
 
Cover Letter 

Dear Editor,  

 

Thank you for giving us the opportunity to resubmit the revised version of the manuscript, 

“Comparing models of microbial-substrate interactions and their response to warming” by D. 

Sihi, S. Gerber, P. W. Inglett, and K. S. Inglett for consideration of publication in 

Biogeosciences.  

 

The comments of both the reviewers in the 2
nd

 round of the review helped to further improve the 

manuscript. In our current version, we followed comments from both of the reviewers. Both 

reviewers had questions on major implications/recommendation. To that end, we sought to 

further describe the main differences across the model, with respect to what the fundamental 

assumptions are, including enzyme vs. substrate limitation and assumptions about microbial 

enzyme production. The implications of these results are that that the degree of enzyme 

limitation and the microbial response to enzyme limitation are potential areas that could help 

constrain the quantification of the long-term response of soil organic matter to warming. We 

added additional discussion on quasi-steady state model (based on the comments of Will Wieder) 

We also took care of (hopefully all) the language and grammatical errors based on the 

recommendations from both of the reviewers. 

 

Below, you find a point by point response to all the reviewers’ comments, as well as a marked-

up version that highlights the differences between the revised paper from the 1
st
 round of review 

and this submission.  

 

We believe that these improvements make our manuscript an excellent addition to 

Biogeosciences, particularly also because we show the mechanisms and consequences of 

different formulations of microbial carbon consumption resolved in current microbial models. 

The quantification and prediction of soil organic matter decomposition and its response to global 

change factor is critically important for global carbon cycle feedbacks, and therefore, the 

questions raised in our manuscript and our insights in decomposition models are important to the 

readers of this Journal.  

 

We look forward to hearing from you soon.  

 

Sincerely,  

Debjani Sihi (corresponding author) 



Response to Will Wieder 

General comments 

Sihi and co-authors have done a nice job revising their manuscript. The reorganization better 

leads the reader through the experiments & findings.  

Specific comments 

I’m not sure why the authors made the quasi-steady state assumption for microbial biomass in 

their microbial explicit model (Section 2.1.2 & 3.3)? I don’t recall this analysis in the first 

submission, or see where previous reviews asked for the analysis? More, removing M as a state 

variable in the model hardly seems to simplify things, when M has to be approximated by the 

short time-scale equation in Table 2. The first half of the text in 3.3 seems more appropriate for 

the methods, and the second half of the text discusses results that are never show (as far as I can 

tell). This makes evaluating the claims being made challenging, but I think they are shown in Fig 

3 (although this isn’t referenced in the text)? Finally, these results are sparingly mentioned in the 

discussion, and I wonder if they contributed to, or distract from the story being presented here? If 

it’s the former, minor changes are needed to better integrate these results throughout the paper. 

We introduced the quasi-steady state (QSS) microbe model to make an explicit link to our first 

order decomposition model, which was requested by reviewer 1 in the first round of review. We 

explain now better, that under the quasi-steady state assumption the REV model and the OPT 

model will have identical formulation of decomposition as the FOD if a) Ke is approaching 0 in 

the REV model, or 𝜇 is approaching 0 in the OPT model. We discuss now the value of the QSS 

model, in that it is an extension of QSS for enzymes and DOC into the microbial timescale. As we 

show that the QSS microbe model is comparable to the base models, we can now express 

depolymerization based on microbial parameters instead of the microbial biomass itself. This 

allows to better compare rates of depolymerization across models and also compare the 

formulations with a first order model. This comparison then allows to better understand the 

parameter that defines affinity of enzymes to the substrate (Ke) and/or the role of microbial 

enzyme production optimization.  

 

The ideas in the discussion are well developed and organized, but I find it helpful to refer to 

figures in the discussion w/ relevant text (same is true in the results). 

We have introduced more references to Figures in both the Result and the Discussion section, 

where we thought it is helpful and appropriate. 

I’m not really clear how these conclusions were reached. It seems like the authors are suggesting 

if we take a more complicated model (reverse M-M) and add even more complexity (optimized 

for yield) we can produce a model w/ identical form and function to a simple first order model. 

Why not just use a first order model? I wonder if those simplifying assumptions listed in the 

conclusion seem reasonable? Is this how we think soils work, or may the assumptions that led to 

this conclusion be unrealistic? How do they compare to assumptions behind a first order model? 

There seems to be some rich ideas here if you’re interested in exploring them (although it may 

not be necessary in the text). 

We have introduced a paragraph towards the end of the discussion that should shed some light 

on the value of microbial models vs. first order model. Even if a microbial model ultimately 



shows a first order response, the black box behind the first order coefficient can be better 

understood. We add in this paragraph, that our transformation leads from a heavily enzyme 

limited model (FWD model), via the introduction of other limitations (REV and OPT models), to 

an entirely substrate limited FOD model (this is the assumption of a FOD model). At this point, 

we don’t think we know how soils work, but the consideration of how the degree of enzyme 

limitation and how microbes respond are critical since it leads to a strong divergence in the 

response to warming.  

There are distracting grammatical errors in the text, which should be carefully proofread before 

publication.  

We have carefully read through our manuscript in order to find (hopefully) all the mistakes. 

 

Technical corrections 

P4 L5- The authors contend that “As microbial models are considered critical towards 

improvement of Earth System model”. I’m not sure this statement is widely agreed upon, it’s 

also somewhat misleading for the scope of the study presented here. Instead, it may be safer to 

state “As microbial models are considered for broader application in models…”? 

We incorporated this excellent suggestion. 

P6 L10-21 The use of KE and KM (for forward and reverse models, respectively) in eq. 3 & 4, 

their subsequent description in the text, and in appendixes is somewhat confusing because it does 

not follow conventions used the papers on which this study is largely based. Specifically for the 

forward model, German and others (2012) state “Km is the substrate concentration at half-

maximal velocity”, while the reverse model of Schimel and Weintraub (2003) use “Kes half 

saturation constant for enzymes on substrate”. 

In order to be consistent with the literature, we now use Km in FWD and Ke for the REV model. 

We did not use Kes like Schimel and Weintraub (2003) as our unit of half-saturation constant for 

enzyme on substrate is different (not enzyme but microbe concentration).  

Eq. 13. This isn’t the first time someone has looked at temperature sensitive CUE. I see a 

reference in Table 3, but it’s likely worth citing Allison et al. 2010 (or others) in the text here. 

We have included the reference. 

Section 3.4. also seems to refers to results, but never references a figure. I’m assuming it should 

refer to Fig. 3, but shouldn’t have to.  

We reference now to the figure in section 3.4, and also in the discussion section when we address 

the QSS-microbe model. 

Discussion (and Fig. 2). I wonder what are we assuming by assigning really low Km value for 

the OPT model- that the soil environment is basically saturated w/ respect to enzymes, such at 

addition of more microbes (or enzymes) yields no fitness advantage growth? I’m assuming you 

could parameterize a similar model with different Vmax and Km values that have non-zero Km 

values, in which case the optimization would produce qualitatively different results? This is 



suggested in the discussion, and while I’m not sure it needs greater attention in the text, seems 

like an interesting result. 

We did not a priory assign a low Km Value in the OPT model. Instead, the OPT model can be 

viewed as what is the optimal “flooding” of enzymes given a certain enzyme substrate affinity. 

This is where the product Kp*c is coming in. Clearly, depolymerization proceeds at a lower rate 

(per unit substrate) if this product is small (Table 2). We agree that this tradeoff is interesting.  

 

P21, L21. Check accuracy of text in revering to KM, KE, and Kp values. 

We have checked the subscript of the different half saturation constants throughout the text.  

 

Table 2 What is the value for Kp *c in the OPT model? Also, check units for parameters that are 

given for accuracy. 

Values of Kp *c are given in Table for scenarios of three different enzyme production costs. 

Thanks for catching the unit. It is a rate and the corrected unit is mg S cm
-3

 hr
-1 

(see Table 3).  

Fig. 1 Is kind of busy and difficult to understand. Several suggestions to bring greater clarity 

follow: Is that ‘decreasing marginal return’, green line in Fig 1, is also the reverse M-M model? 

If so, please use consistent language throughout (on the figure and in the caption)? 

• Why are the E, E-S, and DOC pools shown at all, my reading is that these pools not actually 

being simulated? If so, it seems misleading to show these pools at all- or is the point to 

demonstrate that these pools are implicitly represented in the model, but because the ‘fast’ parts 

of the model each are assumed to be in steady state, and thus omitted from explicit 

representation. I think it’s the later, but maybe this can be clarified in the text & caption? 

• would mapping parameters from Table 1 onto Fig. 1 would be more useful for readers, or make 

the figure too busy?  

• I’m also not sure Figs 1b and 1c are needed. Information about adding growth and maintenance 

respiration fluxes could be handled w/ small dashed lines or colored lines to communicate this 

relatively minor modification to the basic model structure. 

We make sure we use now consistent language, referring to FWD, REV and OPT models. We 

mention in the caption, that E, E-S, and DOC are implicitly calculated. To make this distinction, 

they are circled with a dashed line. The reviewer is correct, they are represented based on quasi-

steady state assumption. We still think they require to be there, because the associated 

parameters are enzyme-substrate reaction parameters. Also we can carry through with the theme 

(dashed circle), if we assume quasi-steady state for microbes in Figure 1b. 

While Fig 1 and Table 1 share some information, we feel we would like to keep specific setup 

description separate from Fig. 1. We fear this would make the Figure too busy and distract from 

the conceptual ideas presented.  

We separated out Figures b and c based on earlier review suggestion. We thought this is a good 

idea to show the sequence of the modeling layers. Figure 1a thus focuses on the main differences 

(FWD, REV, OPT), while b and c then highlight modifications, which are QSS-microbe and 

separation of respiration terms.  

P47 L1- should be ‘growth’ 



Done 

 

Fig. 3. As text introduces results from quasi steady-state results and then partitioning between 

maintenance & growth respiration should the caption for Fig. 3 be similarly organized? 

Nice catch, we reorganized the caption and legend for Fig. 3.  



Response to Referee 2 

 
Sihi and co-authors present a nice overview and comparison of microbial-explicit soil C models. 

This is a timely study in light of the many recent papers presenting nonlinear microbial models 

and the recent efforts to integrate such models into Earth system models. The authors address 

the underlying assumptions that lead to Michaelis-Menten (MM) versus reverse-MM 

depolymerization kinetics, and explore how the underlying kinetics affect the projected 

response of soil C to warming. 

 

The revised paper has been significantly improved in its organization and clarity. Following the 

recommendations of the previous reviewers, the presentation of each of the three nonlinear 

models and their comparison to the traditional linear model is much easier to follow. It would 

be useful to the community if the authors included a brief discussion in their conclusions 

regarding their recommendations for future nonlinear soil C models based on their findings. 

There are a number of instances that the text and methods are unclear, however, and could be 

better explained. This is especially true for the “tuning” of parameters, including temperature 

sensitivities. The paper also needs to be thoroughly proof-read for typos and grammatical 

mistakes. 

 

Thank you for your positive comments. We have now added towards the end of the discussion 

how our research poses critical questions as microbial models are considered for Earth System 

Model. As these models move from basically enzyme limted (FWD model) to substrate and 

enzyme limitation (REV and OPT model) to purely substrate limited models (first order), we can 

conclude that the degree of enzyme limitation and the microbial response to enzyme limitation 

are central areas of research that could help constrain the quantification of the long-term 

response of soil organic matter to warming. 

We have further clarified our tuning methods, and carefully checked for typos and mistakes.  

 

Specific comments and technical corrections: 

 

P1, L19-20: It would be good to briefly mention here what kind of interactions are needed to 

avoid oscillations. The current sentence “… limitations other than through enzyme-substrate 

interactions…” does not read very well and is not very informative. 

 

We now list the specific mechanisms. The sentence now reads as “We show that several 

mechanisms, including substrate limitation, variable production of microbial enzymes, and 

microbes feeding on extracellular enzymes eliminate oscillations arising from a positive 

feedback between microbial biomass and depolymerisation”.  

 

P2, L8, L14, etc. This is minor, but check punctuation for “ e.g., ” and “ i.e., ” throughout the 

text. 

