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We	thank	the	reviewers	and	editor	for	the	time	and	effort	they	put	in	reviewing	our	1 
manuscript.	Based	on	their	comments	and	advice,	we	have	changed	our	methodology	from	2 
an	approach	where	the	conversion	of	VOD	to	forest	loss	area	was	based	on	country-level	3 
statistics	to	a	grid-cell	level	approach	to	estimate	forest	loss.	This	led	to	somewhat	revised	4 
estimates	and	figures	but	overall	our	messages	have	not	changed	and	the	new	approach	5 
allowed	us	to	provide	spatial	estimates	of	errors.		The	spatial	estimates	resulted	also	in	6 
revised	tables	and	figures.		7 
	8 
The	biggest	changes	are:	9 

- Revised	figure	with	the	data	that	are	excluded		10 
- Revised	estimates	of	forest	loss	on	a	country-level.	11 
- Revised	estimates	of	VOD	forest	loss	on	a	state-level.	12 
- A	new	figure	with	a	spatial	error	map,	which	provides	uncertainties	on	a	grid-scale.	13 
- A	new	figure	which	shows	the	relation	between	the	error	of	VOD	compared	to	GFC	14 

with	the	mean	forest	loss.		15 
- A	new	table	with	the	Root	Mean	Square	Error	and	Coefficient	of	Variance	on	a	grid-16 

scale	and	a	country-scale	for	the	different	bins.	17 
- A	new	table	with	the	average	gridded	error	between	GFC	and	VOD	per	on	a	18 

Brazilian	Amazon	state-level	19 
- The	definition	of	net	and	gross	forest	loss	and	what	GFC,	VOD	and	PRODES	exactly	20 

observe	is	described	in	more	detail	and	used	throughout	the	manuscript	21 
- The	introduction	is	extended	with	more	information	about	other	remote	sensing	22 

techniques	such	as	LiDAR	and	SAR	deforestation	products	23 
- The	conclusions	include	recommendations	for	future	work	with	comparison	to	24 

