

This discussion paper is/has been under review for the journal Biogeosciences (BG). Please refer to the corresponding final paper in BG if available.

Mercury in coniferous and deciduous upland forests in Northern New England, USA: implications from climate change

J. B. Richardson^{1,2} and A. J. Friedland²

Received: 02 June 2015 - Accepted: 25 June 2015 - Published: 22 July 2015

Correspondence to: J. B. Richardson (justin.richardson@dartmouth.edu)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Discussion Paper |

Discussion Paper

Discussion Paper

Discussion Paper

BGD

12, 11463-11498, 2015

Mercury in coniferous and deciduous upland forests

J. B. Richardson and A. J. Friedland

Title Page

Abstract

Introduction

Conclusions

References

Tables

Figures

I₫

- ∢

Back

Full Screen / Esc

Printer-friendly Version

¹Department of Earth Science, Dartmouth College, Hanover, 03755, USA

²Environmental Studies Program, Dartmouth College, Hanover, 03755, USA

Climatic changes in the northeastern US are expected to cause coniferous stands to transition to deciduous stands over the next hundred years. Mercury (Hg) sequestration in forest soils may change as a result. In order to understand potential effects of this transition, we studied aboveground vegetation and soils at paired coniferous and deciduous stands on eight mountains in Vermont and New Hampshire, US. Organic horizons at coniferous stands accumulated more Total Hg (THg) $(42 \pm 6 \,\mathrm{g\,ha}^{-1})$ than deciduous stands $(30 \pm 4 \,\mathrm{g\,ha}^{-1})$. Total Hg pools in the mineral horizons were similar for coniferous $(46 \pm 8 \,\mathrm{g\,ha}^{-1})$ and deciduous stands $(45 \pm 7 \,\mathrm{g\,ha}^{-1})$. Soil properties (C, % clay, and pH) explained 56 % of the variation in mineral soil Hg concentration when multiple regressed. Foliar and bole wood Hg concentrations were generally greater for coniferous species than deciduous species. We estimated Hg mean residence time (MRT) in the organic and mineral horizons at coniferous and deciduous stands using a simple two-box model. Organic horizon MRT were longer at coniferous stands (183 ± 44 yr) than deciduous stands (65 ± 15 yr). Mineral soil horizon MRT values were also longer for coniferous stands $(386 \pm 57 \text{ yr})$ than for deciduous stands $(188 \pm 27 \text{ yr})$. We concluded that organic horizon Hg accumulation is influenced by vegetation type but mineral horizons are primarily affected by soil properties. Further investigations into the effect of vegetation type on volatilization, atmospheric deposition, and leaching rates are needed to constrain regional Hg cycling rates.

Introduction

Forest soils play a key role in the global Hg cycle because they sequester Hg from natural and human sources (Nater and Grigal, 1992; Fitzgerald et al., 1998; Driscoll et al., 2007; Streets et al., 2011). The accumulation and retention of Hg in upland forest soils is an integral part of Hg biogeochemistry. Soils ultimately control Hg transport to downslope riparian areas, where it can be methylated to its most toxic form, methylmercury

BGD

12, 11463–11498, 2015

Mercury in coniferous and deciduous upland forests

J. B. Richardson and A. J. Friedland

Title Page Abstract Introductio

Conclusions References

> **Tables Figures**

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

11464

Paper

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

Abstract Conclusions

Figures

Back Close

Printer-friendly Version

Interactive Discussion

(Aastrup et al., 1991; Lorey and Driscoll, 1999; Schwesig and Matzner, 2001; Grigal, 2003; Driscoll et al., 2007; Evers et al., 2007; Demers et al., 2013; Chalmers et al., 2014). Birds, fish, mammals, amphibians, and invertebrates are reported to have elevated Hg concentrations in their bodies across the northeastern US (Evers et al., ₅ 2007; Rimmer et al., 2010; Townsend and Driscoll, 2013; Richardson et al., 2015). Policy makers, resource managers, and scientists have recognized the need to limit Hg reaching terrestrial and aquatic organisms (USEPA, 2011). Greater knowledge of the processes that control Hg accumulation and retention in forest soils is needed to understand its fate and transport in forested ecosystems.

Climate change has the potential to alter the sequestration of Hg from forest soils via direct pressures (meteorological) or indirect pressures (changes to vegetation). Climate models have predicted increases in precipitation that could cause greater wet deposition of Hq (Smith-Downey et al., 2010). Moreover, projected increases in mean annual temperatures may increase net primary productivity of vegetation in forests across the region, potentially increasing plant interception and litterfall deposition of Hg to soils (Smith-Downey et al., 2010). Conversely, increased mean annual temperatures and soil moisture may release Hg from soils by enhancing the decomposition rate of soil organic matter (SOM) or volatilization (Smith-Downey et al., 2010; Blackwell et al., 2014). Climate change could have indirect consequences on forests that may also affect Hg cycling. In the northeastern US, forest stands of coniferous tree genera (gymnosperms such as Spruce, Pine, and Fir) are expected to be succeeded by deciduous tree genera (angiosperms such as Maple, Beech, and Birch) due to the increased mean annual temperature and precipitation (Tang and Beckage, 2010). For example, coniferous vegetation has been projected to lose an estimated 71-100% of its current range to deciduous vegetation across the northeastern US by 2085 (Tang and Beckage, 2010; Tang et al., 2012). The potential shift from coniferous to deciduous type forests caused by climate change may potentially alter the accumulation and retention of Hg in the soil.

12, 11463–11498, 2015

BGD

Mercury in coniferous and deciduous upland forests

J. B. Richardson and A. J. Friedland

Title Page

Introduction

References

Tables

Full Screen / Esc

Vegetation type can affect multiple aspects of Hg cycling in forest soils. The different foliar morphology and foliar biomass between vegetation types can affect Hg in litterfall. For example, Juillerat et al. (2012) found coniferous species generally obtained higher Hg concentrations than deciduous species, which was attributed to their surface 5 area: weight ratio and longer life span. Furthermore, physical attributes of the canopy structure of each species can directly affect the accumulation of Hg in foliage (Hall and St. Louis, 2004; Demers et al., 2007; Obrist et al., 2012; Blackwell and Driscoll, 2015). The greater total foliar biomass for deciduous species can cause significantly greater litterfall fluxes in deciduous-dominated forest stands (e.g. Demers et al., 2007; Juillerat et al., 2012; Obrist et al., 2012). Greater litterfall rates can increase the size of the Hg pool in the organic horizons (forest floor) and mineral horizons (Hall and St. Louis, 2004; Demers et al., 2007; Zhang et al., 2009; Obrist et al., 2012). Additionally, the lower N concentration and higher lignin fraction of coniferous litter is hypothesized to suppress decomposition and microbial reduction of Hg (Berg et al., 1993; Pokharel and Obrist, 2011; Obrist et al., 2012; Demers et al., 2013). Litter from coniferous vegetation can also affect soil properties that affect Hg sorption in soil (e.g., soil C and pH) (Grigal, 2003; Demers et al., 2007; Obrist et al., 2011; Stankwitz et al., 2012; Richardson et al., 2013). This could increase the mobility of Hg and decrease the Hg pool in the organic and mineral horizons (Demers et al., 2007).

Quantifying the effect of vegetation type on forest soil Hg is needed in the north-eastern US due to predicted changes in forest composition under a changing climate. Previous studies have found contrasting effects from vegetation type on Hg cycling in forest soils (Rea et al., 2002; St. Louis et al., 2004; Demers et al., 2007; Obrist et al., 2012). The objectives of this study were: (1) to determine if Hg concentrations and pools in forests and their soils are significantly different at coniferous and deciduous stands, (2) to determine if vegetation type affects the mobility of Hg in soils, and (3) to develop a simple box model to estimate Hg residence in the organic and mineral horizons at coniferous and deciduous stands. Information from this study can help improve

BGD

12, 11463-11498, 2015

Mercury in coniferous and deciduous upland forests

J. B. Richardson and A. J. Friedland

Title Page

Abstract Introduction

Conclusions References

Tables Figures

•

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discu

landscape to regional scale estimates of Hg sequestration in forest soils and better constrain Hg cycling in upland forest soils.

2 Materials and methods

2.1 Mountain sites and forest stands

Eight pairs of coniferous and deciduous forest stands were studied (Table 1). Forest stands were located at eight mountain sites in the deciduous—coniferous transition zone between 650 and 750 ma.s.l. Four mountains were located on a north—south transect along the Green Mountains of Vermont, and four sites were on a separate north—south transect along the White Mountains of New Hampshire. Sampling sites were on west-facing slopes to avoid biases from aspect. Northern New England is a temperate climate, with mean annual temperatures at the stands ranging from 6 to 10 °C and mean annual precipitation ranging from 800 to 1300 mm (PRISM climate research group, 2013). The mean annual frost-free period ranges from 90 to 160 d (Soil Survey Staff, 2014).

At each mountain site, a coniferous stand and a deciduous stand within 50 m of each other were studied. Stands were 30 m-diameter circles. The frequency of each species and diameter at breast height (DBH) for all trees was determined for the 707 m² stand. Coniferous stands were inhabited with > 50 % coniferous genera, and deciduous stands were inhabited by > 60 % deciduous genera based upon basal area and stem frequency (Table 1). Basal area was estimated from the DBH measurements (Whittaker et al., 1974). Coniferous species present were balsam fir (*Abies balsamea* Mill.), red spruce (*Picea rubens* Sarg.), and eastern hemlock (*Tsuga Canadensis* L.). Deciduous species present were American beech (*Fagus grandifolia* Ehrh.), sugar maple (*Acer saccharum* Marsh.), red maple (*Acer rubrum* L.), striped maple (*Acer pensylvanicum* Marsh.), paper birch (*Betula papyrifera* Marsh.), and yellow birch (*Betula alleghaniensis* Britt.). Vegetation at all stands was secondary growth due to the historical clearing of

BGD

12, 11463–11498, 2015

Mercury in coniferous and deciduous upland forests

J. B. Richardson and A. J. Friedland

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I◀

•

Back Close
Full Screen / Esc

Printer-friendly Version

Interactive Discussion

the region in the 1800s and abandonment in the period from circa 1870 through 1920 (cf. Foster, 1992). Using DBH of sugar maple, red spruce, and balsam fir at each stand, we calculated growth rates using parameters from Teck and Hilt (1991) and Kenefic and Nyland (1999). We calculated the stand ages ranged from 57 to 137 yr with a mean of 88 ± 9 yr (data not shown). These ages may vary with site edaphic characteristics.

