1 We have made modifications on the title of the manuscript and the new title is 'Why $\mathbf{2}$ does Trichodesmium become abundant in the Kuroshio?' The manuscript has been revised substantially following the comments and suggestions from two reviewers. I 3 believe we have covered all the points raised and incorporated the comments and 4 annotations into the revised manuscript. For the revised manuscript, we have $\mathbf{5}$ 6 performed quantitative analyses of the numerrical simulations as reviewer #2 $\overline{7}$ suggested. We have written details of the materials and methods as reviewer #1 8 suggest.

9

10 Anonymous Referee #1

11 General Comments:

12 Shiozaki et al. look at the abundance of Trichodesmium and nitrogen fixation in and

13 around the Kuroshio Current and attempt to determine the factors influencing the

14 distribution pattern. The authors observed that abundances were lowest in the

15 *Philippine Sea and similar everywhere else, despite similar nutrient distributions at*

16 all sites. The manuscript is disorganized and lacks flow, particularly the introduction.

17 Sentences contain fragments of several thoughts, complicating comprehension. No

18 rationale, questions, or hypotheses are clearly presented in the manuscript. The

19 manuscript lacks details about the methods used, particularly about how N2 fixation

20 rates were measured. The authors conclude that there is a significant correlation

21 between Trichodesmium abundance and N2 fixation, yet they do not present the data.

- 22
- 23

We have revised the Introduction substantially in the revised manuscript.

 $\mathbf{24}$ Marine nitrogen fixation is generally regulated by the supply of iron and 25phosphorus (Mahaffey et al., 2005), and Trichodesmium thrives in iron-rich oligotrophic regions (Moore et al., 2009; Shiozaki et al., 2010, 2014b). The 2627abundance of Trichodesmium in the Kuroshio is much higher than that in 28neighboring seas (Marumo and Asaoka, 1974). Although the data of 29concentrations of dissolved iron and phosphate at nanomolar level are limited in 30 this region, modeling studies and climatological phosphate data indicated that the limiting nutrients for nitrogen fixation did not increase in the Kuroshio compared 3132with the adjacent waters (Jickells et al., 2005; Chen, 2008; Mahowald et al., 2009). 33 Recent studies demonstrated that nitrogen fixation by *Trichodesmium* actively occurs around oceanic islands and that abundant Trichodesmium is delivered by 3435 the current to areas remote from the islands (Shiozaki et al., 2010, 2013, 2014c). 36 Although this phenomenon was noted in the western Pacific warm pool and

37	western South Pacific, it can also occur in and around the Kuroshio and may
38	contribute to the distribution of Trichodesmium in this region. We have added
39	these statements at L47-73.
40	
41	Regarding the description of the Materials and Methods, because we used the
42	same methods written before we omitted in the previous manuscript. We have
43	written the detail in the revised manuscript. Please also see the following
44	responses to each comment. We have added a new figure describing the
45	relationship between Trichodesmium spp. abundance and bulk water nitrogen at
46	the surface (Fig. 6)
47	
48	Specific Comments:
49	The title is very general and gives no information as to conclusions from the study.
50	Also, the title implies that only the Kuroshio was studied, when in fact the whole area
51	around the Kuroshio was studied.
52	
53	We have changed the title to "Why does Trichodesmium become abundant in
54	the Kuroshio?"
55	
56	The introduction is disorganized and very short. It is not clear what hypothesis is
57	being tested by the study or how it is being tested. Some of the statements and
58	generalizations made about nitrogen fixation are not entirely correct. For instance, it
59	is true that phosphorus concentrations are thought to potentially the limit diazotrophs,
60	but it is not because diazotrophs consume phosphate. They do consume phosphate, as
61	does the rest of the microbial community. The conclusions of Moore et al. 2009 and
62	Mather et al. 2008 are not completely integrated into the introduction.
63	
64	We have revised the Introduction to be a more hypothesis-driven paper as
65	written above. Regarding the description of phosphorus limitation for nitrogen
66	fixation, we have revised as follows. (L59-61)
67	"As for phosphorus limitation, iron-enhanced nitrogen fixation causes
68	phosphorus depletion, and is consequently limited by phosphorus (Mather et al.,
69	2008)."
70	
71	The materials and methods section was lacking key information for interpreting
72	results. In section 2.1 algal blooms were defined very well, but no details about how

or what calculations were done are included. No definition of which months are

considered summer is included. It is also unclear why summer chlorophyll is used

- 75 when 4 of the 5 cruises were conducted in September. A description of how stations
- 76 were categorized into areas (ECS, Kuroshio, etc.) should be included. The method
- ⁷⁷ used to determine in vivo chlorophyll fluorescence is not described. More details are
- needed for the nutrient methods and detection limits and microscopy counts. How are
- *filaments defined? How were different colony morphologies addressed?*
- 80

81 We defined as summer July through September. (L88-89) Thus, all cruises 82 were conducted in summer. The bloom frequency was calculated from the ratio of counts of chl *a* over 0.15 mg m⁻³ to total counts which chl *a* detected at each pixel. 83 The stations during the KT-06-21, KT-07-22, and Nagasaki-maru 242 cruises 84 were divided into three areas based on the temperature-salinity (TS) diagram. 85 (L102-104) Although the TS diagram was shown in Fig. 2 of Shiozaki et al. 86 87 (2011), it was omitted in this manuscript due to the repetition. In vivo chlorophyll fluorescence was measured by a Minitracka fluorometer (Chelsea, UK). 88 (L130-131) The N+N and phosphate concentrations were determined at the 89 nanomolar level using a supersensitive colorimetric system consisting of an 90 AutoAnalyzer II (Technicon) and Liquid Waveguide Capillary Cells (World 91Precision Instruments, USA) (Hashihama et al., 2009). The detection limits of 9293 N+N and phosphate were both 3 nM. (L121-125) Trichodesmium greater than ca. 300 µm in length were counted as 1 filament and shorter lengths were counted as 94 95 0.5 filaments. (L202-203) Tuft-shaped colonies were found at St.T0706, T0723, CK-10, and T0906. (L302-303) 96

97

98 The way the authors approached interpreting their N2 fixation rates with

99 consideration of the results of Mohr et al. 2010 and Dabundo et al. 2014 is

100 inadequate. The authors need to add more information about how they measured N2

101 *fixation, including how much N2 was added, the volume of the incubations, and the*

- 102 *length of time for the incubations. The length of time and the time of day that the*
- 103 injections were made is critical for interpreting the results of Mohr et al. 2010. While
- 104 the authors did look for potential contaminates in the 15N gas, they did not look at
- 105 particulate isotopic species. Are the detection limits and associated errors of the
- 106 nutrient measurement methods low enough to ensure that there was no significant
- 107 contamination of the particulate 15N isotope signal? Perhaps the authors could
- 108 *include some calculations to address this.*

110 All samples for nitrogen fixation activity were collected in duplicate in acid-cleaned 4.5-L polycarbonate bottles. After ¹³C-labeled sodium bicarbonate 111 (99 atom% ¹³C; Cambridge Isotope Laboratories) was added to each bottle, 2 mL 112of ¹⁵N₂ gas (98+ atom% ¹⁵N; SI Science Co. Japan) were injected directly into the 113incubation bottles through a septum using a gastight syringe. The bottles were 114115covered with neutral-density screens to adjust the light level and incubated for 24 h in an on-deck incubator cooled by flowing surface seawater for 24 h. The start 116 117time of incubation in this study varied in each station (Table S1). Considering 118 daily periodicity of nitrogen fixation in each diazotroph (Zehr, 2011) and the time to reach equilibration of the ${}^{15}N_2$ gas bubble with seawater (>12 h, Mohr et al., 1192010), the level of underestimation could vary at each station. Meanwhile, the 120level of underestimation is known to be low in Trichodesmium dominant water 121because Trichodesmium can float to the top of the bottle and directly use the 122added ${}^{15}N_2$ in the bubble method (Großkopf et al., 2012). Although the bias of 123underestimation could not be estimated from the results in this study, the actual 124nitrogen fixation rate would be higher than the obtained rate. We have added these 125statements in L163-187. 126

As you mentioned, we did not determine the contaminates at the isotopic level. 127The contamination of nitrate, nitrite, and ammonium in the 250 ml of seawater 128with 2 ml¹⁵N₂ gas was undetectable (<nM level) in experiment 1. During the 129cruise experiments, we added 2 ml¹⁵N₂ gas into 4.5 L seawater, and hence, the 130contamination level would be one order lower than that in experiment 1, 131indicating that ¹⁵N-labeled substrates in the seawater were at most 10⁻² nM. When 132the substrate concentration in the seawater was 3 nM (the detection limit of our 133analysis), the concentration of 15 N-labeled substrate would be <1/100 lower than 134that of seawater. In this case, the ¹⁵N concentration would be too low to detect the 135uptake rate (Shiozaki et al., 2009). We have added these statements in L31-39 of 136137Supporting Information.

138

139 In the supporting information the authors present an MDS and ANOSIM analysis. Did

140 the authors look at co-variability between the parameters? This analysis was not

141 *mentioned in the results, but is important for interpreting the results.*

142

Yes. In the revised manuscript, we have moved the result of nMDS andANOSIM analysis to the main text (L207-215, 286-289)

The authors state that there is a significant correlation between Trichodesmium
abundances and N2 fixation, but do not show the data. This is a major conclusion of

- 148 the study and the data should be shown. It is not clear if the authors are comparing
- 149 surface Trichodesmium to depth integrated N2 fixation. The authors also state that
- 150 Trichodesmium abundances decrease with depth. This data should be shown as well.
- 151 It is unclear why the authors display only surface abundances of Trichodesmium and
- 152 *depth integrated fixation rates. The authors should display either surface data or*
- 153 *depth integrated data for both parameters.*
- 154

We have added a new figure describing the correlation between 155Trichodesmium spp. abundance and bulk water nitrogen fixation rate at the 156surface in the revised manuscript (Fig. 6c). Furthermore, the vertical distribution 157158of Trichodesmium spp. abundance has been shown in Fig. S3. Although the vertical distribution was determined only during Nagasaki-maru 242 and 159KT-07-21 cruises, Trichodesmium spp. abundance was highest at the surface at 160 almost all of the stations (Fig. S3), and the surface abundances were positively 161 related with the depth-integrated ones (Fig. 6a). Thus, the surface abundance was 162used to discuss the geographical distribution of Trichodesmium spp. The surface 163abundance of *Trichodesmium* spp. in the entire study area was positively 164correlated with the nitrogen fixation rate at the surface ($r^2 = 0.80$; p < 0.05 [$r^2 =$ 1650.55; p < 0.05 if the datum taken at the *Trichodesmium*-bloom station T0906 is 166 167excluded]) (Fig. 6c), suggesting that they significantly contributed to nitrogen fixation in the study region. (L291-294, 311-315) 168

169As you mentioned, there could be a leap of logic in our way of data170presentation. In the revised manuscript, we have shown the distribution of171nitrogen fixation at the surface in Fig.2d instead of the depth-integrated ones to172compare with the distribution of *Trichodesmium* spp. abundance at the surface173(Fig. 2c). The surface nitrogen fixation rates were positively correlated with the174depth-integrated rates (p<0.05, t-test) (Fig. 6b), suggesting that the distribution of175nitrogen fixation was indexed by the surface activity. (L304-307)

- 176
- 177 It is not clear why diatom abundances are included in the manuscript and what
- 178 *impact they have on the conclusions. This should be removed.*
- 179

In the northwest of the Miyako Islands, an upwelling occurred by the island wake effect. The microscopic analysis demonstrated that dominant phytoplankton in the upwelling was diatoms and was not *Trichodesmium*. This result indicated that high abundance of *Trichodesmium* near the islands was not directly caused by the upwelling, and would be useful information in future research. We have added these statements in L348-349.

186

The authors claim that Trichodesmium abundances are higher in the Kuroshio than in
the surrounding areas, based on others' results, yet they do not use their own data to
test this. Looking at table 1, I do not think that there are any significant differences.
The authors should test this and present the results.

191

192In the present study, there was no statistically significant difference in 193*Trichodesmium* spp. abundance among the study areas (p > 0.05, Tukey's HSD test) probably because the data were limited and the variation was large. However, 194195in the Kuroshio, *Trichodesmium* spp. were always observed and were abundant at almost stations. Furthermore, at St.CK-10 in the East China Sea, which is in the 196 197 Kuroshio branch current, a high abundance of *Trichodesmium* spp. was observed. On the other hand, Trichodesmium spp. abundance in the Philippine Sea tended to 198be lower than that in the other areas. Such Trichodesmium distribution was also 199200reported in the previous study (Marumo and Asaoka, 1974). The present study also showed lower surface nitrogen fixation in the Philippine Sea compared to that 201202 in the Kuroshio (p < 0.05, *t*-test). We have added these statements in L412-421. 203 Technical Corrections: 204 *Figure 1: It is very hard to see the station symbols. The print and symbols are very* 205206small. The color symbols overlaid on a color map also make it difficult.

