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Abstract 12 

Consistent forest loss estimates are important to understand the role of forest loss and 13 

deforestation in the global carbon cycle, for biodiversity studies, and to estimate the 14 

mitigation potential of reducing deforestation. To date, most studies have relied on optical 15 

satellite data and new efforts have greatly improved our quantitative knowledge on forest 16 

dynamics. However, most of these studies yield results for only a relatively short time period 17 

or are limited to certain countries. We have quantified large-scale forest loss over a 21-year 18 

period (1990-2010) in the tropical biomes of South America using remotely sensed vegetation 19 

optical depth (VOD). This passive microwave satellite-based indicator of vegetation water 20 

content and vegetation density has a much coarser spatial resolution than optical data but its 21 

temporal resolution is higher and VOD is not impacted by aerosols and cloud cover. We used 22 

the merged VOD product of the Advanced Microwave Scanning Radiometer (AMSR-E) and 23 

Special Sensor Microwave Imager (SSM/I) observations, and developed a change detection 24 

algorithm to quantify spatial and temporal variations in forest loss dynamics. Our results 25 

compared reasonably well with the newly developed Landsat-based Global Forest Change 26 

(GFC) maps, available for the 2001 onwards period (r2=0.90 when comparing annual country-27 

level estimates). This allowed us to convert our identified changes in VOD to forest loss area 28 

and compute these from 1990 onwards. We also compared these calibrated results to 29 
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PRODES (r2=0.60 when comparing annual state-level estimates). We found that South 1 

American forest exhibited substantial interannual variability without a clear trend during the 2 

1990s, but increased from 2000 until 2004. After 2004, forest loss decreased again, except for 3 

two smaller peaks in 2007 and 2010. For a large part, these trends were driven by changes in 4 

Brazil, which was responsible for 56% of the total South American forest loss area over our 5 

study period according to our results. One of the key findings of our study is that while forest 6 

loss decreased in Brazil after 2005, increases in other countries partly offset this trend 7 

suggesting that South American forest loss as a whole decreased much less than that in Brazil. 8 

 9 

1 Introduction 10 

There are large uncertainties in the spatial and temporal patterns of forest loss and associated 11 

fluxes of carbon in the tropical ecosystems (Grainger, 2008; Hansen et al., 2010; Malhi, 2010; 12 

Pan et al., 2011). Forest loss can be either natural, for example due to wind-throw or natural 13 

fires, or anthropogenic, usually labelled deforestation. Deforestation carbon emissions are a 14 

significant but declining fraction of total anthropogenic CO2 emissions (van der Werf et al., 15 

2009). In Amazonia, tropical deforestation was the main source of carbon emissions (Morton 16 

et al., 2008), at least during their 2003 to 2007 study period. More than half of the total forest 17 

carbon is stored in tropical intact forests, where more than 50% is stored in living biomass, 18 

about a third in the soil and the remaining carbon is stored in dead wood and litter (Pan et al., 19 

2011). In South America, deforestation is mainly caused by expansion of agriculture and area 20 

used for cattle ranging (FAO, 2006; Fearnside, 2005; Geist and Lambin, 2002), and the 21 

continent is responsible for almost half of the tropical deforestation emissions (Harris et al., 22 

2012; Pan et al., 2011). Over the last 30 years soybean production has expanded rapidly in 23 

Amazonia, partly driven by improved yield-increasing and labour-saving technologies (Grau 24 

et al., 2005; Naylor et al., 2005).  25 

Historically, widely used datasets for forest area changes and timber harvesting in the 80s and 26 

90s are the forest resource assessments (FRAs), as reported by countries to the United Nations 27 

Food and Agriculture Organization (UN FAO) (FAO, 2006), but which are known to suffer 28 

from issues regarding consistency (Grainger, 2008). Satellite observations overcome some of 29 

the issues found in earlier FAO datasets, because they systematically monitor in space and 30 

time. Over the last three decades several satellite-based deforestation datasets have been 31 

developed. Landsat satellite imagery is the longest operative option for monitoring vegetation. 32 
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From 1972 through January 1999 the Landsat Multispectral Scanner (MSS) provided 1 

continuous data on relatively high spatial resolution of 90 meter. From 1982 onwards the 2 

Landsat (Enhanced) Thematic Mapper ((E)TM) provides vegetation cover on an even higher 3 

spatial resolution of 30 meter, with a 16-day revisit time. However, the effective temporal 4 

resolution is much lower because of cloud cover issues, which often persists not only in the 5 

wet season but also during the dry season between June and November in the Amazon basin 6 

south of the equator (Costa and Foley, 1998). Therefore, these observations are mostly used in 7 

annual or multi-year analyses, but there is a need for alternative non-optical data techniques to 8 

provide time-series on a monthly or higher temporal resolution (Asner, 2001). Other widely 9 

used satellite datasets for vegetation are the Normalized Difference Vegetation Index (NDVI), 10 

often derived from the Advanced Very High Resolution Radiometer (AVHRR). NDVI is 11 

sensitive to canopy greenness (Anyamba and Tucker, 2005; Tucker et al., 2005; Zhu et al., 12 

2013). This dataset has a higher temporal, but coarser spatial resolution than Landsat, and is 13 

also sensitive to aerosols and cloud cover. Other vegetation datasets that can capture 14 

vegetation dynamics are for example the observations based on long-wavelength radar 15 

backscatter (Joshi et al., 2015), where deforestation, forest degradation and the follow-up 16 

vegetation cover could be captured, and those based on observations from the SeaWinds Ku-17 

band scatterometer (Frolking et al., 2012), which have shown to capture gross forest loss in 18 

the tropics. Also lidar data can be used to estimate forest biomass, and can thus capture 19 

vegetation dynamics (Mitchard et al., 2012). Data availability for radar and lidar datasets is 20 

usually from 1998 onwards. 21 

Over the past years, the number of datasets quantifying vegetation dynamics, carbon stocks 22 

and other relevant vegetation quantities on both global and regional scale has thus increased 23 

substantially, often using Landsat and AVHRR data but also other data sources including the 24 

Moderate-resolution Imaging Spectroradiometer (MODIS, launched in 1999 on board of 25 

Terra and in 2002 on Aqua), Medium Resolution Imaging Spectrometer (MERIS, 2002-2012) 26 

and Satellite Pour l’Observation de la Terre Vegetation Program (SPOT VGT, from 1986 27 

onboard different satellites) (Achard et al., 2014; Baccini et al., 2012; Broich et al., 2011; 28 

Ernst et al., 2013; Eva et al., 2012; Frolking et al., 2012; Jones et al., 2011; de Jong et al., 29 