Only sites on bench landform and well-drained soils were chosen. The soil parent material was glacial till for all stands, which was deposited during the retreat of the Laurentian ice sheet in the Wisconsian glaciation ~ 14 000 yr ago (cf. Siccama, 1974; Soil Survey Staff, 2010). Glacial till at sites NH 1–NH 4 was generally sourced from local bedrock: Bethlehem granodiorite with contributions of Concord granite, Kinsman granodiorite, and metasedimentary rocks from more northern formations (Bennett, 1996; Lyons, 1997). Glacial till at sites VT 1–VT 4 was locally sourced from the Waits River and Missisquoi formations, with additions of other metasedimentary formations (Doll et al., 1966; Ratcliffe, 2000).

2.2 Soil and vegetation sample collection

Late-season foliage and bole wood samples were collected from *Picea rubrus*, *Tsuga canadensis*, *Abies balsamea*, *Fagus grandifolia*, *Acer* spp., and *Betula* spp. in triplicate from each forest stand in early October 2012, 2013, and 2014. Foliage was collected from branches in the middle canopy, 3–6 m above the ground, using a stainless steel pole saw. By not collecting upper canopy foliage, we may have underestimated foliar Hg concentrations because Hg deposition is greater in upper canopy leaves (Luyassert et al., 2002). Bole wood was sampled at DBH using an 4 mm increment corer. Foliage and bole wood samples were air-dried at 25 °C for 3 wk and milled for homogeneity. Aboveground woody biomass and foliar biomass was estimated using allometric equations for each species from studies conducted in the northeastern US and southeastern Canada (Ferrari and Sugita, 1996; Ter-Mikaelian and Korzukhin, 1997; Jenkins et al., 2003). The foliar and woody biomass for each tree was summed for an estimate of total foliar and woody biomass at each stand. Aboveground woody biomass and foliage

BGD

12, 11463–11498, 2015

Mercury in coniferous and deciduous upland forests

J. B. Richardson and A. J. Friedland

Title Page

Abstract Introduction

Conclusions

Tables Figures

I∢ ≯I

•

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

biomass can vary with canopy geometry, tree morphology, and fitness of each tree (Ferrari and Sugita, 1996; Luyassaert et al., 2002). However, these estimates provide an approximation of values without permanent destruction.

The soils at each forest stand were sampled between July and September 2012. To 5 control for the effect of soil type on Hq accumulation, only Spodosols were studied. Soils were classified as Spodosols using US Soil Taxonomy guidelines (Soil Survey Staff, 2010). Soil taxonomy identification was based on soil pit descriptions and USDA-NRCS Web Soil Survey (Soil Survey Staff, 2014). First, a trench was dug to ensure an E horizon (white leached layer) and Bhs horizon (organic matter and iron oxide rich layer) were present. At each forest stand, three 15 cm x 15 cm square sections of organic horizons were separated from the underlying mineral soil and collected. Three morphological quantitative soil pits were by each master horizon (E, Bhs, B/C) until dense basal till was reached for each forest stand. First, a 50 cm x 50 cm wooden frame was secured to the ground nearby by using 12 cm steel spikes. The organic horizons were removed using saws and clippers. Each master horizon was excavated, sieved to < 2 cm, and weighed using an electronic portable scale. A 5 kg representative subsample was collected for each master horizon to determine field moisture content and rock fragments 0.2-2 cm in diameter. A separate subsample was collected from the face of each soil pit for chemical analyses. In total, 48 quantitative soil pits were excavated in this study. In the laboratory, the Oi (litter layer), Oe (fermentation layer), and Oa (humified layer) horizons were separated, roots > 5 mm in diameter were removed, and samples were air-dried at 25 °C to a constant mass. Organic horizon masses were calculated using oven-dried subsamples. All mineral soil samples were air-dried to a constant weight, and roots > 5 mm in diameter were removed. Organic horizons and mineral soil samples were milled and sieved, respectively, to $\leq 2 \, \text{mm}$.

A 2:5 soil—water slurry was used to determine soil pH. Slurries were shaken for 1 h using a wrist-action shaker and vacuum extracted through a Whatman 40 filter. The pH of the extract was measured with a pH meter (8015 VWR). Loss-on-ignition was used to estimate % SOM. To determine the percent loss-on-ignition, a 4 g air-dried

BGD

12, 11463–11498, 2015

Mercury in coniferous and deciduous upland forests

J. B. Richardson and A. J. Friedland

Title Page

Abstract Introduction

Conclusions References

Tables Figures

l4 ►I

•

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

subsample was combusted at $475\,^{\circ}$ C for 8 h. Total C concentrations in leaves, bole wood, and soil were measured using a Carlo-Erba elemental analyzer. In brief, 6 ± 1 mg of sample ground to <0.5 mm were analyzed. Every 20 samples included one blank, one Atropine SRM, and a duplicate. Total C and N concentrations in Atropine SRMs were with 3 % of its certified value and $<10\,\%$ relative percent difference. Because soil samples were strongly acidic soils derived from granite and metamorphic rocks such as phyllites and schists, the contribution of C from calcite concentrations was presumed to be negligible. Soil pH and total C for each horizon are given in Supplement Table S1.

2.3 Total Hg quantification

Total Hg concentrations (THg) for the organic and mineral soil were quantified using a Direct Mercury Analyzer – 80 (Milestone Inc.) in which 100±10 mg subsamples were weighed into steel boats and ashed at 650 °C. To ensure quality, every 15 samples included a duplicate, a preparation blank, and a standard reference material (SRM). Peach leaves SRM 1547 was used to quantify matrix effects for bole wood, leaf, and organic horizon samples, whereas Montana soil SRM 2711a was used for mineral soil samples (National Institute of Standards and Technology, Gaithersburg, MD). Preparation blanks were below detection limits, and duplicate variations were within 5 %. SRM Hg measurements were within 9 % of their certified values. Total Hg values for each horizon are given in Table S1.

2.4 Exchangeable Hg quantification

Exchangeable Hg concentrations (EHg) for the organic and mineral soil were quantified using a modified $Mg(NO_3)_2$ extraction for ion-exchangeable Hg (Eganhouse et al., 1978; Crock, 1996; Amacher, 1996). The method used $Mg(NO_3)_2$ instead of $MgCl_2$ because Hg is able to form stable complexes with Cl^- ions in solution (Schuster, 1991). In brief, 1 g soil was shaken in 10 mL of 0.1 M $Mg(NO_3)_2$ for 24 h. Samples were centrifuged at 3000 rpm for 20 min, and the supernatant was decanted. The slurry

BGD

12, 11463–11498, 2015

Mercury in coniferous and deciduous upland forests

J. B. Richardson and A. J. Friedland

Title Page

Abstract Introduction

Conclusions References

Tables Figures

•

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

2.5 Hg simple two-box model

A simple two-box model was implemented for each of the stands to estimate the residence time of Hg in the organic and mineral horizons. We estimated the mean residence time (MRT) for each of the sites by assuming the organic and mineral horizon Hg pools and fluxes were in steady state. Although this is unlikely due to changing atmospheric deposition rates (cf. Streets et al., 2011) and forest maturation, it allows for an approximation of Hg retention in forest soils. We calculated organic horizon MRT as the organic horizon pool divided by the sum of the input fluxes, atmospheric deposition, and litterfall rates (Eq. 1). The input flux to the mineral horizons was calculated as the atmospheric deposition and litterfall inputs from the organic horizons minus losses to volatilization (Eq. 2).

$$MRT_{Organic\ horizons} = Pool_{Organic\ horizons} / F_{litterfall} + F_{atmdep}$$
 (1)

$$MRT_{Mineral\ horizons} = Pool_{Mineral\ horizons} / F_{litterfall} + F_{atmdep} - F_{volatilzation}$$
 (2)

We assumed the weathering input and root uptake of Hg in the organic and mineral horizons to be zero. Laboratory experiments and field observations have concluded that root uptake of Hg by vegetation is negligible (< 10 % of dissolved fraction; cf. Rea et al., 2002) due to retention in roots (Beauford et al., 1977; Aastrup et al., 1991; Schwesig and Krebs, 2003), strong sorption to cell walls in roots (Beauford et al., 1977), and low concentrations in xylem sap (Bishop et al., 1998). In addition, igneous and metamorphic parent materials have low Hg concentrations, and their weathering contributions were hypothesized to be negligible (Schlüter, 2000; Essington, 2003;

Paper

Paper

Discussion Paper

Discussion Paper

BGD

12, 11463-11498, 2015

Mercury in coniferous and deciduous upland forests

J. B. Richardson and A. J. Friedland

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I∢ ≯I

- ◆

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Annual atmospheric deposition of Hg (wet + dry deposition) at the 16 stands was 5 interpolated from Miller et al. (2005) and Yu et al. (2014) and ranged from 0.06 to 0.26 g ha⁻¹ yr⁻¹. Values fell into the typical atmospheric deposition rates in the northeastern US and New England (Grigal, 2002; Chalmers et al., 2014). Annual volatilization rates of Hg from organic horizons at the eight sites were interpolated from Yu et al. (2014). We ran Eq. (1) and (2) under the assumption of equal atmospheric deposition and volatilization rates for coniferous and deciduous stands. This assumption may not be true because coniferous and deciduous stands have been found to have significantly different atmospheric deposition and volatilization rates (Demers et al., 2007; Blackwell et al., 2014) due to greater canopy density and leaf density for coniferous vegetation (Weathers et al., 2006). Annual litterfall fluxes of Hg from deciduous vegetation were assumed to be the entire foliar biomass. Annual litterfall fluxes from balsam fir and eastern hemlock was assumed to be 1/3 the foliar biomass because Barnes and Wagner (1981) observed average needle longevity to be 3 yr. Similarly, litterfall fluxes from spruce species, red spruce, was assumed to be 1/5 the foliar biomass because Barnes and Wagner (1981) the observed average time needle longevity to be 5 yr. The annual litterfall for each stand was calculated as the summed litterfall contribution for each tree at stand. Leaves from trees may fall beyond the boundaries of the 707 m² stand; thus, our litterfall values are likely overestimates (Ferrari and Sugita, 1996). The Hg flux from coarse woody debris was not included due to the wide variation in contribution at stands (twigs and branches to whole trees; cf. Fahey et al., 2005). The values for fluxes and model outputs are given in Table S2.