existing	SAR	and	LiDAR	based	maps.		25 
	26 
We	will	address	the	reviewers	point	by	point,	where	we	cross-reference	to	the	marked-up	27 
manuscript	version,	at	the	bottom	of	this	document.		28 
	29 
Kind	regards,	30 
Margreet	van	Marle,	on	behalf	of	all	co-authors31 
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	1 
Referee	1	2 
	3 
In	particular	I	am	slightly	concerned	with	a	circularity	of	argument:	VOD	is	presented	as	4 
providing	independent	data	on	forest	loss,	but	then	the	results	are	calibrated	against	the	5 
Hansen	et	al.	forest	loss	product.	This	is	understandable,	as	ground	truth	data	on	6 
biomass	loss	are	clearly	not	available	at	a	quarter	degree	resolution.	I	would	have	liked	7 
to	see	this	calibrated	against	biomass	8 
change	data,	as	might	be	available	from	SAR	or	LiDAR	datasets	in	the	future,	but	current	9 
data	availability	of	that	type	of	data	in	South	America	is	very	limited.	However,	more	10 
discussion	of	the	results	of	using	the	Hansen	data	should	be	considered,	and	spatial	11 
maps	showing	where	it	agrees	and	where	it	disagrees	with	the	Hansen	dataset	would	be	12 
very	useful.	Equally,	I	think	the	correlation	with	the	Hansen	dataset	in	the	Abstract,	and	13 
to	a	lesser	extent	elsewhere,	is	overstated	for	two	reasons.	1.	the	fact	that	the	dataset	is	14 
calibrated	against	the	same	Hansen	dataset	is	not	revealed	in	the	Abstract,	and	2.	the	15 
comparisons	are	made	as	a	total	area	of	a	country	that	is	deforested,	not	its	proportion	-	16 
this	inflates	accuracy	as	area	is	on	both	axes.	–	Will/can	be	done	17 
	18 
Major	comments:	19 
Introduction	section	is	somewhat	short.	I	think	it	should	contain	a	wider	discussion	of	20 
what	is	actually	detected	by	VOD,	compared	to	active	microwave	and	optical	sensors	21 
(radar	and	lidar),	and	what	is	seen	by	optical	sensors.	A	discussion	of	the	different	22 
effects	of	seasonality,	and	differing	definitions	of	deforestation	in	the	different	products	23 
and	the	effect	of	different	forest	definitions	on	the	abilities	of	the	different	sensors.	–		24 
We	agree	with	the	reviewer	and	have	revised	part	of	the	introduction	for	which	the	25 
relevant	section	now	reads	as	follows	(starting	with	VOD	seasonality):	26 
	27 
Introduction,	Page	29,	Line	9:	28 
In	addition	to	the	previously	mentioned	datasets	mostly	based	on	visible	and	infrared	29 
wavelengths,	passive	microwave	observations	can	also	be	used	to	characterize	vegetation	30 
dynamics.	Vegetation	optical	depth	(VOD)	is	a	vegetation	attenuation	parameter	in	the	31 
microwave	domain.	This	parameter	was	first	described	by	Kirdiashev	et	al.	(1979)	in	a	32 
zero-order	radiative	transfer	model	for	vegetation	canopies.	VOD	is	primarily	sensitive	to	33 
the	vegetation	water	content	and	also	captures	information	about	the	vegetation	structure	34 
(Jackson	and	Schmugge,	1991;	Kerr	and	Njoku,	1990;	Kirdiashev	et	al.,	1979).	35 
The	longer	wavelengths	of	passive	microwave	enables	sensitivity	of	VOD	not	only	to	the	36 
leafy	part,	but	also	to	woody	parts	of	vegetation	(Andela	et	al.,	2013).	Therefore	VOD	yields	37 
information	about	both	the	photosynthetic	and	non-photosynthetic	parts	of	aboveground	38 
vegetation,	based	on	the	water	content	(Jones	et	al.,	2011;	Shi	et	al.,	2008).	VOD	is	shown	to	39 
be	highly	correlated	with	aboveground	biomass	(Liu	et	al.,	2011a;	Owe	et	al.,	2001)	and	40 
thus	yields	information	about	the	net	forest	loss;	the	balance	between	decreases	in	forest	41 
loss	due	to	deforestation	and	degradation	and	increases	in	forest	extend	due	to	regrowth	42 
or	thickening.	Furthermore,	the	advantage	of	low	frequency	(<20	GHz)	microwave	remote	43 
sensing	is	that	aerosols	and	clouds	have	a	negligible	effect	on	the	observations,	so	even	44 
areas	with	regular	cloud	cover	are	observed	frequently,	which	makes	it	suitable	to	use	for	45 
global	vegetation	monitoring	at	daily	time	steps.		46 
Comparing	AVHRR	NDVI	and	passive	microwave	based	VOD	datasets	with	a	record	longer	47 
than	20	years,	Liu	et	al.	(2011)	showed	that	both	datasets	had	similar	seasonal	cycles.	VOD	48 
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however	also	shows	interannual	variations	in	regions	with	water	stress,	which	corresponds	1 
for	a	large	part	to	variations	in	precipitation.	VOD	was	more	sensitive	to	changes	in	woody	2 
vegetation	compared	to	NDVI,	whereas	NDVI	was	more	sensitive	to	herbaceous	changes	3 
(Andela	et	al.	2013).	This	is	the	result	of	NDVI	being	more	sensitive	to	canopy	greenness	4 
(Myneni	et	al.,	1995)	and	VOD	being	more	sensitive	to	water	content,	relatively	speaking.	5 
Thus,	when	forest	is	converted	to	large-scale	cropland,	the	canopy	greenness	not	6 
necessarily	drops,	whereas	the	total	water	content	of	the	aboveground	biomass	does	show	7 
a	drop	(Liu	et	al.,	2011a).	8 
	9 
Added	to	Introduction,	Page	28,	Line	10:	10 
‘Other	widely	used	satellite	products	for	vegetation	are	the	Normalized	Difference	11 
Vegetation	Index	(NDVI),	often	derived	from	the	Advanced	Very	High	Resolution	12 
Radiometer	(AVHRR).	NDVI	is	sensitive	to	canopy	greenness	(Anyamba	and	Tucker,	2005;	13 
Tucker	et	al.,	2005;	Zhu	et	al.,	2013).’	14 
	15 
Other	revised	parts	(mentioning	LiDar	and	Radar):	16 
Added	to	Introduction,	Page	28,	Line	15:	17 
‘Other	vegetation	datasets	that	can	capture	vegetation	dynamics	are	for	example	the	18 
observations	based	on	long-wavelength	radar	backscatter	(Joshi	et	al.,	2015),	where	19 
deforestation,	forest	degradation	and	the	follow-up	vegetation	cover	could	be	captured,	20 
and	those	based	on	observations	from	the	SeaWinds	Ku-band	scatterometer	(Frolking	et	21 
al.,	2012),	which	have	shown	to	capture	gross	forest	loss	in	the	tropics.	Also	LiDar	data	can	22 
be	used	to	estimate	forest	biomass,	and	can	thus	capture	vegetation	dynamics	(Mitchard	et	23 
al.,	2012).	Data	availability	for	Radar	and	LiDar	datasets	is	usually	from	1998	onwards.’	24 
	25 
Added	to	Introduction,	Page	30,	Line	17:	26 
‘Guan	et	al.	(2012)	compared	QuickScat	Ku-band	backscatter	coefficients	(dB)	with	VOD	27 
and	NDVI	and	noted	that	the	three	datasets	are	comparable,	but	that	dB	shows	abnormal	28 
high	values	when	more	bare	soil	is	present	in	the	pixel.’	29 
	30 
Added	to	Section	2.1	Vegetation	Optical	Depth	(VOD),	Page	31,	Line	21:	31 
‘VOD	can	be	used	as	a	measure	for	biomass	(Liu	et	al.,	2015)	,	which	is	in	terms	of	forest	32 
loss,	the	net	forest	loss	(equals	the	net	sum	of	deforestation,	degradation	and	regrowth)	in	33 
a	0.25°	grid	cell.’	34 
	35 
Added	to	Section	2.2	Global	Forest	Change	(GFC),	Page	32,	Line	17	36 
‘Forest	loss	is	defined	in	GFC	as	a	change	from	forest	to	non-forest	state,	comprising	37 
deforestation	and	degradation.	In	our	analysis,	we	used	the	annual	forest	loss	dataset	and	38 
reprocessed	these	to	the	0.25°	resolution	of	our	analysis	by	summing	the	30-meter	values.	39 
While	regrowth	is	detected	and	reported,	we	focused	on	the	forest	loss	data	when	we	used	40 
GFC	for	comparison;	regrowth	is	thus	not	included	in	our	analysis	of	GFC.’	41 

42 
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In	the	Methods	section	it	would	be	useful	to	display	a	figure	from	one	of	the	cited	VOD	1 
papers	showing	the	relationship	between	VOD	and	canopy	cover	based	on	real	data.	2 
This	would	allow	the	reader	to	make	more	of	an	assessment	of	the	validity	to	cut	off	at	3 
0.6	and	1.2.	4 
We	added	at	Page	33,	Line	31:	5 
‘This	value	was	based	on	the	comparison	between	VOD	and	MODIS-based	Vegetation	6 
Continuous	Fields	(VCF),	which	provides	information	about	the	fraction	tree	cover	in	a	7 
pixel.	Our	VOD	threshold	of	0.6	corresponds	to	10%	tree	cover	for	two-third	of	the	pixels,	a	8 
number	more	often	used	to	define	forest	(Saatchi	et	al.,	2011;	UNFCCC,	2006)	although	9 
there	is	no	consensus	about	this	definition.’	10 
	11 
	12 