2013; Kim et al., 2015; Koh et al., 2011; Mayaux et al., 1998; Morton et al., 2005; Potapov et 30 

al., 2012; Saatchi et al., 2011; Verbesselt et al., 2012; Verhegghen et al., 2012; Wasige et al., 31 

2012). 32 
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One of the regions most closely monitored is the Brazilian Legal Amazon, where the 1 

Brazilian National Institute for Space Research (INPE) developed the Program for 2 

Deforestation Assessment in the Brazilian Legal Amazon with Satellite Imagery (PRODES). 3 

PRODES estimates annual deforestation since 1988 based on a multi-data approach mostly 4 

based on Landsat data but also the China-Brazil Earth Resource Satellite (CBERS-2B) and 5 

UK-DCM2 from the Disaster Monitoring Constellation International Imaging (DMCii) 6 

(Shimabukuro et al., 1998). Other efforts include the recently published global maps of global 7 

forest gain and loss for the 2001-2012 period also using Landsat data (Hansen et al., 2013). 8 

In addition to the previously mentioned datasets mostly based on visible and infrared 9 

wavelengths, passive microwave observations can also be used to characterize vegetation 10 

dynamics. Vegetation optical depth (VOD) is a vegetation attenuation parameter in the 11 

microwave domain. This parameter was first described by Kirdiashev et al. (1979) in a zero-12 

order radiative transfer model for vegetation canopies. VOD is primarily sensitive to the 13 

vegetation water content and also captures information about vegetation structure (Jackson 14 

and Schmugge, 1991; Kerr and Njoku, 1990; Kirdiashev et al., 1979). 15 

The longer wavelengths of passive microwave enables sensitivity of VOD not only to the 16 

leafy part, but also to woody parts of vegetation (Andela et al., 2013). Therefore VOD yields 17 

information about both the photosynthetic and non-photosynthetic parts of aboveground 18 

vegetation, based on the water content (Jones et al., 2011; Shi et al., 2008). VOD is shown to 19 

be highly correlated with aboveground biomass (Liu et al., 2011a; Owe et al., 2001) and thus 20 

yields information about the net forest loss; the balance between decreases in forest loss due 21 

to deforestation and degradation and increases in forest extend due to regrowth or thickening. 22 

Furthermore, the advantage of low frequency (<20 GHz) microwave remote sensing is that 23 

aerosols and clouds have a negligible effect on the observations, so even areas with regular 24 

cloud cover are observed frequently, which makes it suitable to use for global vegetation 25 

monitoring at daily time steps.  26 

Comparing AVHRR NDVI and passive microwave based VOD datasets with a record longer 27 

than 20 years, Liu et al. (2011) showed that both datasets had similar seasonal cycles. VOD 28 

however, also showed interannual variations in regions with water stress, which corresponds 29 

for a large part to variations in precipitation. VOD was more sensitive to changes in woody 30 

vegetation compared to NDVI, whereas NDVI was more sensitive to herbaceous changes 31 

(Andela et al. 2013). This is the result of NDVI being more sensitive to canopy greenness 32 



 5 

(Myneni et al., 1995) and VOD being more sensitive to water content, relatively speaking. 1 

Thus, when forest is converted to large-scale cropland, the canopy greenness does not 2 

necessarily drop, whereas the total water content of the aboveground biomass decreases (Liu 3 

et al., 2011a). 4 

The main disadvantage of these low-frequency passive observations is that a large footprint is 5 

needed to yield an observable signal, making this dataset most suitable for large regional and 6 

continental-scale studies. These retrievals therefore have a relatively coarse resolution, 7 

compared to observations in the visible and near infrared parts of the spectrum. Furthermore 8 

the presence of open water regions affects the signal. This, in combination with the large 9 

footprint of the gridded product, may lead to underestimation of VOD when grid cells are 10 

close to large open waters (Jones et al., 2011). VOD is retrieved from several satellite sensors. 11 

The observations retrieved from the Advanced Microwave Scanning Radiometer (AMSR-E) 12 

and Special Sensor Microwave Imager (SSM/I) have been merged to one dataset with a 13 

spatial resolution of 0.25°, based on Cumulative Distribution Function (CDF) matching. This 14 

merged VOD dataset has been used to study vegetation dynamics in different ecosystems on 15 

both global and regional scales (Andela et al., 2013; Liu et al., 2012, 2013, 2015; Poulter et 16 

al., 2014; Zhou et al., 2014). Guan et al. (2012) compared QuickScat Ku-band backscatter 17 

coefficients (dB) with VOD and NDVI and noted that the three datasets are comparable, but 18 

that dB shows abnormal high values when more bare soil is present in the pixel. 19 

This paper aims to estimate large-scale forest loss in South America. We show how the 20 

merged VOD product can be used to estimate forest loss for South America on a country-21 

level scale, but we also point towards limitations of our approach and the dataset. The main 22 

novelty of our approach is the relatively long (1988-2011) time series based on a consistent 23 

data stream. We detail how we translated the VOD signal to forest loss area by calibrating our 24 

results to the Global Forest Change maps of Hansen et al. (2013), which are subsequently 25 

compared to the Landsat-derived PRODES dataset. We provide a country-level analysis of 26 

the newly derived maps, and zoom in on Brazil to present a state-level analysis of forest loss 27 

over the 1990-2010 period. This time period is somewhat shorter than the time span of the 28 

VOD dataset due to the requirements of the change detection algorithm we developed. 29 

 30 
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2 Datasets 1 

In this section we describe the datasets we used in our analysis. First, we give more 2 

information on the VOD dataset that is used for our estimation of forest loss (Sect 2.1), 3 

followed by describing the two datasets we used for comparison: the Global Forest Change 4 

(GFC, Sect. 2.2), which besides being used for comparing the spatio-temporal variability is 5 

also used to translate our results to area estimates, and the PRODES dataset (Sect. 2.3). 6 

2.1 Vegetation Optical Depth (VOD) 7 

Forest loss estimates in this article are based on VOD, which is derived from passive 8 

microwave remote sensing. Passive microwave remote sensing differs from active microwave 9 

remote sensing (radar) in the sense that radar transmits a long-wavelength microwave signal 10 

through the atmosphere and then records the amount of energy backscattered, whereas passive 11 

systems record electromagnetic energy that was reflected or emitted from the surface of the 12 

Earth. VOD was first introduced by Kirdiashev et al. (1979), and then modified to be used in 13 

the well-known omega-tau model (Mo et al., 1982). Kirdiashev et al. (1979) already described 14 

the relationship between VOD and vegetation water content. This relationship was further 15 

simplified by Jackson and Schmugge (1991) where the vegetation water content was directly 16 

related to VOD. The algorithm of the VOD dataset we used here is based on the land 17 

parameter retrieval model (LPRM) (Meesters et al., 2005; Owe et al., 2001, 2008). LPRM is 18 

based on a radiative transfer model and solves simultaneously for soil moisture and VOD. It 19 

can be applied to passive microwave sensors and has been used in numerous studies (see de 20 