2.6 Statistical analyses

Descriptive statistics were calculated in Matlab. The variations in THg and EHg concentration and pools in the organic and mineral horizons were compared between veg-

12, 11463–11498, 2015

Mercury in coniferous and deciduous upland forests

BGD

J. B. Richardson and A. J. Friedland

Title Page **Abstract** Introduction

Conclusions References

> Tables **Figures**

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

11472

Discussion Paper

Discussion Paper

Discussion Pape

Discussion Paper

Abstract Conclusions

Figures

BGD

12, 11463–11498, 2015

Mercury in

coniferous and deciduous upland

forests

J. B. Richardson and A. J. Friedland

Title Page

Introduction

References

Back

Close

Printer-friendly Version

Interactive Discussion

etation types (coniferous and deciduous) using a paired sample t test. Stepwise linear regressions and multiple regressions were used to explore relationships between THg and EHg concentrations with other continuous variables (pH, % clay, soil C, latitude, and longitude).

Results and discussion

3.1 Forest soil properties

3.1.1 Soil physical properties

Forest soil physical properties were generally similar at coniferous and deciduous stands. Soils were well-drained or excessively drained, sandy loam-textured Spodosols. The Oi and Oe horizon thicknesses were similar for both vegetation types, but Oa horizons were significantly thicker for coniferous stands $(11.3 \pm 1.5 \,\mathrm{cm})$ compared with deciduous stands (6.1 \pm 0.5 cm) (p < 0.05). Although the thicknesses did vary significantly, the dry weight mass of the summed organic horizons was similar between vegetation types. Organic horizon thicknesses are similar to other studies conducted in this region (Juillerat et al., 2012; Richardson et al., 2013). Thicknesses of the mineral horizons (E, Bhs, and B/C) were similar for coniferous and deciduous stands. Mineral soil bulk density and texture were similar for all horizons for both vegetation types. Texture was dominated by sand, ranging from 49 to 88 % (Table S1). In addition, the clay fraction was low, ranging from 1 to 11%, which is similar to values reported in other studies in this region (Johnson and Petras, 1998; Juillerat et al., 2012). However, the % clay was significantly lower in the E horizons $(5.2\pm0.4\%)$ than in the Bhs $(7.5\pm0.5\%)$ and B/C horizons $(6.5 \pm 0.6\%)$ (p < 0.05). This finding suggests that the soil samples in this study were comparable among all stands.

Tables

The mean soil pH values were similar to those reported in Juillerat et al. (2012). Soil pH was significantly lower for the Oe, Oa, E, Bs, and B/C horizons at coniferous stands than at deciduous stands (Fig. 1). Soil C concentrations in the organic and mineral horizons were similar to Juillerat et al. (2012) and Obrist et al. (2011). Soil C concentration was significantly greater for Oa horizons at coniferous stands than at deciduous stands (Fig. 1). Soil C pools in the Oi and Oa horizons were significantly greater at coniferous stands than at deciduous stands (Fig. 1).

Our findings show that coniferous vegetation has a significant impact on soil pH and C in the organic horizons. However, we did not observe these differences for mineral soil horizons. Our results show that coniferous-dominated stands have greater C storage in their organic horizons than do deciduous stands. The cause of the higher C in the Oa horizon at coniferous stands was unclear. It may have been caused by slower decomposition. It is generally accepted that litter from coniferous vegetation causes greater acidity in the organic horizon (cf. Pritchett and Fisher, 1987). In addition, coniferous litter is more recalcitrant because of its lower nutrient quality (lower % N and higher lignin content), which makes it less susceptible to microbial decomposition (Mc-Claugherty et al., 1985; Berg et al., 1993; Moore et al., 1999; Talbot et al., 2012), allowing for greater accumulation of soil C (Fig. 1). The greater C pool at coniferous stands implies that a future shift from coniferous to deciduous vegetation could reduce the accumulation of C in in the organic horizon of forest soils. Due to the strong link between C and Hg, smaller C pools could reduce the storage capacity of Hg in the organic horizons at deciduous stands. However, Demers et al. (2013) suggested that storage capacity of Hg is not limited by C but rather by S that coincides with C in SOM nonlinearly (i.e., S becomes limiting in soils with high C concentration). The effect of decreased C in soils needs further attention to determine if its relation to Hg is direct or indirect.

BGD

Discussion

Paper

Discussion Paper

Discussion Paper

12, 11463-11498, 2015

Mercury in coniferous and deciduous upland forests

J. B. Richardson and A. J. Friedland

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I**∢** ►I

•

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

3.2.1 Total Hg in forest soils

We observed that organic horizons in coniferous stands have greater Hg concentrations and greater Hg pools than in deciduous stands, primarily in the Oi, Oe, and Oa horizons. The mean organic horizon THg concentration was $179\,\mu\text{g\,kg}^{-1}$, and mean mineral horizon THg concentration was $64\,\mu\text{g\,kg}^{-1}$. The THg concentrations were similar to those observed in forest soils in the northeastern US (e.g., Evans et al., 2005; Juillerat et al., 2012; Stankwitz et al., 2012; Richardson et al., 2013). Total Hg concentrations were significantly greater for the Oi, Oe, and Oa horizons at coniferous stands than at deciduous stands (Fig. 2). The summed organic horizon THg pools were greater for coniferous stands ($53\pm10\,\text{g\,ha}^{-1}$) than for deciduous stands ($30\pm6\,\text{g\,ha}^{-1}$). This pattern was largely driven by differences in the Oa horizons, in which Oa Hg pools at coniferous stands were $38\pm6\,\text{g\,ha}^{-1}$, whereas deciduous stands were only $21\pm4\,\text{g\,ha}^{-1}$. Mineral soil THg pools were similar for coniferous stands ($46\pm8\,\text{g\,ha}^{-1}$) and deciduous stands ($45\pm7\,\text{g\,ha}^{-1}$). Despite similar mineral soil pools, the total soil profile of Hg pools was greater at coniferous stands ($90\pm13\,\text{g\,ha}^{-1}$) than at deciduous stands ($75\pm5\,\text{g\,ha}^{-1}$).

Organic horizon Hg concentrations and pools may be greater at coniferous stands than at deciduous stands due to litterfall inputs (discussed in Sect. 3.3) or differences in physicochemical properties. The organic horizons at coniferous stands may receive less UV radiation, potentially decreasing photoreduction and volatilization of Hg (Carpi and Lindberg, 1997; Schlüter, 2000; Gabriel and Williamson, 2004). However, the soil properties related to Hg accumulation were significantly different at coniferous stands when compared with deciduous stands. Total C concentrations were greater for the Oa horizon at coniferous stands. Total Hg concentrations in the organic and mineral horizons were regressed with soil C, pH, % clay, latitude, and longitude using stepwise linear regressions and multiple regressions. Concentrations of THg in the organic horizons were weakly explained by soil C and pH, accounting for only 24 % of the variation

Discussion Paper

Discussion Paper

Discussion Paper

12, 11463–11498, 2015

BGD

Mercury in coniferous and deciduous upland forests

J. B. Richardson and A. J. Friedland

Title Page

Abstract Introduction

Conclusions References

Tables Figures

l**∢** ▶l

•

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

(Table 2). These weak to poor correlations suggest other processes are responsible for THg. Based on the vertical THg distribution in the organic horizons shown in Fig. 2, the THg concentrations are dependent on the vegetation type and degree of decomposition. Of the explanatory variables examined by stepwise linear regressions, only soil C, pH, and % clay were significant for mineral horizons (Table 2). For the mineral soil, soil C had the greatest explanatory power, and when multiple regressed with % clay and pH, the variables explained 56 % of the variation in THg (Table 2). This correlation suggests that accumulation of Hg is primarily driven by sorption; is controlled by soil C, % clay, and pH; and matches observations by Obrist et al. (2011), Juillerat et al. (2012), Richardson et al. (2013), and Yu et al. (2014). However, nearly 40 % of the variation in the mineral soil and 76 % of the variation in the organic horizons remains unexplained and could be due to other unconstrained variables; hydrology and sesquioxides are two prime examples.

It is possible that soils under coniferous vegetation at the most southern sites would accumulated more Hg than at the most northern sites due to a longer growing season. In addition, the soils of the White Mountains of New Hampshire may receive more atmospheric deposition of Hg than the Green Mountains in Vermont (Miller et al., 2005). However, we did not find a significant correlation for THg with longitude or latitude. This suggests that longitude and latitude did not affect accumulation consistently across the eight sites or that there was not a large enough sample size or difference to detect a significant trend with latitude or mountain range.

