C
-1

 -0.016 Microbial growth efficiency 

temperature slope 

 

FWD  

 

Model 
with 

maintena

nce 

respirati

on  

2 

Vmax2,0 mg
-1 

M cm
-3 

hr
-1

 0.0049 Maximum catalytic rate @ 15°C  

 

This 

study 

 Q10,Vmax2 - 1.9 Q10 of maximum catalytic rate 

 λr,0 hr
-1

 0.0006000

17 

Maintenance respiration @ 15°C  

 

This 

study 
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 Q10,λr - 2.28 Q10 of maintenance respiration  

 g - 0.2455 Growth respiration coefficient  

REV Model 

 

 

Model 3  

Vmax,REVV

max3,0 

mg
-1 

M cm
-3 

hr
-1

 2.61*10
-5

 Maximum catalytic rate @ 15°C  

This 

study Q10,Vmax3 - 1.33 Q10 of maximum catalytic rate 

KM,0 mg M cm
-3

 0.68 Half-saturation constant @ 15°C 

OPT Model 

 

Model 4 

Vmax,OPTVm

ax4,0 

mg
-1

 M cm
-3

 hr
-1

 1.71*10
-5

 Maximum catalytic rate @ 15°C  

 

This 

study 

Q10,Vmax4 - 1.0 Q10 of maximum catalytic rate 

μ 
Pc

D
 

 0 , 0.1, 0.5 Enz production cost ( as % of 

decomposition @ 15°C steady state) 

 
𝐊𝐏 ∗ 𝐜 mg M cm-3 0, 1.64*10-

5 0.0004  

combined cost and the half 

saturation constant 

 

FOD Model 

Model 5 k* hr
-1

 1.71*10
-5

 First order decay constant @ 15°C This 

study 

 Q10,k - 1.0 Q10 of k  

Split Cells
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Table 3. Equilibrium solutions for microbial biomass, soil organic carbon, and CUE at short/fast time scale and long time scale.  1 

Model Short/Fast time scale Long time scale 

M S M (when, S=Eq. 

S) 

CUE (when, S=Eq. 

S) 

Model 1 no solution * λdKE

Vmax1 ε − λd 
 

 I ε

(1 − ε) λd 
 

ε (T) 

Model 2 no solution **  KE b

Vmax2 (1 − g)  − b 
 

 I (1 − g)

 b −  λd (1 − g) 
 

  λd (1 − g)

b
 

Model 3 Vmax3 S (1 − g) − KM b

b 
 

b [I (1 − g) + KM { b −  λd (1 − g)}]  

Vmax3 (1 − g) { b −  λd (1 − g)}  
 

 I (1 − g)

 b −  λd (1 − g) 
 

  λd (1 − g)

b
 

Model 4  (1 − g) (𝑋 − 𝑌)2

b
 

 1

2 Vmax4  (1−η)2    
[−Y (2η − 1)√4IY (1 − η) + Y2 +

(1 −  η) (2I − 2ηY2) +  Y2] 

 (1 − g) (𝑋 − 𝑌)2

b
 

  (1 − g) (X − Y)  λd  

b X
 

X = √S Vmax4, Y = √KPc, b = [(1 − g) λr  + λd ], η =
 (1−g) λd

b
  2 

* requires λd = * k in FOD model is identical to Vmax,OPT in OPT model.  3 

Vmax1Sε

 S+ KE
  4 

** requires λd = (1 − g) (
Vmax2S 

 S+KE 
− λr ) 5 
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Figure Captions 1 

Figure 1. Conceptual diagrams for the microbial-enzyme models applied.used in this study. Solid 2 

lines represent material flow (in FWD and FWD model with maintenance respiration1 and model 3 

2) and dashed lines represent information flow (in Revmodel 3 and OPT modelsmodel 4). E, S, 4 

E-S, D, DOC, M represent enzyme, substrate, enzyme-substrate complex, depolymerisation, 5 

dissolved organic carbon, and microbial biomass carbon, respectively. We analyse the different 6 

models in three ways: a) Base models of forward vs reverse formulation of depolymerisation. In 7 

the forward version, depolymerisation scales microbial biomass via enzyme production. In the 8 

reverse formulation the decreasing marginal return curbs rates of depolymerisation. This 9 

decreasing marginal return can partly be overcome by enzyme production optimisation. b) For all 10 

models we introduce partitioning between maintenance and growth respiration. c) Microbes are 11 

instantaneously in steady with substrate delivery (reverse models only).  12 

Figure 2. Responses of a) soil organic carbon, b) microbial biomass carbon, c) CUE, and d) 13 

respiration to a 5°C warming in basefor all models (forward vs reverse). The black. Black line 14 

represent initial values, which are model where equilibria at15@ 15°C. We chose logarithmic 15 

axis to better highlight the differences in short-term responses. (Note: Differences in 16 

simulatedSimulated soil organic carbon and respiration by OPT and the FOD are almost equal, 17 

and therefore not discernible. In the OPT model 4 are superimposed with the model 5 results. For 18 

model 4, simulations are carried out at zero enzyme production cost, i.e. μ = 0).)    19 

Figure 3. Responses of a) soil organic carbon, b) microbial biomass carbon, c) CUE, and d) 20 

respiration to a 5°C warming for all models, if separation of maintenance and growth respiration 21 

are considered, and if microbial biomass is assumed to be at quasi-steady state. Black thin line 22 

represent initial values, where equilibria @ 15°C. Colored thin lines represent base models. 23 

Dashed lines (growht and maintenance) and dotted lines (quasi-steady state) represent 24 

modifications for REV and OPT models respectively. (In the OPT model, simulations are carried 25 

out at zero enzyme production cost, i.e. μ = 0).    26 
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Figure 4. Long-term responses of optimized enzyme production (OPT)Figure 3. Long-term 1 

responses of optimized enzyme production model to a 5°C warming in a) soil organic carbon, b) 2 

microbial biomass carbon, c) CUE, and d) respiration operating at different relative enzyme 3 

production costs (μ), see Equation 13. Thick lines represent warming response and thin lines 4 

represent corresponding equilibrium at reference temperature.  5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 
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 1 

Fig. 1 2 
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 1 

Fig. 2 2 
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 1 

Fig. 3  2 
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 1 

Fig. 4Figure 4. Apparent Q10 of respiration over time, Q10(t) a) in our five microbial 2 

decomposition models, and b) under different levels of enzyme expenditure cost in model 4.  3 
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