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Dear  Dr. Keenan, 1 

 2 

We greatly appreciate your precious time in handling our manuscript. We have carefully 3 

addressed each of two anonymous reviewer’s comments and also revised the whole manuscript 4 

for readability. Our point-by-point response to each of reviewer’s comments was listed below 5 

and marked in blue color. In addition, the revised manuscript with track-changes was attached 6 

following our responses to two anonymous reviewer’s comments. 7 

 8 

Again, we appreciate your help in helping improving our manuscript. For any further 9 

requirement, please feel free to let us know. 10 

 11 

Sincerely yours, 12 
 13 

Guoping Tang 14 

On behalf of all coauthors 15 

Desert Research Institute 16 

 17 

 18 

 19 

 20 

Responses to two anonymous reviewer’s comments: 21 

Anonymous Referee #1 22 
Received and published: 21 September 2015 23 

 24 

General comments 25 

The Tang et al. paper presents a study investigating the trends and interannual variability (IAV) 26 

in vegetation greenness and associated drivers the semi-arid/arid ecosystems in the US Great 27 

Basin over the 1982-2011 period. The two main findings of the paper are that the warming trend 28 

is the main driver of the increased Growing Season Length (GSL) due to a later autumn 29 

senescence but that precipitation drives the IAV in greenness. 30 

 31 

The study is a valuable contribution to the literature as there is a relative lack of publications 32 

investigating trends for semiarid ecosystems compared to temperate/high latitude regions, as the 33 

authors point out. The aims of this study are nicely written and there is a detailed analysis of the 34 

possible drivers of the changes. There is a lot of detail in there that could potentially benefit 35 

further clarification in the text – I will attempt to summarize these points below. 36 

 37 

One issue that needs to be addressed is the difference between drivers of change in IAV and 38 

trends. There is a mix of the impact of overall trend and IAV in the linear regression that needs 39 

to be explained more clearly. The linear regression/correlation analysis (in Section 3.4 and 40 

Figures 6-8) is based on the anomalies (the delta in these figures is the inter-annual anomaly 41 
from my understanding, as the figure caption does not give enough detail). This delta (the 42 

anomalies) will include the changes due to both the IAV and the trend. The results however are 43 

only discussed in terms of the drivers on IAV. 44 

 45 
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Response: Thanks for your good comments. According to your suggestion, we conducted 1 

additional correlation analysis based on trends of a climatic variable and trends of a vegetation 2 

phonological index to examine the climatic drivers that may be responsible for the long-term 3 

trends of vegetation phenology during 1982-2011. We added new results to the section 3.4 for 4 

clarity.  5 

 6 

Then in Section 4.1 all the results (both the description of long-term trends and the drivers of the 7 

anomalies) are brought together to explain the long-term trends in a slightly confusing way, 8 

which is not helped by the fact that new (and crucial) results are introduced (Figure 8 and Table 9 

3) – so as a side point I think these results should be described in detail in the results section. For 10 

example Figure 8a shows a positive relationship between the temperature and GSL anomalies, 11 

but this could be the same even without any trend in either variable (i.e. in years with warmer 12 
temperatures, you would get a longer GSL). Then the authors refer to Figure 2, which shows the 13 

long term trend, to suggest (together with Figure 8a) that the increase in long term temperature 14 

causes the increase in GSL (and NDVI). Although the logic mostly follows I am not sure that all 15 

the pieces are there to make this picture. 16 

 17 
Response: Again, based on additional analyses on the driver responsible for the trends of 18 

vegetation phenology, we revised the section 4.1 for clarity. 19 

 20 

I think it would be clearer if the analysis in 3.4 wasn’t just presented as a change in interannual 21 

variability but as anomalies that will include the underlying IAV and trend. I think a trend 22 

analysis could include a regression the trend (slope) in NDVI against the trend in temperature for 23 

each grid point (and see if there’s a correlation). It would be interesting to assess just the drivers 24 

of IAV by de-trending the curve before performing the linear regression analysis. I am also 25 

unclear whether the multivariate regression compares the anomalies or the long-term trend. 26 

 27 
Response: Thanks very much for your constructive comments. We conducted additional trend 28 

analysis by regressing NDVI against temperature or precipitation for the study region. We have 29 

added new results including new figures in the revised manuscript. The multivariate regression 30 

analyses were based on anomalies. The purpose of developing multivariate regression models 31 

was to examine what combination and interaction of climate variables may better explain the 32 

interannual variation of vegetation phenology. As you mentioned, because anomalies also 33 

included trends, we revised related text for clarity.  34 

 35 

I suggest that a bit more analysis to bring everything together, as well as a slightly clearer 36 

description of what’s being analysed, would strengthen this paper. In addition I have a few 37 

remarks below about data processing that if addressed would further reinforce the conclusions 38 

drawn. 39 

 40 
Response: We conducted additional analyses in the revised manuscript as you suggested. For 41 
example, we revised the last paragraph of the introduction section for clarity. We clearly stated 42 

that “the objectives of this study were to utilize the dryland ecosystems at lower elevation zones 43 

of the U.S. Great Basin (Fig. 1) to (i) quantify long-term trends in mean vegetation greenness 44 

(represented by Normalized Difference Vegetation Index (NDVI)), SOS, EOS, and GSL in the 45 

dryland ecosystems that may have occurred during the most recent 30 years of climate warming; 46 
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(ii) explore the spatial variation of long-term trends in vegetation greenness; (iii) and examine 1 

the climatic sensitivity of trends and variability of vegetation phenology in the study region.” 2 

New results based on additional trend analyses were added to section 3.4 and discussed in the 3 

discussion section in the revised manuscript.   4 

 5 

Methods: Some technical data processing issues should be discussed further in the methods 6 

section (again, details below) in order to strengthen the analysis. It is unclear in Section 2.4 7 

whether the regression will be performed on the trend (per grid cell for example) or the 8 

anomalies (per year). This should be clarified. I am unclear why a univariate and then a 9 

multivariate regression are performed, I would have thought that only a multivariate regression 10 

would be needed. It would be good to have the equations here, as well as for the AIC metric. 11 

 12 
Response: We revised the whole sub-section of 2.4 for clarity (see the new section 2.4 in the 13 

revised manuscript). The purpose of conducting univariate linear regression analysis is to 14 

examine if temperature or precipitation by itself can explain the interannual variability of 15 

vegetation phenology during 1982–2011.  The multivariate regression models based on 16 

temperature, precipitation and their interaction were developed to analyze the contribution of 17 

variation in temperature, precipitation and their interaction to variations in vegetation 18 

phenology during 1982–2011.We mentioned these in the revised section. The reason that we did 19 

not list those multivariate regression models was because they were determined through step-20 

wise regression analysis (i.e., they were not determined in advance. The model with smallest 21 

overall p-value was selected as the best multivariate regression model in the process of step-wise 22 

regression).  23 

 24 

 25 

I was slightly surprised by the fact that GIMMS NDVI is used and not the latest version (3g). 26 

This is freely available as far as I am aware and uses an updated algorithm that accounts for 27 

some of the issues of the earlier version. It would be good to compare your analysis for both 28 

versions. 29 

 30 
Response: Sorry for our carelessness. The NDVI data we used are in fact GIMMS NDVI3g, 31 

which can be deduced from the study period and also acknowledged in the acknowledgement 32 

section in the original manuscript. We revised related text to make this explicit. 33 

 34 

I also think that all trend analyses should ideally be verified by performing the same analysis 35 

with an independent dataset (e.g. MODIS). I know of one study that has says that trends derived 36 

for GIMMS in arid regions should be interpreted with caution (Fensholt and Proud, 2012, RSE, 37 

119, 131-147), though I note they have used this dataset in another analysis that you cite. It 38 

would significantly strengthen your analysis if you repeated the analysis with an independent 39 

dataset. 40 
 41 
Response: Thanks very much for your good comments. Actually, we used MODIS NDVI data at 42 

the earlier stage of this study. For example, the solid redline in the following figure shows the 43 

variation of MODIS NDVI in shrub- and grass-dominated lands in the study region during the 44 

period of 2000 to 2010.  In terms of NDVI trends (based on NDVI anomalies after subtracting 45 

the long-term mean NDVI), we found that there is a relatively good agreement between MODIS 46 
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and GIMMIS NDVI. However, big difference in terms of the magnitudes of NDVI values may 1 

exist between MODIS and GIMMIS NDVI data for the study region. Unfortunately, the external 2 

drive that we used to store both MODIS and GIMMIS NDVI data at the early stage of this study 3 

was dead and none of these original data were retrievable. When we repeated this study, we did 4 

not include MODIS NDVI data for two reasons: First, the mismatch of time period between 5 

MODIS and GIMMIS NDVI data (MODIS NDVI started only from February of 2000); Second, 6 
although there are some discrepancies in the magnitudes of NDVI values between MODIS and 7 

GIMMIS NDVI data, the two datasets are positively correlated with each other, suggesting that 8 

the overall trends (2000 to 2010) of NDVI between the two datasets were similar. Therefore, 9 

when we started to repeat this study, we only collected and processed the GIMMIS NDVI3g data 10 

because this dataset has a longer time period allowing us to use a longer climate data. In 11 

addition, while the addition of MODIS NDVI data can help test the robustness of our research 12 
findings it may raise new questions (as you mentioned) that require further study. In order to 13 

address these questions, we would need to lengthen our manuscript and we feel that these 14 

additional analyses would be beyond the scope this paper. Nevertheless, a comparison of 15 

MODIS and GIMMS NDVI3g for the study region can indeed improve our understanding of 16 

vegetation phenological dynamics in the US Great Basin. 17 

 18 

 19 
Figure 1. Example of comparison of MODIS (solid red line) and GIMMS seasonal NDVI (solid 20 

black line) data for the US Great Basin 21 

 22 

Finally, the methods used to interpolate between data points and to derive the SOS and EOS 23 

dates will be subject to some uncertainty. This is also true if there are multiple cycles, or many 24 
little ―bumps‖ in the time series – how do you deal with this scenario? 25 

 26 
Response: We agree with your comments. Generally, before interpolating bi-weekly NDVI data 27 

into daily values, we excluded those extremely abnormal NDVI values (e.g., negative NDVI 28 
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value). Because there were 4154 NDVI points considered in this study. It was hard for us to 1 

check the little bumps in each of NDVI time-series for each of 4154 points. Although a few little 2 

bumps may affect the determination of SOS and EOS at a given NDVI point, their effects on the 3 

calculation of basin-wide SOS and EOS was minimized because of the numbers of points (4154) 4 

used in this study. In addition, when using the cubic spline program to interpolate time-series 5 