There are landscape-scale and regional-scale ramifications for greater Hg sequestration in forest soils underlying coniferous stands. First, it implies that a shift from coniferous to deciduous vegetation could reduce forest soil Hg pools in the study region by 24 %. Tang et al. (2012) have predicted that climatic changes could reduce coniferous stands (Spruce-Fir) by ~ 80 % in New England using the LPJ-GUESS model. Moreover, Tang and Beckage (2010) calculated a 71–100% loss of coniferous forests in northern New England by the year 2085 using the BIOME4 model. Tang and Beckage (2010) estimated that ~ 7000 ha of coniferous forests will transition to deciduous forests

BGD

12, 11463–11498, 2015

Mercury in coniferous and deciduous upland forests

J. B. Richardson and A. J. Friedland

Title Page

Abstract Introduction

Conclusions References

Tables Figures

l∢ ≯l

•

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

of northern hardwoods across northern New England by the year 2085. Our calculations project a 29 % reduction ($12\,g\,ha^{-1}$) in Hg accumulation in upland forests. When extrapolated across the region, \sim 840 kg less Hg would be sequestered in forest soils as an indirect consequence of climate change. The reduced accumulation and retention may mean that less Hg is sequestered from the atmosphere or that Hg may leach faster into watersheds during the transition period (Aastrup et al., 1991; Schwesig and Matzner, 2001).

3.2.2 Exchangeable Hg in forest soils

Quantifying the exchangeability of Hg is important for considering its mobility in the soil profile. The objective of the extraction process used was to exchange Hg⁺² from sorption sites with Mg⁺². The EHg concentrations were nearly uniform with depth, ranging between 1.1 and 9.8 µg kg⁻¹. Our results show EHg concentrations were similar for coniferous and deciduous stands in most soil horizons, except in the Oe horizons (Fig. 3). By dividing EHg concentrations by the THg concentrations, we are able to examine the relative fraction of exchangeable Hg. In Figure 3, E horizons have a significantly greater exchangeability than all other horizons. However, % EHg was similar for coniferous and deciduous stands in all horizons (Fig. 3). On the basis of our results, Hg was strongly complexed in soil, regardless of vegetation type. Thus, a shift from a coniferous to a deciduous stand would not increase Hg mobility in soil.

Exchangeable Hg concentrations in the organic and mineral horizons were regressed with soil C, pH, % clay, latitude, and longitude using stepwise linear regressions and multiple regressions. Exchangeable Hg concentrations in the organic horizons were not significantly correlated with any of the explanatory variables. For the mineral horizons, only soil C and pH were significantly correlated with EHg. Mineral soil EHg concentrations were significantly correlated with soil C and pH, together explaining 33 % of the variation. Exchangeable Hg concentrations were poorly correlated with the six chosen explanatory variables, suggesting that other factors are responsible for the variation. These factors may include types of colloids (inorganic or organic)

BGD

12, 11463–11498, 2015

Mercury in coniferous and deciduous upland forests

J. B. Richardson and A. J. Friedland

Title Page

Abstract Introduction

Conclusions References

Tables Figures

l∢ ≯l

→

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

or character of sorption sites on SOM (Schuster, 1991; Gabriel and Williamson, 2004; Essington, 2003).

Our EHg and % EHg data also provide insight on the sorption and mode of illuviation of Hg. In the Spodosols studied, Hg was not ion exchangeable. Mercury species 5 were likely immobilized by strong complexation or sorption to organic and inorganic colloids (Schuster, 1991), except for the E horizons. The high proportion of EHg suggests that Hg is weakly sorbed in the E horizons and is highly mobile. For the other soil horizons, complexation by organic colloids is most likely to be dominant over inorganic colloids due to the pH dependency of mineral surfaces in the Oa and Bhs horizons (Schuster, 1991; Gabriel and Williamson, 2004). The low ionic exchangeability of Hg agrees with previous studies that the downward transport of Hg in upland forest soils must be primarily via particulate transport, such as dissolved organic carbon or inorganic nanoparticles (Demers et al., 2007; Schwesig and Matzner, 2001; Grigal, 2003; Gabriel and Williamson, 2004; Stankwitz et al., 2012).

Hg concentrations and pools in aboveground biomass

3.3.1 Total Hg in foliage

Previous studies have shown that Hg concentration in foliage varies among tree genera (e.g., St. Louis et al., 2001; Grigal, 2002; Bushey et al., 2008; Juillerat et al., 2012). We expected THg concentrations to be greater in coniferous needles due to their longevity, which coincides with observations of higher Hg concentrations in conifer needles (Rasmussen et al., 1991; Hall and Louis, 2004; Obrist et al., 2012). We instead found that balsam fir and American beech had higher THg concentrations than red spruce, maples, and birches (Fig. 4). Our results match the rankings of THg concentrations by Rea et al. (2002), Bushey et al. (2008), Juillerat et al. (2012), and Blackwell and Driscoll (2015). This suggests that differences in their physiology beyond vegetation type promote greater Hg sorption. Physiological properties, such as leaf roughness, leaf area index, stomatal morphology, and cuticle material, may control Hg sorption on leaf sur**BGD**

12, 11463–11498, 2015

Mercury in coniferous and deciduous upland forests

J. B. Richardson and A. J. Friedland

Title Page **Abstract**

Introduction

Conclusions References

> **Tables Figures**

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

faces and uptake (Browne and Fang, 1978; Weathers et al., 2006; Zhang et al., 2009; Obrist et al., 2012; Juillerat et al., 2012). Blackwell and Driscoll (2015) hypothesized that coniferous vegetation accumulate Hg at a slower rate than deciduous vegetation, but their longevity and multiple growing seasons is responsible for their higher contribution in litterfall. An additional physiological influence may be that Hg held on leaf surfaces for Spruces, Maples, and Birches may have greater revolatilization rates than for Balsam Firs and Beeches (Hanson et al., 1995).

Mercury concentrations in foliage can also vary temporally, ranging from differences during the growing season (Rea et al., 2002; Juillerat et al., 2012) and among years sampled (Rea et al., 2002; Blackwell and Driscoll, 2015). Foliar Hg concentrations have been shown to increase an order of magnitude through the growing season (Rea et al., 2002). Thus, we sampled late-season foliage to estimate the maximum concentration of Hg obtained by foliage before their senescence. In addition to seasonal variation, annual differences in Hg concentrations have been observed (Rea et al., 2002; Bushey et al., 2008) and were hypothesized to occur from annual variation in uptake and dry deposition onto leaves (Rasmussen, 1995; Grigal, 2002). However, we did not observe significant differences in THg concentrations in late-season foliage collected in 2012, 2013, and 2014. This agrees with results from other studies (e.g., Bushey et al., 2008). In addition, the National Atmospheric Deposition Program (NADP) observed that annual Hg deposition rates from precipitation and dry deposition have been were relatively consistent during their monitoring of the region from 2003 to 2013 (NADP, 2007).

3.3.2 Total Hg in bole wood

Bole wood had significantly lower THg concentrations $(8 \pm 4 \,\mu g \, kg^{-1})$ than foliar $(35 \pm 9 \,\mu g \, kg^{-1})$. Wood THg concentrations ranged from 10 to 50% of their respective foliar concentrations. Wood THg concentrations were greater for coniferous genera $(11.7 \pm 0.8 \,\mu g \, kg^{-1})$ than for deciduous genera $(5.3 \pm 0.7 \,\mu g \, kg^{-1})$ (Fig. 4). These values are similar to bole wood Hg concentrations in other studies (e.g., Obrist et al., 2012). The greater concentrations of Hg in coniferous tissue are likely due to ecophys-

BGD

12, 11463-11498, 2015

Mercury in coniferous and deciduous upland forests

J. B. Richardson and A. J. Friedland

Title Page

Abstract Introduction

Conclusions References

Tables Figures

|**4** ►|

•

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

iological properties, such as growth rate and root uptake (Rea et al., 2002). Although root uptake of Hg is generally considered a small contribution (Aastrup et al., 1991; Grigal, 2002; Rea et al., 2002; Schwesig and Krebs, 2003), it could differ among genera (Beauford et al., 1977) and could possibly be greater for coniferous vegetation. In addition, retention in the xylem could also vary for each genus (Bishop et al., 1998).

3.3.3 Aboveground biomass total Hg estimation

The foliar and woody biomass was calculated using 2012 basal area measurements for all trees within the 707 m² stands and allometric equations for each species (Ter-Mikaelian and Korzukhin, 1997). It must be noted that these values are approximations, and biomass can vary with canopy geometry, tree morphology, and individual fitness of each tree (Ferrari and Sugita, 1996; Luyassaert et al., 2002; Bushey et al., 2008). From the allometric equations, we estimated that coniferous stands had significantly less foliar biomass $(1650\pm360 \,\mathrm{kg}\,\mathrm{ha}^{-1})$ than deciduous stands $(5680\pm610 \,\mathrm{kg}\,\mathrm{ha}^{-1})$. Similarly, coniferous stands had significantly less woody biomass (9070 ± 2220 kg ha⁻¹) than deciduous stands $(24\,500\pm5480\,\mathrm{kg\,ha}^{-1})$. The difference in foliar and woody biomass at coniferous and deciduous vegetation was a large but not surprising difference, considering the physiology and canopy structure of deciduous trees (Ferrari and Sugita, 1996).

Mercury pools in the aboveground biomass (foliage and wood) were calculated using averaged 2012, 2013, and 2014 THg concentration data with biomass estimates from allometric equations. Our results in Fig. 5 show that coniferous and deciduous stands do not have significantly different foliar pools of THg despite significantly more foliar biomass at deciduous stands. However, woody biomass at coniferous stands has a significantly larger THg pool $(0.30 \pm 0.08 \,\mathrm{g\,ha^{-1}})$ than at deciduous stands $(0.15 \pm 0.04 \,\mathrm{g\,ha}^{-1})$. In spite of two thirds less woody biomass at coniferous stands than deciduous stands, wood biomass THg pools at coniferous stands were greater than deciduous stands. Foliar and wood biomass Hg concentrations can vary annually due to precipitation and temperatures (Risch et al., 2011; Obrist et al., 2012).