	13 
Vegetation	Continuous	Fields	(VCF)	versus	VOD	averaged	over	2001-2012	for	30N-30S	14 
globally	(left)	and	the	same	latitude	band	over	Central	and	South	America	(right).	15 
	16 
Either	in	the	Methods,	or	Discussion,	more	should	be	made	of	the	difference	between	17 
what	VOD	and	Hansen	are	actually	detecting.		18 
We	agree	with	the	reviewer	and	added	to	Section	2.1	Vegetation	Optical	Depth	(VOD),	19 
Page	31,	Line	21:	20 
‘VOD	can	be	used	as	a	measure	for	biomass	(Liu	et	al.,	2015)	,	which	is	in	terms	of	forest	21 
loss,	the	net	forest	loss	(equals	the	net	sum	of	deforestation,	degradation	and	regrowth)	in	22 
a	0.25°	grid	cell.’	23 
	24 
Furthermore	we	changed	in	Section	2.2	Global	Forest	Change	(GFC),	Page	32,	Line	17	to:	25 
‘Forest	loss	is	defined	in	GFC	as	a	change	from	forest	to	non-forest	state,	comprising	26 
deforestation	and	degradation.	In	our	analysis,	we	used	the	annual	forest	loss	dataset	and	27 
reprocessed	these	to	the	0.25°	resolution	of	our	analysis	by	summing	the	30-meter	values.	28 
While	regrowth	is	detected	and	reported,	we	focused	on	the	forest	loss	data	when	we	used	29 
GFC	for	comparison;	regrowth	is	thus	not	included	in	our	analysis	of	GFC.’	30 

31 
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	1 
While	the	VOD	changes	have	been	calibrated	against	Hansen	et	al.	data	to	give	forest	loss	2 
per	0.25	degree	grid	cell,	that	is	just	due	to	an	empirical	calibration,	with	error.	I	think	3 
more	should	be	made	of	this	error	-	e.g.	I	would	love	to	see	RMSE	values	at	a	grid	scale,	4 
plotted	on	a	map	and	with	statistics	given	in	a	table.	VOD	is	really	seeing	something	5 
similar	to	net	biomass	change	-	i.e.	an	integration	of	deforestation,	degradation,	and	6 
regrowth	(both	natural	within	forests,	and	after	previous	clearance	-	as	well	as	artefacts	7 
due	to	for	example	moisture	changes).		8 
We	appreciate	this	comment	and	have	modified	our	approach	to	switch	from	country-scale	9 
to	grid-scale	analysis,	please	see	the	revised	Figures	at	the	top	of	this	reply.	We	also	added	10 
a	new	Figure	4,	which	depicts	the	spatial	difference	between	VOD	and	GFC	forest	loss	area	11 
estimates	on	a	grid-scale,	where	red	indicates	areas	where	VOD	exceeds	GFC	and	blue	12 
means	VOD	is	lower	than	GFC.	The	relative	errors	are	large,	but	that	is	mostly	in	grid	cells	13 
with	dense	vegetation	and	little	change,	see	Figure	5.	However,	we	therefore	recommend	14 
throughout	the	paper	that	our	approach	is	most	suitable	for	regional	estimates.		15 
	16 
Furthermore	we	calculated	the	RMSE	for	both	the	grid-scale	and	country-scale	analysis	17 
and	these	results	are	shown	in	the	revised	Table	1.	The	main	result	is	that	the	bin	with	the	18 
lowest	average	VOD	values	(0.6-0.7)	has	the	highest	error	compared	with	GFC.		19 
	20 
Hansen	et	al.	is	just	gross	deforestation.	In	areas	where	deforestation	is	the	dominant	21 
change,	the	correlation	will	work,	but	in	areas	where	it	isn’t	this	is	not	necessarily	22 
because	they’re	seeing	different	levels	of	deforestation,	as	reported,	but	because	other	23 
processes	may	dominate.	I	don’t	think	there	is	much	that	can	be	done	about	it,	but	this	24 
must	be	discussed.		25 
We	have	now	included	this	in	the	Discussion	at	Page	42,	Line	12:	26 
‘This	could	be	caused	by	the	difference	in	what	both	GFC	and	VOD	measure.	GFC	measures	27 
gross	forest	loss	while,	due	to	our	methodology,	VOD	yields	net	forest	loss.	In	areas	with	28 
much	regrowth,	VOD	will	therefore	underestimate	forest	loss	compared	to	GFC.	This	also	29 
has	the	consequence	that	VOD	is	most	reliable	in	areas	where	deforestation	is	the	30 
dominant	change.	Another	reason	could	be	the	different	spatial	resolutions	of	both	satellite	31 
products	where	both	datasets	are	based	on.	GFC	is	based	on	Landsat,	which	has	a	spatial	32 
resolution	of	30	meters	and	can	capture	more	small-scale	forest	loss	events,	which	will	be	33 
missed	in	our	dataset	based	on	VOD	with	its	much	coarser	0.25°	resolution.’	34 
	35 
I	strongly	feel	a	spatial	map	displaying,	at	a	0.25	degree	grid	scale,	some	metric	of	36 
difference	between	PRODES,	Hansen	and	VOD	would	be	very	useful	in	interpreting	these	37 
datasets.	Summing	everything	by	country	or	by	state	is	quite	frustrating	in	this	regard.		38 
We	agree	with	the	reviewer	and	we	calculated	the	errors	per	grid-cell	(Figure	4)	and	39 
added	to	Section	4.1	Spatial	Extent,	Page	37,	Line	8:	40 
‘The	largest	errors	are	found	in	the	regions	with	dense	vegetation	and	relatively	little	41 
forest	loss	(Fig.	4,	Fig.	5).	The	RMSE	on	a	grid-cell	scale	shows	that	the	bin	with	the	lowest	42 
average	VOD	values	(0.6-0.7)	has	the	highest	error	compared	to	GFC	(Table	1).’	43 