 

We took care of these punctuations in our revised manuscript.  

 

P3, L1-2: Check sentence and verb tenses. “A comparison to traditional first order models 

further shows that microbial models display…” 



 

It now reads as “A comparison to traditional first order model shows further that microbial 

models display an attenuated loss of soil organic matter to warming”. 

 

P3, L10: What do you mean by quality here? Recalcitrance, nutrient content, type? Remove 

“and” from before soil quality and put “content” after the word “nutrient” in this sentence. 

 

It now reads as “Temperature-dependence of CUE is typically not considered in traditional 

decomposition models, rather the ratios between respired CO2 and the transfer to a different 

quality pool are mostly constant parameters, or vary based on soil texture, soil recalcitrance, 

and organic or inorganic nutrient content”. 

 

P5, L5-6: This sentence doesn’t read well. Consider “… interaction between enzymes and 

substrate that results in the depolymerization …” 

 

The sentence now reads as “All models also implicitly take into account interaction between 

enzymes and substrate that results into depolymerisation of substrate into a DOC pool on which 

microbes can feed”. 

 

P5, L14: Check sentence. Consider “… both fresh and microbial … before they can …” 

 

It now reads as “In contrast to Allison et al. (2010), but congruent with German et al. (2012), 

there is no “free” DOC, both fresh litter and microbial necromass need to be depolymerised 

before they can be ingested by microbes”. 

We keep the term litter here in order to emphasize the fresh plant material as an external input.  

 

P7, L1-3: Consider revising sentence to “… derived for the case where an enzyme can adsorb 

to only a fraction …” 

 

Done. It now reads as “A version of the reverse Michaelis-Menten model also has been derived 

for the case where an enzyme can adsorb to only a fraction of soil organic matter due to 

inaccessible binding sites from surface limitation or phyiscal protection”. 

 

P7, L4: “appearing” instead of “appears”. 

 

We changed the sentence slightly. It reads now “…is included in the denominator”. 

 

P8, L21-22: Drop the s from “becomes”. Please revise comma placements and tenses. 

 

Done 

 

P9, L19: traditional decomposition models (plural) 

 

Done 

 

P10, L2-3: I wonder, how much would your results change with a first order model that 



contains multiple pools? Traditional models generally have multiple pools with different 

temperature sensitivities. 

 

Typically, first order models do not have different temperature sensitivities, although it has been 

suggested that they should (Knorr et al., 2005, Davidson and Janssens, 2006).  

Obviously the dynamics would change, too, where multiple decomposition time scales are 

considered. However, this is beyond the scope of the paper, as it also would require the 

consideration of multiple pools in all other models. However, traditional decomposition model 

can also be viewed as an assembly of parallel pools, where all the fluxes and rates are basically 

additive (Bolker et al., 1998).  

 

P11, L17: “Modifications” should be plural. 

 

Done 

 

P12, L17-19: This sentence is a little awkward. What do you mean by “working their tuning 

factors directly into these two parameters”? By “tuning factors” do you mean temperature 

sensitivities? 

 

German et al. (2012) had tuning factors that related the measured Vmax to substrate processing 

rates, when we wrote tuning factors, we referred to these. We attempted to clarify this by writing 

as “Here, we report Vmax,FWD and Km by considering 15°C as our reference temperature and by 

incorporating German et al. (2012) tuning coefficients (aK, aV) directly into these two 

parameters. In other words, Vmax,FWD and Km are the product of the reference values in German 

et al. (2012), their adjustment to our reference temperature, 15°C and the German et al.‘s (2012) 

tuning parameters.” 

 

P12, L4-5: How do you choose this precise value of 0.37 for the parameter Km? From what I 

can tell, there isn’t much support in the text for this value, other than it being smaller than M. 

How does this compare to Km in other modeling studies and from experiments? 

 

If Ke (renamed from KM) is very small, it becomes a first order model. On the other hand, if Ke is 

very large that leads to oscillations which defies our idea of other limitations. Thus, we chose it 

to be a good deal (but not diminishingly smaller) than the microbial biomass ca. 3/8. Further we 

show in the appendix how Ke is derived (it is a composite parameter, see Appendix B).  

 

P12, L7: When you say Vmax,REV is tuned, do you mean the underlying Vmax,i and Q10 

values? How do you tune Vmax,REV? Similarly for Vmax,OPT on P12, L9-10. 

 

We sought to clarify by writing: “This leaves the determination of Vmax,REV which is tuned here to 

such that the REV model yields equivalent equilibrium values of S at the reference temperature 

as the FWD model.“ 



We adjust Vmax,OPT (in the same manner as in the REV model) such that the system again yields 

equilibrium values for S at the reference temperature (15°C) and the same initial response to 

warming as in the other models. 

 

P13, L21: Do any of the “traditional models” have temperature sensitive CUE? 

A temperature sensitive CUE is not a typical feature in traditional models, but see Frey et al. 

(2013) where a variable CUE has been introduced in CENTURY model.  We lay this out in the 

introduction. 

 

 P 14, L3-6: This paragraph is confusing. How exactly do you perform your parameter 

adjustments? What do you mean by not allowing Q10 to differ? Do you mean that the values 

are the same across the models or at initial times? Please be clear on your methods here. 

 

We changed the wording of this paragraph significantly. We wanted to reiterate some of the 

methods here to clarify that the models were equalized for the state variables and for the initial 

response. It reads now: 

 

“Fig 2 shows the transient response of the different models (FWD, REV, OPT, and FOD) to a 

temperature step from 15°C to 20°C. Recall, that the perturbation occurs, after all models were 

equilibrated at 15°C, and are forced through the same initial values of M, S, and CUE by way of 

parameter adjustments. Also, by identical Q10 of Vmax and CUE’s the initial response to a 

warming is equal across the models.” 

 

P15, L1-2: “dynamics are…” (plural) 

 

Done 

 

P16, L14-17: What conditions or parameters would lead to such an imbalance that would cause 

M to decay or grow indefinitely? 

 

We clarify the implications of the imbalance. Because the parameters are independent of each 

other the likelihood of a balance approaches zero. We further say that a positive balance causes 

exponential growth or decay in the short term.  

Please see Table 2 footnote.  

 

P18: It seems that you should refer to Fig. 3 in the text here. 

 

We include now a reference to Fig. 3 

 

P18, L6: In Fig. 3, it looks like the dashed “with MR” lines for FWD (blue) are much more 

oscillatory (in frequency and magnitude) than the solid line. Maybe I’m missing something, but 

does including MR really decrease the oscillation frequency as stated in L6? 

This is a mistake. We mentioned in the discussion that oscillation frequency and amplitude 

increases in FWD model with MR. 



P18, L24: “resulted in a” instead of “into” 

 

Done 

 

P19, L10: You could cite Hararuk et al. GCB 2015 here. 

 

We included this citation. 

 

P19, L16-17: The first part of this sentence doesn’t seem to be “evidenced” by the second part 

of the sentence. Also, just a note that oscillations can be stable (and often are in these models) 

in that they eventually approach a steady-state. 

 

We change “evidenced” by caused. Also we made sure that we refer to short term instability – as 

even the FWD model eventually approaches steady state. 

 

P19, L18: Interplay of soil organic matter with what? Microbes? Please clarify. 

 

We changed to “…stabilization only occurs via the slow changing soil organic matter pool”. 

 

P20, L10-14: You may also want to cite and take a look at the Equilibrium Chemistry 

Approximation (ECA) kinetics as proposed in Tang & Riley 2013 and Tang 2015, which can be 

thought of as a hybrid between MM and reverse MM depending on the conditions. 

 

We added “Transitions between FWD and REV model behaviour has also been detailed out in 

the more complex Equilibrium Chemistry Approximation model that also include sorption of 

enzymes and substrates to mineral surfaces (Tang and Riley, 2015).“ 

 

P20, L16: Does your analysis robustly show this or just from the figures? All of your models are 

in fact stable dynamical systems given the chosen parameters. Even the models that oscillate are 

dampened and eventually approach a stable steady state. 

 

We want to emphasize that M can be in quasi-equilibrium in the REV model on a microbial time-

scale, but not in the FWD model. M will decay or grow indefinitely in short-term for in the FWD 

model in the absence of a perfect balance of parameters (Please see Table 2 footnote). To clarify 

our points, this now reads as “Our analysis shows that the positive feedback between 

decomposition and microbial growth is removed, as our REV model has now a stable short term 

QSS”. 

 

P21, L7: Tang & Riley 2015 may also fit here given their incorporation of dynamic energy 

budget theory. 

 

We added this reference. 

 

P21, L18: … cost approaching zero… 

 

Done 



 

P21, L21: remove “a” from “via a half saturation constants” 

 

Done 

 

P21, L22-24: Consider revising this sentence. 

 

We changed this paragraph significantly to hash out the main features of the OPT model, 

thereby removing some duplication w.r.t the role of the half saturation constants. This sentence 

was removed in the process.  

 

P21, L3: Sentence fragment. 

 

Sentence removed in the process of rewriting the paragraph. 

P24, L6-7: Is this assumption justified? 

 

We added references (German et al., 2012, and Moorhead et al., 2012) where this fast enzyme 

and DOC turnover has been used. The next sentence then provides some rationale: 

 

„...we assumed that depolymerised carbon in soil solution (DOC) is always at steady state with 

the microbial biomass (see also German et al., 2012 and Moorhead et al., 2012). This 

simplification can be justified with fast and efficient scavenging of microbes and thus fast 

turnover of the DOC pool.“   

 

P24, L18: Check grammar/wording. Remove “to” and comma after complex, and add a period 

at the end of the sentence. 

 

Done 

 

The conclusions section could benefit from a brief discussion on where such models are going 

and what recommendations the authors have for the community based on their findings. 

 

We demonstrate possible mechanisms that need attention for developing future decomposition 

models as these can lead an enzyme-limited microbial decomposition model to a substrate-

limited first-order kinetic model. We modify the conclusion accordingly.   

 

Check grammar and content of the Fig. 1 caption, particularly (b) and (c). 

 

Done 

 

Fig. 2 (d) the color of the initial straight line looks purple. It might also be good to add a note in 

the caption that the value of CUE is the same across the models, since the lines completely 

overlap. 

 



Thanks for catching this, we change the color of the initial straight line to black for Fig. 2 (d). 

We also add a note that CUE of OPT model is superimposed on FWD and REV models.  

 

P47, L1: Fix “growth”. 

 

Done 

 

Fig. 3: This graph is a little busy with so many lines. Why do some of the modified models start 

from different microbial biomass conditions? You may want to use SS Microbe instead of Eq. 

Microbe in the legend. 

This figure compares the difference between our different model families. In order to emphasize 

the results of Quasi-steady state (QSS) microbe models and models with growth and 

maintenance respiration, we try to modify the thickness (thin and thick) and type (solid, dashed, 

or dotted) of lines here. 

The modified models do not start from different microbial biomass conditions. Rather, the higher 

M in QSS microbe models compared to other models results from a greater response of M 

immediately after warming.  

We now use QSS microbe in the legend for models with quasi-equilibrium of microbial biomass.  

 

References included in the response 

Bolker, B.M., Pacala, S.W. & Parton Jr, W.J.: Linear analysis of soil decomposition, insights 

from the century model, Ecological Applications, 8, 425–439, 1998. 

Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon decomposition and 

feedbacks to climate change, Nature, 440, 165-173, doi:10.1038/nature04514,  2006. 