NDVI values at each grid point for a given day (e.g., march 7 of 2001) we used at least more 6 
than ten continuous bi-weekly NDVI values. This approach ensured interpolated data fell within 7 

the range (between the lowest and highest NDVI values) of all original NDVI values.  8 

 9 

The IAV in particular of those dates might be strongly affected by this. An exhaustive 10 

uncertainty analysis and quantification is probably too much to ask, but it would be good to do a 11 

few tests to try and see how much different parameter or methods of interpolation affect your 12 
results, at least to mention this qualitatively in a few lines. 13 

 14 
Response: Thanks for your good points! We added sentences such as “although we are confident 15 

in our calculation of SOS and EOS, a validation of interpolation of time-series bi-weekly NDVI 16 

data to daily values may further enhance the accuracy of SOS and EOS estimates” in the 17 

discussion section (see section 4.5 in the revised manuscript). As we mentioned before, because 18 

the analysis of IAV was based on basin-wide average anomalies, we believe the impacts of NDVI 19 

abnormal values were greatly minimized. 20 

 21 

Results and discussion 22 

More detailed figure captions are needed for those who might look at the plots first. For example 23 

for Figure 6 given the description in the results I assume each point corresponds to a year here 24 

(therefore the anomalies from figure 2 etc) but if I just look at the plot I am not sure whether in 25 

fact we are looking at the long term trend (change in temperature/NDVI) for each grid box. 26 

 27 
Response: We revised the captions of most figures to improve their readability. 28 

 29 

As stated above, the fact that the regression analysis will include the effects of both IAV and 30 

trends should be discussed. 31 

 32 
Response: According to your comments, we conducted additional trend analyses and added new 33 

results to the revised manuscript.  34 

 35 

The discussion does nicely try to bring all the analysis together to form a clear picture, which is 36 

difficult given all the metrics, time periods and difference between trends and IAV detailed in the 37 

results. The main message is there but at times it’s a bit confusing and needs to be described 38 

more clearly, and the physical reasons could be discussed or emphasised. 39 

 40 
Response: Thanks. We have tried to revise the discussion section to make it easier to follow. 41 

 42 

One main conclusion is that increased temperature SSA is responsible for the increased GSL, but 43 

from what you show earlier that it appears to be the advancing EOS that is increasing the GSL, 44 

but the summertime temperature that appears to be dominating the increase in SSA temperature. 45 

At the same time the summer temperature has a negative relationship with summer NDVI (this 46 
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makes sense as if it’s hotter the vegetation suffers from water stress). This means that you are 1 

implying that increased summer temperature then has a positive effect on the length of the 2 

growing season in the autumn, even if the plant has suffered water stress. This might be shown 3 

further by considering pre-season temperature as well as precipitation in your correlation 4 

analysis? You then show that summer and autumn NDVI is correlated with wintertime (and 5 

autumn) precipitation and this explains why increased temperatures can explain the longer 6 

growing season. I.e. the temperatures overall are increasing in the summer, and despite any water 7 

stress that might decrease magnitude of the NDVI a positive precipitation anomaly helps the 8 

overall trend in temperature. This is despite the lack of trend in precipitation, so this should be 9 

clearly explained. This summary of what’s happening also perhaps explains the lack of 10 

relationship between SSA temp and mean NDVI (i.e. you have a longer GSL but a decreased 11 

summer magnitude contributes to no trend in SSA mean NDVI overall). I feel this kind of 12 
discussion is nearly there but could be more complete. It might be good to examine the 13 

amplitude in your analyses as well to complete the picture. Note also here that it might be worth 14 

stating that by considering summer NDVI you are effectively (mostly I guess) looking at the 15 

NDVI magnitude, whereas the SSA NDVI will include both magnitude and length. 16 

 17 

 18 
Response: Based on results from additional trend analyses, we found that the 30-year significant 19 

positive trends in both EOS and GSL were mainly attributed to the positive trend (although 20 

statistically non-significant) of mean temperature in autumn. Although statistical analysis 21 

suggested that mean temperature in summer was significantly correlated with the variation of 22 

both GSL and NDVI in SSA, we suspect that these relationships were pseudo-relationships and 23 

have no physical meaning given that temperature in summer was strongly negatively correlated 24 

with summertime NDVI. We agree with your comments. Because NDVI in summer was 25 

significantly and negatively correlated with summertime temperature while summertime 26 

temperature had a significant increasing trend during the study period, this may partly have 27 

caused SSA temperature to be uncorrelated with mean NDVI in SSA. We mentioned such a 28 

mechanism in the discussion section of the revised manuscript. 29 

 30 

I would like to see a discussion of whether the vegetation type influences the spatial patterns of 31 

the trends seen, and not just latitude (if you think there is a pattern – but I would be surpised if 32 

there was no effect). Although there was a strong negative trend in all seasons in the SW, this 33 

was not really discussed. 34 

 35 
Response: Thanks for your good comments. At the first stage of this study, we have tried to 36 

summarize vegetation phenological dynamics by vegetation types, i.e., Grass-dominated lands, 37 

shrub-dominated lands and cheatgrass dominated lands (see Figure example below). We have 38 

used to NLCD 2001 data and GLCF land cover data to refine the distribution of these vegetation 39 

types across the Great Basin. However, the summary of vegetation phenology by vegetation 40 

types encountered two challenging questions: First, some scientists argued that there are no 41 
realistic grass-dominated lands in the Great Basin. Second, grasses also exist in the interspace 42 

areas of patchy shrublands. Thus, based on current NDVI data, it is challenging to separate 43 

vegetation signal of grasses from those of shrublands. Later, when we repeat this study, we 44 

ignored vegetation types and summarized NDVI only by the points considered in this study. 45 

Based on our earlier study, it appeared that in some part of the northern Great Basin where 46 
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grasses might be dominant (e.g., especially invasive species cheatgrass, blue points in panel (b) 1 

in the following figure), the magnitude of changing rates in vegetation greenness during the 2 

study period were greater than those in the southern part of the study region, where shrubs are 3 

dominant vegetation types.  4 

 5 

 6 
 7 
Figure. The potential distribution of shrub-dominated, grass-dominated and cheatgrass-8 

dominated lands in the US Great Basin. 9 

 10 
Finally, when you describe changes in trends within the study period, have you used a trend 11 

change point detection method to infer that or is that just by eye? I would suggest that it should 12 

be based on an established method, and if so this needs to be detailed in the methods. Also it 13 

might be good to try and explain why this occurs in terms of any changes in driving variables (as 14 

this is already your aim). 15 

 16 
Response: Similar to determining the long-term (30-year) trend, we also used the Kendall-Tau 17 

approach to analyze the trend in different time intervals during the study period. The change 18 

point was first determined by eye followed by a Kendall Tau trend analysis. We mentioned in the 19 

methods section that the Kendall-tau approach for trend analysis was also applied to different 20 

time-intervals during the study period 1982-2011.  21 

 22 

 23 

Minor points: 24 

P11389 Line 1: rather than saying e.g. forests and water for biotic and abiotic I would suggest 25 

that it’s more accurate to say (biological versus physical). 26 

  27 
Response: We changed “biotic (e.g., forests)” to “biological” and “abiotic (e.g., water) to 28 
“physical” in the revised manuscript. 29 

 30 

Line 9: Might be good to suggest what the implications are for the terrestrial C, W, E, e.g. it 31 

defines the period of C uptake, or the partitioning of sensible and latent heat flux etc. 32 
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 1 
Response: We added some examples in the related text to demonstrate the implications. 2 

 3 

Line 23: See also Poulter et al. 2014 Nature doi: 10.1038/nature13376 and Ahlstrom et al. 2015 4 

Science 348, 895-899  5 

 6 
Response: We cited these two papers in the revised version. 7 

 8 

Line 26: Could you give an example of the consequences for ecosystem services to provide some 9 

context.  10 

 11 
Response: We provided two examples of ecosystem services. They are maintaining livestock and 12 
freshwater. 13 

 14 

P11391 Line 24: Not sure Botta is a good reference for the fact that evergreen forests have little 15 

to no seasonal cycle, even though in her paper there’s no evergreen model because of that reason. 16 

 17 
Response: Thanks for your good comments. We have tried to check but failed to find other 18 

references that might be better to cite here. Botta et al. (2000) clearly stated that “We excluded 19 

the evergreen broadleaf forest biome from our analysis as it has little or no leaf seasonal cycle”. 20 

It is why we cited this paper here.  21 

 22 

P11395 Line 6: What is the mix of vegetation in the pixels? It might be nice to know how much 23 

the signal is affected by trends in a certain vegetation type to try to understand the processes at 24 

play.  25 

 26 
Response: This is a very good but very tough question. Without additional and detailed field 27 

study, it is so hard to answer this question. The NDVI data used in this study depict the overall 28 

greenness at each grid cell. The data do not provide information about how different vegetation 29 

types affect vegetation greenness in a grid cell.     30 

 31 

P11397 Line 21: Sentence restructure: Something like In spring 12% of the points exhibited a 32 

significant negative trend from 1982-2011, and most. . .  33 

 34 
Response: We revised this sentence following your suggestion. 35 

 36 

P11400 Line 17: Fensholt (2012, not 2011) at least also suggests this might be due to 37 

precipitation and not just warming (actually they state ―widely different explanations‖), unless 38 

you’re suggesting it’s an indirect of warming, but I’m not sure we know that? I think it would be 39 

useful to add that in.  40 

 41 
Response: We added Fensholt et al, 2012 in the related citations. 42 

 43 

P11401 Line 1: The discrepancies may also be due to different data processing and time period 44 

considered?  45 

  46 
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Response: Following your suggestion, we revised this sentence. 1 

 2 

P11405 Line 4: I would be surprised if deep roots are the cause for grasses. Are there any studies 3 

that have looked at this for these regions – any observations of soil moisture or groundwater? 4 

Also deep roots would alleviate any effect of higher temperatures on summer NDVI that you 5 

appear to see.  6 

Response: For grasses, we are not quite sure either. For shrubs, theoretically, the deeper the 7 

roots are, the more likely the plants are able to take up soil water from the saturated zone, or 8 

deeper in the vadose zone, and thus moderate the effects of droughts on foliage and vegetation 9 

greenness ( e.g., Smith, S. D., Monson, R. K. & Anderson, J. E. Physiological Ecology of North 10 

American Desert Plants [Springer, Berlin, 1997; Whitford WG 2002 Ecology of Desert Systems, 11 