Jeu et al., 2014). VOD can be used to estimate biomass (Liu et al., 2015), and changes therein 21 

correspond to net forest loss (equals the net sum of deforestation, degradation and regrowth) 22 

in a 0.25° grid cell. 23 

The VOD time series used here is based on merging observations from two sensors (Liu et al., 24 

2011a). The different observations come from SSM/I (1988-2007) and AMSR-E (July 2002-25 

September 2011). These two sensors have different specifications regarding wavelength, 26 

viewing angle and spatial footprint and therefore the absolute values of the retrieved VOD 27 

values differ. Their relative dynamics, however, are similar (Liu et al., 2011a). In the merging 28 

procedure the AMSR-E retrievals were used as a reference, because this product has the 29 

higher accuracy due to its relatively low frequency. The cumulative distribution frequency 30 

(CDF) matching technique was used for rescaling SSM/I to match AMSR-E. For the period 31 
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July 2002 through September 2011 AMSR-E data are used. Before July 2002, SSM/I 1 

observations are used. Full details on the merging process can be found in Liu et al. (2011a, 2 

2011b). In this study, we used monthly values, which were derived from the merged VOD 3 

dataset (version January 2015) by averaging the daily data fields, and were resampled to 4 

0.25°. VOD observations are dimensionless and their values range from 0 to 1.5. At a certain 5 

point, when VOD values exceed 0.8, the vegetation becomes so dense that the soil component 6 

in the radiative transfer becomes very small. This is a gradual process and when VOD values 7 

are higher than 0.8 additional checks are necessary before using the values in vegetation 8 

studies. When VOD exceeds 1.2 smaller scale variations in the vegetation canopy cannot be 9 

captured anymore (Owe et al., 2001). 10 

2.2 Global Forest Change (GFC) 11 

Hansen et al. (2013) released early 2014 the Global Forest Change (GFC) project gridded 12 

dataset, which is probably the most data rich and computer intensive production of global 13 

forest change maps. It contains annual maps over the time period 2001-2013 at a 30-meter 14 

resolution. The maps are based on the 30-meter Landsat 7 Enhanced Thematic Mapper Plus 15 

(ETM+) scenes, which were resampled and normalized to create a gridded dataset of cloud-16 

free image observations. Forest loss is defined in GFC as a change from forest to non-forest 17 

state, comprising deforestation and degradation. In our analysis, we used the annual forest 18 

loss dataset and reprocessed these to the 0.25° resolution of our analysis by summing the 30-19 

meter values. While regrowth is detected and reported, we focused on the forest loss data 20 

when we used GFC for comparison; regrowth is thus not included in our analysis of GFC. We 21 

did not include the 2000 forest cover map as mask for forested areas to avoid omitting areas 22 

that were deforested before 2000. 23 

2.3 PRODES deforestation 24 

The Brazilian space agency INPE provides annual gross deforestation maps of the Brazilian 25 

Legal Amazon within the Program for Deforestation Assessment in the Brazilian Legal 26 

Amazonia (PRODES). INPE defines deforestation as the gross deforestation rate of the 27 

conversion of intact forests (old growth forest) to a different land use such as agro-pasture, 28 

wood exploration areas and silviculture. Degradation and deforestation of regenerating 29 

secondary forests are not monitored by PRODES (INPE, 2013). 30 



 8 

Although PRODES covers a relatively long time period, the method of detection of 1 

deforestation has changed over time. For the time period 1988-2002 the detection of 2 

deforestation polygons was done by visual interpretation of Landsat 5 and Landsat 7 scenes. 3 

More recently these polygons were manually digitized in the PRODES Analog project (INPE, 4 

2013). After 2002, PRODES started to use digital image processing and visual interpretation 5 

of Landsat bands 3, 4 and 5 creating and interpreting images of soil, shade and vegetation 6 

fractions (INPE, 2013; Shimabukuro et al., 1998). Deforestation is reported once per year in 7 

August based on changes over the previous 12-month period. Deforestation within PRODES 8 

is defined as clear-cut areas of primary forests exceeding 6.25 ha. Because of this threshold in 9 

detection omitting deforestation smaller than 6.25 ha, INPE reports that underestimation of 10 

deforestation occurs. Furthermore there may be unobserved areas due to cloud cover in the 11 

Landsat images during the time period of visual interpretation until 2005 (INPE, 2013). 12 

 13 

3 Methods 14 

In this section we will first explain the pre-processing of the data (Sect. 3.1), followed by 15 

describing the methodology used to detect forest loss (Sect. 3.2). Finally we will explain how 16 

the detected changes were converted to forest loss area (Sect. 3.3) 17 

3.1 Data selection 18 

We aimed to estimate gross forest loss for each 0.25° pixel on an annual basis, which will be 19 

explained in Sect. 3.2. We first filtered the available data to circumvent false detections 20 

related to the use of microwave data. The excluded grid cells are shown in Fig. 1, and the data 21 

exclusion was based on two criteria: 22 

1. Average VOD values should be below 1.2. This is to prevent false detection in densely 23 

vegetated areas without clear forest loss. The value was based on Owe et al (2001), 24 

who stated that VOD values larger than 1.2 cannot be used to detect significant 25 

vegetation changes. When vegetation is very dense, the VOD signal becomes noisy 26 

and potential changes in forest cover cannot be detected anymore. These pixels are 27 

mainly found in the middle of the Amazon forest, where forest loss rates are low. In 28 

addition, we excluded grid cells where VOD values were on average below 0.6 to 29 

maintain a focus on forested grid cells. Also when forest loss occurs in the early stages 30 

of the time series, the average VOD value will not be below this limit of 0.6. This 31 
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value was based on the comparison between VOD and MODIS-based Vegetation 1 

Continuous Fields (VCF), which provides information about the fraction tree cover in 2 

a pixel. Our VOD threshold of 0.6 corresponds to 10% tree cover for two-third of the 3 

pixels, a percentage sometimes used to define forest (Saatchi et al., 2011; UNFCCC, 4 

2006) although there is no consensus about this definition. 5 

2. Large open water should be avoided. Open water affects microwave emissions and can 6 

lead to underestimation of VOD (Jones et al., 2011). Therefore 0.25° grid cells, which 7 

contain more than 50% open water based on the Global Lakes and Wetlands Database 8 