44 
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Figure	1	should	be	changed	to	display	which	pixels	were	cut	off	due	to	being	above	1.2,	1 
and	which	cut	off	due	to	being	below	0.6.		2 
This	has	been	done.	Please	see	the	revised	Figure	1	at	Page	56.	No	pixels	were	excluded	3 
based	on	the	combination	of	VODAVG	>1.2	and	the	presence	of	more	than	50%	according	to	4 
the	GLWD,	therefore	this	class	is	not	present	in	the	legend.	5 
	6 
Figure	4	displays	a	somewhat	spurious	correlation.	As	it	is	in	terms	of	gross	forest	loss,	7 
the	area	of	each	country	is	a	significant	factor	on	both	axes.	This	increases	the	likelihood	8 
of	a	strong	fit,	even	if	there	is	little	correlation	between	variables.	I	would	like	to	see	this	9 
reploted	with	forest	loss	in	terms	of	proportion	of	country	deforested	per	year.	Only	the	10 
area	of	the	country	considered	by	the	analysis	should	be	included	in	the	area	figure	here,	11 
so	it’s	somewhat	similar	to	detectable	forest	area	at	the	start	of	the	period.	It	is	okay	for	12 
Figure	5	to	be	in	terms	of	total	area	-	though	it	would	be	interesting	to	see	a	13 
deforestation	rate	figure	like	Figure	4	for	PRODES	vs	VOD,	separated	by	state.		14 
We	replotted	the	forest	loss	in	terms	of	proportion	of	the	country	deforested	per	year	(See	15 
Figure	below).	The	Pearson	r=0.46,	where	the	biggest	proportion	of	forest	is	lost	in	16 
Paraguay	and	the	biggest	differences	are	in	Chile	(-0.18%	when	VOD	is	compared	to	GFC),	17 
Suriname	(0.22%	difference)	and	Uruguay	(0.65%	difference).	These	areas	correspond	to	18 
the	regions	with	the	highest	errors,	see	Figure	4.	Although	regionally	the	differences	19 
between	GFC	and	VOD	are	large,	the	general	trend	between	GFC	and	VOD	forest	loss	(in	20 
dotted	red)	is	almost	the	same	(slope=1.005).	We	added	the	percentages	to	Table	2	and	21 
added	a	description	at	Section	4.2	Calibration	with	GFC.		22 
	23 
The	revised	text	at	Page	37,	Line	15	is	as	follows:	24 
‘In	Fig.	6	the	country-level	VOD	and	GFC	forest	loss	area	estimates	are	plotted	against	each	25 
other	along	with	the	1:1	line.	Most	data	points	were	reasonably	close	to	this	line,	although	26 
VOD	overpredicted	forest	loss	towards	the	lower	end	of	the	spectrum.	Especially	in	the	27 
countries	with	the	lowest	forest	loss,	including	Surinam,	Uruguay,	French	Guiana	and	28 
Guyana,	our	method	yielded	more	forest	loss	than	GFC.	As	a	percentage	of	the	available	29 
area	per	country	(Table	2)	Uruguay	(0.65%),	Surinam	(0.22%),	French	Guiana	(0.14%)	30 
and	Guyana	(0.13%)	also	showed	higher	average	forest	losses	over	the	overlapping	time	31 
period	based	on	VOD.	Chile	is	on	the	other	hand	the	country	where	VOD	provides	lower	32 
forest	loss	estimates	for	the	overlapping	time	period	(-0.18%)	compared	to	GFC.	The	33 
country	with	the	largest	relative	forest	losses	is	Paraguay	for	both	VOD	(1.05%)	and	GFC	34 
(0.98%).	In	Fig.	7	we	show	these	derived	annual	forest	losses	from	VOD	for	the	full	time	35 
period,	along	with	GFC	for	2001	trough	2010.	Obviously	the	average	forest	loss	area	for	the	36 
overlapping	period	agrees	between	both	datasets	because	our	approach	was	tuned	to	37 
match	GFC,	but	the	spatial	and	temporal	variability	can	be	different	and	thus	yields	new	38 
insights.’	39 
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	1 
Figure.	Country-level	comparison	of	calibrated	VOD	and	GFC	forest	losses	based	on	annual	2 
totals	as	a	percentage	of	the	total	country	(2001	-	2010).	The	red	lines	depict	the	1:1	line	3 
and	the	dotted	red	line	shows	the	trend	line	based	on	Pearson	linear	regression	4 
(VOD=1.005	x	GFC)	5 
	6 

7 
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	1 
The	same	scatter	plot	as	Figure	4	but	with	VOD	forest	loss	area	and	PRODES	deforestation	2 
on	a	state-level	gives	similar	results	as	Figure	8;	Amazonas	and	Roraima	show	higher	3 
forest	losses	compared	to	PRODES	and	the	states	with	relatively	high	forest	losses	(Para	4 
and	Mato	Grosso)	have	lower	estimates	based	on	VOD	compared	to	PRODES	deforestation.	5 
In	our	opinion	the	scatter	does	not	provide	new	insights	compared	Figure	8,	therefore	we	6 
prefer	not	to	include	this	plot	in	the	final	manuscript.	7 