Elsevier Science, London, 345 pp]).  12 

Line 19: I believe there are quite a number of studies looking at the invasions of non-native 13 

species in grasslands of the US? Could these help your discussion here? Table 1: is STP/PSP one 14 

variable as a ratio? 15 

 16 
Response: Yes, there were several studies focusing on effects of invasive species especially 17 

cheatgrass on vegetation phenology in the US Great Basin. We have cited some of these studies 18 

in our manuscript (e.g., Bradley, B. A. and Mustard, J. F.: 2008, global change biology). We 19 

also contacted some authors for potential vegetation data like the distribution of cheatgrass in 20 

the US great basin. However, it is challenging to separate signals of shrubs from that of grasses 21 

without field observations or more detailed image studies. In addition, there is no precise 22 

information about the distribution of invasive species in the Great Basin. These challenges 23 

require additional studies.  We revised the heading in Table 1 for clarification. Originally, 24 

STP/PSP refers to the corresponding variable could be either STP or PSP. 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 
 35 

 36 

 37 

 38 

 39 

 40 
 41 

 42 

 43 

 44 
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 3 
Anonymous Referee #2 4 
Received and published: 3 October 2015 5 

 6 

General Notes: 7 

As noted by the authors, the phenology of drylands is relatively understudied compared 8 

to deciduous forests, despite the substantial role these ecosystems play in the global 9 

carbon cycle. Here, Tang and colleagues utilize station meteorology and GIMMS NDVI 10 

imagery to assess long-term trends in phenological indices (SOS, EOS, and GSL) and 11 

vegetation greenness (mean NDVI) in the US Great Basin region, as well as the relative 12 

importance of temperature and precipitation in explaining their interannual variability. 13 

The central findings are that GSL has extended at the rate of 3 days per decade due to 14 

delayed autumn senescence, driven largely by increases in mean seasonal temperature, 15 

but variability in vegetation greenness is better explained by precipitation variabil- 16 

ity, in particular preseason precipitation (DJF). The analysis is well devised, and the 17 

paper is very well written. The paper would be improved, in my opinion, if the authors 18 

attempted to connect their results with the carbon cycle and/or future climate changes, 19 

even if it were only informed speculation. I also wonder about the extensive spatial 20 

averaging and the lack of analysis of local weather/phenology relationships (do the relationships 21 
hold at the station-level?). Despite these shortcomings, I think this is a nice 22 

contribution to the literature and would support its publication. 23 

 24 
Response: Thanks for your positive comment. In terms of how shifts in vegetation phenology will 25 

affect or have affected carbon cycle and how future climate change will affect vegetation 26 

phenology in the semiarid and arid ecosystems of the US Great Basin, additional study is needed 27 

to answer these questions. As far as the relationship between vegetation phenology and local 28 

weather at the station level is concerned, some of our results (e.g., Fig. 4b, c, d) suggest that the 29 

basin-wide average relationship between vegetation phenology and regional climate change may 30 

not always apply at the local scale due to the spatial heterogeneity of climate condition 31 

(including both temperature and precipitation) across the study region.  32 

 33 

Specific Notes: 34 

- Why would you consider both SOS_SSA and SOS_Spring models (e.g. Table 2)? 35 

Since SSA is calculated over spring, summer, and autumn Temperatures, the difference 36 

between Spring T and SSA are FUTURE temperatures, right? 37 

 38 
Response: The main reason for calculating the relationships between SOS and spring 39 

temperature as well as between SOS and SSA temperature is because changes in GSL are subject 40 

to both SOS and EOS. Thus, quantifying the relationship between spring temperature and GSL 41 

will help us understand how changes in spring temperature (e.g., spring warming) are likely to 42 

affect GSL. Sorry, we are a bit confused about the meaning of the statement of “the difference 43 

between Spring T and SSA are FUTURE temperatures”. 44 

 45 

- The rates of mean NDVI increase are quite small (e.g. 5e-4), and so would only 46 

contribute to an increase of 0.015 over the 30 year period. This seems very slight, is it 47 
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ecologically significant? Of course, it is consistent with the magnitudes noted by other 1 

authors like Fensholt. 2 

 3 
Response: Thanks for coming up with such a very good and tough question. First, the 4 

magnitudes of NDVI are between 0 and 1.0. In semiarid and arid ecosystems of the Great Basin, 5 

the NDVI values of ecosystems at lower elevation zone are mostly less than 0.30. Generally, 6 
because the magnitudes of NDVI values are low, the resulting changing rate from one year to the 7 

next is also very small. Whether or not such small changes in NDVI values are ecologically 8 

significant, we need to conduct additional study to answer it. However, a model-based study 9 

(Tang et al., 2015 in review by Ecohydrology) suggested that changes in leaf area index (LAI) in 10 

semiarid and arid mountain watershed in the Great Basin can greatly affect soil moisture 11 

condition and the exchange of water fluxes between the atmosphere and the land despite the 12 
relatively low values in NDVI, indicating that even these small changes can have a significant 13 

impact in arid ecosystems. 14 

 15 

- How well do the splines fit? Sometimes they can go "off the rails" and interpolate 16 

much higher/lower NDVI values, especially in the presence of missing data. 17 

 18 
Response: Good question! In our study, because we focused on NDVI values from March to 19 

November, missing data were rare. At each of the 4145 points considered in this study, time 20 

series of bi-weekly NDVI values are generally continuous. Because NDVI values are continuous, 21 

the interpolation of bi-weekly NDVI values into daily values by cubic spline functions rarely 22 

caused the interpolated values to fall out of the range of original high and low NDVI values. 23 

 24 

Technical Notes 25 

- P11388, L25: Since vegetation would presumably respond to climate change regardless 26 

of its cause, I’d suggest "climate change" instead of "anthropogenic climate, 27 

change" 28 

 29 
Response: Changed “anthropogenic climate change” to “climate change” 30 

 31 

- P11389, L8-9: Unclear what "consequent information" means here, perhaps: "Consequently, 32 

phenological information has important applications..." 33 
 34 

Response: Thanks! We changed “Consequent information” to “Consequent information – such 35 

as climate change-associated shifts in vegetation phenology and biogeochemistry –” 36 

 37 

- P11389, L22: "and ARE particularly sensitive" 38 

 39 
Response: Thanks! We changed “particularly sensitive” to “are particularly sensitive”. 40 

 41 
- P11392, L1-5: Which version of the GIMMS dataset? 42 

 43 
Response: We revised the related text. The data used in our study is GIMMS NDVI3g. 44 

 45 

- P11393, L24: The acronym "SSA" was defined in the abstract, but not in the main 46 
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text before its use here, it wouldn’t hurt to do so. 1 

 2 
Response: Actually, the “SSA” was defined in line 14 on page 11392. In the revised manuscript, 3 

we changed “considered the period of March to November (i.e., spring, summer, autumn and 4 

hereafter SSA)” to “considered the period of March to November (i.e., hereafter SSA).” 5 

 6 

- P11397, L21: Change "points were exhibited" to "points that exhibited" or similar 7 

 8 
Response: Thanks! We changed “points where exhibited” to “points that exhibited” 9 

 10 

- P11399, L1: Probably not "surprising" since it was the implicit hypothesis 11 

 12 
Response: We deleted “Surprisingly” in the revised manuscript. 13 

 14 

- P11401, L4-7: Wouldn’t these spatial differences argues for a more spatially explicit 15 

analysis (i.e. less extensive spatial averaging)? If altering the study are slightly would 16 

change the sign of a regression coefficient, and the inference based on that relationship, 17 

what does that say about the robustness of the findings? 18 

 19 
Response: We agree with your comment. Due to the complexity of environmental factors in 20 

affecting vegetation phenology, a more spatially explicit analysis is likely to help answer how 21 

local environmental condition may affect vegetation phenology. To some degree, changing the 22 

extent of study region is likely to alter the sign of relationship between climate and vegetation 23 

phenology. Nevertheless, our study focused on regional-scale relationship between vegetation 24 

phenology and climate change.  Because of the homogeneity of regional warming and because 25 

changes in precipitation at regional scale are mainly determined by large-spatial scale 26 

atmospheric circulation, we believe that the overall relationship between vegetation phenology 27 

and climate change we observed for the Great Basin is robust. 28 

 29 

- P11401, L15: What is meant by "ameliorate soil moisture conditions"? 30 

 31 
Response: Thanks! We changed “ameliorate soil moisture conditions” to “increase soil moisture 32 

content” 33 

 34 

- P11402, L23-27: But you have the station-data to test whether or not the local trends 35 

are consistent with their local climatic variation, right? 36 

 37 
Response: Yes, we do have field observations of time series daily precipitation. Our initial 38 

analysis of daily precipitation across 100 field stations suggested that precipitation indeed varies 39 

spatially in the study region. We are currently working on another paper focusing on the 40 

variation of daily precipitation and precipitation extremes in the Great Basin. Even though we 41 
acknowledge this to be an important point we felt it was outside the scope of our current paper 42 

that deals with large-scale regional patterns 43 

 44 

- P11403, L1: Suggest changing "agreed well" to "were consistent" Saying that the observations 45 
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"agreed" with the ground observations implies that their interannual variations are consistent. 1 

The datasets could share a lack of long-term trend without "agreeing" at all. 2 

 3 
Response: Thanks! We changed “Agreed well” to “were consistent” in the revised manuscript. 4 

 5 

- P11403, L15-17: Stronger warming at higher latitudes may be only one of multiple 6 

factors leading to contrasting Northern Hemisphere SOS results, vegetation assemblages 7 

are also different, for instance. 8 

 9 
Response: Thanks for your good comments! 10 

 11 

- P11405, L17: Suggest changing "we are lack of" to "we lack" 12 
 13 
Response: We changed “we are lack of” to “we lack of” by deleting “are”. 14 

 15 

- Table 1: There are two AIC columns with the heading: "STP/PSP", should one be 16 

"SMT/PSP"? 17 

 18 
Response: Sorry for the confusion. Originally, the heading “STP/PSP” means that precipitation 19 

may be either seasonal total precipitation or pre-season precipitation”. We revised Table 1 for 20 

clarity. 21 

 22 

- Table 1: footnote: "minimum" would be better than "smaller" in this case since smaller 23 

could be interpreted as "closer to zero" rather than "most negative" Also on P11404 L25 24 

 25 
Response: Thanks! For clarity, we changed “the smaller the AIC values are” to “the smaller the 26 

magnitude of the AIC value is”. 27 

 28 

- Table 3: It’s clear from Table 3’s footnote, but not the text, that PSP refers to DJF 29 

precipitation. This should be in the text, in my opinion. 30 

Response: Thanks. PSP was defined as “Pre-season precipitation” in the main text (line 17 on 31 

page 11399 in the earlier version of this manuscript). In most cases, PSP refers to DJF 32 