(GLWD, Lehner and Döll, 2004), were masked out. 9 

We excluded these grid cells also from GFC and PRODES data when we compared the 10 

results. Therefore, total South American forest loss over 2001-2010 for GFC reported here are 11 

on average 4% lower than without the data exclusion, which also gives an indication of our 12 

underestimation due to masking out of these grid cells. 13 

3.2 Detection of forest loss 14 

Our method is a change detection method based on the principle that VOD is directly related 15 

to the aboveground living biomass. Therefore persistent changes in VOD over time are related 16 

to changes in biomass (Liu et al., 2015), for example when forest is converted to non-forest. 17 

Basically we track the full time series and inspect whether there are sudden drops in the signal 18 

that could be the result of forest loss. Our approach is based on 4 steps and explained using an 19 

example grid cell located in the Brazilian state of Mato Grosso, where forest loss has been 20 

high during the 2000-2005 interval according to Hansen et al. (2010). 21 

As a first step we deseasonalized the time series based on a 19-month moving average of 22 

VOD (VODMovingAVG, Fig. 2a): 23 

VODMovingAVG (lat, lon,m) = Average(VODobs (lat, lon,m− 9 :m+ 9))    (1) 24 

where lat,lon,m is the latitude (lat), longitude (lon) and month (m). With m-9:m+9 we refer to 25 

all data points 9 months before until 9 months after the specific month. This approach was 26 

preferred over taking out the seasonal cycle based on the average of all cycles because the 27 

seasonal cycle from forest and non-forest is different. In addition, a longer moving average 28 

masks part of the signal due to droughts or anomalous wet periods which also influence VOD. 29 

We also tested longer averaging windows (See Sect. 4.5 for details about the tested windows), 30 
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but the results were relatively insensitive to this and it decreased the numbers of years over 1 

which we could report. In the example grid cell VODMovingAVG decreased most strongly during 2 

2002-2005 (Fig. 2a). 3 

To estimate where forest loss potentially occurred and how this was partitioned over different 4 

year(s), in the second step we calculated the difference of VODMovingAVG with the same 5 

variable 12 months earlier, and label this the inter-yearly-difference (IYD, Fig. 2b): 6 

IYD(lat, lon,m) =VODMovingAVG (lat, lon,m)−VODMovingAVG (lat, lon,m−12)   (2) 7 

When the IYD was below 0, this specific month was detected as possible moment for forest 8 

loss. In the third step, we tested using a two-sided t-test whether IYD was negative because of 9 

forest loss, or because of other reasons, for example due to natural interannual variability 10 

related to rainfall. The first group of the t-test consisted of all VOD observations preceding 11 

the month where IYD was negative. The second group consisted of all other VOD 12 

observations from that moment until the end of the time series. When the p-value was smaller 13 

than 0.05, we flagged the grid cell and month as forest loss (Fig. 2b). These three steps were 14 

done for every grid cell and month from October 1989 until January 2011. 15 

In the fourth and final step, we calculated the sum of the absolute IYD values to which we will 16 

refer to as VODoutliers in the rest of this paper. This was done from 1990 through 2010 to get 17 

annual values (Fig. 2b).  18 

3.3 Conversion to area forest loss 19 

Our method yields the number of VODoutliers per year for each grid cell, which is related 20 

qualitatively to the amount of forest loss and may thus yield insight into the spatial and 21 

temporal dynamics of forest loss. However, to go one step further and convert our results to 22 

the area of forest loss we calibrated our results to the gross forest loss estimates of GFC. 23 

Because of the large differences in spatial resolution (30 meter for GFC and 0.25° for VOD) 24 

and because our dataset is most useful for large-scale assessments, we calibrated the 25 

conversion of the VODoutliers to area based on a country-level approach for the overlapping 26 

time period (2001 – 2010). In general, our method yields net forest loss per gridcell within 27 

one year, because we considered decreases in VOD, which is the net result of deforestation, 28 

forest degradation and regrowth within a gridcell per year. 29 
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Because VOD and biomass are not linearly related, we binned VOD in 5 groups comprising 1 

the average VOD values between 0.6 and 1.2 (0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1.0 and 1.0-1.2). 2 

The last bin was larger to arrive at more robust regression outcomes, because there are fewer 3 

grid cells with VOD above 1.0. For every bin we performed a Pearson regression (Pearson 4 

performed preferably, compared to Spearman) forced through the origin, with all VODoutliers 5 

per year related to the same GFC values. Based on the linear regression, we obtained a slope 6 

for each VOD bin, which was used to convert VODoutliers to gross forest loss area per 0.25° 7 

grid cell (Eq. 3). 8 

VODareaforestloss (year) = VODoutliers (year,bin) x slope(bin)
bin=1

5
∑  (3)  9 
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4 Results 11 

4.1 Spatial extent 12 

The largest feature over our study period is the well-known arc of deforestation along the 13 

Southern edge of the Amazon basin (Fig. 3), showing high forest loss in every period. Highest 14 

forest loss was observed in the Brazilian states Mato Grosso, Pará and Maranhão. However, 15 

forest loss rates were not uniform in space and time, Fig. 3 shows that forest loss rates have 16 

fluctuated with lowest forest loss observed during the 1995-1999 period and the highest forest 17 

loss observed over 2000-2004 period.  18 

While forest loss in South America is most often associated with this arc of deforestation, also 19 

other regions experienced forest loss. One is the region extending from Northern Argentina to 20 

Bolivia via Paraguay (Fig. 3a, label 1), also known as the Chaco region, showing high forest 21 

loss over the full time period. Forest loss in this region are expanding and increasing in 22 

intensity over time. Another region extends from the south eastern part of Paraguay into 23 

Brazil along the border of the Brazilian state Mato Grosso do Sul (Fig. 3a, label 2).  During 24 

the 1995-1999 period forest loss was on the rise here and increased to a maximum during the 25 

2000-2004 period, but decreased during the 2005-2009 epoch. 26 

Finally, the region north of Manaus in the Brazilian states of Roraima and Amazonas (Fig. 3a, 27 

label 3) which partly consists of wooded savanna, also showed high forest loss. Here the 28 

forest loss increased and expanded during the 1990s with the biggest change between the first 29 

and second half of the 1990s. Forest loss stayed relatively stable during the first half of the 30 
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00s. During the 2005-2009 time window some areas with intense forest loss in previous 1 

periods did not show up anymore, for example large parts of the arc of deforestation. Besides 2 

these three large regions, several smaller fluctuations occurred. These can mostly be seen in 3 

the south eastern Brazilian state Minas Gerais. 4 

4.2 Calibration with GFC 5 

We converted the summed VODoutliers to a forest loss area according to Eq. 3, where the slopes 6 

varied between the 5 different bins (Table 1). The Pearson correlation on a grid-scale was 7 

lowest (r2=0.52) for the bin with the average VOD from 0.6-0.7. The other 4 bins had 8 

correlations ranging from r2=0.63 to 0.80 (Table 1). The largest errors are found in the regions 9 

with dense vegetation and relatively little forest loss (Fig. 4, Fig. 5). The RMSE on a grid-cell 10 

scale shows that the bin with the lowest average VOD values (0.6-0.7) has the highest error 11 

compared to GFC (Table 1).  12 

On a country-scale the correlations per bin were higher with the lowest (r2=0.63) again for the 13 

bin with the lowest average VOD (0.6-0.7) and the 4 other bins had increasing correlations 14 

from r2=0.84 to 0.96 (Table 1). The country-level comparison of our VODoutliers with GFC 15 

forest loss had a Pearson linear agreement of r2=0.90 (p<0.001). In Fig. 6 the country-level 16 