207

We have moved the color map of average chlorophyll *a* to Fig. S2. The symbols have been enlarged (Fig.1a)

210

211 Figure 2: 'small box' – inset It is hard to read discrete values, compare the data

212 *points, or see any trends as the data is currently presented.*

213

The areas of circles are proportional to the concentration, abundance, or activity. We have added the information in the figure legend (Fig. 2). The value is

216	a subsidiary indicator. We have reduced the size. There was no significant
217	relationship between abundance of Trichodesmium spp. and environmental
218	variables around the Miyako Islands. (L404-405)
219	
220	Figure 3: Each panel should have a number and the legend should identify which
221	panels correspond to the areas studied.
222	
223	We have added a number and changed the legend as suggested (Fig. 3).
224	
225	Figure 5: The figures are small and it is difficult to identify islands.
226	
227	We have put a mark on the islands (Fig. 7a).
228	
229	Pg 11062: Lines 1-5: These sentences are more introductory. They should be
230	shortened
231	into one sentence.
232	
233	We have shortened into one sentence as follows. (L19-20)
234	"The genus Trichodesmium is recognized as abundant and major diazotroph in
235	the Kuroshio, but the reason for this remains unclear."
236	
237	Line 7: 'whose availabilities potentially control diazotrophy' This is introduction.
238	
239	We have removed it as suggested.
240	
241	Lines 9-10: 'since satelliteto the Kuroshio' More appropriate in the introduction.
242	
243	This is our result. We have changed the sentence as follows. (L24-25)
244	"since our satellite analysis suggested that material transport could occur from
245	the islands to the Kuroshio."
246	
247	Line 11: remove 'and the'
248	
249	We have removed it as suggested.
250	

251	Line 19-21: This sentence doesn't make sense. How can a diazotroph's presence be
252	important for determining diazotrophy? Maybe something is missing?
253	
254	We have changed the last sentence in the Abstract as follows. (L34-35)
255	"Our results indicate that Trichodesmium growing around the Ryukyu Islands
256	could be advected into the Kuroshio."
257	
258	
259	Pg 11063: Line 2: 'via the ocean-atm.' Remove 'the'.
260	
261	We have removed it as suggested.
262	
263	Line 3: Remove 'furthermore'
264	
265	We have removed it as suggested.
266	
267	Line 8: Remove 'in addition'
268	
269	We have removed it as suggested.
270	
271	Line 14: Remove 'which is characterized by highly oligotrophic conditions'. This
272	should be included in the general description of the Kuroshio.
273	
274	We have moved it to L42-43.
275	
276	Line 16: Remove 'nevertheless'.
277	
278	We have removed it as suggested.
279	
280	Pg 11065: Lines 9-11: This sentence should be re-written.
281	
282	We have rewritten as follows. (L105-107)
283	"During the KT-09-17 cruise, we conducted experiments around the Miyako
284	Islands which were distinguished from the other three areas."
285	

286	Pg 11066: Lines 11-16: Is this the protocol for preparing/cleaning the sampling
287	bottles? If so, please state this, otherwise this method is unclear.
288	
289	Yes, this is the protocol for cleaning the sampling bottles. We have added the
290	information in L141.
291	
292	Line 15: and 'stored in' double plastic bags?
293	
294	Yes. We have changed as suggested. (L145)
295	
296	Anonymous Referee #2
297	General Comments:
298	The main question posed in this manuscript seems to be whether observations support
299	the hypothesis that nutrient supply through transport from the Ryukyu Islands fuels
300	growth of Trichodesmium in the Kuroshio. The authors do not find evidence of a
301	gradient in phosphorus and iron between the Islands and the Kuroshio. They do find
302	elevated Trichodesmium abundances near the Ryukyu Islands and conclude that
303	Trichodesmium grows in that region and is transported downstream to the Kuroshio.
304	This is an interesting and significant result. However, the major evidence presented in
305	support of this process is a series of numerical simulations demonstrating advection
306	of particles from the Islands to the Kuroshio. Quantitative analysis of the simulations
307	is not presented. Since this piece of evidence is so crucial to the paper, it should be
308	evaluated and presented more thoroughly and quantitatively. The nutrient dynamics
309	of the region and potential nutrient supply mechanisms could also be treated more
310	thoroughly. Additionally, the manuscript would benefit from further revisions to
311	improve organization, clarity, and flow. I have included some specific detailed
312	comments below.
313	

We have calculated the ratio of particles delivered to the Kuroshio to total 314 released particles in the revised manuscript. In 2003–2009, 13–56% ($30 \pm 16\%$) of 315particles released from the Miyako Islands were delivered to the Kuroshio and 316 passed the Tokara Strait. (L356-359) It should be noted that our numerical 317experiments contained the following two uncertainties. First, the distribution of 318 319 Trichodesmium around the islands, which strongly influences the destinations of particles, was not able to be determined in advance. Trichodesmium is known to 320 aggregate and not to occur uniformly in the ocean (Capone et al., 1997). Second, 321

322	the model cannot reproduce the current very close to the islands. If a water mass
323	very near the islands was delivered to the open ocean by tide and/or river plumes
324	that were not considered in the model, seaward dispersions of particles was likely
325	underestimated. We have added these statements and results in L235-243.
326	In addition, we have examined the particle tracks depending on the start time.
327	When the start time was changed to June 1, 11, and 21, and July 1 in 2009, the
328	particle tracks largely varied (Fig.S5). The ratio particles delivered to the
329	Kuroshio varied from 6.2–38% ($22 \pm 13\%$) on day 120. (L361-364)
330	
331	We have also mentioned about phosphorus limitation for nitrogen fixation and
332	N/P ratio in each area in the revised manuscript. We have replied in detail below.
333	
334	Specific Comments:
335	Abstract:
336	The major conclusion seems to be that Trichodesmium may be advected into the
337	Kuroshio from the Ryukyu Islands, but this is not clear from the abstract.
338	
339	We have changed the last sentence in the Abstract as follows. (L34-35)
340	"Our results indicate that Trichodesmium growing around the Ryukyu Islands
341	could be advected into the Kuroshio"
342	
343	Introduction:
344	p.11063 lines 1-8: What is the relevance to the present study? This section could be
345	shortened.
346	
347	We have deleted these sentences from the revised manuscript.
348	
349	p.11063 lines 28-29: "Phosphorus would ultimately limit diazotrophy because
350	phosphorus in oligotrophic regions is consumed by diazotrophs, and is thus
351	depleted." This sentence seems inaccurate, or at best, poorly worded, and could be
352	removed. The discussion of previous findings related to the distribution of phosphorus
353	in the region could be expanded.
354	
355	We have revised the sentence as follows.

"As for phosphorus limitation, iron-enhanced nitrogen fixation causes 356 phosphorus depletion, and is consequently limited by phosphorus (Mather et al., 2008)." 358359 360 Materials and Methods: p. 11067 lines 26-28: The distribution of Trichodesmium with depth can vary 361 362significantly. Perhaps the data from all depths could be presented where available. 363 364 We have added the figure of vertical distribution of *Trichodesmium* spp. 365 abundance (Fig. S3). 366 p.11068 Section 2.3: Please provide more details on the methods used for the 367 numerical experiments. What particle-tracking methods were used? 368 369 370 Numerical particle-tracking experiments were conducted to investigate the transport of water masses at the surface from areas around the Miyako Islands in 371the summer season from 2003 to 2009. Surface velocity data were derived from 372the FRA-JCOPE2 reanalysis product (Miyazawa et al., 2009), which is an 373eddy-resolving (1/12°) ocean model combined with three-dimensional variational 374375data assimilation (satellites, ARGO floats, and shipboard observations), and is one 376 of the most reliable models for the region around Japan for the above time period. The method of tracking particles was basically the same as in Itoh et al. (2009), 377 but we did not include the random walk for simplicity. We have added these 378statements at L218-226. 379 380 p.11068 lines12-13: "The particle distribution at the surface was fixed throughout the 381 experiment." What does this mean? 382383384 This means the particle does not sink from the surface during the experiments. 385 We have revised the sentences as follows. (L226-228) "The release points of particles were selected at the surface of the model grid 386 387 points around the coastal waters of the Miyako Islands. We assumed that the 388 particles did not increase, die, or sink from the surface during the experiments." 389

Results: 390

391	p.11068 line 24-p.11069 line 1: "The algal bloom frequency was consistently $> 10\%$
392	in the west of the main stream of the Kuroshio because the average chl a was > 0.15
393	mg/m-3." Please clarify.
394	
395	We have revised the sentence as follows. (L253-255)
396	"In the west of the main stream of the Kuroshio, because the average $chl a$ was
397	over 0.15 mg m ⁻³ (Fig. S2), the frequency of chl <i>a</i> values >0.15 mg m ⁻³ was high
398	(Fig. 1b)."
399	
400	p. 11070 lines 3-8: Can the authors provide further justification for the basis of the
401	analysis on surface Trichodesmium abundance? Perhaps a plot of depth-integrated vs.
402	surface Trichodesmium abundance could be included.
403	
404	The vertical distribution of Trichodesmium spp. abundance has been shown in
405	Fig. S3. The abundance of <i>Trichodesmium</i> spp. was highest at the surface at
406	almost all of the stations. Furthermore, the surface Trichodesmium spp.
407	abundances were positively correlated with the depth-integrated abundances ($p <$
408	0.05, <i>t</i> -test) (Fig. 6a). (L291-293)
409	
410	p. 11070 lines 25-27: Can the direction of the currents be verified with data?
411	
412	The model data we assimilated satellite altimetry data, which means that
413	satellite-based surface velocity field was reflected to the model outputs. Although
414	shipboard ADCP recorded vertical velocity profiles along the ship track, it is
415	difficult to eliminate tidal components that may change direction even within the
416	same day.
417	
418	p. 11071 lines 24-28: Quantitative analysis could strengthen the manuscript. For
419	instance, what is the likelihood a trajectory starting in the island region will end up in
420	the Kuroshio, based on the simulations? Also, to what extent does the start time
421	influence the results?
422	
423	We have calculated the ratio of particles delivered to the Kuroshio to total
424	released particles in the revised manuscript. As the Kuroshio generally flows
425	along the continental slope north of the Miyako Islands (Fig. 1b), particles around
426	the Miyako Islands were not transported along the typical path of the Kuroshio to

427	the northeast, especially at their initial stages (Fig. 7a). Some particles migrated
428	around the Miyako Islands, or turned south after they passed the Tokara Strait.
429	Nevertheless, the particles delivered to Area K east of the Tokara Strait increased
430	as time elapsed, and the ratio of particles delivered to Area K to the total released
431	particles ranged from 13–56% ($30 \pm 16\%$) by day 120 in 2003–2009 (Fig. 7b).
432	The year-to-year variations in the ratio are mainly due to influences of mesoscale
433	eddies as partly seen in the particle trajectories in Fig. 7a, and likely occurred over
434	relatively short time scales (shorter than the seasonal time scale). This is
435	supported by another series of experiments in which particles were released on
436	June 1, 11, and 21, and July 1 in 2009, which yielded ratios of 6.2–38% (22 \pm
437	13%) by day 120 (Fig. S5). (L352-364)
438	
439	p.11073 line 17-p.11074 line 2: Please reword for clarity. Also, here iron is referred
440	to as "the limiting nutrient", but phosphorus may also play a role.
441	
442	We have added the sentences as follows. (L427-431)
443	Furthermore, the iron-enhanced active nitrogen fixation causes phosphorus
444	depletion, and is consequently limited by phosphorus (Mather et al., 2008). No
445	significant differences in surface iron and phosphate were observed among the
446	study areas, which cannot explain the distribution of Trichodesmium spp. and
447	nitrogen fixation in the study region.
448	
449	p.11074 lines 13-15: This doesn't make sense. Do you mean "contribute to" rather
450	than "be attributed to"?
451	
452	Yes. We have changed to "contribute to". (L444)
453	
454	p.11074 lines 15-22: The conclusion that "physical conditions" were similar in all
455	regions based on consistent MLDs seems like a bit of a stretch. Perhaps the authors
456	could reword this to make a more precise statement. Also, was there variation in N:P
457	ratio among the regions analyzed?
458	
459	We have changed "physical conditions" to "vertical mixing conditions". (L450)
460	The surface N/P (=N+N/phosphate) at each station has been shown in Table S1,
461	respectively. The N/P (=N+N/phosphate) ratio at the surface varied from 0.28 to

462	6.40 except St. T0904 (N/P=16.3), and no significant difference was observed
463	among the four areas ($p > 0.05$, Tukey's HSD test). (L279-281)
464	
465	p.11074 line 27 - p. 11075 line 1: What is the "inconsistency" between
466	Trichodesmium abundance and iron and phosphate concentrations and how is it
467	explained by the preceding part of the sentence?
468	
469	This means why the Trichodesmium distribution in this region was not
470	estimated from iron and phosphate concentrations. We have change the wording in
471	L457-458. We described the inconsistency in L429-431.
472	
473	p. 11075 lines 4-7: delete "This is because"
474	
475	We have deleted as suggested.
476	