(December, January and February) precipitation. However, there are cases where PSP refers to 33 

seasonal precipitation such as spring.   34 

 35 

 36 

 37 

 38 
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Abstract 1 

We quantified the temporal trend and climatic sensitivity of vegetation phenology in dryland 2 

ecosystems in the U.S. Great Basin during 1982–2011. Our results indicated that vegetation 3 

greenness (Normalized Difference Vegetation Index, NDVI) in the Great Basin increased 4 

significantly during the study period, and this positive trend occurred in autumn but not spring 5 

and summer. Spatially, increases in vegetation greenness were more apparent in the northwestern, 6 

southeastern, and eastern Great Basin but less apparent in the central and southwestern Great 7 

Basin. In addition, the start of growing season (SOS) was not advanced while the end of growing 8 

season (EOS) was delayed significantly at a rate of 3.0 days per decade during the study period. 9 

The significant delay in EOS and lack of earlier leaf onset caused growing season length (GSL) 10 

to increase at a rate of 3.0 days per decade during 1982–2011. Interestingly, we found that the 11 

[interannual?] variation of mean vegetation greennessNDVI in calculated for the period of March 12 

to November (spring, summer, autumn: SSA) was not significantly correlated with its mean 13 

surface air temperature measured during SSA but was strongly correlated with the its total 14 

amount of precipitation that fell in that period. Seasonally, the variation of mean vegetation 15 

greenness in spring, summer, and autumn was mainly attributable to changes in pre-season 16 

precipitation in winter and spring. Nevertheless, climate warming (0.6°C [?] from 1982 to 2011) 17 

appeared to played a strong role in extending GSL that in turn resulted in the upward trend in 18 

mean vegetation greennessNDVI during 1982–2011. Overall, our results suggested that changes 19 

in wintertime and springtime precipitation played a stronger role than temperature in affecting 20 

the interannual variability of vegetation greenness, while climate warming was mainly 21 

responsible for the 0.02 [?] point increase in NDVI observed in Great Basin dryland ecosystems 22 
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during the 30-year period of upward trend in [the magnitudes of] mean vegetation greenness in 1 

the dryland ecosystems during 1982 to –2011. 2 

Keywords: Phenology, greenness, leaf senescence, growing season length, climate sensitivity, 3 

dryland ecosystems 4 
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1 Introduction 1 

Shifts in plant phenology (e.g., greenness and spring leaf onset) resulting from climate 2 

change can affect the cycling of carbon, water, and energy between the biosphere and 3 

atmosphere (Wu and Liu, 2013), the availability of biological and physical resources (White and 4 

Nemani, 2011), and the best practices for managing these resources for production of fiber and 5 

food to sustain human life (Butt et al., 2011). Quantifying the spatiotemporal dynamics of plants 6 

phenology – such as long-term trend in vegetation greenness,  the start of growing season (SOS), 7 

end of growing season (EOS), and growing season length (GSL) – and their climatic sensitivity 8 

can enable us to assess climate change impacts on terrestrial vegetation dynamics (Soudani et al., 9 

2011) and ecosystem biogeochemistry (Brown et al., 2010). Consequent iInformation – such 10 

asabout climate change-associated shifts in vegetation phenology and biogeochemistry – in turn 11 

has important implications (e.g., defining the period of carbon uptake) for more accurate 12 

prediction of terrestrial water, carbon, and nutrient cycles in Earth system, climate, and 13 

ecosystem models (e.g., Piao et al., 2011).   14 

Existing phenological studies mostly focus on regions with low evergreen cover such as 15 

temperate deciduous forests (e.g., Nagai et al., 2010) or where terrestrial ecosystems may be 16 

particularly sensitive to climate warming such as boreal and arctic regions (e.g., Zhang et al., 17 

2011). Only Aa few studies have focused on quantifying plant phenological responses in 18 

semiarid and arid (hereafter dryland) ecosystems to climate variability and recent climate 19 

warming (e.g., Bradley and Mustard, 2008; Zhang et al., 2010; Fensholt et al., 2011). Although 20 

terrestrial carbon sequestration was has been considered to be relatively low in dryland 21 

ecosystems, these ecosystems cover almost 40% of Earth’s land area (UNDP/UNSO, 1997) and 22 

account for nearly 20% of the global soil carbon pool (Field et al., 1998; Lal, 2004). They also 23 
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may be buffering anthropogenic CO2 rise more than expected (Jasoni et al., 2005; Hastings et al. 1 

2005; Wohlfahrt et al., 2008; Poulter et al. 2014; Ahlström et al., 2015; ) and are particularly 2 

sensitive to both climatic variation (Jasoni et al. 2005; Wohlfahrt et al. 2008) and increasing 3 

atmospheric CO2 concentrations (Jasoni et al., 2005; Notaro et al., 2011; Poulter et al., 2014; 4 

Ahlstrom et al., 2015). Hence, quantification of the responses of dryland plant phenology to 5 

climate variability at the regional scale is needed to improve forecasting of shifts in ecosystem 6 

functioning and consequences for ecosystem services including (e.g., maintaining livestock 7 

grazing, wildlife habitat, freshwater etc.and modulation of atmospheric CO2) that drylands 8 

provide. 9 

Furthermore, climate warming has been widely accepted as the major driver responsible for 10 

the general increase in vegetation greenness, the earlier SOS, the delayed EOS, and the extension 11 

of GSL that have occurred in the Northern Hemisphere during the past few decades (e.g., Piao et 12 

al., 2011; Hmimina et al., 2013). These findings, though, mainly apply to mesic ecosystems 13 

where water is often not limiting for vegetation growth. In dryland ecosystems, water is scarce 14 

and the availability of water strongly controls plant seed germination, growth, and reproduction 15 

(e.g., Bradley and Mustard, 2005). Although some studies indicated that precipitation plays an 16 

important role in affecting vegetation greenness (e.g., Wu and Liu, 2013) and SOS (e.g., Cong et 17 

al., 2013) in temperate deserts, it is still unclear if the role of precipitation is as strong as, or even 18 

stronger than, that of temperature in controlling some aspects of plant phenological dynamics in 19 

dryland ecosystems. Improved understanding of the role of precipitation in affecting or 20 

controlling plant phenology in dryland ecosystems is critical for accurate quantification of 21 

terrestrial carbon, water, and plant community dynamics under changing climatic conditions.   22 
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Therefore, the objectives of this study were to utilize the dryland ecosystems at lower 1 

elevation zones of the U.S. Great Basin (Fig. 1) to (i) quantify long-term trends in mean 2 

vegetation greenness (represented by Normalized Difference Vegetation Index (NDVI)), SOS, 3 

EOS, and GSL in the dryland ecosystems that may have occurred during the most recent 30 4 

years of climate warming; (ii) explore the spatial variation of long-term trends in vegetation 5 

greenness; (iii) and examine the climatic sensitivity of trends and variation of vegetation 6 

phenology in the study region. To meet these objectives, we utilized satellite-based NDVI data 7 

because they enable us to quantify the synoptic and landscape pattern of vegetation phenology 8 

(White et al., 2009) as well as its long-term temporal dynamics (Studer et al., 2007). Time series 9 

of weather records (temperatures and precipitation) were used to analyze climatic sensitivities of 10 

vegetation phenology in the study region. 11 

2 Materials and Methods 12 

2.1  Study region 13 

The Great Basin is located in the western United .States. and encompasses the majority of 14 

Nevada (NV), western Utah (UT), and parts of California (CA), Oregon (OR), Idaho (ID), 15 

Montana (MT), and Arizona (AZ) (Fig. 1a). It is bordered by the Sierra Nevada Range on the 16 

west, the Rocky Mountains on the east, the Columbia Plateau to the north, and the Mojave and 17 

Sonoran deserts to the south. The hydrographically defined Great Basin includes the northern 18 

Mojave Desert (Grayson, 2011). Lying in the rain shadow of the Sierra Nevada mountain range, 19 

the Great Basin is the driest region in the U.S. and experiences extremes of weather and climate 20 

that are not normally found elsewhere in the U.S. (Houghton et al., 1975). Most precipitation 21 

falls in the winter. Climate conditions inside the Great Basin vary by elevation and latitude, and 22 

most of the Basin experiences a semiarid or arid climate with warm summers and cold winters.  23 
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Land cover types in the Great Basin are diverse because of topographic and local climatic 1 

heterogeneity. The predominant flora in the Great Basin consist of shrubs such as Artemesia 2 

tridentata (sagebrush), Ericameria nauseosa (rabbit brush), Sarcobatus vermiculatus 3 

(greasewood); grasses such as Achnatherum hymenoides (Indian rice grass), Bouteloua 4 

curtipendula (Sideoats grama); evergreen trees such as Pinus monophylla (pinyon pine) and 5 

Juniperus osteosperma (Utah juniper); as well as invasive species including Bromus tectorum 6 

(cheatgrass). In contrast to shrubs and grasses that are mostly present in valleys, evergreens are 7 

mainly located in mountain ranges and at higher elevations. Because evergreen forests have little 8 

or even no visible leaf seasonal cycle (Botta et al., 2000), they were excluded from this study 9 

(see below). 10 

2.2  Satellite-based vegetation indices and data processing 11 

We used the global inventory monitoring and modeling studies (GIMMS) NDVI3g data to 12 

examine the long-term trends in vegetation greenness and phenology. The GIMMS NDVI data 13 

were derived from the NOAA Advanced Very High Resolution Radiometer (AVHRR) series 14 

satellites (NOAA 7, 9, 11, and 14) and span from January 1982 to December 2011 (Tucker et al., 15 

2005). These data are at bi-weekly temporal and 8 km spatial resolution. The data also were 16 

corrected to remove known non-vegetation effects caused by sensor degradation, clouds, and 17 

stratospheric aerosols loading from volcanic eruptions (Tucker et al., 2005). The GIMMS NDVI 18 

data have been widely used to quantify long-term trends in vegetation phenology and its 19 

relationships to climatic variability at global and continental scales (e.g., Brown et al., 2010; 20 

Zhang et al., 2010; Cong et al., 2013). Given that snow cover can affect NDVI values, our 21 

analysis excluded winter (December, January and February) and only considered the period of 22 

March to November (i.e., hereafter SSA).  23 
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To accurately quantify how vegetation phenology in the Great Basin may have changed and 1 

responded to climate change during the study period, we refined our study areas based on the 2 