VOD and GFC forest loss area estimates are plotted against each other along with the 1:1 line. 17 

Most data points were reasonably close to this line, although VOD overpredicted forest loss 18 

towards the lower end of the spectrum. Especially in the countries with the lowest forest loss, 19 

including Surinam, Uruguay, French Guiana and Guyana, our method yielded more forest 20 

loss than GFC. As a percentage of the available area per country (Table 2) Uruguay (0.65%), 21 

Surinam (0.22%), French Guiana (0.14%) and Guyana (0.13%) also showed higher average 22 

forest loss over the overlapping time period based on VOD. Chile is on the other hand the 23 

country where VOD provides lower forest loss estimates for the overlapping time period (-24 

0.18%) compared to GFC. The country with the largest relative forest loss is Paraguay for 25 

both VOD (1.05%) and GFC (0.98%). In Fig. 7 we show these derived annual forest loss from 26 

VOD for the full time period, along with GFC for 2001 trough 2010. Obviously the average 27 

forest loss area for the overlapping period agrees between both datasets because our approach 28 

was tuned to match GFC, but the spatial and temporal variability can be different potentially 29 

yielding new insights. 30 
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The main differences between VOD and GFC are thus that VOD estimates higher forest loss 1 

for the countries Uruguay, Paraguay and Chile compared to GFC. Furthermore, although 2 

VOD and GFC agreed on Brazil being the main driver of South American forest loss (54% for 3 

VOD and 68% for GFC), VOD estimates higher interannual variability in this. This is mainly 4 

the case in 2001, 2006 and 2009, where VOD estimated 36%-41% less Brazilian forest loss 5 

compared to GFC (Table 2).  6 

The main feature in the GFC time series is the peak in 2004 (with values of 49 and 58 7 

thousand km2yr-1 for GFC and VOD respectively). VOD also shows this peak, but indicates 8 

that the two preceding years were high as well, making for a broader peak (2002-2004) with 9 

comparable values. The higher VOD values in 2002 and 2003 than GFC were mainly the 10 

result from higher estimated forest loss in Argentina and Paraguay. From 2005 onwards both 11 

datasets agreed on the decreasing forest loss rates and the interruptions in 2007, 2008 and 12 

2010, although the exact patterns differed.  13 

Following Brazil, the countries with the highest forest loss were Argentina, Bolivia, Colombia 14 

and Paraguay, each responsible for 5-8% of total South American forest loss. The difference 15 

between VOD and GFC in relative contribution of each country to the total South American 16 

forest loss is on average 2% with the maximum difference of 13% for Brazil (all absolute 17 

differences, see Table 2).  18 

4.3 Country-level trends 19 

4.3.1 2001-2010 20 

To further compare VOD with GFC, we also calculated the trends per country, based on 21 

linear regression, over the 2001-2010 period in absolute values and as a percentage relative to 22 

their average forest loss over that time period (Table 2). It should be noted that not all the 23 

trends are statistically significant, partly because of the large interannual variability (Fig. 7, 24 

Table 2). The overall trend for all South American forest loss over the overlapping time 25 

period is negative for both datasets with a relative slope of -2.9 and -1.4 % yr-2, for VOD and 26 

GFC respectively, which in absolute terms corresponds to -1121 km2yr-2 and -568 km2yr-2. 27 

For individual countries in general both datasets agreed and these trends were highly variable 28 

(Table 2).   29 
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4.3.2 1990-2010  1 

Focusing on the full time series, Fig. 7 indicates that total forest loss in South America were 2 

not stable or monotonically in- or decreasing. Instead, they appear to be highly dynamic -at 3 

least from a VOD perspective-, especially during the first few years of our study period 4 

(1990-1994). After that, forest loss was fluctuating without a clear trend until about 2001, 5 

with 1991, 1995 and 1999 being high forest loss years. After this fluctuating stage a period 6 

with relatively high forest loss started, with 2002-2005 being 4 subsequent years with high 7 

forest loss. After 2005 forest loss decreased, with interruptions in 2007 and 2010 (Fig. 7). 8 

We calculated the linear trends over the whole time period and the two decades 1990-2000 9 

and 2000-2010 separately (Table 3). Over 1990-2010 Uruguay showed a clear relative 10 

increasing trend of almost 7% yr-2 (in absolute values 60 km2yr-2). Over the same time period 11 

also Argentina, Chile, Paraguay and Venezuela showed substantial in- or decreasing trends 12 

larger than 3% yr-2. When investigating the decades 1990-2000 and 2000-2010 separately, 13 

additional patterns emerged. During the 1990s Argentina, Brazil, Colombia, Ecuador and 14 

Uruguay had trends exceeding 5% yr-2. During the 2000s, Brazil, Ecuador and Surinam 15 

showed trends below -5% yr-2. The strongest differences per decade were found in Brazil 16 

(where the forest loss trend changed from +9.8% yr-2 in the 1990s to -7% yr-2 in the 2000s) 17 

Colombia (-16.7% yr-2 to 0.88% yr-2) and in Uruguay (+11.9% yr-2 to -2.1% yr-2) (Table 3). 18 

Other countries with substantial different trends between the two periods were Argentina 19 

5.8% yr-2 to 3.4% yr-2), French Guiana (-3.8% yr-2 to 6.3% yr-2), Peru (-4.6% yr-2 to 2.4% yr-2) 20 

and Surinam (-4% yr-2 to 5.9% yr-2). 21 

4.4 Brazilian state-level comparison with PRODES 22 

In addition to a comparison on country scale, we also compared our results for the Brazilian 23 

states within the legal Amazon using the PRODES dataset (Fig. 8). PRODES covers a longer 24 

period than GFC, but provides only data for the Legal Amazon. We do not expect PRODES 25 

and our dataset to compare perfectly given that PRODES detects only deforestation of 26 

primary forests and VOD detects deforestation, degradation and regrowth including forest 27 

loss of secondary forest. Nevertheless, the Pearson’s r2 over the full 21-year time period 28 

between these two datasets was 0.60 (p<0.001) with a RMSE of 1.6E3 km2yr-1 on a state-29 

level. 30 
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Our results show for the Brazilian states a highly dynamic pattern with no steadily in- or 1 

decreasing trend (Fig. 8). The most notable difference between both datasets is that VOD 2 

suggest that 1991, 1999, 2002 and 2010 were high forest loss years, which PRODES did not 3 

show. Furthermore PRODES showed increasing deforestation from 2002 until a peak in 2004, 4 

whereas VOD peaked in 2005. While there are substantial differences in the temporal 5 

variability in the VOD and PRODES datasets, they do agree on where most forest loss 6 

occurred: Pará and Mato Grosso. Combined, these two states were responsible for 69% and 7 