Knorr, W., Prentice, I. C., House, J. I., Holland, E. A.: Long-term sensitivity of soil carbon 

turnover to warming, Nature, 433, 298-301, 2004. 
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Abstract 9 

Recent developments in modelling soil organic carbon decomposition include the explicit 10 

incorporation of enzyme and microbial dynamics. A characteristic of these models is a positive 11 

feedback between substrate and consumers, which is absent in traditional first order decay 12 

models. Under sufficiently large substrate, this feedback allows an unconstrained growth of 13 

microbial biomass. We explore mechanisms that curb unrestricted microbial growth by including 14 

finite potential sites where enzymes can bind and by allowing microbial scavenging for enzymes. 15 

We further developed a model where enzyme synthesis is not scaled to microbial biomass, but 16 

associated with a respiratory cost and microbial population adjusts enzyme production in order to 17 

optimise their growth. We then tested short and long-term responses of these models to a step 18 

increase in temperature, and find that these models differ in the long-term, when short-term 19 

responses are harmonized. OscillationsWe show that ariseseveral mechanisms, including 20 

substrate limitation, variable production of microbial enzymes, and microbes feeding on 21 

mailto:sgerber@ufl.edu


 

2 
 

extracellular enzymes eliminate oscillations arising from a positive feedback between microbial 1 

biomass and depolymerisation are eliminated if limitations other than through enzyme-substrate 2 

interactions are considered.. The model, where enzyme production is optimised to yield 3 

maximum microbial growth shows the strongest reduction of soil organic carbon in response to 4 

warming, and the trajectory of soil carbon largely follows that of a first order decomposition 5 

model. Modifications to separate growth and maintenance respiration generally yield short-term 6 

differences, but results converge over time, because microbial biomass approaches a quasi-7 

equilibrium with the new conditions of carbon supply and temperature.  8 

 9 

1 Introduction 10 

Traditional soil organic matter decomposition models are based on first order kinetics, where 11 

decomposition scales to the pool size.  The scaling factor represents recalcitrance of a specific 12 

pool, and is modified by soil temperature, moisture, and other soil properties (e.g.., van Veen et 13 

al., 1984; Parton et al., 1987; Molina et al., 1990; Li, 1996; Chertov and Komarov, 1997). Recent 14 

modelling efforts have specifically included catalysis of polymeric soil organic carbon to 15 

dissolved organic carbon (DOC) by extracellular enzymes. This depolymerisation step is thought 16 

to be a rate-limiting step in organic matter decomposition processprocesses (Schimel and 17 

Weintraub, 2003; Fontaine and Barot, 2005).  18 

In traditional models, microbes are only considered as a simple donor-controlled pool (i.e,., 19 

microbial biomass has no impact on decomposition), or in an implicit manner (Gerber et al., 20 

2010). In contrast, in microbial models, decomposition rates become a function of enzyme 21 

activity that is linked to microbial biomass. (Allison et al., 2010; German et al., 2012). This leads 22 

to more complex dynamics because decomposers feed back into soil organic matter degradation 23 



 

3 
 

via microbial enzyme production affecting depolymerisation. This positive feedback between 1 

microbial biomass and depolymerisation causes soil organic carbon stocks and microbial 2 

biomass to oscillate after a perturbation (Li et al., 2014; Wang et al., 2014). Nevertheless, 3 

microbial decomposition models have been shown to improve the prediction of soil carbon and 4 

perform well when compared against decomposition experiments (Lawrence et al., 2009; Wieder 5 

et al., 2013; Wieder et al., 2014a; Wieder et al., 2014b; Wieder et al., 2015b). A 6 

comparisonFurthermore, when compared to a traditional first order model show further 7 

thatmodels, microbial modelmodels also display an attenuated loss of soil organic matter to 8 

warming (Allison et al., 2010; Wieder et al., 2013). 9 

Moreover, the response of soil organic matter to warming is very sensitive to microbial carbon 10 

use efficiency (CUE), because this parameter and its climate sensitivity definesdefine the 11 

fraction of carbon remaining in the soil as processed organic matter vs. carbon removed via 12 

respiratory CO2 (Allison et al., 2010; Frey et al., 2013; Kivlin et al., 2013; Tucker et al., 2013; 13 

Wang et al., 2013; Li et al., 2014). Temperature-dependence of CUE is typically not considered 14 

in traditional decomposition models, (but see Frey et al., 2013), rather the ratios between respired 15 

CO2 and the transfer to a different quality poolpools are mostly constant parameters, or vary 16 

based on soil texture, and soil qualityrecalcitrance, and organic or inorganic nutrient content 17 

(Parton et al., 1987; Gerber et al., 2010; but see Frey et al., 2013). Microbial respiration can be 18 

partitioned into a series of carbon expenditures that do not contribute to growth. These 19 

expenditures include growth respiration, maintenance respiration, respiratory cost for enzyme 20 

production, and overflow respiration (Manzoni et al., 2012; Moorhead et al., 2012). Each type of 21 

respiratory carbon expendituresexpenditure may differ in its response to temperature. In addition, 22 

respiration 23 
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Respiration may be parameterised based on different microbial properties: Maintenance. For 1 

example, maintenance respiration is assumed to scale with microbial biomass (Chapman and 2 

Gray, 1986; Fontaine and Barot, 2005) while growth respiration may scale to the amount of new 3 

tissues built. On the other hand, overflow respiration occurs during stoichiometric adjustment 4 

(Russell and Cook, 1995; Schimel and Weintraub, 2003; Frost et al., 2005; Franklin et al., 2011) 5 

whereas costs related to enzyme production may be governed by microbial demand and substrate 6 

availability and quality, resource diffusion, and microbial diversity (Allison, 2005). This 7 

differentiation can impact the dynamics of the microbial biomass: For example, maintenance 8 

respiration costs would incurbe incurred even in the absence of carbon uptake, which can lead to 9 

a reduction in microbial biomass. In contrast, growth respiration is only due when substrate for 10 

growth is available. HoweverBecause of the explicit and mechanistic link between microbial 11 

activity and soil organic matter degradation, inclusion of microbial models in Earth System 12 

Models may have the potential to ultimately reduce uncertainty of climate-carbon feedback in 13 

the face of climate change, because of the explicit link between microbial activity and soil 14 

organic matter degradation (Todd-Brown et al. 2012, 2013; Wieder et al., 2015a).  15 

As microbial models are considered critical towards improvement offor broader application in 16 

Earth System modelModels, it is keyessential to analyse and understand their structure and their 17 

dynamics. Here, we compare a series of microbial decomposition models with each other. 18 

Specifically, we analyse feedbacks between depolymerisation and microbial growth, consider 19 

constraints on depolymerisation and enzyme -substrate interactions, investigate the 20 

parameterisation of microbial enzyme productivity, and investigateaddress the representation of 21 

microbial respiration and CUE.  22 

Our main questions are: 23 
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a) How do different model implementations of depolymerisation affect the feedback between 1 

microbial biomass and soil organic matter, if subjected to warming? 2 

b) How does the consideration of functional respiration terms (growth, maintenance, and carbon 3 

acquisition expenditures) affect decomposition dynamics? 4 

We organise the paper in the following way. In the next section, we introduce 3 simple models 5 

that differ in their representation of depolymerisation. Each model will be further modified for 6 

different representation of microbial dynamics and respiration. To analyse model behaviour, we 7 

will evaluate the response of respiration, microbial biomass, CUE, and soil organic matter to a 8 

step increase in temperature. We will then discuss the models’ behavior by comparing 9 

againstbehaviour and compare their results with the dynamics of a traditional first order model.  10 

 11 

2 Materials and methods 12 

2.1 Model descriptions  13 

We first introduce three model families that differ in the way depolymerisation is handled.  14 

In all models, the setup consists of a single soil organic matter pool and a single microbial pool 15 

(Fig. 1). However, allAll models also implicitly take into account interaction between enzymes 16 

and substrate, that results into depolymerisation of substrate into a DOC pool on which microbes 17 

can feed. Enzyme-substrate reactions are based on Michaelis-Menten kinetics (see Appendix A, 18 

Michaelis-Menten kinetics with enzyme denaturation). We do not consider a specific enzyme 19 

pool, nor a specific DOC pool, but assume that the enzyme and DOC poolpools are in a quasi-20 

steady state (see Appendix A, DOC and enzyme dynamics). Thus, the amount of enzyme 21 

produced equals the amount of enzyme decay at every time step. Similarly, the amount of DOC 22 
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produced is the same as the amount of DOC consumed by microbes. In contrast to Allison et al. 1 

(2010), but congruent with German et al. (2012), there is no “free” DOC, both fresh litter, and 2 

microbial necromass need to be depolymerised before itthey can be ingested by microbes. 3 

Further, bothIn all models depolymerisation and microbial respiration are temperature 4 

dependent, causing increased depolymerisation and reduced microbial CUE with warming. 5 

2.1.1. Base Models  6 

The tendency (derivative with respect to time) for soil organic carbon and microbes in all of the 7 

models are described with: 8 

dS

dt
= I + λd ∗ M − D                                                                                                                 (1) 9 

dM

dt
= D ∗ ε − λd ∗ M                                                                                                                 (2) 10 

where S and M are the soil organic matter and the microbial pool, respectively, I is the input of 11 

fresh litter, λd is the death rate of microbes, D is the rate of depolymerisation, and ε is the 12 

microbial CUE. 13 

Forward M-M Model (FWD) 14 

In the forward model (FWD), depolymerisation is represented as a Michaelis-Menten process, 15 

and stems from the  simple microbial-enzyme decomposition model as proposed by Allison et al. 16 

(2010) and modified by German et al. (2012) (Fig 1a).  17 

D =
Vmax,FWD∗S∗M

KE+S

Vmax,FWD∗S∗M

Km+S
                                                                                                       (3)          18 

Where D is the rate of depolymerizationdepolymerisation, Vmax,FWD is the maximum 19 

depolymerisation rate and KEKm the half saturation constant forof enzymes. Appendix A shows 20 

the derivation of this function, based on enzyme-substrate dynamics.   21 
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Diminishing Return (REV) Model  1 

In Appendix B, we derive two depolymerisation models which show a diminishing increase of 2 

depolymerisation as microbial mass increases. These models include a) a case where microbes 3 

are scavenging for free enzymes, and b) where potential sites offor enzyme-substrate reactions 4 

are finite. The implementationsimplementation of these factors lead to a reverse Michaelis-5 

Menten type model (REV) as in Schimel and Weintraub (2003): 6 

D =
Vmax,REV∗S∗M

KM+M

Vmax,REV∗S∗M

Ke+M
                                                                                                                        7 

 (4) 8 

Where KMVmax,REV is the maximum depolymerisation rate for this model, Ke is a half saturation 9 

constant that determines the diminishing return function. In the cases developed in the Appendix, 10 

KMKe incorporates factors indicating the finite sites for enzyme substrate interactions (Appendix 11 

B, model with limited available substrate), or the efficiency with which microbes scavenge for 12 

free extracellular enzymes (Appendix B, microbial consumption of enzymes). A version of the 13 

reverse Michaelis-Menten model also has been derived if for the case where an enzyme can 14 

adsorb to only a fraction of the soil organic matter due to inaccessible binding sites where a 15 

particular enzyme can adsorb to from surface limitation or phyiscal protection (Wang and Post, 16 

2013). A major difference tofrom the FWD model is that now the microbial biomass, 17 

insteadinclusion of the amount of soil organic matter appearsmicrobial biomass in the 18 

denominator. in lieu of soil organic matter. Therefore, the depolymerisation per unit biomass 19 

decreases as biomass increases, plateauing at Vmax,REV*S (diminishing return).  20 

Optimised Enzyme Production (OPT) Model 21 
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In thisour OPT model, we relax the condition that microbial enzyme production scales to 1 

microbial biomass, an assumption that is present in many microbial models and which is also 2 

assumed in the FWD and the REV model above. Instead, we probe a model where microbial 3 

enzyme production is optimised for growth. We motivate this by microbial competition (Allison, 4 

2005), which will allowallows microbes to succeed if microbial enzyme production allows the 5 

highest possible return. Optimisation only has meaningful results for the case of limited substrate 6 

availability (i.e. a diminishing return, possibly through constraints in potential sites for enzyme-7 

substrate reaction) and if there is a cost associated with microbial enzyme production.  8 

Depolymerisation as a function of enzyme production can be represented by  9 

D(P) =
P∗Vmax,OPT∗S

KP+P

P∗Vmax,OPT∗S

Kp+P
                                                                  (5) 10 

Vmax,OPT is the maximum rate of depolymerisation, P is the enzyme production rate, and KPKp 11 

carries information on the affinity of the enzyme for the substrate and longevity of the enzyme 12 

(see Appendix C, for  full derivation of depolymerisation in the OPT model).  13 

Microbial growth (G) is as in previous models but accounts for carbon expenditure of enzyme 14 

production: 15 

G = ε ∗ (D(P)– Pc)        (6) 16 

Where c is the respiratory cost per unit enzyme produced (Schimel and Weintraub, 2003).   17 