Global Land Cover Facility (GLCF) 8 km land cover data (Hansen et al., 2000) and the National 3 

Land Cover Database (NLCD) 2001 (Homer et al., 2007). We first excluded areas where 4 

evergreen trees predominated in both GLCF and NCLD 2001. In addition, we excluded lakes, 5 

urban areas, and cultivated lands defined in either GLCF or NLCD 2001, the phenology of which 6 

depends largely on management practices (i.e., irrigation) and crop types. As a result, only lands 7 

areas where shrubs/grasses were predominant in both GLCF and NLCD 2001 (Fig. S1 in 8 

Supporting Information) were considered. Finally, we excluded areas located at relatively high 9 

elevations (>2100 m), and only selected those at lower elevations (<2100 m; areas where over 85% 10 

of shrubs and grasses are located according to GLCF data) for our analysis (Fig. S1). Fig. 1b 11 

shows the distribution of NDVI points considered in this study.  12 

2.3 Weather data and processing 13 

We generally followed the same procedure of acquiring and processing weather data as 14 

described in Tang and Arnone (2013). Briefly, we collected time series of daily minimum and 15 

maximum temperatures as well as total precipitation from 126 weather stations that are or were 16 

historically located within the Great Basin. These stations included the Cooperative Observer 17 

Program Stations (COOP), the Remote Automated Weather Stations (RAWS), the SNOwpack 18 

TELemetry (SNOTEL) weather stations, and Nevada Test Site (NTS) stations (Fig. 1a). The 19 

selection of 126 stations was based on two criteria: first, selected stations had to have at least 24 20 

years of records (80% of coverage of our study period) for each of 12 months during the period 21 

of interest in this study; second, selected stations had to be located near selected NDVI points 22 

(Fig. 1b). Stations located inside developed areas (e.g., residential), and cultivated land or near 23 
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urban areas/cities were excluded to maximize the accuracy of climatic sensitivity analysis of 1 

vegetation phenology.  2 

In addition, fFor each of the selected stations during the period of interest, daily weather 3 

records that exceeded the long-term (1982–2011) mean of all available records from that station 4 

by four standard deviations (for temperature) or greater than 500 mm (for precipitation) were 5 

manually checked or removed on a case-by-case basis (Tang and Arnone, 2013). We plotted and 6 

visually compared derived time series of monthly minimum and maximum temperatures at each 7 

station with those from neighboring stations to further check data inhomogeneity (e.g., Peterson 8 

et al., 1998). Daily mean temperature for each station and each day was calculated as the mean of 9 

recorded daily minimum and maximum temperatures. Based on these daily values, we calculated 10 

mean temperatures for each month, season, and SSA. We used daily total precipitation values 11 

from each station to calculate precipitation sums for each month, season and SSA at each of the 12 

selected stations.  13 

2.4  Characterization of temporal dynamics and climatic sensitivities of plant phenology 14 

To quantify long-term trends in vegetation greenness, SOS, EOS, and GSL, we first 15 

interpolated the bi-weekly series GIMMS NDVI3g data for all points considered in this study 16 

into daily time-step values using a cubic spline interpolation approach. Based on interpolated 17 

daily NDVI values, we followed the midpoint-pixel method (White et al., 2009) to define SOS, 18 

EOS, and GSL for each NDVI point (Fig. 1b). Instead of using a global threshold, the midpoint-19 

pixel approach uses a locally tuned NDVI threshold to define SOS. This metric has been 20 

demonstrated (e.g., White et al., 2009) and also initially tested (see below for detail) to be 21 

suitable for semiarid and arid regions. In the midpoint-pixel approach, the state of the ecosystem 22 

is indexed by transforming the NDVI to a 0 to 1           as: 23 
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                                                                                                 (1) 1 

where NDVI is the interpolated daily NDVI value in a year; and         and         are the 2 

maximum and minimum of the NDVI curve. Thus, SOS can be defined as the day of year when a 3 

          of 0.5 is exceeded because the 0.5 value is often considered to correspond to timing of 4 

the most rapid increase in NDVI or to the initial leafing of the overstory canopy (White et al., 5 

2009). In our study, we defined SOS as the date in a year when the daily           becomes 6 

greater than 0.5 for six consecutive days in ascending order, and EOS as the date in a year when 7 

the daily           becomes less than 0.5 for six consecutive days in descending order. Annual 8 

GSL was calculated as the difference between EOS and SOS. Our initial comparison of SOS 9 

based on the midpoint-pixel method with that based on observed breaking leaf buds data (USA 10 

National Phenology Network (USA-NPN), 2010) for the study region justified the suitability of 11 

this metric in the study region (Fig. S2). 12 

The nonparametric Kendall’s tau ( ) based slope estimator (Sen, 1968) was used to compute 13 

long-term (1982–2011) or short-term (i.e., a shorter period during 1982–2011) trends in four 14 

phenological indices: vegetation greenness, SOS, EOS, and GSL based on their Basin-wide 15 

averaged anomalies.  We also used this metric to calculate the trends of vegetation greenness at 16 

each of NDVI points to examine the spatial variation of trends of vegetation greenness during 17 

1982–2011. The Kendall’s tau method does not assume a distribution for residuals and thus is 18 

insensitive to the effect of outliers in time-series data. The two-tailed P-values at the 95% 19 

(significant) or 90% (marginal significant) confidence levels were used to test the significance of 20 

trends.  21 

This study followed the same procedure described in Tang and Arnone (2013) to calculate a 22 

single value for each phenological index for the entire Basin. Briefly, we first divided the basin 23 
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into 1.34° × 1.34° boxes to make a total of 37 boxes, each of which (except one) contained at 1 

least one weather station (Fig. 1a). We calculated anomalies for each index for each month, 2 

season, and SSA at each location (e.g., a NDVI point) against its 30-year arithmetic mean, 3 

respectively. We then averaged all anomalies within a box to obtain the box anomaly for each 4 

index for each month, season, and SSA. Finally, the resultant box anomalies for each index are 5 

averaged to obtain its Basin-wide average. The goal of using this approach was to minimize 6 

effects of clustered points on the Basin-wide averaged values for each month, season, and SSA. 7 

The above approaches outlined above also were also applied to temperature and precipitation 8 

indices.   9 

Based on basin-wide averaged anomalies, we analyzed the sensitivity of vegetation 10 

phenology to changes in temperature and precipitation through the univariate linear regression 11 

approach largely because temperature and precipitation correlate/interact with each other. The 12 

purpose of this analysis iwas to examine which variable alone (temperature or precipitation) can 13 

better explain the interannual variability of vegetation phenology during 1982–2011.  The 14 

Akaike Information Criterion (AIC; Akaike, 1974) was used to determine the goodness fit of a 15 

univariate linear regression model. In addition, multivariate regression models based on 16 

temperature, precipitation and their interaction were developed to analyze the contribution of 17 

variation in temperature, precipitation and their interaction to the variations of vegetation 18 

phenology during 1982–2011. We used the metric proposed by Lindeman, Merenda and Gold 19 

(LMG; Grömping, 2006) to quantify the relative importance of each regressors (e.g., temperature, 20 

precipitation and their product) in controlling the variation of vegetation phenology in the study 21 

region. The LMG metric considers both the direct effects of an independent variable (e.g., 22 

temperature) on a dependent variable (e.g., greenness) and its indirect effects adjusted by other 23 
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independent variables (e.g., precipitation) in a multivariate regression model and thus is suitable 1 

for comparing the contribution of variation in temperature and precipitation as well as their 2 

interaction  to variations in vegetation phenology.  3 

3 Results 4 

3.1 Long-term trends in vegetation greenness and corresponding climatic conditions 5 

When averaged for the period of March to November (i.e., SSA), both mean NDVI and mean 6 

surface air temperature in SSA in the dryland ecosystems increased significantly during the 7 

period 1982–2011 (Fig. 2a, b) while total precipitation in SSA showed no significant trend 8 

during the study period (Fig. 2c). The rate of increase was about 5×10
-4

 (p<0.04) units per year 9 

in NDVI and 0.2 C (p<0.09) per decade in temperature during 1982–2011. Although mean 10 

NDVI in SSA increased during the 1982–2011 period, this long-term positive trend contained 11 

shorter periods of increases or decreases in NDVI (Fig. 2a). For example, mean NDVI in SSA 12 

decreased significantly (p<0.01) from 1986 to 1992 and then increased significantly (p<0.01) 13 

from 1992 to 1998 (Fig. 2a). Similarly, even thoughthe long-term positive trend in mean surface 14 

air temperature showed a long-term positive trend and total precipitation showed no trend in total 15 

precipitation in SSA both air temperature and precipitation also comprised  displayed shorter 16 

periods of significant increases or decreases (Fig. 2b, c). 17 

Seasonally, seasonal mean vegetation greennessNDVI in autumn (Fig. 3c) increased 18 

significantly (p<0.01) while greenness NDVI in spring and summer (Fig. 3a, b) had showed no 19 

significant (p>0.13) trend during the 1982–2011 period. Seasonal mMean temperature in spring 20 

and autumn (Fig. 3d, f) showed no significant (p>0.19) trend while seasonal mean temperature in 21 

summer (Fig. 3e) increased significantly (p<0.02) during the 30-year period 1982–2011. 22 

Compared to seasonal mean temperaturesIn contrast, seasonal total precipitation in spring, 23 
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summer and autumn had showed no significant trends (p>0.13) from 1982 to 2011 (Fig. 3g, h, i). 1 

[What about winter precipitation--pre-growing season?? Would be good to include this.] 2 

During the 30-year observation period, The seasonality of NDVI, temperature, and 3 

precipitation also varied at different time intervals during 1982–2011showed a number of 4 

shorter-term trends that differed by season. For example, mean springtime NDVI decreased from 5 

1986 to 1992 (Fig. 3a) whereas mean autumn NDVI increased from 1992 to 1998 (Fig. 3c). In 6 

addition, although summertime NDVI showed no significant trend during the period 1982–2011, 7 

it decreased significantly (p<0.01) from 1982 to 1994 and from 1995 to 2008 (Fig. 3b).  8 

3.2  Spatial heterogeneity of long-term trends in vegetation greenness 9 

Our results indicated that mean SSA NDVI in SSA in 39% of the total points (4154) 10 

considered in this study had significant (p<0.05) predominantly positive trends during 1982–11 