61%, for PRODES and VOD respectively, of all Brazilian Legal Amazon deforestation 8 

(PRODES) and forest loss (VOD). The total average forest loss in the Legal Amazon from 9 

1990 through 2010 (excluding 1993, which is missing in PRODES) was 16.6E3 km2yr-1 and 10 

15.2E3 km2yr-1 for PRODES and VOD respectively. The states with largest relative 11 

differences between VOD forest loss and PRODES deforestation are Amazonas and Roraima, 12 

with 1307 km2yr-1 and 499 km2yr-1 respectively. These regions have little forest loss. The 13 

gridded errors for these states for VOD compared with GFC for the overlapping time period 14 

are relatively large: 705% and 399 % for Amazonas and Roraima respectively (Fig. 4, Table 15 

4). 16 

4.5 Sensitivity Analysis  17 

Our forest loss detection approach was based on several assumptions, and we tested how 18 

sensitive our results are to two main assumptions. First we tested whether the way we used 19 

the t-test (i.e. group 1 consists of all data until IYD is negative and group 2 consists of all data 20 

after this moment) is valid, or whether a fixed or smaller time period would capture forest loss 21 

better. The main reason to test this is that based on our method, group sizes in the t-test are 22 

not equal and group 2 could become so large, that recovery of vegetation could have taken 23 

place. Therefore we performed the same detection method, but now with the t-test group sizes 24 

fixed to 12, 24 or 36 months. This implies that the detectable time period changed to 1990-25 

2010, 1991-2009 and 1992-2008 for the three different group sizes. The results showed for 26 

both the country-level analysis and the state-level analysis that our original method (without a 27 

fixed time period) yielded the highest correlations with GFC and PRODES. In general we 28 

found that correlation decreased with decreasing group sizes.  29 

Besides the t-test group sizes, we also tested whether excluding grid cells that were not 30 

normally distributed would make a difference. This was done because a t-test requires 31 

normally distributed data. We tested three scenarios. 32 
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1. The standard scenario, where we excluded grid cells where the total average VOD was 1 

either larger than 1.2 or below 0.6, and GLWD was larger than 50%. 2 

2. As 1., but we also excluded grid cells that were not normally distributed (p=0.10). 3 

3. As 1., but we also excluded grid cells that were not normally distributed (p=0.05) 4 

Excluding these not-normally distributed grid cells in scenario 2 and 3 implied that 5 

respectively 25% and 32% of the total South American forest loss based on GFC would be 6 

missed. However, the Pearson’s r2 for all three scenarios stayed 0.90. Based on these results 7 

we assumed that excluding the not-normally distributed points did not have an effect on the 8 

large-scale country-level analysis and we used all grid cells based on scenario 1 in our 9 

analysis. 10 

 11 

5 Discussion 12 

Our results indicated that the patterns of forest loss change over both space and time, although 13 

the well-known arc of deforestation remained the single largest feature in South America over 14 

our full study period. Our results agree with earlier work showing that forest loss area, and 15 

probably also carbon emissions, declined after peaking in the year 2004 (Food and 16 

Agriculture Organization of the United Nations, 2010; Macedo et al., 2012; Malhi et al., 17 

2008; Nepstad et al., 2009). This decrease in forest loss is observed mainly because Brazil 18 

reduced forest loss through a combination of conservation policies (law enforcement, 19 

expansion of the governmental protection of the Amazon area and strict control of these 20 

enforcement by suspension of credit to landowners violating the rules) and because of 21 

changes in prices of agricultural outputs from 2005 onwards (Nepstad et al., 2009). 22 

While forest loss in the arc of deforestation, the region around the southern border of Mato 23 

Grosso do Sul (Fig. 3a, label 2) and the region around Manaus (Fig 3a, label 3) declined after 24 

2004, in the Gran Chaco region (Fig. 3a, label 1) it increased over the time, as shown earlier 25 

by Chen et al. (2013). In this region the observed forest loss is in areas where deciduous 26 

broadleaf forest (>10 metres tall) with closed canopy is converted to shorter (<10 metres) 27 

Chacoan woodlands and agricultural areas (Steininger et al., 2001) and could be related to soy 28 

bean production in this region (Boletta et al., 2006; Gasparri and Grau, 2009; Zak et al., 29 

2004). This is in line with our trends and time series (Fig 7, Table 2) where both VOD and 30 

GFC show an increasing trend for Argentina over 2001-2010, whereas a decreasing trend over 31 
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that time period occurred in Brazil (Table 2). One explanation could be relocation of 1 

agricultural hotspots because of the strict forest law and effective forest law enforcement 2 

within Brazil (Dobrovolski and Rattis, 2014). 3 

The spatial pattern of forest loss in Northern Brazil in the states of Amazonas and Roraima 4 

(Fig. 3, label 3) can partly be explained by forest fires (Fearnside, 2000); the peak during the 5 

1995-2000 time period for example could be caused by the El Niño drought fire events during 6 

1997 and 1998 (Barbosa and Fearnside, 1999). This is supported by fire emissions estimates 7 

for this region derived from the Global Fire Emissions Database (van der Werf et al., 2010). 8 

During these droughts, man-made fires destroyed millions of hectares of fragmented and 9 

natural forest (Laurance, 1998). This increase that continued during the 2000s in Amazonas 10 

and Roraima is not seen anymore in the country-level time series (Fig. 7), because these 11 

changes are relatively small compared to the changes in the arc of deforestation. 12 

In the country-level analysis between VOD and GFC the latter indicates higher average South 13 

American forest loss, with a difference of 3126 km2yr-1 or 7.6% yr-1 of average VOD forest 14 

loss. The country with the largest absolute contribution in both datasets is Brazil. In GFC 15 

Brazil had a 10% larger contribution to the South American total forest loss than in VOD. 16 