477 Why does Trichodesmium become abundant in the 478 Kuroshio? and nitrogen fixation in the Kuroshio

- 480 T. Shiozaki^{1,2}, S. Takeda^{1,3}, S. Itoh², T. Kodama^{1,4}, X. Liu^{1,5}, F. Hashihama⁶, K.
- 481 Furuya¹
- 482 [1]{Department of Aquatic Bioscience, Graduate School of Agricultural and Life
- 483 Sciences, The University of Tokyo, Tokyo, 113-8657, Japan }
- 484 [2]{Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba,
- 485 277-8564, Japan}
- 486 [3] {Faculty of Fisheries, Nagasaki University, Nagasaki, 852-8521, Japan }
- 487 [4] {Japan Sea National Fisheries Research Institute, Fisheries Research Agency,
- 488 Niigata, 951-8121, Japan}
- 489 [5]{College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005,
- 490 China}
- 491 [6]{Department of Ocean Sciences, Tokyo University of Marine Science and
- 492 Technology, Tokyo, 108-8477, Japan}
- 493
- 494 Corresponding to: T. Shiozaki (shiozaki@aori.u-tokyo.ac.jp)

496	Nitrogen fixation in the Kuroshio influences nitrogen balance in the North Pacific
497	Ocean. The genus Trichodesmium is recognized as abundant and a major
498	diazotroph in the Kuroshio, but . Although its abundance is higher in the Kuroshio
499	than in adjacent waters, the reason for this difference remains unclear. The present
500	study investigated the abundance of Trichodesmium spp. and nitrogen fixation
	together with concentrations of dissolved iron and phosphate, whose availabilities
502	potentially control diazotrophy, in the Kuroshio and its marginal seas. We performed
503	the observations near the Miyako Islands, which form part of the Ryukyu Islands,
504	situated along the Kuroshio, since our satellite analysis suggested that material
505	transport could occur from the islands to the Kuroshio. Trichodesmium spp. bloomed
506	(>20,000 filaments L^{-1}) near the Miyako Islands, and the abundance was high in the
507	Kuroshio and the Kuroshio bifurcation region of the East China Sea, but was low in
508	the Philippine Sea. The abundance of Trichodesmium spp. was significantly correlated
509	with the total nitrogen fixation activity. The surface concentrations of dissolved iron
510	(0.19–0.89 nM) and phosphate (<3–36 nM) were similar for all of the study areas,
511	indicating that the nutrient distribution could not explain the spatial differences in
512	Trichodesmium spp. abundance and nitrogen fixation. Numerical particle-tracking

513 experiments simulated We used a numerical model to simulate the transportation of

- 514 water around the Ryukyu Islands to the Kuroshio. Our results indicate that
- 515 Trichodesmium growing around the Ryukyu Iislands situated along the Kuroshio
- 516 <u>could be advected into the Kuroshio.</u>
- 517 is potentially important for determining diazotrophy in this region.

1. Introduction

520	The Kuroshio is a western boundary current in the North Pacific Ocean that
521	originates in the North Equatorial Current and bifurcates to the east of the Philippines.
522	The main stream of the Kuroshio enters the East China Sea (ECS) northeast of Taiwan,
523	flows out through the Tokara Strait, and runs along the Japanese islands of Shikoku
524	and Honshu. While the Kuroshio and its adjacent waters are characterized by highly
525	oligotrophic condition, The Kuroshio transports large amounts of heat from south to-
526	north, thereby influencing the climatic variability of the surrounding countries via the
527	ocean-atmosphere interaction (Nakamura et al., 2012; Sasaki et al., 2012; Hu et al.,
528	2015). Furthermore, it plays an important role in delivering fish eggs and larvae from-
529	low to mid-latitudes. Pacific bluefin tuna (Thunnus orientalis), Japanese anchovy-
530	(Engraulis japonicus), and Japanese sardine (Sardinops melanostictus) spawn in the
531	warm water region, and the fish eggs and larvae are transported by the Kuroshio to-
532	their nursery grounds in the Kuroshio Oyashio transition region (Itoh et al., 2009;
533	Kitagawa et al., 2010). In addition, phytoplankton and zooplankton communities in
534	the Kuroshio are distinct compared to those from adjacent waters (McGowan, 1971).
535	McGowan (1971) suggested that some plankton species are delivered by the Kuroshio
536	to the north from the equatorial region.

537	The abundance of the cyanobacterial genus Trichodesmium in the Kuroshio is
538	much higher than that in neighboring seas (Marumo and Asaoka, 1974). Because
539	Trichodesmium is a major nitrogen fixer in the Kuroshio, which is characterized by
540	highly oligotrophic conditions, it is believed to be the key genus for understanding the
541	Kuroshio ecosystem (Chen et al., 2008, 2014; Shiozaki et al., 2014a). Nevertheless,
542	the factors controlling the distribution of Trichodesmium in this region are poorly
543	understood. Marine nitrogen fixation is generally regulated by the supply of iron and
544	phosphorus (Mahaffey et al., 2005), and Trichodesmium thrives in iron-rich
545	oligotrophic regions-where the iron supply is high (Moore et al., 2009; Shiozaki et al.,
546	2010, 2014b). A major source of iron in the ocean is atmospheric dust deposition
547	(Jickells et al., 2005; Mahowald et al., 2009). A-mModeling studiesy indicated that
548	dust deposition in the western North Pacific decreasesed exponentially from the
549	continental shelf to the Philippine Sea (Jickells et al., 2005; Mahowald et al., 2009),
550	and hence, deposition is was not as high in the Kuroshio as in the adjacent waters. As
551	for phosphorus limitation, iron-enhanced nitrogen fixation causes phosphorus
552	depletion, and is consequently limited by phosphorus (Mather et al., 2008). The
553	phosphate distribution has been examined in this study region using a conventional
554	colorimetric method, and the surface phosphate concentration in the Kuroshio has

555	been reported to be as low as that in the Philippine Sea (Chen, 2008). Therefore, the
556	distinct high abundance of Trichodesmium in the Kuroshio is probably not explained
557	by nutrient condition; however, distributions of dissolved iron and phosphate at
558	nanomolar level have not been well studied in this region (Obata et al., 1997; Shiozaki
559	<u>et al., 2010; Kodama et al., 2011).</u>
560	Nitrogen fixation by Trichodesmium has recently also been found to be active
561	around oceanic islands (Shiozaki et al., 2010, 2013, 2014c). Furthermore, these
562	studies demonstrated that abundant Trichodesmium is delivered by the current to areas
563	that are remote from the islands. Although this phenomenon was noted in the western
564	Pacific warm pool and western South Pacific, it can also occur in and around the
565	Kuroshio and may contribute to the distribution of Trichodesmium in this region.
566	Although this suggests that the distribution of Trichodesmium in the Kuroshio is
567	not due simply to the dust derived iron input, this theory has not been confirmed
568	because the distribution of dissolved iron at sea has not been well studied in this
569	region (Obata et al., 1997). Phosphorus would ultimately limit diazotrophy because
570	phosphorus in oligotrophic regions is consumed by diazotrophs, and is thus depleted.
571	Phosphorus limitation for diazotrophs can be indexed by the phosphate concentration
572	at the nanomolar level (Mather et al., 2008; Hashihama et al., 2009). While the

573	phosphate concentration has been widely determined in the Kuroshio and its marginal
574	seas using a conventional colorimetric method (Chen, 2008), studies on nanomolar
575	phosphate dynamics are limited (Shiozaki et al., 2010, Kodama et al., 2011).
576	In the present study, we simultaneously determined Trichodesmium abundance
577	and bulk water nitrogen fixation together with concentrations of dissolved iron and
578	phosphate at the nanomolar level in the Kuroshio and its marginal seas. In addition,
579	we conducted intensive observations around examined whether islands affected the
580	distribution of Trichodesmium. Marumo and Asaoka (1974) hypothesized that the
581	Kuroshio entrains nutrients from coastal areas when it flows past islands, and that
582	Trichodesmium grows using these entrained nutrients. Therefore, the study included
583	the Miyako Islands section of the Ryukyu Islands because the Kuroshio flows close to
584	these islandslocated close to the main stream of the Kuroshio.

586 **2. Materials and Methods**

587 2.1. Oceanographic database

Algal blooms in an oligotrophic region may indicate a nitrogen fixation hotspot (Wilson and Qiu, 2008; Shiozaki et al., <u>2014e2014c</u>). To identify the locations of intensive algal blooms, we used a dataset of chlorophyll (chl) *a* observed by-a satellite.

591	According to Wilson and Qiu (2008), an algal bloom in an oligotrophic region can be
592	defined as a chl <i>a</i> value >0.15 mg m ^{-3} in summer. In the present study, we used 8-day,
593	moderate-resolution imaging spectroradiometer (MODIS) level 3 chl a with 9 km
594	resolution during summer between July 2003 and September 2009. We defined as
595	summer July through September. The bloom frequency for each pixel was calculated
596	from the ratio of counts in which chl <i>a</i> was >0.15 mg m ^{-3} to the total counts in which
597	chl a was detected., and calculated the distribution of bloom frequency in the study
598	areas.
599	To examine the current field, geoelectrokinetograph and ship-mounted acoustic
600	Doppler current profiler (ADCP) data from the uppermost layer for the summers
601	between 1953 and 2008 were obtained from the Japan Oceanographic Data Center
602	(http://www.jodc.go.jp). Regridding, removal of anomalous values, and smoothing of
603	the dataset were performed as described by Isobe (2008).
604	
605	2.2. Cruise observations
606	Experiments were conducted during summer on-board the R/V Tansei-maru
607	(KT-06-21, September 9-17, 2006; KT-07-22, September 5-13, 2007; KT-09-17,
608	September 8–13, 2009; KT-10-19, September 4–12, 2010) and the T/V

609	<i>Nagasaki-maru</i> (242, July 19–28, 2007) (Fig. 1a, Table S1). The stations from during
610	the KT-06-21, KT-07-22, and Nagasaki-maru 242 cruises were divided into three
611	areas based on the temperature-salinity diagram (see Fig.2 of Shiozaki et al., 2011):
612	the ECS, Kuroshio, and Philippine Sea-(Kodama et al., 2011; Shiozaki et al., 2011).
613	During the KT-09-17 cruise, we conducted experiments around the Miyako Islands
614	which were distinguished where algal blooms are frequent (see Results section), and
615	distinguished the target area from the other three areas. During the KT-10-19 cruise,
616	we performed observations in the ECS, the Kuroshio, and around the Miyako Islands
617	(Liu et al., 2013).

619 2.2.1. Light intensity, hydrography, nutrients, and chl a

620	Water samples for all of the experiments, with the exception of determination of
621	the dissolved iron concentration, were collected using an acid-cleaned bucket and
622	Niskin-X bottles. The depth profile of light intensity was determined immediately
623	before the water sampling using a light sensor (during the KT-06-22, KT-07-21,
624	KT-09-17, and KT-10-19 cruises) or an empirical equation (during the Nagasaki-maru
625	242 cruise) (Shiozaki et al., 2011). Temperature and salinity profiles to a depth of 200
626	m were obtained using a conductivity, temperature, and depth (CTD) sensor. Mixed

627	layer depth (MLD) was defined as the depth at which the sigma-t increased by 0.125
628	from its value at a depth of 10 m. Water samples for nitrate+nitrite (N+N) and
629	phosphate were collected from 0, 10, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, and
630	200 m, and from depths at given light intensities. At all of the stations, the N+N and
631	phosphate concentrations were determined at the nanomolar level using a
632	supersensitive colorimetric system consisting of an AutoAnalyzer II (Technicon) and
633	Liquid Waveguide Capillary Cells (World Precision Instruments, USA) (Hashihama et
634	al., 2009). The detection limits of N+N and phosphate were both 3 nM. Wat a
635	detection limit of 3 nM (Hashihama et al., 2009) when the concentration was less
636	greater than 0.1 µM, it was determined by conventional methods using a TRAACS
637	2000 autoanalyzer (Bran:Luebbe, UK) In addition to the observations at the stations,
638	temperature, salinity, and the <i>in vivo</i> chl fluorescence of the surface water were
639	monitored continuously during the cruises by a thermosalinograph (Ocean Seven,
640	Idronaut, Italy) and a fluorometer (Minitracka, Chelsea, UK).
0.41	

2.2.2. Dissolved iron

Water was sampled to estimate the dissolved iron concentration from 0.5-m depth
during the KT-06-21 and KT-07-22 cruises and from 10-m depth during the KT-09-17

645	cruise using an acid-cleaned Teflon bellows pump (AstiPure PFD2; Saint-Gobain)
646	with Teflon tubing (inner diameter = 12 mm). The water was filtered through an
647	acid-cleaned 0.22 µm pore filter (Millipak100; Millipore) connected to the in-line of
648	the Teflon tubing with a Teflon connector. Filtered seawater was collected in a 125
649	mL low-density polyethylene (LDPE) bottle (Nalgene, Nalge Nunc International).
650	which. The sample bottles had been washed using following technique: the sample
651	bottles were sequentially cleaned by soaking in 5% alkali detergent for at least 2 days,
652	in 4 N HCl for at least 1 day, in 0.3 N metal analysis-grade HNO ₃ at 60°C overnight,
653	and finally, in Milli-Q water at 60°C overnight. After rinsing with Milli-Q water, the
654	bottles were dried in a laminar flow space and stored in double plastic bags. The
655	filtrate samples were acidified to a pH <1.7 with trace-metal-grade HCl (Tamapure
656	AA-100; Tama Chemicals) in a Class-100 clean-air bench, and stored at room
657	temperature for more than 1 year.
658	The dissolved iron concentration was determined using an automatic Fe(III) flow
659	injection analytical system (Kimoto Electric Co., Ltd.) using a chelating resin

buffer solution of 10 M formic acid and 2.4 M ammonium formate was added to thesamples. The sample pH was adjusted to 3.0 with 20% ammonium hydroxide