Paper

Paper

Abstract

Introduction

Conclusions

References **Figures**

Tables

BGD

12, 11463–11498, 2015

Mercury in

coniferous and deciduous upland

forests

J. B. Richardson and

A. J. Friedland

Title Page

Back

Close

Moreover, Hg concentrations can vary with the type of wood sampled (twigs, branches, bark, and bole wood), and vertical location in the canopy can also affect Hg estimates (Risch et al., 2011; Obrist et al., 2012). However, we believe our estimates of foliar Hg pools are representative values. For example, the calculated litterfall rates, based on foliar Hg biomass at the 16 stands, was $0.13 \pm 0.04 \, \text{g ha}^{-1} \, \text{yr}^{-1}$, which matched litterfall rates measured by Risch et al. (2011) $(0.12 \pm 0.01 \, \text{g ha}^{-1} \, \text{yr}^{-1})$ and Rea et al. (2002) $(0.16 \pm 0.02 \, \text{g ha}^{-1} \, \text{yr}^{-1})$. The litterfall rates were significantly lower for coniferous stands due to the smaller biomass and greater longevity of the coniferous foliage (Barnes and Wagner, 1981).

3.4 Organic and mineral horizons simple box models

We estimated Hg residence time in the organic and mineral horizons using a simple two-box model system (see Sect. 2.5 for details). The calculated Hq MRTs in the organic horizons were significantly longer at coniferous stands (183±44 yr) than deciduous stands (65±15 yr) (Table S2). Similarly, the Hg MRT in the mineral soil was significantly longer for coniferous stands (386±57 yr) than for deciduous stands (188±27 yr) (p < 0.05; Table S2). The organic horizon MRT was similar to estimates by other Hg studies conducted in this region (e.g., Demers et al., 2007; Yu et al., 2014). Moreover, organic horizons MRTs matched values for other pollutant toxic metals, specifically Pb (Miller and Friedland, 1994; Kaste et al., 2003; Richardson et al., 2013, 2015). The Hg MRT in organic horizons at deciduous stands was very similar to the Pb residence time estimated by Kaste et al. (2003) and Richardson et al. (2014), which was 61 yr. Our results suggest that the MRT may be significantly longer at coniferous stands due to the larger organic horizons Hg pool. The opposite result was predicted by Demers et al. (2007) on the basis of smaller organic horizon Hg pools under coniferous vegetation. Mineral horizons MRTs were at least a 1000 yr shorter than Yu et al. (2014), in which they calculated 1800 yr MRT for mineral soils across the northeastern US. The difference likely arose from the method used to estimate Hg leaching: our study used

BGD

12, 11463-11498, 2015

Mercury in coniferous and deciduous upland forests

J. B. Richardson and A. J. Friedland

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I**∢** ►I

→

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

the steady-state assumption with fluxes based on litterfall and atmospheric deposition, whereas Yu et al. (2014) used soil solutions.

The MRT values offer rough approximations of Hg cycling in forest soils under coniferous and deciduous stands, but the estimates are limited by data and assumptions used in our methods. First, the assumption of steady state is unlikely to be true because loadings have been increasing due to coal combustion and artisanal gold mining (Kamman and Engstrom, 2002; Streets et al., 2011; Tipping et al., 2011). Second, our volatilization rates and atmospheric deposition loads of Hg are interpolated values. The true volatilization and atmospheric deposition at each site can vary due to aspect, local topography, and many other properties not taken into account. Moreover, weathering of meta-sedimentary rocks may contribute a non-negligible amount of Hg on the order of centuries. The simple box models demonstrate that pollutant Hg can be retained by soils in the region for decades to centuries, and a change from coniferous to deciduous vegetation may affect the sequestration of Hg in forest soils. Additional information on deposition, litterfall, and sequestration of Hg in organic matter from different vegetation types is needed to constrain the role of vegetation in Hg biogeochemistry.

Mercury transport and accumulation in forest soils has been noted as strongly linked with the biogeochemistry of C in soils (Smith-Downey et al., 2010; Obrist et al., 2011; Demers et al., 2013; Zhou et al., 2015). We used a similar simple box model approach to estimate the MRT of C in the organic horizons as the C pool divided by the litterfall C flux. We assumed that the primary source of C to the organic horizons was via litterfall and that the C system is roughly in steady state. The MRT of C in the organic horizons was calculated to be significantly longer for coniferous stands ($12.0\pm3.2\,\mathrm{yr}$) than for deciduous stands ($2.1\pm0.6\,\mathrm{yr}$) (p<0.05). Our estimates matched those by Fassnacht and Gower (1999), who calculated SOM MRT in the organic horizons of forests in Wisconsin to be $3.2-10.3\,\mathrm{yr}$ under coniferous stands and $0.8-4.7\,\mathrm{yr}$ under deciduous stands. The MRT was much longer at coniferous stands because the organic horizon C pools are greater and litterfall fluxes of C are smaller than at deciduous stands. The longer C residence time may increase the time Hg can be sequestered to SOM. However, the

BGD

12, 11463–11498, 2015

Mercury in coniferous and deciduous upland forests

J. B. Richardson and A. J. Friedland

Title Page

Abstract Introduction

Conclusions References

Tables Figures

la bi

•

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

sequestration of Hg may be influenced by other SOM processes beyond total C fluxes and pools in forest stands. The retention of Hg by litter during decomposition may also play a significant role in the accumulation of Hg in the organic horizons (Demers et al., 2007; Pokharel and Obrist, 2011). Demers et al. (2007) and Zhou et al. (2015) showed that THg concentrations in organic horizons are much greater than litterfall inputs due to decomposition and release of organic matter at a greater rate than Hg loss. Thus, C models can be used as a good first order approximation, but the sequestration of Hg in forest soils is dependent on additional processes that may not be encompassed via C models (cf. Smith-Downey et al., 2010).

4 Conclusions

We conclude that vegetation type significantly influenced Hg accumulation and retention in the organic horizons but not in the mineral horizons, which were controlled by soil properties. THg concentrations in the Oi, Oe, and Oa horizons were greater for coniferous stands than for deciduous stands. The summed organic horizon THg pools were greater for coniferous stands $(53 \pm 10\,\mathrm{g\,ha^{-1}})$ than for deciduous stands $(30 \pm 6\,\mathrm{g\,ha^{-1}})$. Proposed mechanisms for this difference include litter quality, sorption capacity of SOM, and susceptibility for microbial decomposition. Mineral soil THg concentrations and pools did not significantly differ with vegetation type. Instead, soil C, % clay, and pH explained 56 % of the variation in total Hg concentrations in the mineral soil. The mobility of Hg did not vary significantly with vegetation type and was weakly explained by soil physicochemical properties.

Our empirical data and simple box model analysis indicate that coniferous vegetation accumulates and retains more Hg in their underlying soils, primarily in their organic horizons. We calculated a 28 % lower (12 g ha $^{-1}$) Hg accumulation in soils at deciduous stands than at coniferous stands. When extrapolated to the predicted \sim 7000 ha loss of coniferous forests, the vegetation shift could represent \sim 840 kg less Hg sequestered in the organic horizons across the region. The effect of lower Hg storage is unclear:

BGD

12, 11463–11498, 2015

Mercury in coniferous and deciduous upland forests

J. B. Richardson and A. J. Friedland

Title Page

Abstract Introduction

Conclusions References

Tables Figures

l**⊲** ▶l

- ★

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Hg may be volatilized to the atmosphere or lost to leaching and enter downslope water bodies at faster rates. We estimated the MRT of Hg in organic and mineral horizons underlying coniferous and deciduous stands to range from 65 to 515 yr. The organic horizons MRT may be longer for coniferous stands than deciduous stands, whereas mineral horizons MRTs were similar for both vegetation types. Further investigations should evaluate the effect of vegetation type on Hg volatilization, atmospheric deposition, and leaching rates to constrain landscape and regional changes. This will better aid regional and global Hg models in implementing the effect of shifting vegetation type on future Hg pools in soils.

 The Supplement related to this article is available online at doi:10.5194/bgd-12-11463-2015-supplement.

Acknowledgements. This work was made possible by Dartmouth College Porter Fund 10–001, Northern Studies Grant/Internship, the E.E. Just Program, and the Dartmouth Graduate Alumni Research Award from Dartmouth College. The field component and laboratory analyses would not have been possible without help from Paul Zeitz, James Brofos, Emily Lacroix, and Lars Olaf-Hoger. The authors are thankful for analytical help from Brian Jackson, Janet Towse, and Emily Pierson at the Dartmouth Trace Element Analysis laboratory. Jamie Shanley and Charley Driscoll contributed to project design.

References

Aastrup, M., Johnson, J., Bringmark, E., Bringmark, I., and Iverfeldt, Å.: Occurrence and transport of mercury within a small catchment area, Water Air Soil Poll., 56, 155–167, 1991.

Amacher, M. C.: Nickel, cadmium, and lead, in: Methods of soil analysis, Part 3, edited by: Sparks, D. L., SSSA Book, Ser. 5, SSSA, Madison, WI, 739–768, 1996.

Barnes, B. V. and Wagner, W. H.: Michigan Trees, A Guide to the Trees of Michigan and the Great Lakes Region, University of Michigan Press, Ann Arbor., 384 pp., 1981.

BGD

12, 11463–11498, 2015

Mercury in coniferous and deciduous upland forests

J. B. Richardson and A. J. Friedland

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I∢ ≻I

•

Back Close
Full Screen / Esc

Printer-friendly Version

Interactive Discussion

© BY

.