This could be caused by the difference in what both GFC and VOD measure. GFC measures 17 

gross forest loss while, due to our methodology, VOD yields net forest loss. In areas with 18 

much regrowth, VOD will therefore underestimate forest loss compared to GFC. This also has 19 

the consequence that VOD is most reliable in areas where deforestation is the dominant 20 

change. Another reason could be the different spatial resolutions of both satellite products 21 

where both datasets are based on. GFC is based on Landsat, which has a spatial resolution of 22 

30 meters and can capture more small-scale forest loss events, which will be missed in our 23 

dataset based on VOD with its much coarser 0.25° resolution. The difference in spatial 24 

resolution could also be the reason why other countries, such as Chile, show less forest loss 25 

and higher interannual variability in VOD than in GFC, and why countries with relatively 26 

little forest loss, such as Uruguay, Surinam, French Guiana and Guyana had more forest loss 27 

based on VOD (Fig. 6). In Uruguay many forest plantations occur (Suppl. Figure 1, Achard et 28 

al., 2014) and the result of these plantations is that forest loss is often of small scale. This in 29 

combination with the overestimation of VOD with smaller scale forest loss, could explain 30 

why Uruguay shows so much higher values on a country level, although additional research is 31 

required to better understand these differences. While we would in general favour GFC over 32 
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VOD during the overlapping periods for reasons mentioned above, the temporal resolution of 1 

VOD is superior to any other dataset for our study period from 1990-2010. For areas with 2 

frequent cloud cover where Landsat may have difficulties in acquiring reliable data, VOD 3 

may be in a better position to map forest loss. 4 

We also compared our results for the whole time period from 1990 through 2010 with 5 

PRODES data in a state-level comparison and they had a Pearson r2 of 0.66. As mentioned 6 

earlier, to some degree the comparison is one of apples and oranges because PRODES 7 

provides annual estimates of deforestation in pixels where no deforestation has occurred 8 

before, whereas the VOD dataset will give information about deforestation and degradation 9 

and potentially regrowth. Although forest loss based on VOD includes degradation and 10 

regrowth, PRODES shows on average over the whole time period 1451 km2yr-1 (9.6% yr-1 of 11 

the total average legal Amazon forest loss according to VOD) more deforestation than VOD. 12 

This could be caused by the differences in methodology and spatial resolution of both datasets 13 

we mentioned before, but also potential inconsistencies in PRODES could play a role; until 14 

2002 PRODES is based on visual interpretation, after which PRODES digital was used. On a 15 

state-level VOD overestimates forest loss area in the states of Amazonas and Roraima, which 16 

is mostly related to the relatively low and small-scale forest loss in these states (Fig. 4, Table 17 

4). 18 

One of the most striking differences between VOD and PRODES were the years 1991, 1999 19 

and 2010 when VOD was much higher than PRODES. The underlying reasons may not be 20 

directly related to forest loss. In 1991 this difference could be explained by the eruption of 21 

Mount Pinatubo, which had the result that led to increased VOD in the tropics (Kobayashi and 22 

Dye, 2005; Liu et al., 2011a). The peak in 1999 in VOD was mainly caused by an increase in 23 

the state of Amazonas. During 1999 heavy floodings occurred in this region (Chen et al., 24 

2010). Since VOD is sensitive to large waters, the VOD signal could have been influenced by 25 

this event. Finally the peak in 2010 could be caused by drought that hit the Amazon that year 26 

(Lewis et al., 2011). Amazon forests are sensitive to increasing moisture stress and this could 27 

affect above ground biomass (Phillips et al., 2009). This supports the findings of Liu et al. 28 

(2012), who noticed that VOD responded to interannual variability in precipitation for 29 

tropical regions. However, this 2010 peak in forest loss was also detected by GFC. PRODES 30 

did not show this peak, partly because it was related to secondary forest degradation and 31 

deforestation, which is not captured by PRODES (Fanin and van der Werf, 2015). This 32 
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indicates the need to better reconcile the differences between these various estimates and not 1 

rely on one single dataset. 2 

6 Conclusions 3 

We have used a new satellite-based dataset using microwave observations to estimate forest 4 

loss in South America for the 1990-2010 period in a consistent manner. Our approach may 5 

have difficulties in capturing small-scale forest loss and may be impacted on interannual 6 

scales by anomalous dry or wet conditions, and is therefore most useful for regional, long-7 

term assessments. The long study period of our study enabled us to improve on characterizing 8 

the spatiotemporal dynamic nature of forest loss. Our results confirm the well-known 9 

decrease of forest loss in the Brazilian Amazon since 2005, but indicate no trend over the full 10 

time period for our whole study region. In the regions south of the arc of deforestation, 11 

however, forest loss has increased over the full time period. This includes Argentina, Bolivia, 12 

Chile, and Paraguay where trends up to 4% yr-2 were observed over 1990-2010, partly 13 

offsetting the reductions in forest loss in Brazil.  14 

Each of the datasets used here has limitations for mapping forest loss including length of time 15 

period (GFC), limited spatial domain and focus on detecting only pristine forest loss 16 

(PRODES), and coarse resolution and influence of anomalously dry and wet periods on the 17 

detected signal (VOD). This indicates that better understanding the differences between those, 18 

and other, forest loss datasets requires more scrutiny and that uncertainties are large when 19 

relying on one single dataset. We presented a first attempt towards a better forest loss dataset 20 

using VOD to better understand forest loss dynamics. The added value of our analysis is 21 

mostly providing new annual forest loss estimates during the 1990s, a period not covered by 22 

GFC, MODIS and other satellite datasets. More research is needed to better understand what 23 

VOD exactly represents, potentially comparing with existing lidar-based benchmark datasets 24 

(Baccini et al., 2012; Saatchi et al., 2011). 25 
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 Table 1. Statistics for the comparison between GFC forest loss (km2yr-1) and IYD (yr-1). This 1 
was done for all grid cells and when aggregating the grid cells in a country-level analysis. The 2 
coefficient of variation (CV in %) was based on the Root Mean Square Error (RMSE in km2) 3 
between both datasets. 4 

VOD bin 
Based on all grid cells Country-level 
slope 
 

r2 
 

CV (%) RMSE (km2)  r2 
 

CV (%)  RMSE (km2) 

0.6-0.7 22.4 0.63 804  15.7 0.63  203  666 
0.7-0.8 34.8 0.52 163  3.7 0.84 122  586 
0.8-0.9 61.7 0.80 147  5.0 0.84 83  567 
0.9-1.0 79.4 0.72 134 4.7 0.88 92  684 
1.0-1.2 82.7 0.72 253 3.2 0.96 53  366 

5 
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Table 2. Country-level forest loss estimates (total area, contribution to total South American 1 

forest loss, contribution of forest loss as a percentage of the masked-country area, as well as 2 

absolute and relative trends) for VOD and GFC for the overlapping time period (2001-2010). 3 