660

pre-concentration and chemiluminescence detection method (Obata et al., 1993). A

663	(NH ₄ OH; Tamapure AA-10; Tama Chemicals) immediately prior to analysis. The
664	detection limit of this method was 0.05 nM. The SAFe reference standards S1 and D2
665	were measured during the course of sample analysis, and the results were within the
666	range of the published consensus values: S1 = 0.097 \pm 0.043 nM and D2 = 0.91 \pm
667	0.17 nM (Johnson et al., 2007).
668	
669	2.2.3. Nitrogen fixation and abundance of Trichodesmium spp.
670	Samples for the incubation experiments were collected vertically at all of the
671	stations, except at Sts. T0621, GN-3, and T0905, where samples were only collected
672	from the surface. All samples were collected in duplicate in acid-cleaned 4.5-L
673	polycarbonate bottles. During the Nagasaki-maru 242 cruise, water samples were
674	collected from four different depths corresponding to 100%, 25%, 10%, and 1% of the
675	surface light intensity. During the other cruises, samples were collected from a depth
676	of 50% surface light intensity. Samples at 100% surface light intensity were collected
677	from 0 m during all of the cruises, except during the KT-10-19 cruise in which the
678	samples were collected from a depth of 5 m. The bulk water nitrogen fixation activity
679	was determined with based on primary production using a dual isotopic ($^{15}N_2$ and ^{13}C)
680	technique <u>(, the details of which are given in</u> -Shiozaki et al., (2009). <u>After ¹³C-labeled</u>

681	sodium bicarbonate (99 atom% ¹³ C; Cambridge Isotope Laboratories) was added to
682	each bottle, 2 mL of ¹⁵ N ₂ gas (98 + atom% ¹⁵ N; SI Science Co. Japan) was injected
683	directly into the incubation bottles through a septum using a gastight syringe. The
684	bottles were covered with neutral-density screens to adjust the light level and
685	incubated for 24 h in an on-deck incubator cooled by flowing surface seawater for 24
686	<u>h.</u> We determined the nitrogen fixation activity using the ${}^{15}N_2$ gas bubble addition
687	method (Montoya et al., 1996). This method is believed to underestimate the nitrogen
688	fixation rate relative to the ${}^{15}N_2$ gas dissolution method (Mohr et al., 2010). The start
689	time of incubation in this study varied at each station (Table S1). Considering daily
690	periodicity of nitrogen fixation in each diazotroph (Zehr, 2011) and the time to reach
691	equilibration of the ${}^{15}N_2$ gas bubble with seawater (>12 h, Mohr et al., 2010), the level
692	of underestimation could vary at each station. Meanwhile, the level of
693	underestimation is known to be low in Trichodesmium dominant water because
694	<u>Trichodesmium can float to the top of the bottle and directly use the added ${}^{15}N_2$ in the</u>
695	bubble method (Großkopf et al., 2012). Although the bias of underestimation could
696	not be estimated from the results in this study, the actual nitrogen fixation rate would
697	be higher than Thus, the obtained nitrogen fixation rate. was lower than the actual rate
698	in the present study.

699	A recent study demonstrated that commercial $^{15}N_2$ gas could be contaminated by
700	¹⁵ N-labeled nitrate and ammonium (Dabundo et al., 2014). We tested the
701	contamination in ${}^{15}N_2$ gas produced by SI Science Co., Ltd., which was used (from
702	different batch numbers) in the present study (see Supporting MethodsInformation).
703	Briefly, the ${}^{15}N_2$ gas was dissolved in aged subtropical surface water, and
704	concentrations of nitrate, nitrite, and ammonium at the nanomolar levels were
705	determined using supersensitive colorimetric systems. The results showed that there
706	were no significant differences between the control and samples to which $^{15}\mathrm{N}_2$ had
707	been added (Fig. S1), suggesting that the contamination of nitrate, nitrite, and
708	ammonium in the ${}^{15}N_2$ gas was insignificant (see Supporting Results and
709	Discussion <u>Information</u>).
710	Water samples were collected for microscopic analysis at all light depths during
711	the Nagasaki-maru 242 and KT-07-21 cruises, and only from the surface during the
712	KT-06-22, KT-09-17, and KT-10-19 cruises. The samples were fixed using acidified
713	Lugal's solution Tricks description and ware counted using the Utermähl method under
	Lugol's solution. Trichodesmium spp. were counted using the Utermöhl method under
714	inverted microscope observation. <u><i>Trichodesmium</i></u> greater than ca. 300 μ m in length
714 715	

I

719	2.3. Statistical analysis of environmental variables
720	We used non-metric multi-dimensional scaling (nMDS) to investigate the spatial
721	differences in the environmental variables that could influence Trichodesmium growth
722	and bulk water nitrogen fixation; temperature, mixed layer depth, nitrate, dissolved
723	iron, and phosphate. The environmental variables were transformed by $log_{10}(x + 1)$
724	prior to analysis. A dissimilarity/similarity matrix between stations was constructed
725	using the Bray-Curtis index. The nMDS was used to visualize similarities in the
726	environmental variables among the stations. An Analysis of Similarity (ANOSIM)
727	was used to test the differences in the environmental variables among the stations.
728	

728

729

2.3.2.4. Numerical experiments

Numerical particle-tracking experiments were conducted to investigate the transport of water masses at the surface from areas around the Miyako Islands in the summer season from 2003 to 2009. Surface velocity data were derived from the FRA-JCOPE2 reanalysis product (Miyazawa et al., 2009), which is an eddy-resolving (1/12°) ocean model combined with three-dimensional variational data assimilation

735	(satellites, ARGO floats, and shipboard observations), and is one of the most reliable
736	models for the region around Japan for the above time period. The method of tracking
737	particles was basically the same as in Itoh et al. (2009), but we did not include the
738	random walk for simplicity. The release points of particles were selected at the surface
739	at-of the model grid points around the coastal waters of the Miyako Islands. We
740	assumed that the particles did not increase, die, or sink from the surface during the
741	experiments. The particle distribution at the surface was fixed throughout the
742	experiment. To focus on transport during the summer season (July-September),
743	particles were released one month before the summer (on June 1) and were tracked
744	until September 30.
745	To examine differences in the output depending on the start time within the same
746	year, we also performed experiments starting on June 1, 11, and 21, and July 1 in
747	2009. The ratio of particles that reached areas downstream of the Tokara Strait
748	(hereafter Area K) (Fig. 7), including the particles' entrainment to the Kuroshio, to
749	tetel menticles and from the Mincles Islands are compared in all several sectors It.
	total particles released from the Miyako Islands was computed in all experiments. It
750	should be noted that these experiments contained the following two uncertainties.
750 751	

753	Trichodesmium is known to aggregate and not to occur uniformly in the ocean
754	(Capone et al., 1997). Second, the model cannot reproduce the current very close to
755	the islands. If a water mass very near the islands was delivered to the open ocean by
756	tide and/or river plumes that were not considered in the model, seaward dispersion of
757	particles was likely underestimated.

1

759 **3. RESULTS**

760 3.1. The Kuroshio path and bloom frequency

The average surface current field indicated that the main stream of the Kuroshio 761 762 flowed along the continental shelf in the ECS, and then passed to the south of the Kyushu and Shikoku Islands (Fig. 1b). In addition, the Kuroshio branch bifurcated 763 northward at 25°N and 30°N at the continental shelf. Hence, all of the stations in the 764765ECS were subject to the influence of the Kuroshio. While the northeastward stream of the Kuroshio was prominent in this region, smaller-scale flows and circulations were 766 observed in the areas around and to the southeast of the Ryukyu Islands. In the west of 767 the main stream of the Kuroshio, because the average chl a was over 0.15 mg m⁻³ (Fig. 768S2), the frequency of chl *a* values >0.15 mg m⁻³ was high The algal bloom frequency 769 was consistently >10% in the west of the main stream of the Kuroshio because the 770

771	average chl <i>a</i> was >0.15 mg m ⁼³ -(Fig. 1a, b). In contrast, the bloom frequency in the
772	east of the main stream of the Kuroshio differed from the distribution of the average
773	chl a; algal blooms occurred frequently in the Ryukyu Islands. Around the Miyako
774	Islands, water of high bloom frequency was located to the west of the islands,
775	extending to the north.
776	
777	3.2. Region-wide environmental conditions, <i>Trichodesmium</i> spp., and
778	nitrogen fixation
779	The sea surface temperature (SST) ranged from 25.1–30.5°C at all of the stations
780	(Table S1), and there were no significant differences among the areas (p >0.05,
781	Tukey's honestly significant difference [HSD] test). The MLD varied from 12-60 m
782	at all of the stations, and was relatively deep around the Miyako Islands compared to
783	the other areas (Table S1). The surface N+N concentration varied between <3 and 42
784	nM, except around the Miyako Islands (Shiozaki et al., 2010, 2011) (Table S1). The
785	highest surface N+N concentration (374 nM) was observed at St. T0904 where
786	upwelling occurred (see below). No significant difference in the surface N+N was
787	observed among the four areas (p >0.05, Tukey's HSD test). The surface phosphate
788	concentration varied between <3 and 36 nM at all of the stations (Fig. 2a). The

789	phosphate concentration at the surface and within the MLD was not significantly
790	different among the four areas (p >0.05, Tukey's HSD test). There was a greater
791	increase in the phosphate concentrations below 40–50 m in the ECS compared to the
792	other areas (Fig. 3a <u>-d</u>). Furthermore, the phosphate concentrations below 40–50 m
793	near the Miyako Islands were higher than those in the Kuroshio and the Philippine
794	Sea, which were depleted down to 100 m, except at St. T1004 located near the
795	continental shelf. The N/P (= N+N/phosphate) ratio at the surface varied from 0.28 to
796	<u>6.40 except at St. T0904 (N/P = 16.3) (Table S1), and no significant differences were</u>
797	observed among the four areas ($p > 0.05$, Tukey's HSD test). The surface dissolved
798	iron concentration ranged from 0.19 to 0.89 nM at all of the stations (Fig 2b), with no
799	significant spatial differences among the four areas (p >0.05, Tukey's HSD test). The
800	surface dissolved iron concentration at Sts. T0622 and T0907 was elevated to 0.83 nM
801	and 0.89 nM, respectively, with lower salinity water than in the adjacent waters
802	(salinity data are shown in Fig. <u>4</u> 4a and Kodama et al., 2011). <u>The nMDS showed that</u>
803	the environmental variables at all stations were the same at the >80% similarity level
804	and were >90 % similar excepting station T0904 (Fig. 5). The ANOSIM indicated no
805	significant differences among the stations ($p > 0.05$).

806 The abundance of *Trichodesmium* spp. was highest at the surface at almost all of

807	the stations during the Nagasaki-maru 242 and KT-07-21 cruises (Shiozaki et al.,
808	2010Fig. S3). The surface Trichodesmium spp. abundances were positively correlated
809	with the depth-integrated abundances ($p < 0.05$, t-test) (Fig. 6a). Thus, the surface
810	abundance was used to discuss the geographical distribution of Trichodesmium spp.
811	The Trichodesmium spp. abundance at the surface varied widely, and there was no
812	significant difference among the four areas $(p > 0.05, Tukey's HSD test)$.
813	Trichodesmium spp. were observed at all of the stations in the Kuroshio and around
814	the Miyako Islands, whereas they were not always observed in the ECS and the
815	Philippine Sea (Fig. 2c). The average surface abundance in the Philippine Sea was the
816	lowest among all of the areas (Table 1). The highest abundance of Trichodesmium spp.
817	(>20000 filaments L^{-1}) was observed near the Miyako Islands at St. T0906, where
818	they bloomed (see below). Tuft-shaped colonies were found at Sts. T0706, T0723,
819	CK-10, and T0906. The nitrogen fixation rate was highest in the upper 25% light
820	depth, and decreased with increasing depth at all of the stations (Fig. 3b3e-h). The
821	surface rates were positively correlated with the depth-integrated rates ($p < 0.05$,
822	t-test) (Fig. 6b), suggesting that the distribution of nitrogen fixation was indexed by
823	the surface activity. Surface and dDepth-integrated nitrogen fixation ranged from 0.54
824	to 62 nmol N $L^{-1} d^{-1}$ and from 29.5 to 753 µmol N m ⁻² d ⁻¹ -, respectively (Fig. 2d and

825	Table S1). Surface nitrogen fixation in the Philippine Sea was significantly lower than
826	that in the Kuroshio ($p < 0.05$, t-test). Thus, the surface abundance was used to discuss
827	the geographical distribution of Trichodesmium spp., which were observed at all of
828	the stations in the Kuroshio and around the Miyako Islands, whereas they were not
829	always observed in the ECS and the Philippine Sea (Fig. 2c). The highest abundance
830	of Trichodesmium spp. (>20000 filaments L ⁻¹) was observed near the Miyako Islands
831	at St. T0906, where they bloomed (see below). Depth-integrated nitrogen fixation
832	ranged from 29.5 to 753 μ mol N m ⁼² -d ⁼¹ (Fig. 2d). The nitrogen fixation rate was
833	highest in the upper 25% light depth, and decreased with increasing depth at all of the
834	stations (Fig. 3b). The average nitrogen fixation rate in the Philippine Sea of $58.3 \pm$
835	25.1 μ mol N m ⁼² d ⁼¹ was the lowest among all of the areas (Table 1).
836	The surface abundance of Trichodesmium spp. in the entire study area was
837	positively correlated with the nitrogen fixation rate at the surface ($r^2 = 0.80$; $p < 0.05$
838	$[r^2 = 0.55; p < 0.05 if the datum taken at the Trichodesmium-bloom station T0906 is$
839	excluded]) (Fig. 6c), suggesting that they significantly contributed to nitrogen fixation
840	in the study region. However, active nitrogen fixation occurred in the ECS where
841	Trichodesmium abundance was low, and hence, the other diazotrophs could also be
842	important for nitrogen fixation.