Optimising growth by setting  
dG

dP
= 0 yields:  18 

D =  Vmax,OPT ∗ S – √KPp ∗ c ∗ Vmax,OPT ∗ S          (7) 19 

And the cost per unit carbon depolymerised is then: 20 
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Pc

D
= √

KPc

S Vmax,OPT
√

Kpc

S Vmax,OPT
        (8) 1 

2.1.2. Equilibrium microbialQuasi-steady state (QSS) microbe models 2 

While the previous models are fairly simple, we further reduce the complexity by removing 3 

microbial biomass as a state variable, but instead consider M at a quasi-steady state. (QSS). In 4 

the equilibrium microbialQSS microbe models, the microbial uptake at each time step is thus 5 

equal to the microbial carbon loss via death or respiration (Fig 1b). This is similaridentical to our 6 

treatment of DOC and enzymes, where production and removal of these substances are always 7 

balanced. This simplification is motivated by the fact that microbial biomass turns over much 8 

faster than soil organic matter, and therefore microbial biomass adjusts much faster to changes in 9 

environmental conditions than soil organic matter itself. The fast turnover of M compared to S 10 

allows microbial biomass to (quasi)-equilibrate with the current level of soil organic matter (see 11 

also Menge et al., 2009).  12 

In our equilibrium microbialQSS microbe models, we solve 
dM

dt
= 0, in order to obtain a quasi-13 

steady state microbial biomass, M̅. M̅ substitutesreplaces the state variable M in the functions for 14 

depolymerisation and microbial death. We note that this is only possible for the REV and the 15 

OPT model. The as the FWD model yields no solution for M in 
dM

dt
= 0, and the first order model 16 

does not consider a microbial biomass in the first place. The equilibrium. The QSS microbe 17 

models, effectively becomesbecome a one-pool model, where depolymerisation is not a direct 18 

function of microbial biomass, but an expression of S and a series of parameters. Table 2 (see 19 

formulations for Short/Fast timescale) shows the quasi-steady state for M, and the resulting 20 

depolymerisation function for the equilibrium models. QSS microbe models. M̅ can be diagnosed 21 

at each time step based on S and parameters that determine depolymerisation and microbial 22 
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turnover (Table 2, second column). In the QSS microbe models a fraction  (1 − ε) of 1 

depolymerisation is immediately recycled back into the soil organic matter pool, thus the 2 

dynamics of the soil pool becomes  3 

dS

dt
= I −  (1 − ε) ∗ D    (9) 4 

In turn, depolymerisation is immediately partitioned into respiration and a returning carbon flux, 5 

which mimics microbial death.  6 

2.1.3. Partitioning between maintenance and growth respiration  7 

While the dynamics of the soil organic matter pool remains the same as in the base model setup, 8 

we alter the forward and the reverse Michaelis-Mentenall models as we make distinction 9 

between(FWD, REV, OPT) to treat growth and maintenance respiration as separate processes 10 

(Fig 1c). Partitioning of microbial respiration into growth and maintenance respiration 11 

characterise the microbial pool as follows:  12 

dM

dt
= (D−λr ∗ M)(1 − g)−λd ∗ M   (910) 13 

Where g is the growth respiration fraction and λr the maintenance respiration rate. The separation 14 

of microbial respiration in growth and maintenance terms is motivated by a similar formulation 15 

in other microbial (Beefting et al., 1990; Van Bodegom, 2007), vegetation growth (Foley et al., 16 

1996; Cannell and Thornley, 2000; Arora, 2002; Thornley, 2011; Pretzsch et al., 2014), and 17 

ecosystem-scale (Sistla et al., 2014) models. Growth respiration is applied after requirements for 18 

maintenance respirations are met. and is proportional to new microbial tissues built. Maintenance 19 

respiration (respiration related to non-growth components) is typically proportional to microbial 20 

biomass (Van Bodegom, 2007).  21 

2.1.4. First-Order Decomposition (FOD) Model  22 



 

11 
 

The last model represents the structure of traditional decomposition modelmodels such as 1 

CENTURY (Parton et al., 1987) or Roth-C (Coleman et al., 1996) and their derivatives, where 2 

decomposition is considered as a first-order reaction: 3 

dS

dt
= I − S ∗ k ∗ (1 − ε)         (1011) 4 

where k is the first order decomposition constant. The two major differences between our first-5 

order decomposition (FOD) model and traditional models are that we consider only a single 6 

carbon pool whereas traditional models consider several qualitymultiple pools with different 7 

turnover times that feed into each other. We also consider a temperature -dependent CUE on top 8 

of a temperature -dependent processing rate (k, see parameterisation and implementation 9 

section). This increases the fraction of carbon processed with warming to become CO2. 10 

Respiration (R) is then  11 

R = S ∗ k ∗ (1 − ε) (1112) 12 

2.2 Temperature response 13 

We implement the response of decomposition to warming by modifying the depolymerisation 14 

and the microbial respiration.  15 

In the FWD, REV and OPT model, Vmax is modified as 16 

Vmax,i(ΔT) = Vmax,i ∗ Q10

(
ΔT

10
)
            (1213) 17 

Where Vmax,i and Vmax,i(ΔT) are the reference and the temperature -dependent maximum 18 

depolymerisation rate of the model i = (FWD, REV, OPT, see Table 3). Similarly, the 19 

decomposition rate k is modified by the Q10 function in the FOD model.  20 

Further, we also parameterise CUE as a linear function of the temperature change, following 21 

Allison et al. (2010) and German et al. (2012) 22 
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ε(ΔT) = ε0 + ΔT ∗ εslope     (1314) 1 

where ε0 is the CUE at reference temperature, and εslope is the change in CUE per °C 2 

temperature (ΔT) change. Finally, in the models where we partition growth and maintenance 3 

respiration, we formulate maintenance respiration as a Q10 function of temperature 4 

λr(ΔT) =  λr,0 ∗ Q10

(
ΔT

10
) 

  (1415) 5 

Where λr,0 and λr(ΔT) are maintenance respiration rate at reference and elevated temperature. 6 

Growth respiration is typically much less sensitive to warming than maintenance respiration 7 

(Frantz et al., 2004), and we therefore do not consider a temperature dependence of this 8 

particular respiration term.  9 

In our simplified model we further neglect the weaker temperature dependence of the half 10 

saturation constants (see Davidson et al., 2012; German et al., 2012; Stone et al., 2012), and also 11 

do not consider changes in cost of enzyme production as temperature increases in the case of the 12 

OPT model. 13 

2.3 Parameterisation and implementation  14 

All models are implemented in STELLA, version 10.0.3. To enable comparison among the 15 

models, we adjust parameters in the following way: The models have the same initial soil 16 

organic carbon and the same initial microbial biomass. Both CUE (ε) ,), and its temperature 17 

dependence (εslope) are the same across models.  Further, the temperature sensitivities of Vmax 18 

are identical accrossacross models so that we obtain the same increase of depolymerisation in the 19 

first time step after the temperature perturbation. We motivate this kind of parameterisation by 20 
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acknowledging that many of these parameters are largely unknown, but it will provide us with 1 

the possibility of comparing the functional response to long-term warming across these models.   2 

We use parameters as reported in German et al. (2012), with a few modification.modifications. 3 

Here, we report Vmax,FWD and KEKm by considering 15°C as our reference temperature and by 4 

working theirincorporating German et al. (2012) tuning factorscoefficients (aK, aV) directly into 5 

these two parameters. (Table 3). In other words, Vmax,FWD and KEKm are the product of the 6 

reference values in German et al. (2012), their respective tuning parameters and their adjustment 7 

to our reference temperature, 15°C, and the German et al.‘s (2012) tuning parameters. Further, 8 

we have converted the exponential temperature sensitivity of Vmax,FWD into a Q10 term.    9 

To allow a diminishing return mechanism, we assumed that most of the enzyme decay/loss in a 10 

scavenging model is attributed to microbial consumption instead of denaturation. Alternatively, 11 

under conditions of limited enzyme-substrate reaction sites, we assumed that there is an excess 12 

of free enzymes, and therefore, enzyme concentrations are higher than their corresponding half 13 

saturation concentrations. Overall, these assumptions would suggest a KMKe that is smaller than 14 

M (KMKe <M). Here, we chose KM to be 0.37 of Ke considerably but not diminishingly smaller 15 

than M equilibrated at the reference temperature. (Ke = 0.37 times equilibrated M). Note, that the 16 

half saturation constant in the REV model has a different unit (mgMmg M cm
-3

) than in the 17 

FWD model (mgSmg S cm
-3

) (see Appendix A for the FWD model and Appendix B for the REV 18 

model). This leaves the determination of Vmax,REV are then, which is tuned to yieldhere to such 19 

that the REV model yields equivalent equilibrium values of S at the reference temperature as the 20 

FWD model. 21 

In the OPT model, we adjust Vmax,OPT (in a similarthe same manner as in the REV model) such 22 

that the system again yields equilibrium values for S at the reference temperature (15°C) and the 23 
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same initial response to warming as in the other models. In the OPT model, we have to work 1 

inwith two additional parameters, namely the cost of enzyme production (c), and the term that 2 

contains the affinity of enzymes for the substrate (KPKp). We chose to have the OPT models 3 

comparable to others if the cost (c) is zero. Higher costs (c>0) therefore, will yield different 4 

equilibrium result of S and a different response to warming, depending on the cost of enzyme 5 

production. Both, the half saturation constant (affinity parameter, KP) and the cost per enzyme 6 

produced are parameters that are hard to come by. Instead, the solution allows us to quantify 7 

these based on how much of carbon depolymerised is allocated to enzyme production (see Eq. 8 8 

in the main text).   9 

Here, we analyse the OPT model based on different levelsBoth, the half saturation constant 10 

(affinity parameter, Kp) and the cost per enzyme produced are parameters that are hard to come 11 

by. Instead, the relationship between enzyme production cost and overall depolymerisation 12 

allows us to quantify the product of Kp and c. (see Eq. 8 in the main text). We define a fractional 13 

expense μ that quantifies the enzyme expenditures and expressed as enzyme costs per unit 14 

carbon depolymerised (μ = 
Pc

D
), where relative to overall depolymerisation at the base 15 

temperature steady state, and at zero cost (μ is= 
Pc

D
|

𝐸𝑞,∆𝑇=0
). We chose μ to be 0, 10, and 50  16 

percent of the depolymerisation rate at the reference temperature and at steady state. This 17 

yieldsBased on the relationship given in Eq. 8 we then obtain an expression for the combined 18 

cost (c) and the half saturation constant (KP) (Kp) without having to specify the value of the 19 

individual parameters (see also the variable Y in Table 2):   20 

KPKp ∗ c =  μ2 ∗ DEq.,ΔT=0                                                          (1516) 21 

Where DEq.,ΔT=0 is the rate of depolymerisation at zero enzyme cost and reference temperature.   22 
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When separating growth and maintenance respiration, we sought to equalise steady state CUE, 1 

M, and S by tuning g and λr. We first parameterised maintenance respiration, where, the 2 

coefficient for maintenance respiration is scaled to microbial turnover (Van Bodegom, 2007). 3 

We motivate the partitioning between growth and maintenance respiration based on vegetation 4 

models. LPJ (Sitch et al., 2003) and ED (Moorcroft et al., 2001) have a growth respiration factor 5 

of one-third of the carbon allocated to growth. We then constrain the overall respiration by the 6 

CUE in German et al. (2012), and obtain a maintenance respiration rate by difference. This 7 

yields a maintenance respiration rate that is close to the microbial death rate such that: 8 

λr,0 =  1.25 ∗ λd       (1617) 9 

The second parameter, g is adjusted, such that the CUE at the steady state and reference 10 

temperature remains the same. This constrains g to 11 

g =  
λd−ε0∗(λd+ λr,0)

λd−ε0∗ λr,0
        (1718) 12 

To obtain the same equilibrium values of CUE at 20°C as in the base models, we adjust Q10,𝝺r 13 

such that models with maintenance respiration hashave the same CUE as in the base models.  14 

Finally, in the FOD model, the traditional decomposition model, we adjust the parameters k and 15 