2011. These points with significant trends were concentrated located in the northwestern, 12 

southern, and eastern Great Basin (Fig. 4a). The rates of increase in mean NDVI in SSA also 13 

increased as latitude and longitude increase (Fig. S3). In the central Great Basin, points showing 14 

significant long-term trends in NDVI were sparse (Fig. 4a). In addition, both positive and 15 

negative trends in mean NDVI in SSA were observed. The number of points where NDVI had a 16 

positive trend, however, was triple (30%) of those showing a negative trend (10%). The points 17 

with a positive trend , which were concentrated in the southwestern corner part of the study 18 

region or areas near the southern part of Sierra Nevada Mountains and the Death Valley. Overall, 19 

points showing significant trends in NDVI in the Great Basin were dominated by the positive 20 

trend during the 1982–2011 period (Fig. 4a), especially in northwestern, eastern, and 21 

southeastern Great Basin.  22 
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Seasonally, the areas where springtime mean NDVI exhibited a positive trend from 1982 to 1 

2011 only accountsed for 11%, most of which occurred in the northwestern and eastern Great 2 

Basin (Fig. 4b). In the southeastern Great Basin, however, there was still a large portion of areas 3 

where NDVI in spring that showed a significant positive trend (Fig. 4b). In addition, in spring 12% 4 

of all the total points exhibited a significant negative trend from 1982 to 2011 and most of these 5 

points were distributed along a corridor that extends from southwest to northeast of the Great 6 

Basin or from areas near the eastern side of the Sierra Nevada mountains to the central and 7 

northern Great Basin (Fig. 4b).  8 

Summertime mean NDVI showed a significant positive trend in only 9% of the total points 9 

considered in this study, and these points were scattered across the Great Basin (Fig. 4c). In 15% 10 

of areas considered in this study, summertime mean NDVI decreased during 1982–2011 (Fig. 11 

4c), and most of these points were concentrated in the southern and southwestern Great Basin 12 

(Fig. 4c) and near the eastern side of the Sierra Nevada mountains. Autumn mean NDVI 13 

increased in 31% of areas during the years 1982–2011 and these increases mostly occurred in the 14 

northwestern, eastern, and southeastern Great Basin (Fig. 4d). As in other seasons, there still 15 

were points where autumn vegetation greenness decreased significantly during the 1982–2011 16 

period, but these points were less than 9% of the total points considered in our study (Fig. 4d) 17 

and mostly concentrated near the eastern side of the Sierra Nevada Mountains. 18 

3.3  Variation of SOS, EOS, and GSL in the Great Basin 19 

Based on the GIMMS NDVI data, the values of the start of growing season (SOS) in 20 

theviewed across the dryland ecosystems of the Great Basin showed no significant (p=0.59) 21 

trend during 1982–2011 (Fig. 5a), indicating that spring leaf onset was not significantly 22 

advanced changed during the study period. In contrast, the end of growing season (EOS) 23 
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increased significantly at a rate of 3.0 (p<0.002) days per decade during 1982–2011 (Fig. 5b), 1 

suggesting that the timing of leaf senescence in the dryland ecosystems was delayed significantly 2 

during these years. The non-significant trend toward earlier leaf onset and a significant delay in 3 

leaf senescence extended the growing season length (GSL) at a rate of 3.0 (p<0.05) days per 4 

decade in the dryland ecosystems during 1982–2011 (Fig. 5c).  5 

In addition to these 30-year long-term trends, we observed significant interannual variations 6 

in these phenological indicators. For example, the SOS varied on average from Julian day 90 to 7 

111 Julian days, EOS varied from Julian day 271 to 295 Julian days, and GSL varied from Julian 8 

day 164 to 196 days. Also, the timing of leaf- out and leaf senescence, as well as GSL, did not 9 

change monotonically during the 30-year observation period. We also observed sShorter-term 10 

(decadal or sub-decadal) trends  within the 30-year observation periodwere evident however. For 11 

example, SOS decreased significantly during the 1982–1990 period while but increased 12 

significantly during the 1994–2011 period (Fig. 5a).  13 

3.4  Climatic sensitivities of vegetation greenness in the Great Basin 14 

There was no significant relationship (p=0.53) between the variation of mean annual SSA 15 

NDVI and mean annual SSA surface air temperature in SSA for the non-evergreen lower 16 

elevation ecosystems dominated by shrubs and grasses (Fig. 6a). In contrast, the interannual 17 

variability of mean annual SSA NDVI in SSA was significantly and positively correlated with 18 

the variation of its total annual SSA precipitation (Fig. 6b). Vegetation greenness (NDVI) tended 19 

to increased by 2.0 x10
-4

 (p<0.02) NDVI units per year when while total annual SSA 20 

precipitation in SSA increased by and average of 1% per year (about 2.83 mm year
-1

). The 21 

calculated AIC values (The smaller the AIC value is, the better a univariate regression model fits; 22 

Fig. 6) also indicated that the interannual variation of in total SSA precipitation can better 23 
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explained the interannual variability of observed in mean vegetation greenness in SSA NDVI 1 

during the 1982–2011 period.  2 

Further analyses based on the long-term trends of both mean annual NDVI and temperature 3 

in SSA suggested, however, that the positive trend of increase in mean annual SSA temperature 4 

in SSA duringobserved 1982–2011 (Fig. 2b) was mainly responsible for the upward trend in the 5 

magnitudes of increase in mean annual [SSA?] NDVI (Fig. 6c), which increased by 0.01 6 

(p<0.001) units per year when while the magnitude of mean annual SSA temperature increased 7 

by 1C. In contrast, the analyses based on the trends of both mean annual SSA NDVI and mean 8 

total annual [SSA] precipitation in SSA indicated that precipitation did not play a significant 9 

(p=0.64) role in leading to causing the long-term upward trend in the magnitudes of mean annual 10 

SSA NDVI seen during the study period (Fig. 6d). 11 

Seasonally, the Iinterannual variability of in mean summertime mean NDVI was strongly and 12 

negatively related to the variation of summertime mean temperature (p<0.02) but was not 13 

significantly correlated with the variation of summertime total precipitation (Table 1). In spring 14 

and autumn, the variation of seasonal mean NDVI was not significantly (p>0.15) related to the 15 

variations of in both either seasonal mean temperatures (Fig. 7a) and or seasonal total 16 

precipitation, respectively (Table 1 and Fig. 7a).  Nevertheless, the long-term positive trend of 17 

mean NDVI in autumn was significantly correlated with the upward trend of autumn temperature 18 

although the trend in autumn temperature was statistically nont -significant (Fig. 3c and Fig. 7b).  19 

Compared to temperatures, tThe variation of Mean summertime mean NDVI was positively 20 

related to pre-growing season springtime precipitation sums (PSP) in the spring (p<0.001), 21 

however while the variation of seasonal mean spring NDVI was not significantly correlated with 22 

pre-growing season precipitation in spring and mean autumn NDVI was not significantly 23 
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correlated with was not significantly correlated with its pre-season precipitation in winter and 1 

summer precipitation, respectively (Table 1). In addition, the variation of seasonal mMean 2 

summertime and mean autumn NDVI were both strongly correlated with wintertime 3 

precipitationin summer and autumn also was strongly correlated with the variation of wintertime 4 

precipitation (Fig. 8). Overall, the calculated AIC values (Table 1) suggested that precipitation in 5 

winter and spring played a more important role than temperature in controlling the interannual 6 

variability of seasonal mean spring, summer, and autumn vegetation greenness in spring, 7 

summer, and autumn (Table 1).  8 

3.5 Climatic sensitivities of vegetation phenology in the Great Basin 9 

Our results indicated that the interannual variability of SOS was significantly (p<0.001) 10 

related to the variation of mean spring temperatures during the study period (Table 2). The 11 

timing of spring leaf-out tended to occur earlier by 2.7 days per year when springtime mean 12 

temperature increased by 1 C (Table 2). In contrast, the interannual variability of EOS was not 13 

significantly (p=0.43) correlated with the variation of seasonal mean temperature in autumn 14 

during the study period (Fig. 7c). As a result, the interannual variation of GSL was positively 15 

correlated with the variation of mean temperature in spring and SSA, although the correlation in 16 

spring was only marginally significant (p<0.10) at the 90% confidence level.  17 

Although the variation of annual EOS was not significantly correlated with the variation of 18 

mean autumn temperature in autumn (Fig. 7c), the 30-year trend of in EOS was significantly 19 

(p<0.001) correlated with the trend of mean temperature in autumn during 1982–2011 (Fig. 7d). 20 

Similarly, although the variation of GSL was not significantly correlated with the variation of 21 

mean temperature in autumn (Fig. 7e), the trend of GSL was significantly (p<0.001) correlated 22 

with the trend of mean temperature in autumn (Fig. 7f). These results suggested that the upward 23 

Formatted: Strikethrough



31 
 

trend in autumn temperature (although non-significant statistically) was responsible for the 1 

trends of delayed EOS and extended GSL during 1982–2011 we observed in the US Great Basin. 2 

4 Discussion 3 

4.1  Long-term trends in vegetation greenness in the Great Basin 4 

The increase in mean vegetation greenness in SSA we observed during 1982–2011 in the 5 

dryland ecosystems in the Great Basin (0.015 NDVI units?) was consistent with reported trends 6 

for other similar ecosystems worldwide. Fensholt et al. (2012) suggested that semi-arid areas 7 

across the globe experienced an increase in vegetation greenness of about 0.015 NDVI units on 8 

average during 1981–2007. Zhang et al. (2010) indicated that growing season NDVI in 9 

grasslands in southwestern North America increased from 1982 to 2007. In arid environments of 10 

China, an increase in monthly average NDVI measured during the growing season also 11 

increasedalso was  observed during 1982–1999 (Piao et al., 2011). These trans-Northern-12 

Hemispheric findings may have resulted from worldwide warming that has occurred during the 13 

last few decades (e.g., Menzel et al., 2011; Zeng et al., 2011; Fensholt et al. 2012). In fact, 14 

although the interannual variability of mean NDVI in SSA was not significantly correlated with 15 

the variation of mean surface air temperature, the warming trend we observed in autumn (Fig. 3c) 16 

was likely the major drivers responsible for the significant positive trend we measured in of GSL 17 

(Fig. 7f), which in turn resulted in the 30-year positive trend in mean NDVI values in SSA (Fig. 18 

9b) we measured observed in the dryland ecosystems in of the U.S. Great Basin.  19 

Our results, however, contrast with those of Zhang et al. (2010) who reported both a negative 20 

trend in NDVI from 1982 to 2007 in shrublands in southwestern North America, as well as an 21 

oscillation in NDVI with increases observed from 1982 to 1993 and stronger decreases from 22 

1993 to 2007. These apparent discrepancies may be attributed to differences in both time periods 23 
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considered and the spatial extent of the study regions (the Great Basin vs. southwestern North 1 