12, 11463-11498, 2015

BGD

Mercury in coniferous and deciduous upland forests

J. B. Richardson and A. J. Friedland

Title Page

Abstract Introduction

Conclusions References

Tables Figures

4

•

Close

Back

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

CC BY

Berg, B., Berg, M., Bottner, P., Box, E., Breymeyer, A., Calvo de Anta, R., Couteaux, M., Gallardo, A., Escudero, A., Kratz, W., Madeira, M., Mälkönen, E., Meentemeyer, V., Muñoz, F., Piussi, P., Remacle, J., Virzo De and Santo, A.: Litter mass loss in pine forests of Europe and Eastern United States as compared to actual evapotranspiration on a European scale, Biogeochemistry, 20, 127–153, 1993.

Bennett, D. S, Wittkop, C. A., and Dicken, C. L.: Bedrock Geologic Map of New Hampshire – A Digital Representation of the Lyons and others 1997 map and ancillary files, US Geological Survey Data Series, United States Geological Survey, 215, scale 1:250000, 2006.

Beauford, W., Barber, J., and Barringer, A. R.: Uptake and distribution of mercury within higher plants, Physiol. Plantarum, 39, 261–265, 1977.

Blackwell, B. D., Driscoll, C. T., Maxwell, J. A., and Holsen, T. M.: Changing climate alters inputs and pathways of deposition to forested ecosystems, Biogeochemistry, 119, 215–228, 2014.

Blackwell, B. D. and Driscoll, C. T.: Deposition of mercury in forests along a montane elevation gradient, Environ. Sci. Technol., 49, 5363–5370, 2015.

Bishop, K. H., Lee, Y. H., Munthe, J., and Dambrine, E.: Xylem sap as a pathway for total mercury and methylmercury transport from soil to tree canopy in the boreal forest, Biogeochemistry, 40, 101–113, 1998.

Browne, C. L. and Fang, S. C.: Uptake of mercury vapor by wheat: an assimilation model, Plant Physiol., 61, 430–433, 1978.

Bushey, J. T., Nallana, A. G., Montesdeoca, M. R., and Driscoll, C. T.: Mercury dynamics of a northern hardwood canopy, Atmos. Environ., 42, 6905–6914, 2008.

Carpi, A. and Lindberg, S. E.: Application of a teflonTM dynamic flux chamber for quantifying soil mercury flux: tests and results over background soil, Atmos. Environ., 32, 873–882, 1997.

Chalmers, A. T., Krabbenhoft, D. P., Van Metre, P. C., and Nilles, M. A.: Effects of urbanization on mercury deposition and accumulation in New England, Environ. Pollut., 192, 104–112, 2014.

Crock, J. G.: Mercury, in: Methods of soil analysis, edited by: D. L. Sparks, Part 3, SSSA Book, Ser. 5, SSSA, Madison, WI, 769–792, 1996.

Demers, J. D., Driscoll, C. T., Fahey, T. J., and Yavitt, J. B.: Mercury cycling in litter and soil in different forest types in the Adirondack region, New York, USA, Ecol. Appl., 17, 1341–1351, 2007.

12, 11463-11498, 2015

Mercury in coniferous and deciduous upland forests

J. B. Richardson and A. J. Friedland

- Title Page

 Abstract Introduction

 Conclusions References
 - onclusions References
 - Tables Figures
 - I∢ ⊳I
- - Back Close
 - Full Screen / Esc
 - Printer-friendly Version
 - Interactive Discussion
 - © ()

- Demers, J. D., Blum, J. D., and Zak, D. R.: Mercury isotopes in a forested ecosystem: implications for air–surface exchange dynamics and the global mercury cycle, Global Biogeochem. Cy., 27, 222–238, doi:10.1002/gbc.20021, 2013.
- Doll, C. G., Cady, W. M., Thompson Jr., J. B., and Billings, M. P.: Centennial Geologic Map of Vermont: Vermont Geological Survey, scale 1:250000, USGS, Miscellaneous Map MISCMAP-01, 1961.
- Driscoll, C. T., Han, Y- J., Chen, C. Y., Evers, D. C., Lambert, K. F., Holsen, T. M., Kamman, N. C., and Munson, R. K.: Mercury contamination in forest and freshwater ecosystems in the northeastern United States, Bioscience, 57, 17–28, 2007.
- Eganhouse, R. P., Young, D. R., and Johnson, J. N.: Geochemistry of mercury in Palos Verdos sediments. Environ. Sci. Technol., 12, 1151–1157, 1978.
 - Essington, M. E.: Soil and Water Chemistry: an Integrative Approach, CRC Press, Boca Raton, FL, 2003.
 - Evers, D. C., Han, Y. J., Driscoll, C. T., Kamman, N. C., Goodale, M. W., Lambert, K. F., Holsen, T. M., Chen, C. Y., Clair, T. A., and Butler, T.: Biological mercury hotspots in the Northeastern United States and Southeastern Canada, Bioscience, 57, 29–43, 2007.
 - Fahey, T. J., Siccama, T. G., Driscoll, C. T., Likens, G. E., Campbell, J., Johnson, C. E., Battles, J. J., Aber, J. D., Cole, J. J., Fisk, M. C., Groffman, P. M., Hamburg, S. P., Holmes, R. T., Schwarz, P. A., and Yanai, R. D.: The biogeochemistry of carbon at Hubbard Brook, Biogeochemistry, 75, 109–176, 2005.
 - Fassnacht, K. S. and Gower, S. T.: Comparison of the litterfall and forest floor organic matter and nitrogen dynamics of upland forest ecosystems in North Central Wisconsin, Biogeochemistry, 45, 265–284, 1999.
 - Ferrari, J. B. and Sugita, S.: A spatially explicit model of leaf litter fall in hemlock-hardwood forests, Can. J. Forest Res., 26, 1905–1913, 1996.
 - Fitzgerald, W. F., Engstrom, D. R., Mason, R. P., and Nater, E. A.: The case for atmospheric mercury contamination in remote areas, Environ. Sci. Technol., 32, 1–7, 1998.
 - Foster, D. R.: Land-use history (1730–1990) and vegetation dynamics in central New England, USA, J. Ecol., 80, 753–772, 1992.
- Gabriel, M. C. and Williamson, D. G.: Principal biogeochemical factors affecting the speciation and transport of mercury through the terrestrial environment, Environ. Geochem. Hlth., 26, 421–434, 2004.

- 12, 11463–11498, 2015
 - Mercury in coniferous and deciduous upland forests

- J. B. Richardson and A. J. Friedland
- Title Page **Abstract** Introduction Conclusions References
 - **Tables Figures**
- - Back Close
 - Full Screen / Esc
 - Printer-friendly Version
 - Interactive Discussion

- Grigal, D. F.: Inputs and outputs of mercury from terrestrial watersheds: a review, Environ. Rev., 10, 1–39, 2002.
- Grigal, D. F.: Mercury sequestration in forests and peatlands: a review, J. Environ. Qual., 32, 393–405, 2003.
- 5 Hall, B. D. and St. Louis, V. L.: Methylmercury and total mercury in plant litter decomposing in upland forests and flooded landscapes, Environ. Sci. Technol., 38, 5010-5021, 2004.
 - Hanson, P. J., Lindberg, S. E., Tabberer, T. A., Owens, J. G., and Kim, K.-H.: Foliar exchange of mercury vapor: evidence for a compensation point, Water Air Soil Poll., 80, 373–382, 1995.
 - Jenkins, J. C., Chojnacky, D. C., Heath, L. S., and Birdsey, R. A.: National-scale biomass estimators for United States tree species, Forest Sci., 49, 12-35, 2003.
 - Johnson, C. E. and Petras, R. J.: Distribution of zinc and lead fractions within a spodosol, Soil Sci. Soc. Am. J., 62, 782-789, 1998.
 - Juillerat, J. I., Ross, D. S., and Bank, M. S.: Mercury in litterfall and upper soil horizons in forested ecosystems in Vermont, USA, Environ. Toxicol. Chem., 31, 1720-1729, 2012.
- 15 Kaste, J. M., Friedland, A. J., and Sturup, S.: Using stable and radioactive isotopes to trace atmospherically-deposited Pb in montane forest soils, Environ. Sci. Technol., 37, 3560–3567, 2003.
 - Kamman, N. C. and Engstrom, D. R.: Historical and present fluxes of mercury to Vermont and New Hampshire lakes inferred from ²¹⁰Pb dated sediment cores, Atmos. Environ., 36, 1599– 1609, 2002.
 - Kenefic, L. S. and Nyland, R. D.: Sugar maple height-diameter and age-diameter relationships in an uneven-aged northern hardwood stand, North. J. Appl. For., 16, 43-47, 1999.
 - Lamson, N. I.: D. B. H./crown diameter relationships in mixed Appalachian hardwood stands, USDA Forest Service Research Paper, NE-610, Broomall, PA, US Department of Agriculture, Forest Service, Northeastern Forest Experiment Station, 3 pp., 1987.
 - Lorey, P. and Driscoll, C. T.: Historical trends of mercury deposition in Adirondack lakes, Environ. Sci. Technol., 33, 718-722, 1999.
 - Luyssaert, S., Raitio, H., Vervaeke, P., Mertens, J., and Lust, N.: Sampling procedure for the foliar analysis of deciduous trees, J. Environ. Monitor., 4, 858-864, 2002.
- Lyons, J. B., Bothner, W. A., Moench, R. H., and Thompson Jr., J. B.: Bedrock Geologic Map of New Hampshire: Reston, VA, US Geological Survey Special Map, USGS, 1:250000, 2 sheets, 1997.