ε0 to obtain the same S, and CUE as in all other models at 15°C and employ a Q10,k value 16 

identical  to the Q10 values of Vmax in the other models. We keep the decreasing CUE – a feature 17 

not typically set up in traditional models.    18 

All parameter values are given in Table 3.     19 

 20 
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3 Results 1 

3.1 Base Model Simulations  2 

Fig. The 2 shows the transient response forof the different models (FWD, REV, OPT, and FOD) 3 

to a temperature step from 15°C to 20°C is shown in . Recall,Fig. 2. We note that the 4 

perturbation occurs after all models were equilibrated at 15°C and are forced through the same 5 

initial values of M, S, and CUE by way of parameter adjustments. FurtherAlso, by identical Q10 6 

of Vmax and CUE’s, the initial response to a warming is equal across the models by not allowing 7 

Q10 of Vmax and Q10 of CUE to differ.  8 

In all models, warming leads to a decline of soil organic matter and microbial biomass (Fig. 2). 9 

In this initial comparison, we assume that there is no cost associated with microbial enzyme 10 

production. Across all the models, microbial biomass first increases because of higher 11 

depolymerisation. Increased depolymerisation causes soil organic matter to decrease. In the 12 

longer term, M decreases as rates of depolymerisation decline due to a reduction in S, and due to 13 

lower CUE. We note that M becomes identical across all models in the long term, when soil 14 

organic carbon has equilibrated with the microbial processing at higher temperature (see also 15 

Table 2). 16 

The FWD Model shows the oscillations in M and S, as noted earlier (Wang et al., 2014). The 17 

warming triggers an increase in depolymerisation, which in turn feeds microbial biomass, 18 

causing an even higher rate of depolymerisation. This positive feedback experiences a break only 19 

when the substrate (S) is sufficiently depleted, such that microbial biomass begins to decline. 20 

Thereafter, the positive feedback takes over again, the decreasing microbial biomass spirals 21 

down along with depolymerisation until microbial biomass is low enough for soil organic matter 22 
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to recover. The amplitude of the oscillations dampens over time (Fig. 2). Rates of respiration 1 

oscillate along with microbial biomass, before settling at the initial rate in the long- term (after 2 

ca. 200 years).  3 

The transient dynamics in the REV model with a diminishing return as enzyme (or microbial) 4 

concentration increases, is are smoother compared to FWD model (Fig. 2). The mechanism of 5 

allowing a finite site for enzyme-substrate reaction or microbial scavenging for enzymes curbs 6 

the growth of microbial biomass. Warming still leads to an initial increase of microbial biomass, 7 

owing to the fact that the gains of depolymerisation outweigh losses from increased respiration 8 

(i.e. decreased CUE). As soil organic matter depletes, microbial biomass is reduced, ultimately 9 

below the initial levels.  10 

The OPT model considers the metabolic cost of enzyme production and allows 11 

optimisingoptimisation of microbial growth. In Fig. 2, the temporal evolution of M, S, 12 

respiration, and CUE is shown for a setup without any costs associated with enzyme production. 13 

Among the 3 microbial models presented here (FWD, REV, OPT), the OPT model shows the 14 

strongest soil organic matter decrease in response to warming. The response in the OPT model is 15 

also almost identical with the traditional FOD model. The transient response also shows a 16 

smaller initial growth of M in the OPT vs. the REV model.  17 

3.2 Analytical steady state solutions 18 

The analysis of equilibria helps to understand the model behaviour. We first address the “long 19 

time scale” in Table 2 where we solve for the steady state of the entire system (i.e. 
dM

dt
= 0 and 20 

dS

dt
= 0). In the long-term, the steady state microbial biomass is identical in the FWD and the 21 

REV model and depends on the input of fresh organic matter, the microbial CUE, and microbial 22 
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turnover (Table 2, right-most column). The same microbial biomass is also realised in the OPT 1 

model under zero cost (=0) (see Eq. 1516 and Table 2, right-most column). In contrast, the 2 

analytical steady state solutions of S are different among the models: For the REV and the OPT 3 

model, the input of fresh litter is a determining variable for the steady state, but not for the FWD 4 

model. In the OPT model the resulting equilibria of S and M end up being complex expressions, 5 

and we did not calculate the long-term equilibria of M, but expressed them simply as a function 6 

of soil organic matter. The OPT model has – under the assumption of marginal costs ( 0) the 7 

same steady state solution for M as the other models. Further, the steady states of S are the same 8 

in the traditional first order model (FOD) and the OPT model with zero cost. As expected, the 9 

effect of enzyme production cost has a negative impact on microbial biomass. 10 

The analysis of the short-term quasi-steady state of the microbial biomass (
dM

dt
= 0) is useful to 11 

understand the trajectory of the coupled S-M system. Typically, microbial turnover is much 12 

faster than the turnover of bulk soil organic matter (Stark and Hart, 1997; Schmidt et al., 2007). 13 

Thus, we would expect that microbial biomass is approaching a quasi-steady state given any 14 

level of S.   15 

In the FWD model, we find that the quasi-steady state for M requires a perfect balance of 16 

parameters that govern growth- and death rates (Table 2, second column). In absence of such a 17 

balance (This has been referred to as knife-edge equilibrium, see  (Schimel and Weintraub, 18 

2003), M would therefore grow). The absence of such a balance leads to either an exponential 19 

growth (if positive balance) or decay indefinitely.(if balance is negative) of the microbial 20 

biomass in the short term, where changes in S are small. It becomes clear that the soil organic 21 

matter pool must respond on a similar time scale aswith microbes in order to maintain microbial 22 

biomass within acceptablerealistic boundaries. In the REV and the OPT models, the short-term 23 
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equilibria are a function of soil organic matter (Table 2, second column). In the REV, and the 1 

OPT model, M̅ is strongly determined by the rate of depolymerisation at a given S, the CUE and 2 

the microbial death rate. A weaker affinity for the substrate (larger half-saturation constant) and 3 

higher enzyme production cost act to reduce M̅ in these models.  4 

3.3 3.3 Quasi-Steady State (QSS) of Microbial Biomass 5 

Given the quasi-equilibrium biomass, and the resulting decomposition at quasi-steady state, we 6 

set up a second line of modelling experimentexperiments, where depolymerisation rates, as well 7 

as microbial respiration and death, are calculated based on microbial biomass at quasi-steady 8 

state (QSS microbe, Table 2, second and third columns). It follows that a fraction  (1 − ε) of 9 

depolymerisation is immediately recycled back into the soil organic matter pool, yielding the 10 

equation 
dS

dt
= (1 − ε) ∗ D. Depolymerisation is immediately partitioned into respiration and into 11 

a returning carbon flux, which mimics microbial death. In this modelling setup, microbial 12 

biomass is thus no longer a state variable and the models are reduced to single pool setup (Fig. 13 

1b). M̅ is diagnosed from S and parameters that determine depolymerisation and microbial 14 

turnover (Table, see also method section 2, second column.1.2). Compared to the base models, 15 

the steady stateQSS-microbe models yield very similar results for S and respiration, but they do 16 

not reproduce the early adjustment of the microbial biomass to the temperature step. (Fig 3).  17 

Instead of a slow adjustment to the sudden warming,  M̅ increases with the 18 

instantenousinstantaneous increase of depolymerisation. However, over a timescale of <1 year, 19 

M̅ and R converge to the values of the base models in REV and the OPT model, and therefore, 20 

the quasi-steady state appears to be an acceptable assumption over medium to long time scales. 21 

Our results further show that the depolymerisation in the OPT model at quasi-equilibrium and at 22 
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marginal enzyme production cost (μ 0) yields a depolymerisation formulation that is 1 

functionally the same as a first order decomposition model,. Depolymerisation in the OPT model 2 

becomes Vmax*S in absence of enzyme production cost (see Table 2), and therefore respiration 3 

and, the entire dynamics of S are the same forhas the quasi-steady state OPT model and the 4 

traditionalfamiliar first order model. characteristics (compare Eqs. 9 and 11). 5 

3.4.3.4 Partitioning between maintenance and growth respiration 6 

In the third modification of our base models, we partition respiration in our models into a 7 

temperature independent growth respiration and a temperature (and biomass) dependent 8 

maintenance respiration. This affects the transient pattern of the FWD in that it increases the 9 

feedback between microbes and substrate (evidenced by higher amplitudes in M, S, and 10 

respiration, Fig. 3). This is because part of respiration is now tied to microbial biomass, which 11 

lags depolymerisation. CUE  initially decreases less than in the base model, becauseas 12 

maintenance respiration lags the growing microbial biomass. The maintenance term also 13 

introduces also a mild oscillation into CUE, as microbial biomass waxes and wanes. 14 

Interestingly, includingthe inclusion of maintenance respiration decreasesincreases oscillation 15 

frequency and amplitude of S and M. In the REV and the OPT model, microbial biomass is 16 

slightly higher and respiration is slightly below the values of the base models shortly after the 17 

step increase, however, this difference diminishes over time. (Fig. 3). The nuanced consideration 18 

of microbial respiration causes CUE to declines in 2 stages. The initial drop occurs via the 19 

immediate increase in maintenance respiration. This drop is followed by further changes in CUE 20 

as M oscillates (FWD model), or as M net growth is diminishing (REV and OPT). Similar as in 21 

the case with equilibrium microbesto microbial biomass, differences disappear within < 1 year 22 

after the step warming. We note that in our modelling setup, we adjusted the temperature 23 
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sensitivity of the maintenance respiration such that CUE is the same at the reference (15°C) and 1 

the elevated (20°C) temperature. 2 

3.5.  Enzyme production expenditures 3 

Finally, we analyse in the OPT model how levels of costs associated with enzyme production 4 

affects soil carbon storage and response to temperature (Fig. 4). Because of largely unknown 5 

parameters we express enzyme expenditures as the fraction of respiratory carbon for enzyme 6 

production per unit carbon depolymerised at the reference state (see Eq. 8 and Eq. 16). We tested 7 

3 levels of enzyme production cost: 0%, 10%, and 50% of equilibrium depolymerisation at our 8 

reference condition (i.e. 15°C). As expected, increasing enzyme production cost reduced the rate 9 

of depolymerisation, and S is therefore maintained at a higher level. The increasing costs also 10 

resulted intoin a smaller relative decline of S in response to warming, whereas the absolute loss 11 

is larger, as indicated by the consistently higher rates of respiration. Similarly, the response of 12 

CUE to warming is smaller and the decline of M is less pronounced if enzyme production costs 13 

are considered.      14 

 15 

4 Discussion 16 

Recently developed microbial decomposition models (Schimel and Weintraub, 2003; Allison et 17 

al., 2010; German et al., 2012) highlight the importance of microbial processes and microbial 18 

physiology during decomposition. Their application specifically highlights the role of 19 

extracellular enzymes during decomposition and how these constraints will further affect the 20 

release of soil organic matter as a consequence of warming. While microbial decomposition 21 

models are able to improve prediction of organic carbon stock globally, and can successfully 22 

recreate litter decomposition dynamics, the long-term trajectory of a warming response needs 23 
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further evaluation (Wang et al., 2014).; Hararuk et al., 2015). In particular, a positive feedback 1 

between depolymerisation and microbes can only be curbed via the longer term adjustment of 2 

soil organic matter and therefore lead to oscillation in both microbial biomass and soil organic 3 

matter (Wang et al., 2014).  The oscillation is the consequence of a positive feedback between 4 

depolymerisation and microbial growth, and is evidenced caused by a knife’s edge or unstable 5 

equilibrium under constant substrate condition (in the short term (unstable QSS for microbes, 6 