America) and suggest that dryland ecosystems in more northern regions of the arid western U.S. 2 

may respond differently to warming trends than those distributed in more southern regions of the 3 

arid U.S. as indicated in our study (e.g., Fig. S3a). Such regional differences are actually 4 

common (e.g., Jeong et al., 2011) and may be attributableed to latitudinal differences in solar 5 

radiation and climate conditions such as decreasing temperature distribution (it decreases aswith 6 

increasing latitude increases, Fig. S4a). 7 

The non-significant relationship between the variations of seasonal mean NDVI and mean 8 

temperature in autumn in the dryland ecosystems suggested that other factors also played an 9 

important role in regulating the interannual variability of vegetation greenness in autumn. The 10 

Mmultivariate regression analyses suggested that precipitation in winter and autumn, as well as 11 

mean temperature in SSA, are were responsible (at the 98% confidence level) for the interannual 12 

variability of mean NDVI in autumn (Table 3). Increases in surface air temperature [in autumn?] 13 

can extend GSL (Fig. 8a) while and this temperature effect may be amplified if increaseding 14 

precipitation can enhances soil moisture water content. This combination is would likely to 15 

stimulate vegetation growth later into autumn than under drier conditions. The significant 16 

positive relationships between trends in autumn temperature and GSL as well as between trends 17 

in autumn temperature and NDVI indicated that the warming in autumn (although not 18 

statistically significant) was responsible likely a major modulating factor for the long-term 19 

upward trend of seasonal mean autumn NDVI in autumn in the study region. 20 

The no-absence of an observable trend in mean summertime mean NDVI may have been 21 

caused by the combination of an increase in summertime temperature and no change in 22 

precipitation resulted from increase in summertime mean temperature (Fig. 3e) while 23 
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precipitation in summer had no positive trend (Fig. 3h). This combination of conditions may 1 

have led to greater limitations (e.g., increased heat stress and deteriorated and resulting soil 2 

moisture limitations) on plant growth in summer. In aAdditionally, the strong and negative 3 

relationship we saw between the variations of mean temperature and NDVI in summer 4 

contributed to the non-significant relationship between mean temperature and NDVI in SSA (Fig. 5 

6a).  The no-absence of a trend in mean springtime NDVI may have been caused resulted from  6 

byresulted from the a lack of trend variation of in seasonal mean springtime temperature in 7 

spring, which did not increase significantly during the study period (Fig. 3d). Overall, the 8 

significant and /non-significant relationships we quantified between mean NDVI and total 9 

precipitation/ and between NDVI and mean temperature respectively induring SSA (Fig. 6a) 10 

suggestsed that changes in precipitation played a more important role than temperature in 11 

controlling the interannual variability of mean vegetation greenness at lower elevation zones of 12 

the U.S. Great Basin.    13 

4.2  Spatial heterogeneity of trends in vegetation greenness in the Great Basin 14 

The trend of increasinge in the temporal positive trend in NDVI with time as latitude and 15 

longitude increase (longitude is negative, Fig. S3) likely was a resulted of from temperature and 16 

precipitation gradients along the latitudinal and longitudinal directions (Fig. S4). In the northern 17 

Great Basin, temperature was lower compared to other regions and typically low enough to 18 

limits vegetation growth in spring (ref.). Thus, it was not surprising that the warming trends that 19 

we found appeared to more strongly benefit vegetation growth more at higher latitudes than it 20 

did at lower latitudes in the Great Basin, especially in spring and autumn (Fig. S4a). Zhu et al. 21 

(2011) also found that the spatial pattern of vegetation phenology in North America depended 22 

strongly on latitude. In additionFurther, the more spatially uniformity increases in NDVI the 23 
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temporal positive trends we observed in autumn (Fig. 4d) may have occurred as a result of 1 

relatively uniform precipitation generated by large-scale frontal systems, which generally start 2 

from October and can create relatively uniform water additions to the entire region during the 3 

autumn (Weiss et al., 2004).   4 

 In the absence of these large regional inputs of precipitation, we expected that the temporal 5 

trend in NDVI wcould be spatially more variable across the Great Basin (Bradley and Mustard, 6 

2008; Atkinson et al., 2011) than we actually observed (i.e., most points in Fig. 4a are green 7 

showing significantly positive trends).  8 

The phenological cycle of leaf onset and senescence, and effects of climate on vegetation 9 

greenness, are vegetation- and location-dependent (Atkinson et al., 2011). In the western U.S., 10 

topography strongly modulates temperature and precipitation (Hamlet et al., 2007), and local-11 

scale processes – such as cold air drainage flow or the trapping of cold dense air masses by 12 

mountainsrelief – can cause surface climate conditions to vary through space (Daly et al., 2010; 13 

Pepin et al., 2011). Because of the spatial heterogeneity of precipitation timing and magnitude, 14 

and because historical trends in temperature at the local scale also varied across the Great Basin 15 

(Tang and Arnone, 2013), not all points showed significant positive or negative trends in 16 

vegetation greenness during 1982–2011 (Figs. 4). Bradley and Mustard (2008) indicated that 17 

trends in vegetation greenness in mountainous areas can significantly differ from those in valleys 18 

in the Great Basin because valley ecosystems (possibly higher drought tolerance) tend to be more 19 

resilient than montane ecosystems to severe drought. [But montane systems usually contain 20 

mostly coniferous species which don’t exhibit obvious phonological responses to climate 21 

variations.] 22 

4.3  Variation of SOS, EOS, and GSL in the Great Basin 23 
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The lack of a 30-year trend in SOS were was consistent well with field observations in the 1 

Great Basin during 1982-1994 (ref.?, or are you talking about your own data?), which also 2 

showed no significant trend (p=0.40) (Fig. S2). Our estimates of SOS average 101 Julian days 3 

during 1982-1994, which is only 2 days greater than that measured during ground-based on field 4 

observations (99 Julian days; ref??). However, our inability to finding of no- a trend in SOS 5 

contrasts results from with some other field observations, satellite-based data, and synthetic 6 

studies conducted at regional or continental scales. For example, satellite observations revealed 3 7 

to 8 days advance in spring phenology in northern latitude mesic ecosystemss from 1982 to 1991 8 

(Myneni et al., 1997), and a 6.4 day advance from 1982 to 1999 in Eurasian forests (Zhou et al., 9 

2001). Synthesis studies of long-term, in situ observations have identified a widespread trend 10 

toward earlier spring in the northern hemisphere (e.g., Parmesan and Yohe, 2003). The 11 

underlying reasons for these contrasting observations is that springtime mean temperature in the 12 

Great Basin did not increase significantly during the study period (Fig. 3d) while spring warming 13 

was more significant at high latitudes of the Northern Hemisphere. 14 

Our finding of 3.0 days delay per decade in leaf senescence (EOS) in the Great Basin during 15 

1982–2011 (Fig. 5b) is consistent with patterns from global studies, showing slight larger-scale 16 

Northern-Hemispheric slight delays in EOS (0.3 to 1.6 days per decade; Menzel, 2002) and 17 

larger North American delays in EOS (1.3 to 8.1 days per decade; Jeong et al., 2011; Zhu et al., 18 

2011) under warmer conditions. In addition, attribution of the extension of GSL mainly to 19 

delayed leaf senescence, rather than to earlier leaf onset, also agrees with findings reported in 20 

some previous studies (e.g., Zhu et al., 2011). Nevertheless, the non-significant relationship 21 

between the variation annual of EOS and autumn temperature (Table 2) suggests that the 22 

sensitivity of leaf senescence in dryland ecosystems to the variation of temperature may differ 23 



36 
 

from temperate and boreal forests where water availability is often not limited. The insensitivity 1 

lack of sensitivity of EOS in the Great Basin to autumn temperature (Fig. 3c) might involve 2 

interactive effects of temperature and soil water availability that signal plants to senesce in a way 3 

that differs from temperate and boreal forests as demonstrated by the multivariate regression 4 

analysis (Table 3, the three regressors for autumn NDVI are all marginally significant at the 90% 5 

confidence level). In fact, the synoptic scale rainsfall events in autumn in these dryland 6 

ecosystems can increase the variability of NDVI (Fig. S5), and thus likely alter the timing of leaf 7 

senescence in autumn.  8 

4.4  Climatic sensitivities of vegetation phenology in the Great Basin 9 

Previous studies demonstrated that changes in plant phenology in the mid- and high-latitudes 10 

of the Northern Hemisphere were primarily linked with to temperature variations due to 11 

thethrough adaptive responses of vegetation to climate variability (e.g., Piao et al., 2011; 12 

Hmimina et al., 2013)., and tThus earlier leaf onset in these regions was believed to result mainly 13 

from spring warming (e.g., Kaduk and Los, 2011; Piao et al., 2011). These findings were are in 14 

accordance with the our observed significant relationship we observed between the annual 15 

variations of SOS and average annual spring temperature (Table 2). Our findings ofThe non-16 

significant relationships we observed between the annual variations of EOS and average annual 17 

autumn temperature agreed well with some previously reported dataearlier findings from 18 

European dryland ecosystems. For example, Menzel et al. (2011) reported weak and non-19 

significant that the correlations between leaf color change in fall and temperature trends for 14 20 

European countries, with the lack of correlation  was weak and non-significant. As mentioned 21 

above, this non-significant relationship also may be attributed to the sensitivity of vegetation 22 

growth in dryland ecosystems to synoptic rainfall events (Fig. S5).  23 
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Nevertheless, the significant positive relationships we observed between trends of autumn 1 

temperature and EOS, as well as between the trends of autumn temperature and GSL, suggested 2 

that regional warming in autumn was responsible for themay likely be the main cause for delays 3 

of in EOS and the extension of GSL occurred that we measured in the U.S. Great Basin during 4 

1982–2011 (Table 3 and Fig. 7d and 7f). The significant positive relationship we detected 5 

between the trends of GSL and mean DNDVI in SSA indicated that the extension of GSL 6 

resulting from the delay of EOS was mainly responsible for the long-term30-year upward trend 7 

in mean vegetation greenness we observed in Great Basin during 1982–2011 (Fig. 9b). 8 

Changes Interannual variability in precipitation also appears to played a strong, and likely 9 

more important, role in controlling the interannual variability of SSA[?] vegetation greenness (on 10 

an annual basis (the calculated AIC values are smaller for precipitation and largerthan for 11 

temperature; Fig. 6). On a seasonal basis, the calculated AIC values (Table 1) still suggested that 12 

precipitation in winter, spring, and summer can better explain the interannual variability of  13 

seasonal mean vegetation greenness in spring, summer, and autumn vegetation greenness. These 14 

results suggest that the underlying reason for this is that water availability strongly constrains 15 

biotic activity in dryland ecosystems, including plant seed germination, growth, and reproduction, 16 

the emergence of leaf-out, and GSL (e.g., Hadley and Szarek, 1981; Bradley and Mustard, 2005). 17 