844	3.3. Observation around the Miyako Islands during the KT-09-17 cruise
845	The SST was lower to the northwest of the Miyako Islands than in adjacent
846	waters, and chl <i>a</i> was enriched in the same location (Fig. $4b4b$,-c). Therefore, the
847	enhanced productivity was probably due to nutrient supply by upwelling. This
848	upwelling generally occurs in the lee of islands (Hasegawa et al., 2009), suggesting
849	that there was a northward current during the cruise. The surface salinity was lower
850	east of the Miyako Islands than in the surrounding waters (Fig. 2a4a). The absence of
851	any large river on the east side of Miyako-jima Island and the separation of low
852	salinity water from the island suggest that the low salinity was caused by rainfall.
853	St. T0904 was located near the upwelling water; its SST of 29.0°C was lowest and its
854	surface N+N concentration of 374 nM was highest among all of the stations. However,
855	the N+N concentration at St. T0904 at the surface was higher than that at the
856	subsurface (an approximate depth of 50 m; Fig. <u>\$2\$4</u>), indicating that St. T0904 was
857	not located in the middle of the upwelling. <u>At St. T0904, t</u> Fhe surface phosphate
858	concentration was also highest at St. T0904 (23 nM) and the N/P ratio (=16.3) was
859	higher than the Redfield ratio With the exception of the surface at St. T0904, the
860	phosphate concentration was low (<3–9 nM) in the upper 50 m, with no noticeable

861	variation among the stations (Fig. 2a). The dissolved iron concentration varied
862	between 0.19 and 0.89 nM at the surface (Fig. 2b). The highest dissolved iron
863	concentration was observed at St. T0907.
864	During the same cruise, we encountered a Trichodesmium sppbloom at St.
865	T0906 (Fig. 2c), which had colored water at the surface. The abundance of
866	Trichodesmium spp. at St. T0906 was >20,000 filaments L^{-1} , which was far higher
867	than that at other stations (2–102 filament L^{-1}). The nitrogen fixation rate at the
868	surface (61.9 nmol N $L^{-1} d^{-1}$) of this station was more than 30-fold that just below the
869	surface, and was the highest among all of the stations (Fig. 3h4b). The diatom
870	abundance was markedly higher at St. T0904 than that at the other stations.
871	Cylindrotheca closterium was the most numerically dominant diatom (59%), followed
872	by Navicula spp. (23%) and Nitzschia spp. (13%). C. closterium was not detected at
873	the other stations, indicating that the high chl a induced by the island wake effect
874	mainly consisted of diatoms The count of Thalassiosira spp. was higher at St. T0907
875	than that at the other stations.
876	

877 3.4. Numerical simulation

878 <u>As the Kuroshio generally flows along the continental slope north of the Miyako</u>

879	Islands (Fig. 1b), particles around the Miyako Islands were not transported along the
880	typical path of the Kuroshio to the northeast, especially at their initial stages (Fig. 7a).
881	Some particles migrated around the Miyako Islands, or turned south after they passed
882	the Tokara Strait. Nevertheless, the particles delivered to Area K east of the Tokara
883	Strait increased as time elapsed, and the ratio of particles delivered to Area K to the
884	total released particles ranged from 13–56% (30 \pm 16%) by day 120 in 2003–2009
885	(Fig. 7b). The year-to-year variations in the ratio are mainly due to influences of
886	mesoscale eddies as partly seen in the particle trajectories in Fig. 7a, and likely
887	occurred over relatively short time scales (shorter than the seasonal time scale). This
888	is supported by another series of experiments in which particles were released on June
889	1, 11, and 21, and July 1 in 2009, which yielded ratios of 6.2–38% ($22 \pm 13\%$) by day
890	<u>120 (Fig. S5).</u>
891	It should be noted that the model output could vary greatly depending on the start
892	time because it assimilated observed datasets, and hence, quantitative assessments of
893	the results are not straightforward. The model outputs demonstrated that, although
894	there were some exceptions, the particles released from the islands were generally
895	delivered to the Kuroshio in all years (Fig. 5).

897 **4. DISCUSSION**

4.1. Distribution of phosphate and dissolved iron concentrations 898 899 Phosphate concentrations were consistently low within the MLD in all of the studied areas, and the maximum abundance of *Trichodesmium* spp. and total nitrogen 900 fixation activity generally occurred near the surface, suggesting that the phosphate 901 conditions for surface Trichodesmium spp. and other diazotrophs were similar among 902 903 all of the areas. Furthermore, with the exception of St. T1004 located near the continental shelf, the vertical distribution of phosphate in the Kuroshio was analogous 904to that in the Philippine Sea. Therefore, at least in the oceanic region of the two areas, 905 phosphate availability for Trichodesmium spp. and the other diazotrophs was similar 906 throughout the water column. 907

The surface distribution of the dissolved iron concentration demonstrated no significant variation among the areas. The dissolved iron concentration (0.19-0.89)nM) was higher than that (0.15-0.4 nM) in the western North Pacific subtropical region (0.15-0.4 nM) (Brown et al., 2005). Obata et al. (1997) demonstrated that the vertical distribution of the dissolved iron concentration in the ECS showed two peaks (at the surface and in the deep water), suggesting that aerial dust significantly contributes to the high dissolved iron concentration at the surface in all of our study

915	areas. In accordance with our results, previous modeling studies estimated the amount
916	of dust deposition to be similar in all four areas (Jickells et al., 2005; Mahowald et al.,
917	2009). Therefore, iron availability for Trichodesmium spp. and the other diazotrophs
918	was also likely similar across all of the study areas. Iron can be supplied from deep
919	water to the surface by mixing processes (Johnson et al., 1999). However, if this were
920	the case, the nitrate concentration would be expected to increase simultaneously at the
921	surface (Johnson et al., 1999), and we observed no noticeable elevation in N+N in any
922	of the areas, except at St. T0904. High concentrations of dissolved iron (>0.8 nM)
923	corresponded with low salinity at Sts. T0622 and T0907, suggesting that wet
924	deposition was an important process for iron supply. Dry deposition could also be
925	important since the iron-enriched water at Sts. T0601 and T0715 did not correspond
926	with low salinity.

I

Satellite data analysis indicated that there was a "pipeline" of material transport from the Miyako Islands to the Kuroshio, and this was supported by numerical simulations. According to the hypothesis of Marumo and Asaoka (1974), the growth of *Trichodesmium* in the Kuroshio could be maintained by the supply of iron and phosphorus from the islands situated along the Kuroshio, and the Miyako Islands were considered a possible nutrient source to the Kuroshio. Hence, assuming this

933	hypothesis to be valid, the iron and phosphate concentrations near the Miyako Islands
934	(especially in our observed area) would be expected to be higher than those in the
935	other areas. However, we observed no significant difference in the iron and phosphate
936	concentrations among the four areas. This suggested that there was no detectable
937	washout of iron and phosphorus from the Miyako Islands during our observations, or
938	that diazotrophs and other phytoplankton exhausted the nutrient supply close to the
939	islands.
940	
941	4.2. Factors controlling the distributions of <i>Trichodesmium</i> spp. and
942	nitrogen fixation
942 943	nitrogen fixation Although there was no statistically significant difference in <i>Trichodesmium</i> spp.
943	Although there was no statistically significant difference in Trichodesmium spp.
943 944	Although there was no statistically significant difference in <i>Trichodesmium</i> spp. abundance among the study areas probably because the data were limited and the
943 944 945	Although there was no statistically significant difference in <i>Trichodesmium</i> spp. abundance among the study areas probably because the data were limited and the variation was large, <i>Trichodesmium</i> spp. were always observed in the Kuroshio and
943944945946	Although there was no statistically significant difference in <i>Trichodesmium</i> spp. abundance among the study areas probably because the data were limited and the variation was large, <i>Trichodesmium</i> spp. were always observed in the Kuroshio and were abundant at most stations. Furthermore, at St.CK-10 in the East China Sea which
 943 944 945 946 947 	Although there was no statistically significant difference in <i>Trichodesmium</i> spp. abundance among the study areas probably because the data were limited and the variation was large, <i>Trichodesmium</i> spp. were always observed in the Kuroshio and were abundant at most stations. Furthermore, at St.CK-10 in the East China Sea which is in the Kuroshio branch current, a high abundance of <i>Trichodesmium</i> spp. was

951	showed lower surface nitrogen fixation in the Philippine Sea compared to that in the
952	<u>Kuroshio ($p < 0.05$, t-test).</u> Trichodesmium spp. was abundant in the Kuroshio, as also
953	reported by Marumo and Asaoka (1974). Previous studies demonstrated that
954	Trichodesmium spp. flourished in some regions of the subtropical ocean where the
955	iron levels were high (Moore et al., 2009; Shiozaki et al., 2014b2014b), which can be
956	attributed to the high iron requirement of Trichodesmium spp. for their growth
957	compared to other diazotrophs and non-diazotrophs (Kustka et al., 2003; Saito et al.,
958	2011). Therefore, the distribution of Trichodesmium spp. in the study area was
959	expected to be associated with the dissolved iron concentration at the surface.
960	Furthermore, the iron-enhanced active nitrogen fixation causes phosphorus depletion,
961	and is consequently limited by phosphorus (Mather et al., 2008). No significant
962	differences in surface iron and phosphate were observed among the study areas,
963	whichFurthermore, iron is the limiting nutrient not only for Trichodesmium, but also
964	for other diazotrophs. Accordingly, bulk water nitrogen fixation appeared to also be
965	related to the dissolved iron concentration (Moore et al., 2009; Shiozaki et al., 2014b),
966	although not significantly, which indicates that the dissolved iron concentration
967	cannot explain the distribution of Trichodesmium spp. and nitrogen fixation in the
968	study region.

969	Johnson et al. (1999) reported that the iron supply increased around the
970	continental shelf because re-suspension from the bottom to the euphotic zone
971	becomes significant. However, in the continental shelf of the ECS, the abundance of
972	Trichodesmium spp. and nitrogen fixation were low (Marumo and Asaoka, 1974;
973	Zhang et al., 2012). Zhang et al. (2012) suggested that the low nitrogen fixation in the
974	continental shelf was attributable to mixing processes and the influence of the
975	Changjiang River. Turbulence near the sea floor influences the surface water in the
976	shallower bottom region (Matsuno et al., 2006), and Zhang et al. (2012) suggested
977	that the physical disturbance reduces diazotrophy since diazotrophs including
978	Trichodesmium favor calm seas. Furthermore, the water in the continental shelf of the
979	ECS is strongly influenced by the Changjiang River. The N/P ratio of the Changjiang
980	River plume is significantly higher than the Redfield ratio, which results in
981	phosphorus limitation, and can be attributed contribute to the low nitrogen fixation
982	(Zhang et al., 2012). In the present study, despite the fact that the surface phosphate
983	concentration was low throughout the study areas, the N/P ratio was generally lower
984	than the Redfield ratio, suggesting that biological production was limited by the
985	availability of nitrogen compared to phosphate (Moore et al., 2008, 2013).
986	Furthermore, the insignificant difference in MLD among the ECS, the Kuroshio, and