Schimel and Weintraub, 2003). A break in this feedback and stabilisation only occurs via 7 

interplay with the reduction ofslow changing soil organic matter.  8 

Such interplay occurs on a longer timescale than that of microbial turnover, causing the swings 9 

in M and S pool. We note that some attenuation of the oscillation may occur via direct input into 10 

a DOC pool that does not require depolymerisation (Allison et al., 2010), a feature not 11 

considered here. 12 

The display of oscillation in the FWD model has been a point of critique as it has not been 13 

observed in laboratory and field incubation studies (Wang et al., 2014). Here, we introduce 14 

mechanisms that curb the positive feedback between substrate and microbial biomass.We portray 15 

two scenarios, where each increment in microbial biomass or enzyme concentration yields a 16 

smaller increase in depolymerisation than the previous increment (i.e. diminishing return).  The 17 

scenarios we worked out are 1) microbial biomass feeds on active extracellular enzymes, and 2) 18 

limited sites for substrate/enzyme reactions (see Appendix B). We derived the forms of 19 

depolymerisation from the original Michaelis-Menten kinetics and the resulting formulations 20 

presented in the method section are simplified and more illustrative versions of more complex 21 

functions. Wang and Post (2013) arrived at the same function for depolymerisation of the reverse 22 

Michaelis-Menten model, where an enzyme only adsorbs to a fraction of binding sites because of 23 
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complex substrates. The simplified formulation of depolymerisation and microbial consumption 1 

we arrived atobtained has been dubbed a reverse Michaelis-Menten formulation (Schimel and 2 

Weintraub, 2003), because microbial biomass (or enzyme concentration) instead of the substrate 3 

concentration is now occurring in the denominator of the depolymerisation term, invoking the 4 

diminishing return. Wang and Post (2013) arrived at reverse Michaelis-Menten depolymerisation 5 

function if enzymes only adsorb to a fraction of binding sites because of complex substrates. 6 

Transitions between FWD and REV model behaviour has also been detailed in the more complex 7 

Equilibrium Chemistry Approximation model that also included sorption of enzymes and 8 

substrates to mineral surfaces (Tang and Riley, 2015; Tang, 2015). Our analysis shows that the 9 

positive feedback between decomposition and microbial growth is removed, as our REV model 10 

now has now a stable equilibriumshort-term QSS.  11 

Limited sites may play a role if the substrate has a high volume to surface ratio, or if the 12 

substrate is associated with minerals (Davidson and Janssens, 2006; Gillabel et al., 2010; Conant 13 

et al., 2011; Davidson et al., 2012, 2014; Cotrufo et al., 2013; Wagai et al., 2013; Benbi et al., 14 

2014; Wieder et al., 2014a; Tang and Riley, 2015). Our implementation of limited substrate 15 

causes a surplus of free enzymes that compete among themselves for binding to substrates 16 

similar to the Langmuir adsorption isotherm theory (Vetter et al., 1998; Schimel and Weintraub, 17 

2003, Wang and Post, 2013, and see Appendix B, Model with limited available substrate).), 18 

leading to diminishing depolymerisation returns and a REV model formulation. Effects of 19 

microbial scavenging for enzymes cause a diminishing return because more microbial biomass 20 

will lead to an increased probability of enzymes being consumed before they interact with soil 21 

organic matter. Other mechanisms of diminishing return as enzyme increase may be the 22 

stabilisation of enzymes into organic matter-humate complex (Allison, 2006), or sorption to 23 
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minerals, soil organic matter, or microbes (Tang and Riley, 2015). Diminishing returns also 1 

occur with rate-yield tradeoffs (Allison, 2014). 2 

Many microbial decomposition models work under the assumption that enzyme production is 3 

proportional to microbial biomass. It, however it is also conceivable that microbes are adjusting 4 

production to maximise return or growth (Cooney, 2009; Merchant and Helmann, 2012)., Tang 5 

and Riley, 2015). In our OPT model, we relax the proportionality of microbial enzyme 6 

production and microbial biomass butand instead allow a best possible return, given the cost of 7 

enzyme synthesis. While the exact cost of enzyme production is not known, we fixed parameters 8 

(the product of KPKp and c) that relate to the fractional expense of carbon depolymerised upon 9 

initialization (i.e. at steady state and reference temperature, Eqs. 8 and 1516). Importantly, 10 

enzyme production optimisation is not possible for some of the models presented here. Higher 11 

enzyme production would always lead to further microbial growth in the FWD model, and the 12 

highest yield would occur with infinite enzyme production. Similarly, in the case of microbial 13 

scavenging for enzymes, additional investments into enzymes always increases 14 

depolymerisation.  15 

The response to temperature in our OPT model closely resembles the traditional first order decay 16 

model (FOD). In the limit of enzyme production cost isapproaching zero, depolymerisation 17 

occurs  at the maximum rate (Vmax*S), confirmingessentially turning the resemblance to the OPT 18 

model into a first order model. This model shows(Fig. 2). In the strongest response to 19 

warmingOPT model, reductions in the long term because the temperature dependence of 20 

depolymerisation is not reduced via a half saturation constants (KE in forward, KM in OPT,via Kp 21 

are alleviated when enzyme synthesis is inexpensive, where the reduction of the maximum 22 

depolymerisation rate becomes a function of the product of Kp*c (Eq. 7 and KP in OPT model) as 23 
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in the FWD or REV model. We note that half saturation constants in ourTable 2). The results of 1 

the OPT model also show the effects on assumptions on microbial enzyme production rates. In 2 

many microbial models combine several parameters such as enzyme productivity relates, enzyme 3 

production is scaled to microbial biomass, and turnover of the enzyme pool. In the REV and the 4 

OPT model, smaller the half saturation constant is, the closer we arrive at the formulation. 5 

Lifting the tight coupling between microbial biomass and enzyme prodcition leads to a more 6 

dynamic enzyme concentrations and ultimately affects the temperature sensitivity of 7 

decomposition in a first order model, this occurs via an increase of enzyme concentration by way 8 

of higher production or reduced enzyme turnover. Both, parameter are hard. Thus, the cost and 9 

trade-offs associated with microbial enzyme production are potential important areas to better 10 

quantify the long-term response of soil carbon storage to come byclimate change.  11 

The response of decomposition to warming can be viewed as a response ocurringoccurring on 12 

multiple timescaletimescales. For example, while enzyme activity likely produces likely an 13 

immediate response, microbial respiration responses may also be triggered quickly, although 14 

longer term acclimation may occur (Frey et al., 2013). It may take longer for microbial biomass 15 

to respond to thetemperature changes (weeks to months). Finally, because the rate of 16 

decomposition is slow compared to the overall abundance of soil oganicorganic matter, 17 

discernible changes in this pool occur on timescales of months to years.  Based on the distinct 18 

rates of adjustementsadjustments, timescales can – in principle – be separated by assuming a 19 

quasi-steady state of pools that turn over fast.   20 

The assumption that both enzyme concentrations and DOC (i.e. the depolymerisation products) 21 

are at quasi-steady state cuts across all models presented here (FWD, REV and OPT, see 22 

Appendix A). When we extend our assumption of steady state to the microbial timescale (quasi-23 
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steady state of microbial biomasssbiomass), we find that for both the REV and the OPT model, 1 

the short-term response of microbial biomass and respiration is influenced by the adjustment of 2 

microbial dynamics to the warmer temperature. (Fig. 3). Because microbial biomass jumps 3 

immediately to a higher level after the temperature increase in such an equilibriumour QSS 4 

assumption, depolymerisation, and thus respiration, are affected. However, the equilibriumQSS 5 

assumption does not affectaffects the trajectory of the soil carbon pool, S only minimally. At 6 

timescales that allow microbes to turn over a couple of times (several months), the quasi-steady 7 

state poses a suitable approximation to represent respiration and microbial biomass, even after a 8 

sharp perturbation in form of a step change. Perhaps more intruiging is the fact that a traditional 9 

first order model is the special case of the OPT model with microbial quasi-steady state and with 10 

marginal enzyme production costs (μ0). Here, we maintain reduction of CUE under increasing 11 

temperature in the FOD, a feature typically not include in traditional first order models.the form 12 

of a step change. In the QSS assumption, depolymerisation becomes independent of the 13 

microbial biomass (but is still dependent on a combination of microbial parameters, see Table 2).  14 

The introduction of QSS microbial biomass allows addressing and comparing the long-term 15 

responses of the different models to warming. In particular, the comparison of the QSS derived 16 

depolymerisation of the FOD with the REV and the OPT directly show the effect of how 17 

enzyme-substrate affinity and enzyme production costs dampen the rate of depolymerisation and 18 

its response to temperature. In other words, the long-term response of the FOD is equivalent to 19 

the long-term response of our OPT or REV model, when 1) Ke is low (high enzyme production, 20 

high enzyme-substrate affinity, and low enzyme turnover), and/or 2) costs of enzyme 21 

productions are low, and 3) and CUE (the fraction of depolymerised not respired but cycled back 22 
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into soil organic matter pool) is also temperature dependent in the FOD, a feature typically not 1 

included in traditional decomposition models.  2 

CUE ultimately is the result of different microbial respiration terms. Here, we 3 

consideredconsider 3 processes that may affect microbial respiration under a warming scenario. 4 

We first consideredconsider a partitioning into growth and maintenance respiration across our 3 5 

models. Growth respiration wasis simply assumed to be a proportion of carbon allocated to 6 

microbial growth. In contrast, maintenance respiration scales in our models to microbial biomass 7 

in our models, where the proportionality factor increases with temperature. We motivate the 8 

partitioning by formulations of plant respiration in terrestrial biosphere models. We find that this 9 

separation affects the short-term responses of respiration, because microbial biomass lags the 10 

increase of depolymerisation. The temperature response of CUE is thus delayed. The partitioning 11 

of the respiration terms has particularly also anhas a particular impact on the transient dynamics 12 

of the FWD model, in that the lag in maintenance respiration amplifies the oscillation. (Fig. 3). 13 

However, in the REV and the OPT model, effects of separation are only discernible on the 14 

microbial time scale, before microbial biomass is approaching quasi-steady state values.  15 

In the OPT model, we introduce an additional respiration term, namely the cost of enzyme 16 

production, which. In this model, we allow microbes to adjust enzyme production in order to 17 

optimise growth.  It is interesting that increasing costs lead to a smaller immediate response in 18 

respiration and more resilient soil organic matter pool in the long term, when subject to warming. 19 

(Fig. 4). The early respiration response in the OPT model is both a product of higher rates of 20 

depolymerisation, (increased Vmax), but also a higher rate of enzyme production. However, the 21 

enhancement relative to the rates at the reference temperature isbecomes smaller, the with higher 22 

the enzyme production cost. In the long term, the decrease in soil organic matter decreases much 23 
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lessis reduced when enzyme production costs are considered. This reduction is accompanied by a 1 

smaller reduction in CUE under higher enzyme production, even though there is a subsequent 2 

CUE reduction occurring as S declines. The changing yield tradeoff thus actoverall acts to buffer 3 

respiration increases that could be expected from physiological responses alone (Vmax), although 4 

the effects are smaller and may be well within the uncertainty of the temperature response of any 5 

parameters considered here. We note that enzyme expenditure relative to depolymerisation is a 6 

function of the product of Kp and c.  7 

We acknowledge that we used a simplified set-up of our model suite. For example, we assumed 8 

that depolymerised carbon in soil solution (DOC) is always at steady state with the microbial 9 

biomass. We justified this (see also German et al., 2012 and Moorhead et al., 2012). This 10 

simplification by assumingcan be justified with fast and efficient scavenging of microbes. and 11 

thus, fast turnover of the DOC pool. Further sensitivity analysis may shed further light on the 12 

dynamics across the full parameter space, while using the simplified linear terms (Appendices B 13 

and C, Tang, 2015), particularly also because many of the parameters are harddifficult to come 14 

byestimate. We further did not include nutrient requirements of microbes. Considering, where 15 

considering the stoichiometric requirements can in particular change the allocation of resources 16 

to optimise enzyme synthesis. Finally, our model does not include interaction that may occur 17 

with adsorption to mineral surfaces, which may occur with the substrate, the enzymes and 18 

microbial biomass, and which has important short and long-term consequences to temperature 19 

flctuations and changes (Wieder et al., 2014a; Tang and Riley, 2015). Nevertheless, our suite of 20 

models showshows the importance of howformulating the depolymerisation step is formulated in 21 

mathematical models when evaluating the response of decomposition under warming, and it 22 

provides ecosystem modelers a mechanistic handle when expanding microbial frameworks into 23 
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to more complex, models with multiple substrates of different quality and different propensities 1 

to microbial processing.  2 

Microbial models are considered to be more realistic because of mechanistic representation of 3 

the decomposition steps, yet the oscillatory behavior has been viewed as an unrealistic response 4 

to perturbation (Wang et al., 2014). Perhaps on a more fundamental level, first order 5 

decomposition models inherently assume substrate limitation while the FWD model incorporates 6 

enzyme availability (and enzyme production) as the limiting step during decomposition. Here, 7 

we show that first order models can be viewed as a special case of a microbial model that 8 

considers limitation other than enzyme availability (i.e., diminishing returns) and low values of 9 

the half saturation constant (REV Model), or alternatively, a decoupling of microbial enzyme 10 

production from microbial biomass (OPT model). While moving from the FWD to the REV 11 

model (diminishing return) introduced a form of substrate limitation, optimising enzyme 12 

production can be viewed as a further alleviation (or removal under marginal production cost) of 13 

enzyme limitation. Since the response to warming is vastly different across our suite of models, 14 

our results suggest that the degree of enzyme limitation and the microbial response to enzyme 15 

limitation are potential areas that could help constrain the quantification of the long-term 16 

response of soil organic matter to warming. 17 

 18 

5 Conclusions 19 

Our findings suggest that different formulation of how microbes acquiremicrobial substrate 20 

acquisition will have a significant impact on the short vs. long-term consequences of warming. 21 