	8 
9 
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The	conclusions	could	state	more	grounds	for	further	work.	It	could	cover	ways	in	which	1 
VOD	could	be	converted	to	net biomass	change,	rather	than	loosely	correlated	with	2 
gross	deforestation	which	is	a	somewhat	frustrating	way	to	display	these	very	3 
interesting	results.	Maybe	comparisons	with	LiDAR	and	SAR-based	biomass	change	4 
maps	would	be	an	interesting	route	for	the	future?	VOD	has	great	potential	for	5 
largescale	monitoring	of	whole-country	net	changes	in	carbon	stocks,	e.g.	for	REDD+:	6 
but	that	would	7 
We	added	to	the	Conclusions,	Page	44,	Line	17:	8 
‘This	was	a	first	approach	towards	a	better	forest	loss	dataset	using	VOD	to	better	9 
understand	forest	loss	dynamics.	The	added	value	of	our	analysis	is	mostly	providing	new	10 
annual	forest	loss	estimates	during	the	1990s,	a	period	not	covered	by	GFC,	MODIS	and	11 
other	satellite	datasets.	Regarding	future	opportunities,	more	research	is	needed	to	know	12 
exactly	what	VOD	represents,	potentially	comparing	with	existing	LiDAR-based	benchmark	13 
datasets	(Baccini	et	al.,	2012;	Saatchi	et	al.,	2011).’	14 
	15 
Minor	points:	16 
-	Brazil	-	comparison	to	PRODES	not	just	Hansen	should	be	mentioned	in	the	Abstract.	17 
This	is	very	relevant	because	the	calculations	are	not	independent	of	the	Hansen	et	al	18 
dataset,	being	calibrated	again	it.	19 
We	changed	the	abstract	and	the	relevant	section	at	Page	26,	Line	25	now	reads:	20 
‘Our	results	compared	reasonably	well	with	the	newly	developed	Landsat-based	Global	21 
Forest	Change	(GFC)	maps,	available	for	the	2001	onwards	period	(r2=0.90	when	22 
comparing	annual	country-level	estimates).	This	allowed	us	to	convert	our	identified	23 
changes	in	VOD	to	forest	loss	area	and	compute	these	from	1990	onwards.	We	also	24 
compared	these	calibrated	results	to	PRODES	(r2=0.60	when	comparing	annual	state-level	25 
estimates).’	26 
	27 
-	Page	11501	Line	27	-	erroneously	suggests	that	Landsat	has	had	30	m	data	since	1972.	28 
We	changed	Page	28,	Line	1	to:	‘Landsat	satellite	imagery	is	the	longest	operative	option	29 
for	monitoring	vegetation.	Starting	in	1972,	through	January	1999,	the	Landsat	30 
Multispectral	Scanner	(MSS)	has	continuous	data	on	relatively	high	spatial	resolution	of	90	31 
meter.	From	1982	onwards	the	Landsat	(Enhanced)	Thematic	Mapper	((E)TM)	provides	32 
vegetation	cover	on	a	an	even	higher	spatial	resolution	of	30	meter,	with	a	16	day	revisit	33 
time.’	34 
	35 
-	Page	11502	line	7	-	I	feel	that	MODIS	should	be	mentioned	here,	as	halfway	between	36 
say	AVHRR	and	Landsat.	Products	such	as	TerraI	and	the	MODIS	LCC	product	could	be	37 
mentioned.	Also	spelling,	coarser.		38 
We	changed	Page	28,	line	23	to:	39 
‘Over	the	past	years,	the	number	of	datasets	quantifying	vegetation	dynamics,	carbon	40 
stocks	and	other	relevant	vegetation	quantities	on	both	global	and	regional	scale	has	thus	41 
increased	substantially,	often	using	Landsat	and	AVHRR	data	but	also	other	data	sources	42 
including	the	Moderate-resolution	Imaging	Spectroradiometer	(MODIS,	launched	in	1999	43 
on	board	of	Terra	and	in	2002	on	Aqua),	Medium	Resolution	Imaging	Spectrometer	44 
(MERIS,	2002-2012)	and	Satellite	Pour	l’Observation	de	la	Terre	Vegetation	Program	45 
(SPOT	VGT,	from	1986	onboard	different	satellites)	(Achard	et	al.,	2014;	Baccini	et	al.,	46 
2012;	Broich	et	al.,	2011;	Ernst	et	al.,	2013;	Eva	et	al.,	2012;	Frolking	et	al.,	2012;	Jones	et	47 
al.,	2011;	de	Jong	et	al.,	2013;	Kim	et	al.,	2015;	Koh	et	al.,	2011;	Mayaux	et	al.,	1998;	Morton	48 
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et	al.,	2005;	Potapov	et	al.,	2012;	Saatchi	et	al.,	2011;	Verbesselt	et	al.,	2012;	Verhegghen	et	1 
al.,	2012;	Wasige	et	al.,	2012).’	2 
	3 
-	line	18	-	PRODES	uses	other	datasets	too	to	help	with	cloud	cover,	e.g.	CBERS	and	DMC.	4 
We	changed	this	part	of	the	introduction,	Page	29,	Line	1,	to:	5 
‘One	of	the	regions	most	closely	monitored	is	the	Brazilian	Legal	Amazon,	where	the	6 
Brazilian	National	Institute	for	Space	Research	(INPE)	developed	the	Program	for	7 
Deforestation	Assessment	in	the	Brazilian	Legal	Amazon	with	Satellite	Imagery	(PRODES).	8 
PRODES	estimates	annual	deforestation	since	1988	based	on	a	multi-data	approach	mostly	9 
based	on	Landsat	data	but	also	the	China-Brazil	Earth	Resource	Satellite	(CBERS-2B)	and	10 
UK-DCM2	from	the	Disaster	Monitoring	Constellation	International	Imaging	(DMCii)	11 
(Shimabukuro	et	al.,	1998).’	12 
	13 
-	11503	line	11-12:	given	actual	resolution	given	for	Landsat,	for	comparison	14 
suggest	give	actual	resolution	of	VOD	sensors.		15 
We	added	this	to	the	Introduction,	Page	30	Line	12,	and	changed	the	sentence	to:		16 
‘The	observations	retrieved	from	the	Advanced	Microwave	Scanning	Radiometer	(AMSR-E)	17 
and	Special	Sensor	Microwave	Imager	(SSM/I)	have	been	merged	to	one	dataset	on	a	18 
spatial	resolution	of	0.25-degree,	based	on	Cumulative	Distribution	Function	(CDF)	19 
matching.’	20 
	21 
-	11505	section	2.2.	I	assume	you	did	not	filter	the	’loss’	dataset	by	the	2000	Canopy	22 
Cover	layer	as	performed	by	Hansen	et	al.	in	their	analysis?	I	do	not	think	this	is	a	23 
problem,	but	it	should	be	mentioned	in	2.2.	and	discussed	later,	as	some	of	the	’loss’	24 
changes	thus	compared	to	the	VOD	data	will	happen	in	pixels	that	were	not	forest	in	25 
2000.	26 
We	added	the	following	to	Section	2.2	Global	Forest	Change	(GFC),	Page	32,	Line	21:	27 
‘We	did	not	include	the	2000	forest	cover	map	as	mask	for	forested	areas	to	avoid	omitting	28 
areas	that	were	deforested	before	2000.’	29 
	30 
-	11516	-	I	do	not	agree	with	your	argument	particularly	at	the	bottom	of	page	11516.	31 
This	would	be	fine	if	VOD	provided	an	independent	metric	of	deforestation,	but	in	fact	it	32 
was	calibrated	by	GFC,	so	biases	due	to	differing	scales	should	be	corrected	for	in	your	33 
dataset.	The	only	possible	difference	could	be	due	to	Brazil	having	more	small-scale	34 
deforestation	than	the	rest	of	South	America,	but	field	experience	suggests	in	fact	the	35 
opposite	is	true.	I	think	you	need	to	at	the	least	caveat	this	section	more,	or	else	think	of	36 
some	other	possible	explanations	for	this	(interesting)	discrepancy.	I	believe	this	could	37 
be	due	to	the	differences	in	gross	deforestation	(Hansen)	vs	gross	forest	biomass	change	38 
(VOD),	with	there	being	extensive	regrowth	in	some	areas	of	Brazil.	39 
We	have	changed	Page	42,	Line	12	to:	40 
‘This	could	be	caused	by	the	difference	in	what	both	GFC	and	VOD	measure.	GFC	measures	41 
gross	forest	loss	while,	due	to	our	methodology,	VOD	yields	net	forest	loss.	In	areas	with	42 
much	regrowth,	VOD	will	therefore	underestimate	forest	loss	compared	to	GFC.	This	also	43 
has	the	consequence	that	VOD	is	most	reliable	in	areas	where	deforestation	is	the	44 
dominant	change.	Another	reason	could	be	the	different	spatial	resolutions	of	both	satellite	45 
products	where	both	datasets	are	based	on.	GFC	is	based	on	Landsat,	which	has	a	spatial	46 
resolution	of	30	meters	and	can	capture	more	small-scale	forest	loss	events,	which	will	be	47 
missed	in	our	dataset	based	on	VOD	with	its	much	coarser	0.25°	resolution.’	48 
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	1 
-	Somewhere	in	the	general	introduction	might	be	good	to	mention	active	microwave	2 
remote	sensing	of	vegetation	change	-	mostly	to	avoid	confusion	among	non-specialists.		3 
We	added	to	Section	2.1	Vegetation	Optical	Depth	(VOD),	Page	31	Line	9,	the	following	4 
sentence:	5 
‘Passive	microwave	remote	sensing	differs	from	active	microwave	remote	sensing	(Radar)	6 
in	the	sense	that	radar	transmits	a	long-wavelength	microwave	signal	through	the	7 
atmosphere	and	then	records	the	amount	of	energy	backscattered,	whereas	passive	8 
systems	record	electromagnetic	energy	that	was	reflected	or	emitted	from	the	surface	of	9 
the	Earth.’	10 
	11 
Various	papers	exist	giving	change	based	on	L-band	satellites,	especially	ALOS	PALSAR	-	12 
a	recent	example	in	South	America	would	be	Joshi	et	al.	2015	(Environmental	Research	13 
Letters).	–	This	paper	is	mentioned	in	the	revised	introduction	including	description	of	14 
Radar	and	LiDAR	efforts	of	detecting	vegetation	dynamics.	 	15 