987	the Philippine Sea (p>0.05; Tukey HSD test) indicated similar vertical mixingphysical
988	conditions. Therefore, the environmental variables related to nitrogen fixation only
989	slightly differed as demonstrated by the nMDS plot. (see more detail in Supporting
990	Methods and Supporting Results and Discussion).
991	In our study, we found a Trichodesmium spp. bloom near the Miyako
992	Islands. Why did Trichodesmium spp. become abundant in the Kuroshio? Recent
993	studies demonstrated that Trichodesmium spp. thrived near oceanic islands (Shiozaki
994	et al., 2010, 2014c; Dupouy et al., 2011), which was attributable to the terrigenous
995	nutrient supply (Shiozaki et al., 2014c). In fact, we observed a Trichodesmium spp.
996	bloom near the Miyako Islands. Given that some aspect of the environment around the
997	islands increases Trichodesmium spp. abundance and that they are transported from
998	the islands to the Kuroshio, this can explain why the Trichodesmium distribution was
999	not estimated from environmental variables. the inconsistency between
1000	Trichodesmium spp. abundance and concentrations of iron and phosphate.
1001	Accordingly, the low abundance of Trichodesmium spp. in the Philippine Sea was
1002	likely due to the low density of islands. Furthermore, higher nitrogen fixation in the
1003	Kuroshio than in the Philippine Sea might be explained in the same manner. This is
1004	because Trichodesmium is considered a major nitrogen fixer in the Kuroshio (Chen et

1005	al., 2008, 2014; Shiozaki et al., 2014a), and our results showed that the bulk water
1006	nitrogen fixation was positively correlated with Trichodesmium abundance.
1007	The numerical simulation demonstrated that released particles from the Miyako
1008	Islands were generally transported to the northeast and flowed along the Kuroshio
1009	during summer between 2003 and 2009. Thus, if Trichodesmium increases and active
1010	nitrogen fixation usually occurs around the Miyako Islands, the water would be
1011	delivered to the Kuroshio. Furthermore, we performed additional particle tracking
1012	experiments whose particle release points were set at major islands in the Ryukyu
1013	Islands (Amami Islands, Okinawa Main Island, and the Ishigaki Islands) (Figs. <u>\$356</u>
1014	and S7). The results demonstrated that the particles released from the other islands of
1015	the Miyako Islands were also delivered to the Kuroshio, with some exceptions. Based
1016	on the calculations for 2003–2009, 13–56% ($30 \pm 16\%$) of particles released from the
1017	islands reached Area K by day 120 (Fig. S7).
1018	

1019 Studies on nitrogen fixation around islands in the study region are fairly limited 1020 (Liu et al., 2013), and the present study is the first report of a *Trichodesmium* bloom 1021 around islands in the area. The Miyako Islands are surrounded by reefs, and studies 1022 have shown that *Trichodesmium* blooms can be associated with reef environments

1023	(Bell et al., 1999; McKinna et al., 2011). However, the factors causing the
1024	Trichodesmium blooms around islands are not well understood (Shiozaki et al.,
1025	2014c). Further studies are required to identify which characteristics of the near island
1026	environment are important for the growth and/or accumulation of Trichodesmium and
1027	other diazotrophs.

5. CONCLUSIONS

1030	$\frac{Based on our results, w W}{W}e$ hypothesize that the high abundance of
1031	Trichodesmium spp. and active nitrogen fixation in the Kuroshio are-were ascribable
1032	not to the unique nutrient environment, but rather to the supply of <i>Trichodesmium</i> spp.
1033	and other diazotrophs from the surrounding islands. The Ryukyu Islands would not be
1034	the only islands with abundant Trichodesmium spp., as Trichodesmium spp. also
1035	flourish es in the upstream Kuroshio near Luzon Island (Chen et al., 2008). Therefore,
1036	we suggest that the abundance of Trichodesmium spp. abundances are would be
1037	generally increased around islands situated along the Kuroshio, and the abundant
1038	<u>Trichodesmium spp. are would likely be transported to the mainstream of the</u>
1039	Kuroshio. Trichodesmium is a major diazotroph in the Kuroshio (Chen et al., 2008,
1040	2014; Shiozaki et al., 2014a), and diazotrophy in the Kuroshio is considered to

- 1041 influence the nutrient stoichiometry in the North Pacific (Shiozaki et al., 2010). Thus,
- 1042 our results indicate that phenomena around the islands located along the Kuroshio are
- 1043 important for determining the partial nitrogen inventory in the North Pacific.
- 1044

Author Contributions

1046	T.S., S.T., <u>S.I.,</u> and K.F. designed the experiment and T.S., S.T., T.K., X.L., F.H., and
1047	K.F. collected the samples at sea. T.S. determined nitrogen fixation and abundance of
1048	Trichodesmium spp. during the KT-06-21, KT-07-21, KT-09-17, and Nagasaki-maru
1049	242 cruises, and X.L. did during the KT-10-19 cruise. T.S. analyzed datasets of
1050	satellite and climatological current field. S.T. analyzed concentration of dissolved iron.
1051	S.I. performed numerical experiments. T.K. and F.H. determined nutrient
1052	concentration. T.S. prepared the manuscript with contributions from all co-authors.

1054 Acknowledgements

1055	We thank J. Ishizaka, the captains, crew members, and participants on board the
1056	T/V Nagasaki-maru and R/V Tansei-maru cruises for their cooperation at sea.
1057	Thanks also to K. Hayashizaki for his support in use of the mass spectrometer at
1058	Kitasato University, and to A. Takeshige and J. Hirai for their valuable comments on
1059	biology in the Kuroshio, and to T. Kitahashi for his suggestion on statistical analyses.
1060	We appreciate NASA ocean color processing group for providing the chl a data set
1061	and Japan Oceanographic Data Center for ADCP data set. This research was
1062	financially supported by MEXT grant on Priority Areas (18067006 & 21014006) and

1063 by Innovative Areas (24121001, 24121005, & 24121006) and by Grant-in-Aid for

1064 JSPS Fellows (25-7341).

1066 **References**

- 1067 Bell, P.R.F., Elmetri, I., Uwins, P.: Nitrogen fixation by Trichodesmium spp. in the
- 1068 central and northern Great Barrier Reef lagoon: relative importance of the
- 1069 fixed-nitrogen load, Mar. Ecol. Progr. Ser., 186, 119-126, 1999.
- 1070 Brown, M.T., Landing, W.M., Measures, C.I.: Dissolved and particulate Fe in the
- 1071 western and central North Pacific: Results from the 2002 IOC cruise, Geochem.
- 1072 Geophys. Geosyst., 6(10), Q10001, 2005.
- 1073 Capone, D.G., Zehr, P.J., Paerl, H.W., Bergman, B., Carpenter, E.J.: Trichodesmium,
- 1074 <u>a globally significant marine cyanobacterium, Science, 276, 1221-1229, 1997.</u>
- 1075 Chen, C.T.A.: Distributions of nutrients in the East China Sea and the South China
- 1076 Sea connection, J. Oceanogr., 64, 737-751, 2008.
- 1077 Chen, Y.L.L., Chen, H.Y., Tuo, S.H., Ohki, K.: Seasonal dynamics of new production
- 1078 from Trichodesmium N₂ fixation and nitrate uptake in the upstream Kuroshio and
- 1079 South China Sea basin, Limnol. Oceanogr., 53(5), 1705-1721, 2008.
- 1080 Chen, Y.L.L., Chen, H.Y., Lin, Y.H., Yong, T.C., Taniuchi, Y., Tuo, S.H.: The
- 1081 relative contributions of unicellular and filamentous diazotrophs to N₂ fixation in the
- 1082 South China Sea and the upstream Kuroshio, Deep-Sea Res. I, 85, 56-71, 2014.
- 1083 Dabundo, R., Lehmann, M.F., Treibergs, L., Tobias, C.R., Altabet, M.A.: The

1084	contamination of commercial ${}^{15}N_2$ gas stocks with ${}^{15}N$ -labeled nitrate and ammonium
1085	and consequences for nitrogen fixation measurements, PLoS one, 9(10), e110335,
1086	2014.

- 1087 Dupouy, C., Benielli-Gary, D., Neveux, J., Dandonneau, Y., Westberry, T.K.: An
- algorithm for detecting *Trichodesmium* surface blooms in the South Western Tropical
- 1089 Pacific, Biogeosciences, 8, 3631-3647, 2011.
- 1090 Großkopf, T., Mohr, W., Baustian, T., Schunck, H., Gill, D., Kuypers, M.M.M., Lavik,
- 1091 <u>G., Schmitz, R.A., Wallace, D.W.R., LaRoche, J.: Doubling of marine</u>
- 1092 dinitrogen-fixation rate based on direct measurements, Nature, 488, 361-364, 2012.
- 1093 Hasegawa, D., Lewis, M.R., Gangopadhyay, A.: How islands cause phytoplankton to
- 1094 bloom in their wake, Geophys. Res. Lett., 36, L20605, 2009.
- 1095 Hashihama, F., Furuya, K., Kitajima, S., Takeda, S., Takemura, T., Kanda, J.:
- 1096 Macro-scale exhaustion of surface phosphate by dinitrogen fixation in the western
- 1097 North Pacific, Geophys. Res. Lett., 36, L03610, 2009.
- 1098 Hu, D., Wu, L., Cai, W., Gupta A.S., Ganachaud, A., Qiu, B., Gordon, A.L., Lin, X.,
- 1099 Chen, Z., Hu, S., Wang, G., Wang, Q., Sprintall, J., Qu, T., Kashino, Y., Wang, F.,
- 1100 Kessler, W.S.: Pacific western boundary currents and their roles in climate, Nature
- 1101 522, 299-308, 2015.

1102 Isobe, A.: Recent advances in ocean-circulation research on the Yellow Sea and East

- 1103 China Sea shelves, J. Oceanogr., 64, 569-584, 2008.
- 1104 Itoh, S., Yasuda, I., Nishikawa, H., Sasaki, H., Sasai, Y.: Transport and environmental
- 1105 temperature variability of eggs and larvae of the Japanese anchovy (Engraulis
- 1106 japonicus) and Japanese sardine (Sardinops melanostictus) in the western North
- Pacific estimated via numerical particle-tracking experiments, Fish. Oceanogr., 18(2),
 1108 118-133, 2009.
- 1109 Jickells, T.D., An, Z.S., Andersen, K.K., Baker, A.R., Bergametti, G., Brooks, N.,
- 1110 Cao, J.J., Boyd, P.W., Duce, R.A., Hunter, K.A., Kawahata, H., Kubilay, N., LaRoche,
- 1111 J., Liss, P.S., Mahowald, N., Prospero, J.M., Ridgwell, A.J., Tegen, I., Torres, R.:
- 1112 Global iron connections between desert dust, ocean biogeochemistry, and climate,
- 1113 Science, 308, 67-71, 2005.
- 1114 Johnson, K.S., Chavez, F.P., Friederich, G.E.: Continental-shelf sediment as a
- 1115 primary source of iron for coastal phytoplankton, Nature, 398, 697-700, 1999.
- 1116 Johnson, K.S., Boyle, E., Bruland, K., Coale, K., Measures, C., Moffett, J.,
- 1117 Aguilar-Islas, A., Barbeau, K., Bergquist, B., Bowie, A., Buck, K., Cai, Y., Chase, Z.,
- 1118 Cullen, J., Doi, T., Elrod, V., Fitzwater, S., Gordon, M., King, A., Laan, P.,
- 1119 Laglera-Baquer, L., Landing, W., Lohan, M., Mendez, J., Milne, A., Obata, H.,

1120	Ossiander, L., Plant, J., Sarthou, G., Sedwick, P., Smith, G.J., Sohst, B., Tanner, S.,
1121	Van den Berg, S., Wu, J.: The SAFe iron intercomparison cruise: an international
1122	collaboration to develop dissolved iron in seawater standards, Eos, 88, 131-132, 2007.
1123	Kitagawa, T., Kato, Y., Miller, M.J., Sasai, Y., Sasaki, H., Kimura, S.: The restricted
1124	spawning area and season of Pacific Bluefin tuna facilitate use of nursery areas: A
1125	modeling approach to larval and juvenile dispersal processes, J. Exp. Mar. Biol. Ecol.,
1126	393, 23-31, 2010.
1127	Kodama, T., Furuya, K., Hashihama, F., Takeda, S., Kanda, J.: Occurrence of
1128	rain-origin nitrate patches at the nutrient-depleted surface in the East China Sea and
1129	the Philippine Sea during summer, J. Geophys. Res., 116, C08003, 2011.
1130	Kustka, A., Sañudo-Wilhelmy, S., Carpenter, E.J., Capone, D.G., Raven, J.A.: A
1131	revised estimate of the iron use efficiency of nitrogen fixation, with special reference
1132	to the marine cyanobacterium Trichodesmium spp. (Cyanophyta), J. Phycol., 39,
1133	12-25, 2003.
1134	Liu, X., Furuya, K., Shiozaki, T., Masuda, T., Kodama, T., Sato, M., Kaneko, H.,
1135	Nagasawa, M., Yasuda, I.: Variability in nitrogen sources for new production in the
1136	vicinity of the shelf edge of the East China Sea in summer, Cont. Shelf Res., 61-62,
1137	23-30, 2013.