Here, we present simple, yet feasible mechanisms of microbial dynamics. We show that substrate 22 

limitation in the form of decreasing marginal return can create a break in the positive feedback 23 
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between microbial biomass and depolymerisation, turning a forward Michaelis-Menten model 1 

into a reverse model. We further seperateseparate out 3 types of respiration, that possiblyhave 2 

possible have consequences on the temporal trend of CUE in response to warming. Although 3 

such seperationseparation is more mechanistic, it remains open whether the addition of extra 4 

parameters is justified at this point, given the uncertainty in models, and because much of the 5 

effects of this separation diminishes on timescales longer than the microbial lifespan. Finally, our 6 

OPT model is among our suite of models, the one that our OPT model most closely resembles 7 

the traditional first order decomposition model, and can be converted to such. In our modeling 8 

framework, a first order model by applyingis a seriesspecial case of tangible a microbial 9 

decomposition model where 1) mechanisms and simplfication. These include 1) mechansims of 10 

dimishingdiminishing returns that breaksbreak the feedback between substrate and microbes, 2) 11 

relaxing the proportionality of enzyme production and microbial biomass is relaxed and adjusted 12 

to yield optimum return of enzyme investments, 3) small costcosts associated with enzyme 13 

synthesis, are small (and/or enzyme-substrate affinity is high), and 4) assumption of microbial 14 

quasi-steady state.and microbes turn over relatively fast compared to soil organic matter. Our 15 

results thus suggest that a better grasp of the limiting steps of decomposition and mechanisms of 16 

microbial enzyme production will help to constrain the long-term response to warming.  17 

 18 

Appendix A 19 

Michaelis-Menten kinetics with enzyme denaturation 20 

The dynamics of the enzyme-substrate complex are 21 

d[E]

dt
= P − KS[S][E] − λE1 ∗ [E] + Kr + K([ES]                                      (A1)                                                        22 
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d[ES]

dt
= −(Kcat + Kr + λE2)[ES] + KS[S][E]                                                                         (A2) 1 

Where P is the microbial production of new enzymes, [S] is the concentration of the substrate, 2 

[E] the concentration of enzymes, [ES] the substrate-enzyme complex, Ks, Kcat, and Kr are 3 

reaction constants that denote substrate-enzyme binding, actual depolymerisation rate, the 4 

reversibility of the enzyme-binding process. λE1 and λE2 are enzyme decay parameters that lead 5 

to enzyme denaturation or render enzymes inactive in the free enzyme pool or in the enzyme-6 

substrate complex, respectively. In the FWD and REV model, P is proportional to microbial 7 

biomass. The Michaelis–Menten approximation for depolymerisation assumes that the system is 8 

in quasi-steady state in which the tendency 
d[ES]

dt
 and 

d[E]

dt
 are zero. This implies also that tendency 9 

of the total enzyme concentration 
d[Et]

dt
 (with [Et] = [ES] + [E]) becomes zero. 10 

Setting Eq. (A2) to zero, and substituting [Et] = [ES] +  [E], it follows   11 

[E] =
[Et] KE Km

([S]+KEm)
                  (A3)  12 

[ES] =
[Et] [S]

([S]+KE)

[Et] [S]

([S]+Km)
                (A4) 13 

And the rate of depolymerisation  14 

D =
[Et]∗Vmax∗[S]

([S]+KE)

[Et]∗Vmax∗[S]

([S]+Km)
                  (A5) 15 

where D is the familiar Michaelis-Menten equation with KEKm =  
Kcat+Kr + λE2

KS
 and Vmax is 16 

equivalent to Kcat.  17 

DOC and enzyme dynamics 18 
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We assumed that DOC concentrations are in equilibrium with substrate and microbial uptake. In 1 

microbial decomposition models, the only DOC sink is microbial consumption, which by way of 2 

mass conservation, leads to microbial consumption being equivalent to the rate of 3 

depolymerisation.  4 

Previous models (Allison et al., 2010; German et al., 2012) assumed a general decay of the total 5 

enzyme pool, where: 6 

d[Et]

dt
= P − λE ∗ [Et]                       (A6) 7 

Because enzyme turn over fast, we can assume a quasi-steady state of the total enzyme pool by 8 

setting Eq. A6 to zero. We obtain: 9 

[Et] =
P

λE
           (A7) 10 

And depolymerisation as:  11 

D =

P

λE
∗Kcat∗[S]

[S]+KE
D =

P

λE
∗Kcat∗[S]

[S]+Km
        (A8) 12 

Finally, microbial decomposition models assume that enzyme production is proportional to the 13 

microbial biomass (M): P = b*M, hence: 14 

D =
Vmax∗M∗[S]

[S]+KE
D =

Vmax∗M∗[S]

[S]+Km
                (A9) 15 

With  Vmax =
b∗Kcat

λE
 16 

Yet, it is conceivable, that the enzyme-substrate complex, and free enzymes decay at 17 

differeentdifferent rates (see also Eqs A1 and A2.).  18 

d[Et]

dt
= P − λE2[ES] − λE1[E]      (A10) 19 
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Substituting Eq. A3 and Eq. A4 for [E] and [ES], and applying a quasi-steady state as before 1 

yields:  2 

[Et] =
P([S]+KE)

λE1KE+λE2[S]

P([S]+KE)

λE1Km+λE2[S]
        (A11) 3 

And the overall depolymerisation is thus: 4 

D =
P∗Kcat∗[S]

λE1KE+λE2[S]
D =

P∗Kcat∗[S]

λE1Km+λE2[S]
                   (A12) 5 

Which can be converted into a Michaelis-Menten form 6 

D =
Vmax∗M∗[S]

[S]+KS
        (A13) 7 

where  Vmax =
b∗Kcat 

λE2
 and  KS = KE

λE1 

λE2
KS = Km

λE1 

λE2
 8 

Appendix B 9 

Microbial consumption of enzymes 10 

Microbes feeding on free enzymes can be represented as: 11 

F = λE,M*[E]*M      (B1) 12 

Where F is microbial enzyme consumption and λE,M the feeding rate. We can then represent the 13 

decay of the free enzymes with    14 

[E]* λE1 = [E]( λE1,0 + λE,M*M)      (B2)  15 

where the total λE,0 is the spontaneous enzyme decay rate.  16 

Substituting the new enzyme decay formulation into the depolymerisation (Eq. A12) yields   17 

D =
P∗Kcat∗[S]

  λE2∗[S] +λE1,0∗KE+ λE,M∗M∗KE

P∗Kcat∗[S]

  λE2∗[S] +λE1,0∗Km+ λE,M∗M∗Km
       (B3) 18 
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For the REV model, we simplify Eq. B3 and assume that enzymes associated with substrate do 1 

not undergo denaturation (λE2=0), which yields: 2 

D =
P∗Kcat∗[S]

λE1,0∗KE+ λE,M∗M∗KE

P∗Kcat∗[S]

λE1,0∗Km+ λE,M∗M∗Km
     (B4) 3 

And, in the case where enzyme production scales to microbial biomass (P = b*M) 4 

D =
M∗Vmax∗[S]

KM+M
D =

M∗Vmax∗[S]

Kes+M
        (B5) 5 

Which is again the familiar Michaelis-Menten function with  Vmax =
b∗Kcat

λE,M∗KE
 and  KMKes =

λE1,0  

λE,M
 6 

Model with limited available substrate  7 

Access to substrate might be finite, for example, if organic matter is associated with mineral soil 8 

or if the rate of depolymerisation is constrained by the surface area. In this case, the relationship 9 

between the total available substrate and the free sites can be calculated as  10 

[ S] = θ ∗ ([Sf] + [ES])       (B6) 11 

Where Sf are the available sites for enzyme reaction, θ a scalar relating the total amount of 12 

substrate to the total potentially free sites (e.g. a surface to mass conversion), and [ES] represents 13 

the sites with enzyme-substrate complexes. We note that [S] in this case is not the available 14 

substrate anymore, but reduced by a fraction θ. 15 

Substituting [ES] from Eq. A4, but knowing that [S] has now become [Sf], we obtain:  16 

[Sf]  =
[S]

θ 
−

[Sf][Et]

KE+ [Sf]

[Sf][Et]

Km+ [Sf]
        (B7) 17 

[Sf] is thus the solution of a quadratic polynomial: 18 
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 [Sf] =
1

2
{− ([Et] + KE −

[S]

θ 
) ± √([Et] + KE −

[S]

θ 
)

2

+ 4 ∗
[S]

θ 
∗ KE } {− ([Et] + Km −

[S]

θ 
) ±1 

√([Et] + Km −
[S]

θ 
)

2

+ 4 ∗
[S]

θ 
∗ Km }      (B8) 2 

The scenario of limited reaction site is relevant if 
[S]

θ
 is small (i.e. 

[S]

θ
<< [Et]).Under this scenario, 3 

we simplify Eq. B8 using a Taylor expansion around (
[S]

θ
= 0) 4 

[Sf]  =
[S]

θ 
∗ (

KE

[Et] +KE
) (

KE

[Et] +Km
) + O[(

[S]

θ
)2]         (B9) 5 

Plugging this into the depolymerisation 6 

D =
Kcat∗[Et]∗

[S]

θ

[Et]+KE+ 
[S]

θ

≅
Kcat∗[Et]∗

[S]

θ

[Et]+KE

Kcat∗[Et]∗
[S]

θ

[Et]+Km+ 
[S]

θ

≅
Kcat∗[Et]∗

[S]

θ

[Et]+Km
       (B10) 7 

which has a Michaelis-Menten form with a saturating enzyme concentration. This particular 8 

solution is for a small amount of binding sites, and enzymes compete for free sites. Thus [Et]>> 9 

[S]

θ
, and it can be dropped from within the denominator. On a side note: we obtain the same 10 

expression if we approximate from Eq. B7: 11 

[Sf] =
[S]

θ
− [Sf]

[Et]

[Sf]+KEm
  (B11) 12 

[Sf] ≅
[S]

θ
−

[Sf][Et]

KE

[Sf][Et]

Km
  (B12) 13 

Which assumes very few free sites ([Sf] >> KEKm). Therefore: 14 

[Sf] =
[S]

θ

KE

[Et] +KE

Km

[Et] +Km
  (B13) 15 

We can also include equations for enzyme turnover (Eq. A7) to calculate [Et]: 16 

However, we need to substitute [S] in this equation with [Sf], and thus: 17 
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d[Et]

dt
= P −

λE2∗[Et]∗
[S]

θ

[Et]+KE+ 
[S]

θ

λE2∗[Et]∗
[S]

θ

[Et]+Km+ 
[S]

θ

−
λE1∗[Et]∗([Et]+KE)

[Et]+KE+ 
[S]

θ

λE1∗[Et]∗([Et]+Km)

[Et]+Km+ 
[S]

θ

         (B14) 1 

Maintaining 
[S]