16 
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	1 
Referee	2	2 
General	comments:	3 
The	method	of	estimating	tropical	forest	loss	on	continental	scale	with	passive	4 
microwave	remote	sensing	data	on	continental	scale	is	a	new	and	interesting	approach.	5 
The	manuscript	is	well	structured	and	well	written.	However,	the	authors	should	6 
highlight	what	their	new	approach	brings	as	new	information	with	respect	to	existing	7 
datasets	on	forest	loss,	more	specifically	with	respect	to	the	Global	Forest	Change	(GFC)	8 
dataset	of	Hansen	et	al.	2013,	given	that	the	VOD	spatial	resolution	is	much	coarser	than	9 
GFC’s,	and	that	a	‘tuning’	(calibration)	of	VOD	data	to	GFC	is	performed	(in	order	to	10 
produce	forest	loss	area	estimates	from	dimensionless	VOD	values).	–	In	Abstract	and	11 
Conclusions	can	be	added.	The	authors	must	give	an	outlook	on	advantages	and	future	12 
potential	use	of	this	new	method	compared	to	existing	methods.	In	general	the	authors	13 
should	have	put	less	emphasis	on	the	detailed	description	of	the	forest	loss	area	results	14 
per	country	but	more	on	the	reasons	of	the	significant	differences	between	the	VOD-15 
based	forest	loss	area	estimates	and	the	corresponding	PRODES	and	GFC	estimates.	In	16 
the	conclusions	the	authors	describe	the	three	datasets	(GFC,	PRODES,	VOD)	as	equally	17 
valid,	each	with	their	flaws	and	limitations.	This	view	seems	unfair	(too	positive)	with	18 
regard	to	the	VOD	dataset	which	needs	‘tuning’	to	another	dataset	(and	is	thus	19 
dependent	on	its	quality),	and,	in	addition,	is	missing	a	throughout	analysis	on	its	20 
accuracy	and	on	the	factors	that	can	influence	the	VOD	signal	(e.g.	impact	on	“inter-21 
annual	scales	by	anomalous	dry	or	wet	conditions”,	volcanic	eruptions,	water	bodies:	:	:).		22 
Dear	reviewer,	23 
	24 
Major	comments:	25 
Tuning:	The	abstract	should	mention	the	comparison	between	the	VOD-derived	26 
estimates	and	the	PRODES	data	estimates	and	should	clearly	point	out	that	the	27 
comparison	with	GFC	estimates	has	limitations	due	to	the	interdependence	of	the	two	28 
datasets	(as	the	VOD-derived	dataset	was	‘tuned’	to	GFC).	This	interdependence	of	the	29 
two	datasets	should	also	be	pointed	out	more	clearly	in	the	sections	where	forest	loss	30 
area	estimates	derived	from	of	VOD	and	GFC	are	compared.	31 
We	changed	the	relevant	section	at	Page	26,	Line	25	to:	32 
‘Our	results	compare	reasonably	well	with	the	newly	developed	Global	Forest	Change	(GFC)	33 
maps	based	on	Landsat	data	and	available	for	the	2001	onwards	period	(r2=0.90	when	34 
comparing	annual	country-level	estimates),	which	allowed	us	to	convert	our	results	to	35 
forest	loss	area	and	compute	these	from	1990	onwards.	We	also	compared	these	calibrated	36 
results	to	PRODES	(r2=0.60	when	comparing	annual	state-level	estimates).’	37 
	38 