- 1138 McKinna, L.I.W., Furnas, M.J., Ridd, P.V.: A simple, binary classification algorithm
- 1139 for detection of Trichodesmium spp. within the Great Barrier Reef using MODIS
- 1140 imagery, Limnol. Oceanogr.; Methods, 9, 50-66, 2011.
- 1141 Mahaffey, C., Michaels, A.F., Capone, D.G.: The conundrum of marine N₂ fixation,
- 1142 Am. J. Sci., 305, 546-595, 2005.
- 1143 Mahowald, N.M., Engelstaedter, S., Luo, C., Sealy, A., Artaxo, P., Benitez-Nelson, C.,
- 1144 Bonnet, S., Chen, Y., Chuang, P.Y., Cohen, D.D., Dulac, F., Herut, B., Johansen,
- 1145 A.M., Kubilay, N., Losno, R., Maenhaut, W., Paytan, A., Prospero, J.M., Shank, L.M.,
- 1146 Siefert, R.L.: Atmospheric iron deposition: Global distribution, variability, and human
- 1147 perturbations, Annu. Rev. Mar. Sci., 1, 245-278, 2009.
- 1148 Marumo, R., Asaoka, O.: Trichodesmium in the East China Sea 1. Distribution of
- 1149 Trichodesmium thiebautii GOMONT during 1961-1967, J. Oceanogr. Soc. Japan, 30,
- 1150 298-303, 1974.
- 1151 Mather, R.L., Reynolds, S.E., Wolff, G.A., Williams, R.G., Torres-Valdes, S.,
- 1152 Woodward, E.M.S., Landolfi, A., Pan, X., Sanders, R., Achterberg, E.P.: Phosphorus
- 1153 cycling in the North and South Atlantic Ocean subtropical gyres, Nat. Geosci., 1,
- 1154 439-443, 2008.
- 1155 Matsuno, T., Lee, J.S., Shimizu, M., Kim, S.H., Pang, I.C.: Measurements of the

- 1156 turbulent energy dissipation rate ε and an evaluation of the dispersion process of the
- 1157 Changjiang Diluted Water in the East China Sea, J. Geophys. Res., 111, C11S09,1158 2006.
- 1159 McGowan, J.A.: Oceanic biogeography of the Pacific, in: The microplaleontology of
- the oceans, Cambridge University Press, Cambridge, 3-74, 1971.
- 1161 Miyazawa, Y., Zhang, R., Guo, X., Tamura, H., Ambe, D., Lee, J.S., Okuno, A.,
- 1162 Yoshinari, H., Setou, T., Komatsu, K.: Water mass variability in the western North
- 1163 Pacific detected in a 15-year eddy resolving ocean reanalysis, J. Oceanogr., 65,
- 1164 737-756, 2009.
- 1165 Mohr, W., Großkopf, T., Wallace, D.W.R., LaRoche, J.: Methodological
- 1166 underestimation of oceanic nitrogen fixation rate, PLoS one, 5(9), e12583, 2010.
- 1167 Montoya, J.P., Voss, M., Kähler, P., Capone, D.G.: A simple, high-precision,
- 1168 high-sensitivity tracer assay for N2 fixation, Appl. Environ. Microbiol., 62(3),
- 1169 **986-993**, 1996.
- 1170 Moore, C.M., Mills, M.M., Langlois, R., Milne, A., Achterberg, E.P., LaRoche, J.,
- 1171 Geider, R.J.: Relative influence of nitrogen and phosphorus availability on
- 1172 phytoplankton physiology and productivity in the oligotrophic sub-tropical North
- 1173 Atlantic Ocean, Limnol. Oceanogr., 53(1), 291-305, 2008.

- 1174 Moore, C.M., Mills, M.M., Achterberg, E.P., Geider, R.J., LaRoche, J., Lucas, M.I.,
- 1175 McDonagh, E.L., Pan, X., Poulton, A.J., Rijkenberg, M.J.A., Suggett, D.J., Ussher,
- 1176 S.J., Woodward, E.M.S.: Large-scale distribution of Atlantic nitrogen fixation
- 1177 controlled by iron availability, Nat. Geosci., 2, 867-871, 2009.
- 1178 Moore, C.M., Mills, M.M., Arrigo, K.R., Berman-Frank, I., Bopp, L., Boyd, P.W.,
- 1179 Galbraith, E.D., Geider, R.J., Guieu, C., Jaccard, S.L., Jickells, T.D., LaRoche, J.,
- 1180 Lenton, T.M., Mahowald, N.M., Marañon, E., Marinov, I., Moore, J.K., Nakatsuka, T.,
- 1181 Oschlies, A., Saito, M.A., Thingstad, T.F., Tsuda, A., Ulloa, O.: Processes and
- 1182 patterns of oceanic nutrient limitation, Nat. Geosci., 6, 701-710, 2013.
- 1183 Nakamura, H., Nishina, A., Minobe, S.: Response of storm tracks to bimodal
- 1184 Kuroshio path states south of Japan, J. Clim., 25, 7772-7779, 2012.
- 1185 Obata, H., Karatani, H., Nakayama, E.: Automated determination of iron in seawater
- 1186 by chelating resin concentration and chemiluminescence detection, Anal. Chem., 65,
- 1187 1524-1528, 1993.
- 1188 Obata, H., Karatani, H., Matsui, M., Nakayama, E.: Fundamental studies for chemical
- speciation of iron in seawater with an improved analytical method, Mar. Chem., 56,
- 1190 97-106, 1997.
- 1191 Saito, M.A., Bertrand, E.M., Dutkiewicz, S., Bulygin, V.V., Moran, D.M., Monteiro,

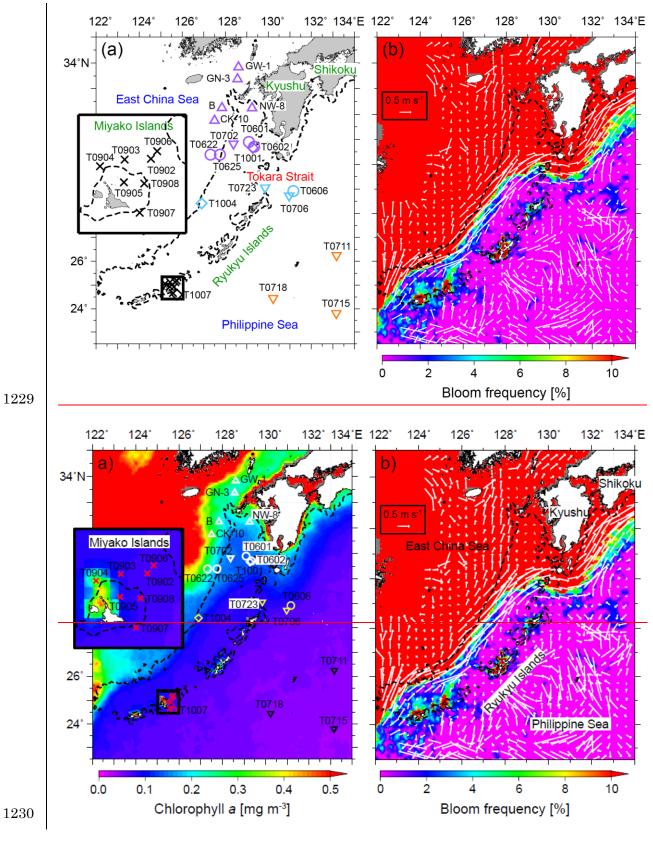
1192	F.M., Follows, M.J., Valois, F.W., Waterbury, J.B.: Iron conservation by reduction of
1193	metalloenzyme inventories in the marine diazotroph Crocosphaera watsonii, Proc.
1194	Natl. Acad. Sci. USA, 108, 2184-2189, 2011.
1195	Sasaki, Y.N., Minobe, S., Asai, T., Inatsu, M.: Influence of the Kuroshio in the East

1196 China Sea on the early summer (Baiu) rain, J. Clim., 25, 6627-6645, 2012.

- 1197 Shiozaki, T., Furuya, K., Kodama, T., Takeda, S.: Contribution of N₂ fixation to new
- 1198 production in the western North Pacific Ocean along 155°E, Mar. Ecol. Progr. Ser.,
- 1199 377, 19-32, 2009.
- 1200 Shiozaki, T., Furuya, K., Kodama, T., Kitajima, S., Takeda, S., Takemura, T., Kanda,
- 1201 J.: New estimation of N₂ fixation in the western and central Pacific Ocean and its
- 1202 marginal seas,. Glob. Biogeochem. Cycles, 24, GB1015, 2010.
- 1203 Shiozaki, T., Furuya, K., Kurotori, H., Kodama, T., Takeda, S., Endoh, T., Yoshikawa,
- 1204 Y., Ishizaka, J., Matsuno, T.: Imbalance between vertical nitrate flux and nitrate
- assimilation on a continental shelf: Implications of nitrification, J. Geophys. Res., 116,
- 1206 C10031, 2011.
- 1207 Shiozaki, T., Chen, Y.L.L., Lin, Y.H., Taniuchi, Y., Sheu, D.S., Furuya, K., Chen,
- 1208 H.Y.: Seasonal variations of unicellular diazotroph groups A and B, and
- 1209 Trichodesmium in the northern South China Sea and neighboring upstream Kuroshio

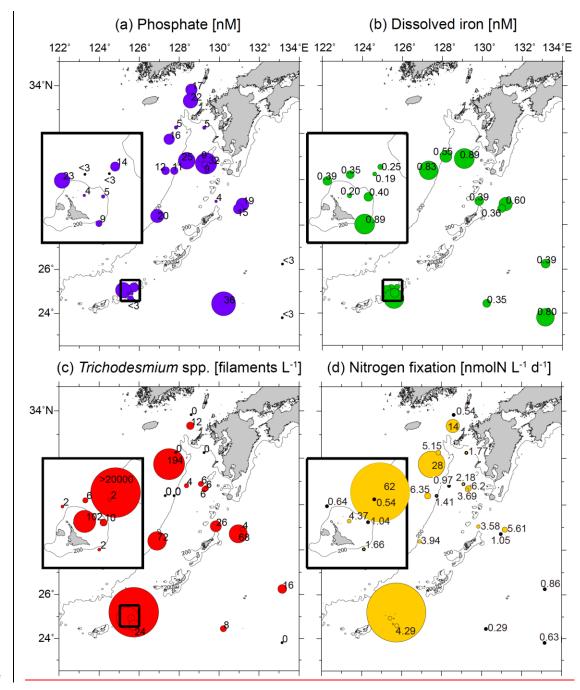
- 1210 Current, Cont. Shelf Res., 80, 20-31, 2014a.
- 1211 Shiozaki, T., Ijichi, M., Kodama, T., Takeda, S., Furuya, K.: Heterotrophic bacteria as
- 1212 major nitrogen fixers in the euphotic zone of the Indian Ocean, Glob. Biogeochem.
- 1213 Cycles, 28, 1096-1110, 2014b.
- 1214 Shiozaki, T., Kodama, T., Furuya, K.: Large-scale impact of the island mass effect
- 1215 through nitrogen fixation in the western South Pacific Ocean, Geophys. Res. Lett., 41,
- 1216 2907-2913, 2014c.
- 1217 Wilson, C., Qiu, X.: Global distribution of summer chlorophyll blooms in the
- 1218 oligotrophic gyres, Progr. Oceanogr., 78, 107-134, 2008.
- 1219 Zhang, R., Chen, M., Cao, J., Ma, Q., Yang, J., Qiu, Y.: Nitrogen fixation in the East
- 1220 China Sea and southern Yellow Sea during summer 2006, Mar. Ecol. Progr. Ser., 447,
- 1221 77-86, 2012.