Because perennial plants in dryland ecosystems often have are mostly deeply rootsed, increases 18 

in pre-season precipitation, therefore, are likely to that increase soil water content in deep soil 19 

layers through soil infiltration, and thusare therefore likely to benefit vegetation growth in 20 

nextduring the following growing season. The reRelative importance analyses further indicated 21 

that the interannual variability of mean greenness in SSA was largely affected modulated by the 22 

variation of precipitation instead of temperature (Table 3), and the interannual variability of 23 
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seasonal greenness in spring, summer, and autumn was attributableed mainly to the variation of 1 

in precipitation (especially winter precipitation) in these seasons, rather than to temperature 2 

variability (Tables 3). 3 

4.5  Non-climatic factors that may influence vegetation phenology in the Great Basin 4 

Although other factors – such as changes in biological soil crust (Ustin et al., 2009), shifts in 5 

land covers at landscape-scales, and invasion of exotic species (e.g., cCheatgrass; Bradley and 6 

Mustard, 2008) – clearly can affect vegetation phenology in the Great Basin dryland ecosystems 7 

studied here, we lack of precise information about the spatio-temporal distribution of these 8 

factors in the our study region. These other determinants of vegetation phenology also require 9 

investigation and research funding, especially as they interact with climate variability and 10 

climate change to affect ecosystem function and the services that these ecosystems provide. 11 

Therefore, additional study research is necessary to examine how these factors, especially the 12 

invasion and expansion of invasive species, may have already affected the temporal dynamics 13 

and climatic sensitivity of vegetation phenology we observed in this study. In addition, theAlso, 14 

although we are confident in our calculation of SOS and EOS, interpolation of time-series bi-15 

weekly NDVI data to daily values may also affectfurther enhance the accuracy of SOS and EOS 16 

estimates. Finally, although because our analysis excluded quantitation of NDVI during winter, 17 

and and althoughbecause snowfall and snow covering may still occur sometimes in early spring 18 

or in late fall in parts of the Great Basin, itprimarily occurs  often accumulates only at in high 19 

elevational areas, effects of snow cover on . As a result, the effects of snow on NDVI values in 20 

our study of low elevation sites were minimal because we focused on vegetation phenology in 21 

low elevational areas. For example, in the southern and southeastern Great Basin (Fig. 4) where 22 

snow rarely occurs in spring and autumn, there wereas a large amounts number of points 23 
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showing a significant positive trend in vegetation greenness during 1982–2011. Theise can 1 

justifyiesfactors allowed us to the robustlyness achieve our objectives of our results givento 2 

quantify the effects the overallof continued  climate change, particularly acceleration of the long-3 

term warming trend taking place across the Great Basin in the last few decades (Tang and 4 

Arnone, 2013).  5 

5 Summary 6 

Based on GIMMS NDVI data and from a regional perspective, our results suggested that 7 

changes in total precipitation rather than mean surface air temperature in SSA was the major 8 

factor controlling the interannual variability of mean vegetation greenness in dryland ecosystems 9 

of the U.S. Great Basin. On a seasonal basis, pre-season precipitation in winter and spring 10 

contributed more to the interannual variability of seasonal mean greenness in spring, summer, 11 

and autumn. Nevertheless, climate warming although not significant in autumn was mainly 12 

responsible for the extension of GSL resulting from delayed EOS, which in turn resulted in the 13 

30-year positive trend in mean vegetation greenness in the dryland ecosystems. Overall, our 14 

results suggest that both precipitation and temperature played an important but different role in 15 

affecting vegetation phenology in the dryland ecosystems in the U.S. Great Basin. These changes 16 

in phenology can potentially affect C fluxes in these semi-arid systems which can potentiallymay 17 

contribute to modulating global CO2 fluxes. In addition, local changes in phenology can impact 18 

other ecosystem service including grazing, providing wildlife habitat as well as altering fire 19 

cycles (not sure if you want to go there).  20 
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Tables 1 

Table 1 Linear regression rRelationship of vegetation greenness to seasonal mean temperature 2 

(SMT), total precipitation (STP), and pre-growing season precipitation (PSP); and AIC values. 3 

Seasons SMT STP PSP AIC
†
 

 Slope p< Slope p< Slope p< SMT STP or PSP PSP 

Spring 0.002 0.30 1.1e-4 0.15 1.1e-4 0.18 -162 -167s -163w 

Summer -0.010 0.01 1.2e-4 0.16 3.4e-4 0.001 -154 -164s -154w 

Autumn 0.003 0.29 -5.6e-5 0.23 8.3e-6 0.86 -188 -189a  -190w 

AIC
†
 refers to the Akaike Information Criterion. The smaller the magnitude of the AIC value is, the better a 4 

univariate linear regression model fits. The
 
subscripts ―w‖, ―s‖, ―a‖ represent winter, spring, and autumn, 5 

respectively.  6 

 7 

Table 2 Linear regression rRelationships of SOS, EOS and GSL to temperatures (T) 8 

Indices Spring T Autumn T AMT
†
 

 Slope p< Slope p< Slope p< 

SOS -2.7 0.001 -- -- -5.0 0.01 

EOS -- -- 0.7 0.43 0.2 0.87 

GSL 1.8 0.10 0.6 0.68 5.2 0.02 

-- excluded for relationship analysis; AMT
† 
--

 
annual mean temperature. 9 

 10 
 11 
 12 
Table 3 The relative importance of annual/seasonal mean temperature (T) and precipitation (P) 13 

to the variation of annual/seasonal mean NDVI based on multivariate regression analyses  14 

Best multivariate regression model
†
 Statistics LMG

†
 for Regressors (R)

‡
 

 R
2
 p< R1 (%) R2 (%) R3 (%) R4 (%) 

SSAN = SSAT + SSAP + SSAT×ANNP 0.22 0.09 8 75 17  

MAMN = MAMT + DJFP+ MAMp 0.31 0.02 42 19 39  

JJAN = JJAT + DJFP + MAMP + JJAT×DJFP 0.59 0.001 25 29 31 15 

SONN = DJFP + SONP +SSAT 0.23 0.07 63 20 17  

† 
These

 
models were selected based on adjusted-R square and p-values.

 
The subscripts ―N‖, ―T‖, and ―P‖ in each 15 

model represent NDVI, temperature, and precipitation, respectively. ―SSA‖, ―MAM‖, ―JJA‖ and ―SON‖ represents 16 

the period of March to November, spring, summer and autumn, respectively. LMG
†
 refers to the averaging over 17 

orderings of importance proposed by Lindeman, Merenda and Gold (LMG; Grömping, 2006). 
‡ 

The order of
 18 

regressors corresponds to the order of those variables listed in multivariate regression model. 19 
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Figures 1 

 2 

Figure 1.  (a) The hydrological Great Basin in the western U.S. and the distribution of weather 3 

stations used in this study. (b) The distribution of NDVI points considered in this study.  4 

 5 

Figure 2.  The trends (dashed gray line) and variations (solid black line) of (a) mean vegetation 6 

greenness (, (b) mean surface air temperature, and (c) total precipitation in the period of March to 7 

November in the Great Basin during 1982–2011. Data shown in (a), (b), and (c) are anomalies 8 

relative to their long-term (1982–2011) means, respectively. 9 
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 1 

Figure 3.  The trends (dashed gray line) and variations (solid black line) of (a)~(c) seasonal 2 

mean vegetation greenness, (d)~(f) seasonal mean temperature, and (g)~(i) seasonal total 3 

precipitation in the Great Basin during 1982–2011. Data shown here are anomalies relative to 4 

their respective long-term (1982–2011) seasonal means, respectively. 5 

 6 

 7 
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Figure 4.  The spatial patterns of statistically significant (p<0.05) temporal trends in mean 1 

vegetation greenness in (a) SSA (the period of March to November), (b) spring, (c) summer, and 2 

(d) autumn during 1982–2011 in the Great Basin. The percentages were calculated against the 3 

total of points considered in this study.  4 

 5 

 6 

Figure 5.  The trends (dashed gray line)  and variations (solid black line) in (a) the start of 7 

growing season (SOS), (b) the end of growing season (EOS), and (c) the growing season length 8 

(GSL) in the Great Basin during 1982–2011. 9 

 10 

 11 
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Figure 6. RThe relationships between (a) the variation of mean vegetation greenness and mean 1 

air temperature [for what period—SSA?], (b) the variation of mean vegetation greenness and 2 

total precipitation, (c) the long-term trends in mean NDVI and mean temperature, and (d) the 3 

long-term trends in mean NDVI and total precipitation in SSA (the period of March to 4 

Novermber) during 1982–2011. Data in (a) and (b) were anomalies relative to their 30-year 5 

means, respectively. Data in (c) and (d) were based on derived trends (a loess curve was used to 6 

derive the long-term trend of a variable against years) . AIC refers to the Akaike Information 7 

Criterion.  8 

 9 

 10 

Figure 7. The relationships between (a) the variations of in seasonal mean vegetation 11 

greennessNDVI and temperature, (b) the long-term trends in [seasonal?] mean vegetation 12 

greennessNDVI and temperature, (c) the variations of EOS and [seasonal?] mean temperature, (d) 13 

the long-term trends in EOS and seasonal mean temperature; (e) the variations of GSL and 14 
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seasonal mean temperature, and (f) the long-term trends in GSL and seasonal mean temperature 1 

in aAutumn during 1982–2011. Data shown in (a), (c), and (e) are anomalies relative to their 2 

respective 30-year means. Data shown and in (b), (d), and (f) are derived trends (a loess curve 3 

was used to derive the long-term trend of a variable against years) [with a best-fit linear 4 

regression line shown in each graph panel ?]. 5 

 6 

 7 

Figure 8.  The relationships (a) between mean vegetation greeness in summer and winter 8 

precipitation, and (b) between mean vegetation greeness in autumn and winter precipitation 9 

during 1982–2011. Data in (a) and (b) are anomalies relative to their long-term means, 10 

respectively. 11 

 12 

 13 

Figure 9.  The rRelationships (a) between mean annual surface air temperature in annual SSA 14 

(the period of March to November) and the grown season length (GSL), and (b) between GSL 15 

and mean vegetation greeness in SSA during 1982–2011. 16 