39 
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	1 
Early	decade:	The	fact	that	after	‘tuning’	VOD	data	from	2000-2010	to	GFC	data	the	two	2 
datasets	show	substantial	differences	in	forest	loss	area	estimates	(Table	2,	Figure	5)	is	3 
questioning	the	validity	of	VOD	forest	loss	area	estimates	for	the	1990-2000	period.	VOD	4 
forest	loss	area	estimates	are	provided	for	this	earlier	decade,	but	how	accurate	are	5 
they?	6 
We	agree	with	the	reviewer	that	it	is	uncertain	what	the	errors	are	over	the	1990-2010	7 
period,	because	no	other	datasets	are	available	for	such	a	long	timeseries.	Explanations	for	8 
the	differences	are	the	different	spatial	resolutions	of	GFC	and	VOD	and	GFC	measuring	9 
gross	forest	loss	(deforestation	and	degradation),	whereas	VOD	measures	net	forest	loss	10 
(deforestation,	degradation	and	net	regrowth	within	a	year).	11 
However,	based	on	the	comparable	results	over	the	overlapping	time	period	in	12 
combination	with	the	average	error	over	South	America	(Figure	7),	we	feel	the	trends	over	13 
the	1990-2000	period	are	relatively	robust,	although	we	don’t	know	the	exact	forest	loss	14 
for	that	time	period,	especially	on	annual	time	steps.	15 
	16 
Moreover	the	comparison	with	PRODES	estimates	for	the	years	1990	to	2010	shows	17 
substantial	differences	in	yearly	forest	loss	area	estimates	over	the	Brazilian	Amazon	18 
from	the	two	datasets	(VOD	and	PRODES).	19 
VOD	and	PRODES	do	show	large	differences,	but	this	may	be	partly	due	to	limitations	in	20 
both	datasets.	PRODES	measures	only	deforestation	of	primary	forest	and	VOD	shows	large	21 
interannual	variability	and	is	sensitive	to	open	water	bodies.	However,	many	patterns	22 
between	PRODES	and	VOD	are	comparable	as	indicated	by	the	r2	of	0.60.	Please	keep	in	23 
mind	that	for	the	overlapping	period	PRODES	and	GFC	also	deviate	from	each	other,	24 
although	they	agree	better	with	the	Pearson	r2	of	0.92,	see	Figure	X	inserted	below.	25 
Most	importantly,	VOD	is	the	only	dataset	available	for	annual	forest	loss	for	all	of	South	26 
America	currently,	so	despite	the	limitations	we	mention	throughout	the	manuscript	it	27 
yields	information	for	time	periods	and	regions	were	we	currently	have	none.	28 
	29 
We	do	agree	with	the	reviewer	that	in	future	work	a	thorough	analysis	should	be	done	to	30 
know	what	VOD	is	exactly	measuring	and	how	PRODES	and	VOD	can	be	compared	more	31 
directly.	Therefore	we	added	the	following	recommendation	to	the	Conclusions	Section,	32 
Page	44,	Line	17:	33 
‘This	was	a	first	approach	towards	a	better	forest	loss	dataset	using	VOD	to	better	34 
understand	forest	loss	dynamics.	The	added	value	of	our	analysis	is	mostly	providing	new	35 
annual	forest	loss	estimates	during	the	1990s,	a	period	not	covered	by	GFC,	MODIS	and	36 
other	satellite	datasets.	Regarding	future	opportunities,	more	research	is	needed	to	know	37 
exactly	what	VOD	represents,	potentially	comparing	with	existing	LiDAR-based	benchmark	38 
datasets	(Baccini	et	al.,	2012;	Saatchi	et	al.,	2011).’	39 
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	1 
	2 
Figure	X.	Time	series	of	PRODES	deforestation	(top),	GFC	forest	loss	(middle)	and	VOD	3 
(bottom)	for	the	Brazilian	states	in	the	Amazon	(1990	–	2010).	PRODES	has	no	data	for	4 
1993	and	the	VOD	values	are	unreliable	in	1991	due	to	the	volcanic	eruption	of	Mt.	5 
Pinatubo.6 
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	1 
Spatial	comparison	with	other	datasets:	In	addition	to	the	comparison	of	forest	loss	2 
area	estimates	derived	from	VOD,	GFC	and	PRODES	(Figures	4,	5	and	6)	the	authors	3 
should	also	provide	a	spatial	comparison	with	the	GFC	and	PRODES	datasets	to	show	4 
where	the	areas	of	forest	loss	coincide	and	where	and	how	they	differ.	This	can	be	very	5 
helpful	in	the	discussion	on	the	quality	of	the	VOD-based	forest	loss	data	and	on	the	6 
factors	that	can	influence	VOD	outlier	values.	7 
Accuracy:	An	independent	assessment	of	the	accuracy	of	the	VOD-based	forest	loss	area	8 
estimates	is	missing.	Although	such	accuracy	assessment	can	represent	a	large	amount	9 
of	work,	it	can	be	very	useful	to	build	confidence	in	such	a	dataset.		10 
We	appreciate	this	comment	and	have	modified	our	approach	to	switch	from	country-scale	11 
to	grid-scale	analysis,	please	see	the	revised	figures	at	the	top	of	this	document.	We	also	12 
added	a	new	Figure	7,	which	depicts	the	spatial	difference	between	VOD	and	GFC	forest	loss	13 
area	estimates.	The	relative	errors	are	large,	but	that	is	mostly	on	grid	cells	with	dense	14 
vegetation	and	little	change,	see	Figure	8.	Because	of	this,	we	recommend	throughout	the	15 
paper	that	our	approach	is	most	suitable	for	regional	estimates.		16 
	17 
Furthermore	we	calculated	the	RMSE	for	both	the	grid-scale	and	country-scale	analysis	18 
and	these	results	are	shown	in	the	revised	Table	1.	The	main	result	is	that	the	bin	with	the	19 
lowest	average	VOD	values	(0.6-0.7)	has	the	highest	error	compared	with	GFC.	20 
	21 
An	independent	assessment	is	difficult,	because	no	other	dataset	exists	with	continuous	22 
data	over	the	whole	time	period	for	such	a	large	region.	We	think	PRODES	is	the	dataset	23 
that	comes	closest	and	provides	valuable	estimates.	However,	PRODES	and	VOD	do	not	24 
measure	the	same,	so	a	spatial	comparison	with	this	dataset	does	in	our	opinion	not	add	so	25 
much	to	the	already	existing	Figure	8.	We	did	calculate	the	Root	Mean	Square	Error	with	26 
PRODES	on	a	state-level.		27 
	28 
Therefore	we	changed	Page	39	Line	22	in	Section	4.4	to:	29 
‘We	do	not	expect	PRODES	and	our	dataset	to	compare	perfectly	given	that	PRODES	30 
detects	only	deforestation	of	primary	forests	and	VOD	detects	both	deforestation	and	31 
degradation	including	forest	loss	of	secondary	forest.	Nevertheless,	the	Pearson’s	r2	over	32 
the	full	21-year	time	period	between	these	two	datasets	was	0.60	(p<0.001)	with	a	RMSE	of	33 
1.6E3	km2yr-1	on	a	state-level.’	34 
	35 
	36 