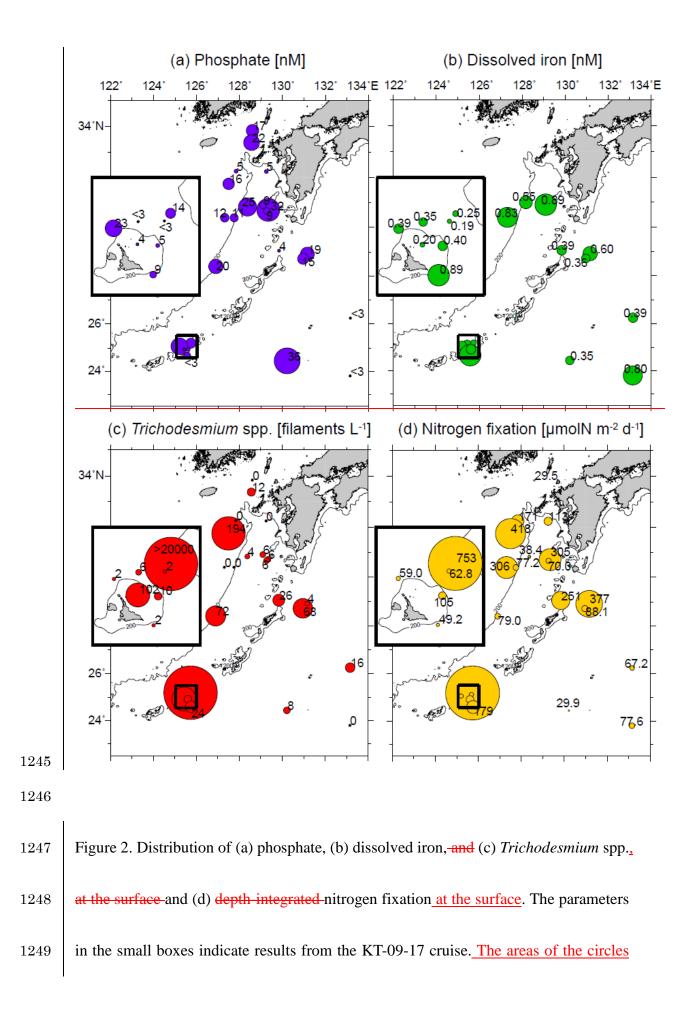
1223 Table 1 Summary of *Trichodesmium* at the surface, and depth-integrated nitrogen

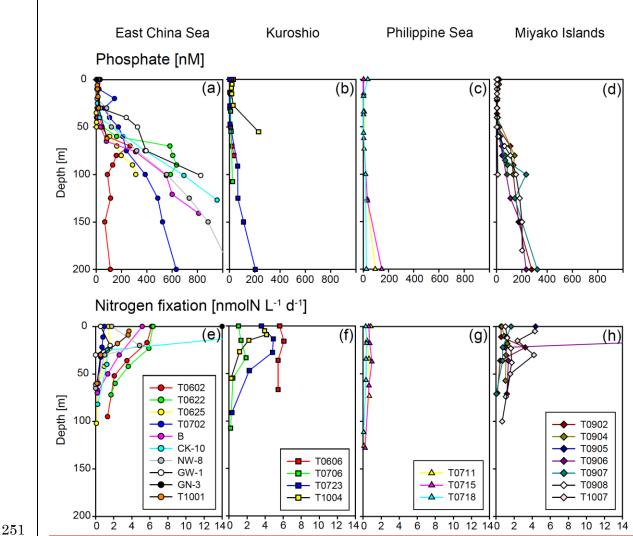

Area	<i>Trichodesmium</i> [*] [filaments l ⁻¹]	N_2 fixation [µmolN L ⁻¹ d ⁻¹]	Temperature [*] [°C]	MLD [m]	NO ₃ ⁻⁺ NO ₂ ^{-*,†} [nM]	PO4 ^{3-*,†} [nM]	DFe [*] [nM]
East China Sea	21±58	170±140	28.5±1.2	24±12	19±11	15±9	0.76±0.18
Kuroshio	43±33	199±142	29.4±0.81	27±8	9±8	15±7	0.45±0.13
Philippine Sea	8±8	58.3±25.1	29.4±0.1	23±3	8±3	14±19	0.51±0.25
Miyako Islands	3019±8478	201±274	29.3±0.3	40±12	61±128	8±7	0.38±0.24

1224 fixation and its related parameters in the four representative study areas.

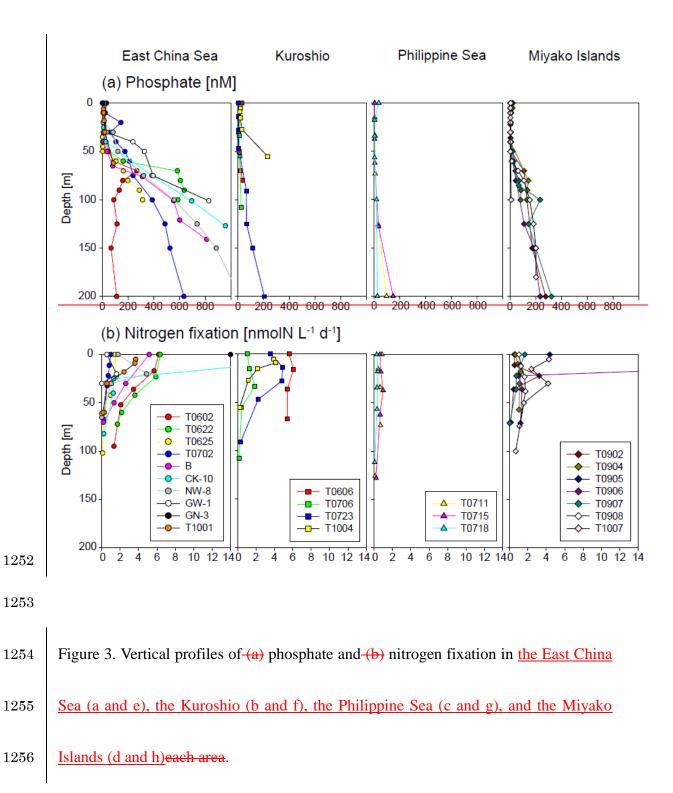
1225 * values in surface water

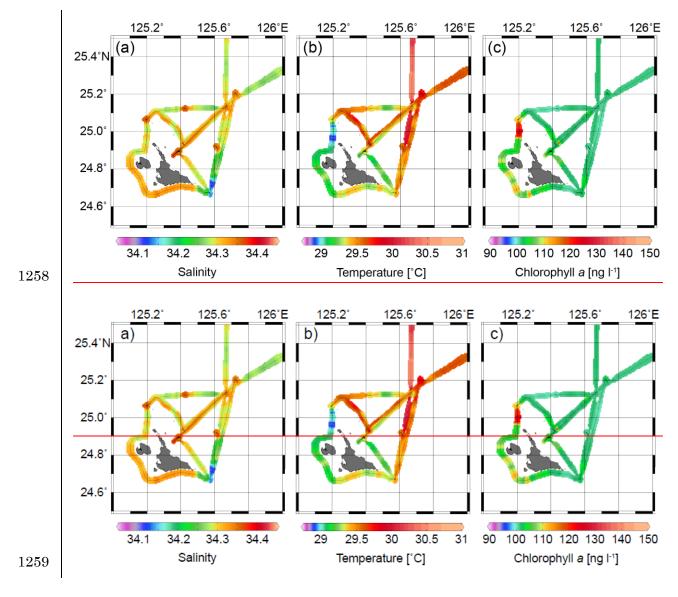

[†]When the concentration was below the detection limit (3 nM), we assumed a concentration of 3 nM to

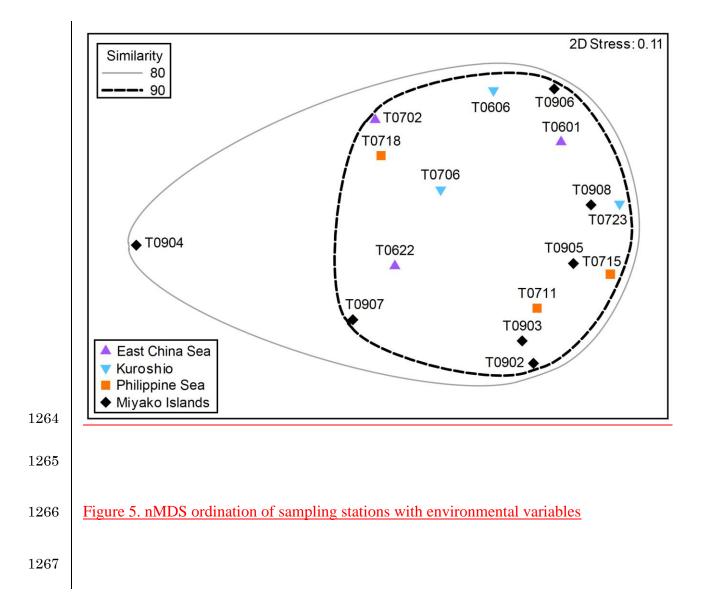

1227 calculate the mean.

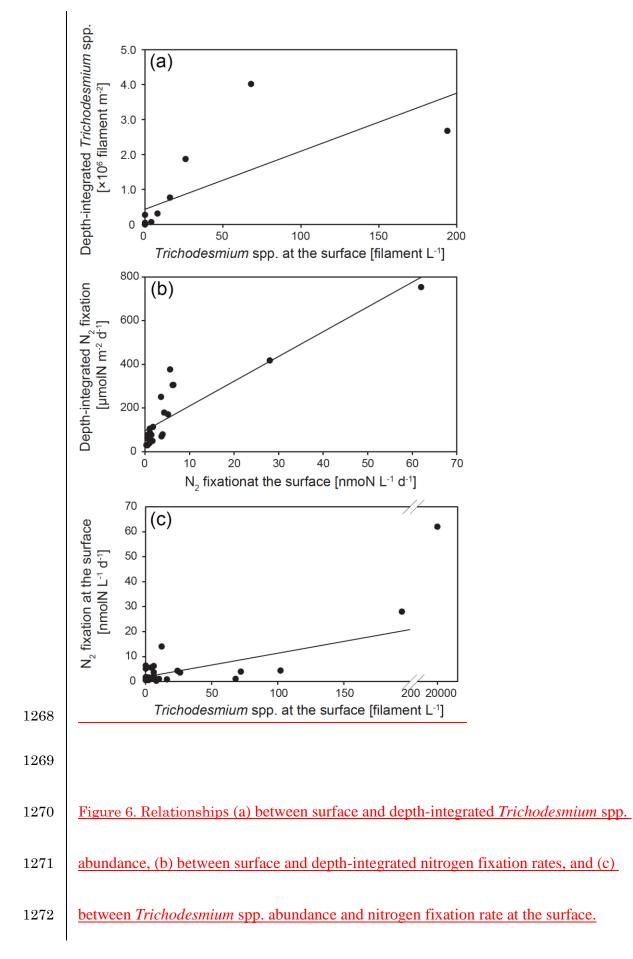


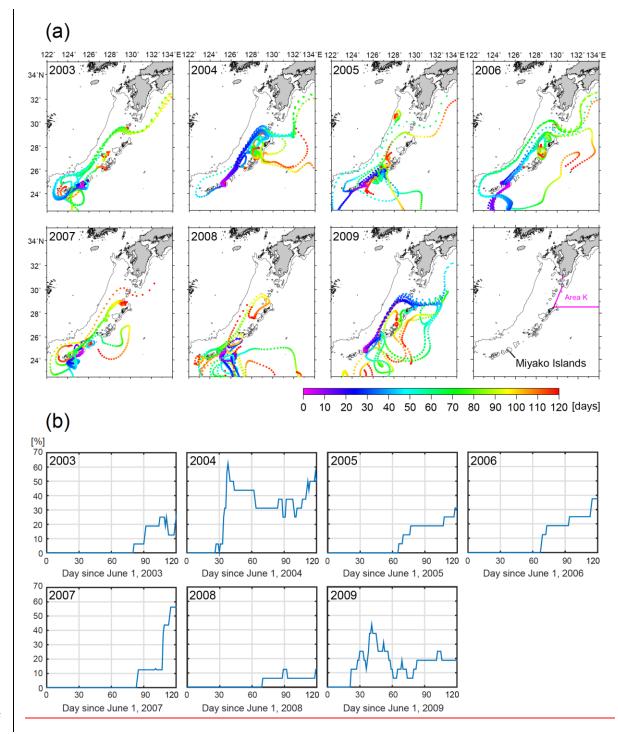
1232 Figure 1. Sampling stations and distribution of chlorophyll *a* and bloom frequency.

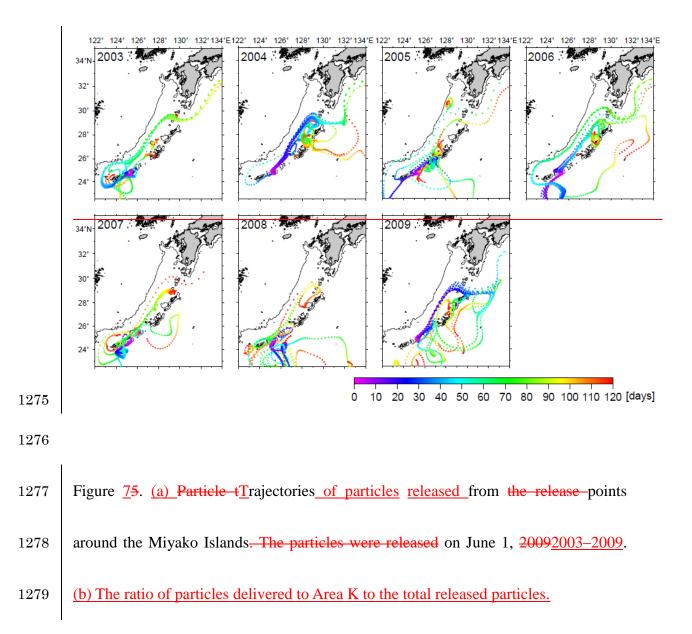

(a) Sampling stations during the KT-06-21 (circles), KT-07-22 (inverted triangles), 1233KT-09-17 (crosses), KT-10-19 (diamonds), and 242 (triangles) cruises. Symbols of 1234stations located in the East China Sea, the Kuroshio, the Philippine Sea, and near the 12351236Miyako Islands are indicated in whitepurple, vellowlight blue, blackorange, and redblack, respectively. The background contour denotes satellite-derived average 1237chlorophyll a during the summer from July 2003 to September 2009. (b) 1238Climatological surface current fields during summer (1953-2008) from 12391240geoelectrokinetograph measurements and ship-mounted ADCP data. The background contour represents the percentage of chlorophyll a of >0.15 mg m⁻³ during summer 12411242between 2003 and 2009. Dashed lines indicate 200 m isobaths.






are proportional to the concentration, abundance, or activity.





1261Figure 4. Surface (a) salinity, (b) temperature, and (c) chlorophyll a during the1262KT-09-17 cruise.