Paper

- 12, 11463–11498, 2015

BGD

Mercury in coniferous and deciduous upland forests

J. B. Richardson and A. J. Friedland

- Title Page Abstract Introduction Conclusions References
 - **Tables Figures**

Close

- Full Screen / Esc

Back

- Printer-friendly Version
- Interactive Discussion

- McClaugherty, C. A., Pastor, J., Aber, J. D., and Melillo, J. M.: Forest litter decomposition in relation to soil nitrogen dynamics and litter quality, Ecology, 66, 266–275, 1985.
- Miller, E. K., Vanarsdale, A., Keeler, G., Chalmers, A., Poissant, L., Kamman, N. C., and Brulotte, R.: Estimation and mapping of wet and dry mercury deposition across northeastern North America, Ecotoxicology, 14, 53-70, 2005.
- Moore, T. R., Trofymow, J. A., Taylor, B., Prescott, C. E., Camiré, C., Duschene, L., Fyles, J., Kozak, L., Kranabetter, M., Morrison, I., Siltanen, M., Smith, S., Titus, B., Visser, S., Wein, R., and Zoltai, S.: Litter decomposition rates in Canadian forests, Glob. Change Biol., 5, 75–82, 1999.
- (NADP) National Atmospheric Deposition Program (NRSP-3): Illinois State Water Survey, NADP Program Office, 2204 Griffith Dr., Champaign, 61820, 2007.
- Nater, E. A. and Grigal, D. F.: Regional trends in mercury distribution across the Great Lakes states, north central USA, Nature, 358, 139-141, 1992.
- Obrist, D., Johnson, D. W., Lindberg, S. E., Luo, Y., Hararuk, O., Bracho, R., Battles, J. J., Dail, D. B., Edmons, R. L., Monson, R. K., Ollinger, S. V., Pallardy, S. G., Pregitzer, K. S., and Todd, D. E.: Mercury distribution across 14 US forests, Part 1: Spatial patterns of concentrations in biomass, litter, and soils, Environ. Sci. Technol., 45, 3974-3981, 2011.
- Obrist, D., Johnson, D. W., and Edmonds, R. L.: Effects of vegetation type on mercury concentrations and pools in two adjacent coniferous and deciduous forests, J. Plant Nutr. Soil Sc., 175, 68–77, 2012.
- Obrist, D., Pokharel, A. K., and Moore, C.: Vertical profile measurements of soil air suggest immobilization of gaseous elemental mercury in mineral soil, Environ. Sci. Technol., 48, 2242-2252, doi:10.1021/es4048297, 2014.
- Pokharel, A. K. and Obrist, D.: Fate of mercury in tree litter during decomposition, Biogeosciences, 8, 2507-2521, doi:10.5194/bg-8-2507-2011, 2011.
- PRISM Climate Group: Prism database: PRISM Climate Group, Oregon State University, Map created 14 October 2012, available at: http://prism.oregonstate.edu (last access: 28 December 2014), 2012.
- Pritchett, W. L. and Fisher, R. F.: Properties and Management of Forest Soils, Chapter 4 The Forest Floor, 2nd edn., John Wiley and Sons Inc, New York, USA, ISBN 0-471-89-572-5, 1987.
- Rasmussen, P. E., Mierle, G., and Nriagu, J. O.: The analysis of vegetation for total mercury, Water Air Soil Poll., 56, 379-390, 1991.

Paper

BGD

12, 11463–11498, 2015

Mercury in coniferous and deciduous upland forests

J. B. Richardson and A. J. Friedland

- Title Page Abstract Introduction Conclusions References **Tables Figures**
- Back Close
 - Full Screen / Esc
- Printer-friendly Version
- Interactive Discussion

- Ratcliffe, N. M.: Bedrock geologic map of the Cavendish quadrangle, Windsor County, Vermont: US Geological Survey Geologic Quadrangle Map, USGS, scale 1:24000, 1 sheet, 2000.
- Rea, A. W., Lindberg, S. E., Scherbatskoy, T., and Keeler, G. J.: Mercury accumulation in foliage over time in two northern mixed-hardwood forests, Water Air Soil Poll., 133, 49-67, 2002.
- 5 Richardson, J. B., Friedland, A. J., Engerbretson, T. R., Kaste, J. M., and Jackson, B. P.: Spatial and vertical distribution of mercury in upland forest soils across the northeastern United States, Environ. Pollut., 182, 127–134, 2013.
 - Richardson, J. B., Friedland, A. J., Kaste, J. M., and Jackson, B. P.: Forest floor lead changes from 1980 to 2011 and subsequent accumulation in the mineral soil across the northeastern United Sates, J. Environ. Qual., 43, 926-935, doi:10.2134/jeg2013.10.0435, 2014.
 - Richardson, J. B., Görres J. H., Friedland, A. J., and Jackson, B. P.: Trace metals and metalloids in forest soils and invasive earthworms in Northern New England, USA, Soil Biol. Biochem., 85. 190-198. 2015.
 - Risch, M. R., DeWild, J. F., Krabbenhoft, D. P., Kolka, R. K., and Zhang, L.: Litterfall mercury dry deposition in the eastern USA, Environ. Pollut., 161, 284–290, 2012.
 - Rimmer, C. C., Miller, E. K., McFarland, K. P., Taylor, R. J., and Faccio, S. D.: Mercury bioaccumulation and trophic transfer in the terrestrial food web of a montane forest, Ecotoxicology, 19, 697-709, 2010.
 - Schlüter, K.: Review: evaporation of mercury from soils, an integration and synthesis of current knowledge, Environ. Geol., 39, 249-271, 2000.
 - Schuster, E.: The behavior of mercury in soil with special emphasis on complexation and adsoprtion processes – a review of the literature, Water Air Soil Poll., 56, 667–680, 1991.
 - Schwesig, D. and Matzner, E.: Dynamics of mercury and methylmercury in forest floor and runoff of a forested watershed in Central Europe, Biogeochemistry, 53, 181–200, 2001.
- 25 Schwesig, D. and Krebs, O.: The role of ground vegetation in the uptake of mercury and methylmercury in a forest ecosystem, Plant Soil, 253, 445-455, 2003.
 - Siccama, T. G.: Vegetation, soil, and climate on green mountains of Vermont, Ecol. Monogr., 44, 325–349, 1974.
 - Smith-Downey, N. V., Sunderland, E. M., and Jacob, D. J.: Anthropogenic impacts on global storage and emissions of mercury from terrestrial soils: insights from a new global model, J. Geophys. Res., 115, G03008, doi:10.1029/2009JG001124, 2010.
 - Soil Survey Staff: Keys to Soil Taxonomy, 11th edn., USDA-Natural Resources Conservation Service, Washington, DC, 2010.

Paper

- Soil Survey Staff: Natural Resources Conservation Service, United States Department of Agriculture, Web Soil Survey. Available online at http://websoilsurvey.nrcs.usda.gov/.(last access: 22 April 2012), 2014.
- St. Louis, V., J. Rudd, W. M., Kelly, C. A., Hall, B. D., Rolfhus, K. R., Scott, K. J., Lindberg, S. E., and Dong, W.: Importance of the forest canopy to fluxes of methyl mercury and total mercury to boreal ecosystems, Environ. Sci. Technol., 35, 3089–3098, 2001.
- Stankwitz, C., Kaste, J. M., Friedland, A. J.: Threshold increases in soil lead and mercury from tropospheric deposition across an elevational gradient, Environ. Sci. Technol., 46, 8061–8068, doi:10.1021/es204208w, 2012.
- Streets, D. G., Devane, M. K., Lu, Z., Bond, T. C., Sunderland, E. M., and Jacob, D. J.: All-time releases of mercury to the atmosphere from human activities, Environ. Sci. Technol., 45, 10485–10491, 2011.
 - Talbot, J. M., Yelle, D. J., Nowick, J., and Treseder, K. K.: Litter decay rates are determined by lignin chemistry, Biogeochemistry, 108, 279–295, 2012.
- Tang, G. and Beckage, B.: Projecting the distribution of forests in New England in response to climate change, Divers. Distrib., 16, 144–158, 2010.
 - Tang, G., Beckage, B., and Smith, B.: The potential transient dynamics of forests in New England under historical and projected future climate change, Climatic Change, 114, 357–377, 2012.
- Teck, R. M. and Hilt, D. E.: Individual-Tree Diameter Growth Model for the Northeastern United States, Research Paper NE-649, Radnor, PA: US Department of Agriculture, Forest Service, Northeastern Forest Experiment Station, USDA, 11 p., 1991.
 - Ter-Mikaelian, M. T. and Korzukhin, M. D.: Biomass equations for sixty-five North American tree species, Forest Ecol. Manag., 97, 1–24, 1997.
 - Tipping, E., Wadsworth, R. A., Norris, D. A., Hall, J. R., and Ilyin. I.: Long-term mercury dynamics in UK soils, Environ. Pollut., 159, 3474–3483, 2011.
 - Townsend, J. and Driscoll, C. T.: Red-backed salamander (*Plethodon cinereus*) as a bioindicator of mercury in terrestrial forests of the northeastern United States, Ecol. Indic., 34, 168–171, 2013.
- 30 [USEPA] US Environmental Protection Agency: National Emission Standards for Hazardous Air Pollutants from Coal- and Oil-fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial-Institutional, and

BGD

12, 11463–11498, 2015

Mercury in coniferous and deciduous upland forests

J. B. Richardson and A. J. Friedland

Title Page

Abstract Introduction

Conclusions References

Tables Figures

< ►I

•

Back Close

Full Screen / Esc

Printer-friendly Version

- - 12, 11463–11498, 2015

- Mercury in coniferous and deciduous upland forests
- J. B. Richardson and A. J. Friedland
- Title Page Introduction Abstract Conclusions References **Tables**

Figures

- **Back** Close Full Screen / Esc
- Printer-friendly Version
- Interactive Discussion

- Small Industrial-Commercial-Institutional Steam Generating Units EPA-HQ-OAR-2009-0234; EPA-HQ-OAR-2011-0044, 2011.
- Weathers, K. C., Simkin, S. M., Lovett, G. M., and Lindberg, S. E.: Empirical modeling of atmospheric deposition in mountainous landscapes, Ecol. Appl., 16, 1590-1607, 2006.
- Whittaker, R. H., Bormann, F. H., Likens, G. E., and Siccama, T. G.: The hubbard brook ecosystem study: forest biomass and production, Ecol. Monogr., 44, 233–254, 1974.
 - Yu, X., Driscoll, C. T., Warby, R. A. F., Montesdeoca, M., and Johnson, C. E.: Soil mercury and its response to atmospheric mercury deposition across the northeastern United States, Ecol. Appl., 24, 812–822, 2014.
- Zhang, L., Wright, L. P., and Blanchard, P.: A review of current knowledge concerning dry deposition of atmospheric mercury, Atmos. Environ., 43, 5853-5864, 2009.
- Zhou, J., Wang, Z., Zhang, X., and Chen, J.: Distribution and elevated soil pools of mercury in an acidic subtropical forest of southwestern China, Environ, Pollut., 202, 187-195, 2015.