Asterisks indicate the significance, where *=p>0.25 **=p<0.25 ***=p<0.05 4 

 Average forest loss 2001-2010 Slope 2001-2010 
 

 Absolute (km2yr-1) Percentage of total 
forest loss area 
(Absolute / Total) 

Percentage of masked 
country area (%) 

Absolute (km2yr-2) 
 

Relative  
(Absolute/Average) 

 VOD GFC VOD GFC VOD GFC VOD GFC VOD GFC 

Argentina 4517 3329 11.73% 8.29% 0.61% 0.53% 79* 358** 1.68% 11.00% 

Bolivia 3045 2338 8.07% 5.89% 0.39% 0.33% 21* 166*** 0.75% 7.84% 

Brazil 21926 27317 55.18% 67.81% 0.32% 0.39% -1385** -1530** -6.47% -5.55% 

Chile 173 408 0.50% 1.04% 0.12% 0.30% 35** 17*** 18.62% 4.19% 

Colombia 1899 1861 4.95% 4.75% 0.20% 0.21% -2* 65** -0.13% 3.46% 

Ecuador 450 305 1.24% 0.79% 0.18% 0.15% -63** 19** -14.19% 6.21% 

Fr. Guiana 115 17 0.33% 0.04% 0.16% 0.02% 13** 0* 11.08% 1.18% 

Guyana 288 50 0.75% 0.13% 0.16% 0.03% -3* 0* -1.24% -0.61% 

Peru 1077 1047 3.06% 2.69% 0.12% 0.13% 52* 84*** 4.46% 8.24% 

Paraguay 3030 2556 7.68% 6.49% 1.05% 0.98% 115* 213*** 3.93% 8.78% 

Surinam 276 29 0.75% 0.08% 0.25% 0.03% 34*** 2** 12.57% 8.69% 

Uruguay 868 122 2.28% 0.31% 0.77% 0.12% 131* 18*** 13.61% 15.43% 

Venezuela 1322 658 3.46% 1.70% 0.21% 0.11% -148*** 20* -13.65% 3.12% 

Total 38987 40038 100.00% 100.00%   -1121* -568* -2.94% -1.42% 

 5 

6 
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Table 3. Trends in forest loss based on VOD for the whole time period (1990-2010) and the 1 

decades 1990-2000 and 2000-2010. Absolute values indicate the slope based on Pearson 2 

linear regression and the relative values are the absolute values relative to the average forest 3 

loss for that country over the full 21-year time period. Asterisks indicate the significance, 4 

where *=p>0.25 **=p<0.25 ***=p<0.05 5 
 Slope 1990-2010 Slope 1990-2000 Slope 2000-2010 Difference 00s-90s 
 km2yr-2 % km2yr-2 % km2yr-2 % km2yr-2 % 
Argentina 170*** 4.58% 182** 5.76% 109* 3.43% -73 -2.32% 

Bolivia 49** 1.92% 92* 0.75% 72* 0.59% -20 -0.16% 

Brazil -59* -0.27% 1078* 9.79% -765* -6.95% -1843 -16.74% 

Chile 9** 5.23% 35*** 3.34% 23** 2.21% -12 -1.13% 

Colombia -36* -1.88% -197** -16.69% 10* 0.88% 208 17.57% 

Ecuador -12* -2.67% -42** -14.85% -35* -12.58% 6 2.27% 

Fr. Guiana 0* -0.31% -8* -3.76% 13*** 6.34% 21 10.10% 

Guyana -8** -2.72% -16* -2.12% 4* 0.50% 20 2.61% 

Peru -23* -1.79% -85* -4.55% 45** 2.39% 130 6.94% 

Paraguay 98** 3.99% 32* 2.35% 12* 0.86% -21 -1.49% 

Surinam 5* 2.25% -21** -4.03% 31*** 5.91% 53 9.94% 

Uruguay 60*** 6.99% 130*** 11.91% -23* -2.08% -152 -13.99% 

Venezuela -50*** -3.97% -57* -0.30% -80** -0.42% -23 -0.12% 

Total 204* 0.55% 1122* 3.01% -584* -1.57% -1706 -4.58% 

6 
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Table 4. Average error for the Brazilian states. The error is defined as the VOD minus GFC 1 

forest loss area expressed as a percentage of GFC forest loss for the overlapping time period 2 

per state in the Legal Amazon.  3 

State (VOD-GFC) / GFC (mean % yr-1) 
Acre  17  
Amapá  50 
Amazonas  399 
Maranhâo  17 
Mato Grosso  35 
Pará  94 
Rondônia  37 
Roraima  705 
Tocantins  2 

4 
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 1 

Figure 1. Grid cells that were excluded from our analysis: VOD avg: grid cells with an 2 

average VOD that is either above 1.2 or below 0.6 and thus outside the usable range for our 3 

study. GLWD: grid cells containing more than 50% open water, which makes the VOD signal 4 

to become unreliable. Both: grid cells containing more than 50% open water and where VOD 5 

is outside the usable range. 6 

7 
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1 
Figure 2. Example 0.25° grid cell in the Brazilian state of Mato Grosso. A: Observed monthly 2 

VOD signal and 19-month moving average (VODMovingAVG). B: Interyearly difference (IYD), 3 

whether it met the t-test criteria, and annually summed IYD values taking only negative values 4 

into account. For comparison the corresponding GFC values are also given. 5 

6 
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 1 

Figure 3. Forest loss extent based on the VODoutliers for the 5-year epochs. Grey areas are 2 

masked out (Fig. 1). 3 

4 

1. 2. 

3. 
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 1 

Figure 4. Error estimates for each grid cell. The error is defined as VOD minus GFC forest 2 

loss area expressed as a percentage of GFC for the overlapping time period. White indicates 3 

that both datasets had no forest loss. 4 

5 
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 1 

Figure 5. Error as a function of mean GFC forest loss, where the error is defined as VOD 2 

minus GFC forest loss area as a percentage of GFC for the overlapping time period. 3 

4 
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 1 

Figure 6. Country-level comparison of calibrated VOD and GFC forest loss based on annual 2 

totals (2001 - 2010). The inset shows the same data on a linear scale. The red lines depict the 3 

1:1 line.  4 

5 
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 1 

Figure 7. Country-level time series of annual totals of forest loss according to GFC (2001 - 2 

2010) and VOD (1990 - 2010). . VOD data is unreliable for 1991 as a result of the eruption of 3 

Mount Pinatubo. 4 

5 
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 1 

Figure 8. Time series of deforestation (PRODES) and forest loss area (VOD) for the Brazilian 2 

states in the Amazon (1990 – 2010). PRODES deforestation data is missing for 1993. VOD 3 

data is unreliable for 1991 as a result of the eruption of Mount Pinatubo. 4 