θ
<< ([Et] + KEKm)  we obtain  2 

d[Et]

dt
≅ P −

λE2∗[Et]∗
S

θ

[Et]+KE

λE2∗[Et]∗
S

θ

[Et]+Km
− λE1 ∗ [Et]     (B15) 3 

The quasi-equilibrium solution (
d[Et]

dt
=  0) yields a quadratic expression for [Et], however, we 4 

can evaluate the following scenarios: 5 

a) suppose 
λE2∗[Et]∗

S

θ

[Et]+KE

λE2∗[Et]∗
S

θ

[Et]+Km
≫ λE1 ∗ [Et], this assumes that enzyme decay occurs mainly 6 

when bound to the substrate.  7 

setting 
d[Et]

dt
=  0, we obtain 8 

[Et] =
KE∗P

λE2∗
S

θ
−P

Km∗P

λE2∗
S

θ
−P

    (B16) 9 

and with P proportional to microbial biomass (M)  10 

D =
Kcat∗P

λE2
= Vmax ∗ M      (B17) 11 

Where Vmax =
Kcat∗b

λE2
 12 

In this case, depolymerisation and microbial consumption is  independent of the substrate but is 13 

determined by the relative rate of catalysis and irreversible destruction of the enzyme-substrate 14 

complex. 15 

b) suppose 
λE2∗[Et]∗

S

θ

[Et]+KE
≪ λE1

λE2∗[Et]∗
S

θ

[Et]+Km
≪ λE1 ∗ [Et] 16 
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This implies that enzymes mainly decay if they are not associated with the substrate and that 1 

there is an appreciable amount of free enzymes. This is realistic under substrate limiting 2 

conditions, as there will be a  sizeable amount of free enzymes compared to enzyme substrate 3 

complexes. 4 

We then obtain: [Et] =
P

λE1
 5 

And 6 

D =
Kcat∗P∗

S

θ

P+λE1∗KEm
      (B18) 7 

With P = b*M, we have 8 

D =
M∗Vmax∗S

KM+M

M∗Vmax∗S

Ke+M
           (B19) 9 

Where Vmax =
Kcat

θ
, and KMKe =

λE1∗KE

b

λE1∗Km

b
 10 

Appendix C 11 

Optimising depolymerisation   12 

Microbes may be able to optimise their growth, and thus, depolymerisation becomes a function 13 

of the metabolic costs of enzyme production. Depolymerisation based on enzyme production, 14 

assuming fixed turnover of free enzymes yields: 15 

D(P) =
P∗Vmax∗[S]

KPp+P
       (C1) 16 

Where P is the amount of new enzyme produced, Vmax is 
Kcat

θ
 and KP = λE1KEKp = λE1Km, 17 

based on the model with limited available substrate. 18 

Microbial growth (G) will be 19 
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G = (1-g) * (D-Pc-λr*M)      (C2) 1 

Where g is the growth respiration factor, c the respiratory cost per unit enzyme production, and 2 

λr the maintenance respiration factor.  3 

Enzyme production (P) can be optimised by substituting Eq. C1 into Eq. C2 and setting 
dG

dP
= 0.  4 

This yields: 5 

Pc =  − KPc + √Vmax ∗ [S] ∗ KPc Kpc + √Vmax ∗ [S] ∗ Kpc    (C3) 6 

The proportion of carbon expended for enzyme production relative to depolymerisation is  7 

Pc

D
= √

KPc

[S] Vmax
√

Kpc

[S] Vmax
                                    (C4) 8 

Instead of specifying c, we used Eq. C4 to express overall microbial carbon expenditure for 9 

enzyme production. After assigning a value to μ, we calculate c based on equilibrium S at 10 

reference temperature.  11 

In contrast, the microbial scavenging scenario does not provide an optimum enzyme production. 12 

In this case, depolymerisation is:  13 

       D =
P∗Vmax3∗[S]

(KM +M)∗λE

P∗Vmax∗[S]

(Ke +M)∗λE
                               (C5) 14 

And thus, 
dG

dP
 will yield a constant where growth scales with the rate of enzyme production.  15 

 16 
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Table 1. Key features of the microbial decomposition models and subsequent modifications 18 

presented in this study.  19 

 FWD Model  
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German et al., 2012 

FWD Model with maintenance respiration  

 
As FWD model but microbial respiration is partitioned into temperature insensitive growth 

and temperature sensitive maintenance respiration terms. 

REV Model  

 
Depolymerisation and uptake relative to microbial biomass decreases with increasing M 

(diminishing return mechanism). 

REV Model with equilibrium microbes 

As REV model but fast microbial adjustments. 

REV Model with maintenance respiration 

 
As REV model but maintenance respiration added. 

OPT Model 

Optimisation of microbial enzyme production to maximise microbial growth, and 

consideration of carbon costs associated with enzyme synthesis. 

OPT Model with equilibrium microbes 

As OPT model but fast microbial adjustments. 

OPT Model with maintenance respiration 

 
As OPT model but maintenance respiration added. 

FOD Model 

 
First order decomposition model, modified to account for temperature sensitive carbon use 

efficiency. 

  1 
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Table 2. Quasi-steady state values for for microbial biomass (M), and decomposition at the short/fast timescale (at any given S) and 1 

“true” long -term equilibria for M and S across the models. Note, for simplicity, we did not substitute S in the long-term microbial 2 

equilibrium for OPT model.  3 

 4 

X = √S Vmax,OPT, Y = √KP ∗ c  5 

* requires λd =  
Vmax,FWDS ε

 S+ KE
  6 

Model Short/Fast time scale Long time scale 

 
M Decomposition S M  

FWD 
no solution * no solution * λdKE

Vmax,FWD ε − λd 
 

I ε

(1 − ε) λd 
 

REV Vmax,Rev  S ε − KM λd

λd 
 

(Vmax,REV S − KM λ𝑑/𝜀) I   

Vmax,REV (1 − ε)  
+

KM λd 

Vmax,REV ε   
 

I ε

  λd (1 − ε) 
 

OPT (X − Y)2 ε 

λd
 

X2 − XY 1

2 Vmax,OPT   (1−ε)2  
[−Y (2ε − 1)√4IY (1 − ε) + Y2 +

(1 −  ε) (2I − 2εY2) +  Y2] 

(X − Y)2 ε

λd
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Table 3. Parameters used in microbial decomposition models (In subsequent modelsDown the 1 

model list, we provide only those parameters where modifications have been made.) 2 

 Parameter Unit Value Description Source 

FWD Model  

 

 

 

 

 

I mg S cm-3 hr-1 0.001 Input of fresh litter  

 

 

 

German 

et al., 

2012 

 

λd hr-1 0.0005 Death rate of microbes 

Vmax ,FWD,0 (mg cm-3M)-1  hr-1 0.0049 Maximum catalytic rate @ 15°C 

Q10, Vmax ,FWD - 1.9 Q10 of maximum catalytic rate 

KEKm mg S cm-3 270 Half-saturation constant @ 15°C 

ε0 - 0.39 Microbial growth efficiency @ 15°C 

εslope °C-1 -0.016 Microbial growth efficiency 

temperature slope 

FWD Model with maintenance respiration  

 

 
λr,0 hr-1 0.0006 Maintenance respiration @ 15°C 

 

 

This 

study 

Q10,λr - 2.2 Q10 of maintenance respiration 

gG - 0.24 Growth respiration coefficient 

REV Model 

 

 

 

Vmax,REV mg-1 M cm-3 hr-1 2.61*10-5 Maximum catalytic rate @ 15°C  

This 

study 

KMKe mg M cm-3 0.68 Half-saturation constant @ 15°C 

OPT Model 

 

 

Vmax,OPT mg-1 M cm-3 hr-1 1.71*10-5 Maximum catalytic rate @ 15°C  

 

This 

study 

μ  - 0 ,  

0.1,  

0.5 

Enz production costcosts ( as % of 

decomposition @ 15°C steady state) 

 
KPKp ∗ c mg MS cm-3 hr

-1
 0,  

1.64*10-5 

0.0004, 

4*10-4   

combinedCombined cost and the 

half saturation constantconstants at  
μ = 0, 0.1, and 0.5, respectively. 

FOD Model 

 k* hr-1 1.71*10-5 First order decay constant @ 15°C This 

study 
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* k in FOD model is identical to Vmax,OPT in OPT model.  1 
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Figure Captions 1 

Figure 1. Conceptual diagrams for theof our microbial-enzyme models applied. Solid lines 2 

represent material flow (. The difference across the models  is in FWD and the formulation of 3 

depolymerisation of soil organic matter (S),  where the FWD model with maintenance 4 

respiration) and dashed lines represent information flow (in Rev andis based on German et al. 5 

(2012), the REV model considers diminishing return and the OPT models).model includes 6 

optimised enzyme production to maximise microbial growth. E, S, E-S, D, DOC, M represent 7 

enzyme, substrate, enzyme-substrate complex, depolymerisation, dissolved organic carbon, and 8 

microbial biomass carbon, respectively. We analyse the different models in three ways: a) Base 9 

models of forward vs reverse formulation of depolymerisation. In the forward version, 10 

depolymerisation scales microbial biomass via enzyme production. In the reverse formulation the 11 

decreasing marginal return curbs rates of depolymerisation. This decreasing marginal return can 12 

partly be overcome by enzyme production optimisation. b) For all models we introduce 13 

partitioning between maintenance and growth respiration. c) Microbes are instantaneously in 14 

steady with substrate delivery (reverse models only).I denotes input from fresh litter and D 15 

represents depolymerisation. Solid lines represent material (carbon) flow  and dashed lines 16 

represent information flow affecting enzyme concentration (in microbial enzyme predation in 17 

REV model and enzyme production rate in OPT models). E, E-S, and DOC pools were implicitly 18 

represented in the model but not explicitly simulated based on the assumption of quasi-steady 19 

state. We analyse the different models in three ways: a) Comparison among different 20 

parameterisation of depolymerisation (FWD, REV and OPT models), b) A second suite of 21 

simulations operate under the assumption, that microbes are instantaneously in steady with 22 

substrate delivery (similar to the treatment of enzymes and DOC, for REV and OPT models 23 
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only, indicated by dashed outline of the pools), c) A third series of simulations considered 1 

partitioning between a biomass-dependent maintenance respiration and a growth respiration that 2 

scales to new tissues built, applied to all (FWD, REV, and OPT) models.  3 

Figure 2. Responses of a) soil organic carbon, b) microbial biomass carbon, c) CUE, and d) 4 

respiration to a 5°C warming in the base models (forwardFWD vs reverse).REV and OPT, Fig. 5 

1a). The black line representrepresents initial values, which are model equilibria at15°C. We 6 

chose logarithmic axisaxes for time to better highlight the differences in short-term responses. 7 

(Note: DifferencesWe note that the differences in simulated soil organic carbon and respiration 8 

byfor the OPT and the FOD are almost equal, and therefore not discernible. Also, values of CUE 9 

at warmed temperature are identical in all models, and therefore, the orange line is superimposed 10 

on blue and green lines. In the OPT model, simulations are carried out at zero enzyme production 11 

cost, i.e. μμ
2
 = Kp*c = 0).  12 

Figure 3. Responses of a) soil organic carbon, b) microbial biomass carbon, c) CUE, and d) 13 

respiration to a 5°C warming for all models, if microbial biomass is assumed to be at quasi-14 

steady state (QSS, dotted lines), and if separation of maintenance and growth respiration are 15 

considered, and if microbial biomass is assumed to be at quasi-steady state. Black thin line 16 

represent initial values, where equilibria @ 15°C.  (dashed lines). Colored thin lines represent 17 

base models. The black thin line represents initial values, equilibrated at 15°C. Dashed lines 18 

(growhtgrowth and maintenance) and dotted lines (quasi-steady state) represent modifications for 19 

REV and OPT models respectively. (In the OPT model, simulations are carried out at zero 20 

enzyme production cost,  (i.e. μ., μ
2 

= kp*c = 0).    21 
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Figure 4. Long-term responses of optimizedoptimised enzyme production (OPT) model to a 5°C 1 

warming in a) soil organic carbon, b) microbial biomass carbon, c) CUE, and d) respiration 2 

operating at different relative enzyme production costs (μ),, see Equation 13.Eq. 16). Thick lines 3 

represent warming response and thin lines represent corresponding equilibrium at the reference 4 

temperature. 5 
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