Table 1. Forest stand descriptions.

Site #	Elevation a.s.l.	Dominant vegetation type	Species present*	Stem density	Basal area	% Conifer by basal area	% Conifer by frequency	Soil Taxonomy (observed)
	m			stems ha ⁻¹	m ² ha ⁻¹	%	%	
VT 1	601	Conifer	A,B,C,E,G,H	257	8	63	56	Frigid Oxyaquic Haplorthod
		Deciduous	A,B,C,E,G	329	14	4	22	Frigid Typic Haplorthod
VT 2	704	Conifer	A,B,C,F,G	302	11	68	52	Frigid Typic Haplorthod
		Deciduous	B,C,D,F,H	243	12	0	6	Frigid Typic Haplorthod
VT 3	608	Conifer	A,D,E,F	371	6	52	52	Frigid Typic Haplorthod
		Deciduous	C,D,E,F,G	314	18	0	0	Frigid Typic Haplorthod
VT 4	582	Conifer	A,C,F,G,H	357	20	99	64	Frigid Fragic Haplorthod
		Deciduous	C,D,E,F,G,H	214	6	40	32	Frigid Fragic Haplorthod
NH 1	680	Conifer	B,D,E,F,G,H	443	8	76	52	Frigid Oxyaquic Haplorthod
		Deciduous	B,C,D,G	271	16	0	0	Frigid Typic Haplorthod
NH 2	641	Conifer	A,B,C,E,F,G,H	429	9	54	64	Frigid Oxyaquic Haplorthod
		Deciduous	A,B,C,D,E,F,G	357	11	2	4	Frigid Typic Haplorthod
NH 3	610	Conifer	A,C,F,G,H	457	5	60	65	Frigid Oxyaquic Haplorthod
		Deciduous	C,D,E,F,G,H	414	14	13	28	Frigid Oxyaquic Haplorthod
NH 4	640	Conifer	C,G,H,I	314	9	89	73	Frigid Typic Haplorthod
		Deciduous	C,E,F,G,H	279	12	1	11	Frigid Oxyaquic Haplorthod

^{*} A = Abies balsamea, B = Acer pensylvanicum, C = Acer rubrum, D = Acer saccharum, E = Betula alleghaniensis, F = Betula papyrifera, G = Fagus grandifolia, H = Picea rubens, I = Tsuga canadensis.

12, 11463–11498, 2015

Mercury in coniferous and deciduous upland forests

J. B. Richardson and A. J. Friedland

Title Page

Abstract Introduction

Conclusions References

Tables Figures

l∢ ≯i

•

Back Close

Full Screen / Esc

Printer-friendly Version

Table 2. Displayed are R^2 values for stepwise and multiple linear regressions of site location and select soil properties with total Hg (THg) and exchangeable Hg (EHg) concentrations for organic and mineral horizons.

Stepwise Linear regressions		Organic horizons THg EHg		Mineral horizons THg	EHg
		(μg kg ⁻¹)	(μg kg ⁻¹)	(μg kg ⁻¹)	(μg kg ⁻¹)
Soil C	$(g kg^{-1})$	0.19 ^a	n.s.	0.37 ^b	0.45 ^b
% clay	(gg^{-1})	N/A	N/A	0.17 ^a	n.s.
pH	log units	0.21 ^a	n.s.	0.13 ^a	0.36 ^b
Latitude	d.d. ^c	n.s.	n.s.	n.s.	n.s.
Longitude	d.d. ^c	n.s.	n.s.	n.s.	n.s.
Multiple regressions variables:		Soil C, pH 0.24 ^a	_ _	Soil C, % clay, pH 0.56 ^b	Soil C, pH 0.33 ^b

a = p < 0.05,

12, 11463-11498, 2015

Mercury in coniferous and deciduous upland forests

J. B. Richardson and A. J. Friedland

Title Page

Abstract Introduction

Conclusions References

Tables Figures

l**∢** ►l

•

Back Close

Full Screen / Esc

Printer-friendly Version

 $^{^{}b} = p < 0.001,$

^c Decimal degrees.

12, 11463-11498, 2015

BGD

Mercury in coniferous and deciduous upland forests

J. B. Richardson and A. J. Friedland

Printer-friendly Version

Full Screen / Esc

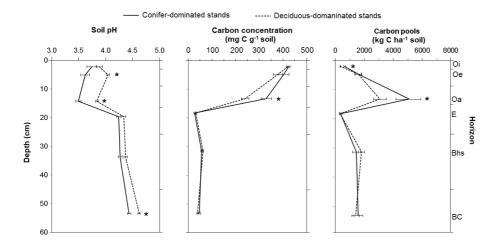
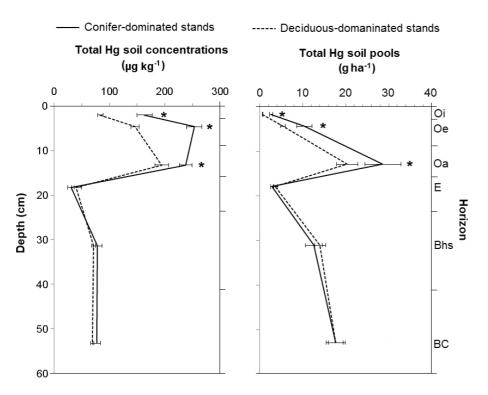



Figure 1. Soil pH, carbon concentration, and carbon pools for soil horizons at conifer- and deciduous-dominated stands. Mean values are given ±1 standard error. (*) indicates a significant difference using two sample t tests (P < 0.05).

Figure 2. Total Hg (THg) concentrations in organic and mineral horizons at conifer and deciduous-dominated forest stands. Mean values are given ± 1 standard error. (*) indicates a significant difference using two sample t tests (P < 0.05).

12, 11463-11498, 2015

Mercury in coniferous and deciduous upland forests

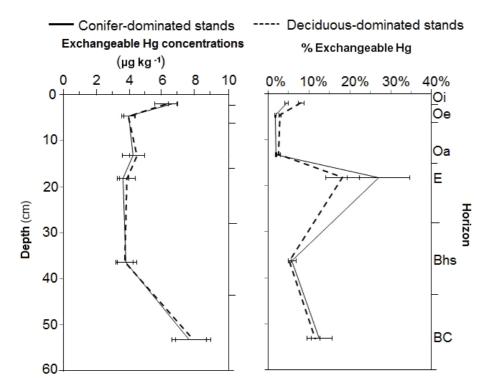
J. B. Richardson and A. J. Friedland

Title Page

Abstract Introduction

Conclusions References

Tables Figures


l≼ ⊬l

■ Back Close

Full Screen / Esc

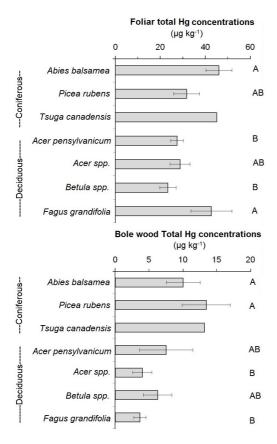
Printer-friendly Version

Figure 3. Exchangeable Hg (EHg) concentrations and % Exchangeable Hg in organic and mineral horizons at conifer and deciduous-dominated forest stands. Mean values are given ± 1 standard error. (*) indicates a significant difference using two sample t tests (P < 0.05).

12, 11463-11498, 2015

Mercury in coniferous and deciduous upland forests

J. B. Richardson and A. J. Friedland


Title Page

Printer-friendly Version

Full Screen / Esc

Interactive Discussion

Figure 4. Total Hg concentrations in dry weight leaves and wood from 2012, 2013 and 2014 forest stand samplings. Mean values are given ± 1 standard error. Letters (A, B) indicates a significant difference using Kruskal–Wallis test with post-hoc (P < 0.05). Each species/genus (n = 8), except Tsuga canadensis (n = 1), which was not included in statistical analyses.

12, 11463-11498, 2015

Mercury in coniferous and deciduous upland forests

J. B. Richardson and A. J. Friedland

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I4 ►I

Back Close

Full Screen / Esc

Printer-friendly Version

Discussion Paper

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

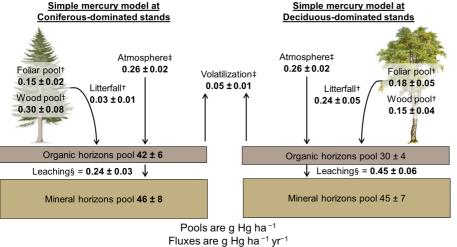


Figure 5. Total Hg pools in foliage, wood, organic, and mineral horizons at conifer and deciduous-dominated forest stands. See Method Sect. 2.5 for explanation of flux estimates. Mean values are given ±1 standard error. † Litterfall was estimated using foliar pools and senescence rates for each genus. ‡ Atmospheric deposition and volatilization rates were interpolated from Miller et al. (2005) and Yu et al. (2014). § Leaching was calculated under the assumption of steady state annual fluxes.

Abstract

Conclusions References

> **Tables Figures**

BGD

12, 11463–11498, 2015

Mercury in

coniferous and deciduous upland

forests

J. B. Richardson and

A. J. Friedland

Title Page

Introduction