37 
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	1 
PRODES	comparison:	The	comparison	with	the	PRODES	forest	loss	dataset	is	definitely	2 
an	independent	one,	but	is	not	discussed	in	depth	and	rather	regarded	as	of	minor	3 
significance	(“apples	and	oranges”),	because	of	the	“differences	in	methodology	and	4 
spatial	resolution:	:	:	but	also	potential	inconsistencies:	:	:”.	For	the	Brazilian	Legal	5 
Amazon	region,	the	PRODES	dataset	is	one	of	the	most	relevant	existing	datasets,	and	6 
should	be	fully	taken	into	consideration.	While	certainly	some	technical	issues	need	to	7 
be	taken	into	account	for	such	comparison	(minimum	mapping	unit,	cloud	8 
compensation,	the	exclusion	of	forest	regrowth	from	the	forest	cover),	a	more	in-depth	9 
comparison	should	be	carried	out	and	could	be	used	as	partial	accuracy	assessment	over	10 
this	region.		11 
We	agree	with	the	reviewer	that	PRODES	is	a	dataset	with	significant	value	for	the	12 
scientific	community,	but	this	dataset	does	not	provide	the	same	information	as	VOD.	VOD	13 
measures	the	change	in	net	forest	loss	(the	net	result	of	deforestation,	degradation	and	14 
regrowth	within	a	year),	whereas	PRODES	measures	deforestation	only	once	in	primary	15 
forest.	Furthermore	VOD	is	based	on	consistent	daily	observations	and	PRODES	measures	16 
deforestation	once	per	year.		17 
	18 
We	do	agree	we	could	discuss	this	more	including	the	new	insights	from	error	estimates	19 
from	Figure	4	and	the	new	Table	4	containing	average	errors	per	state	based	on	Figure	4.	20 
	21 
We	replaced	Section	4.4,	Page	39,	Line	31	to:	22 
‘While	there	are	substantial	differences	in	the	temporal	variability	in	the	VOD	and	PRODES	23 
datasets,	they	do	agree	on	where	most	forest	losses	occurred:	Pará	and	Mato	Grosso.	24 
Combined,	these	two	states	were	responsible	for	69%	and	61%,	for	PRODES	and	VOD	25 
respectively,	of	all	Brazilian	Legal	Amazon	deforestation	(PRODES)	and	forest	loss	(VOD).’	26 
	27 
	Added	to	Section	4.4	Page	40,	Line	6:		28 
‘The	states	with	largest	relative	differences	between	VOD	forest	loss	and	PRODES	29 
deforestation	are	Amazonas	and	Roraima,	with	1307	km2yr-1	and	499	km2yr-1	respectively.	30 
These	regions	have	little	forest	loss.	The	gridded	errors	for	these	states	for	VOD	compared	31 
with	GFC	for	the	overlapping	time	period	are	relatively	large:	705%	and	399	%	for	32 
Amazonas	and	Roraima	respectively	(Fig.	4,	Table	4).’	33 
	34 
Added	to	Discussion	at	Page	43,	Line	11:	35 
‘On	a	state-level	VOD	overestimates	forest	loss	area	in	the	states	of	Amazonas	and	36 
Roraima,	which	is	mostly	related	to	the	relatively	low	and	small-scale	forest	losses	in	these	37 
states	(Fig.	4,	Table	4).’	38 
	39 

40 
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	1 
Difference	in	forest	loss	area	estimates	between	PRODES	and	GFC:	Part	of	the	2 
considerable	differences	of	forest	loss	area	estimates	between	PRODES	and	GFC	for	the	3 
year	2010	can	be	explained,	as	the	authors	state,	by	the	limitation	of	the	PRODES	4 
method	which	does	not	take	into	account	re-clearing	or	forest	regrowth.	However,	when	5 
comparing	yearly	estimates	of	gross	forest	loss	from	the	two	datasets,	a	relatively	stable	6 
offset	appears	between	the	two	datasets	(systematic	higher	values	in	GFC	data),	thus	7 
leaving	the	GFC	peak	for	2010	unexplained.		8 
We	agree	with	the	reviewer	that	in	most	of	the	years	there	is	a	relative	stable	offset	9 
between	GFC	and	PRODES	(Fanin	and	van	der	Werf,	2015,	Figure	3a).	However,	the	years	10 
2010	(and	in	their	research	also	2012)	show	an	increase	in	forest	loss	in	GFC.	Those	years	11 
were	years	with	elevated	fire	activity	in	secondary	forests,	thus	masked	out	and	not	12 
registered	by	PRODES.	13 
	14 
Usage	of	monthly	VOD	values:	The	authors	mention	that	one	of	the	advantages	of	the	15 
VOD	is	the	possibility	to	use	monthly	data.	However,	these	monthly	datasets	(calculated	16 
through	a	19-month	moving	average)	are	used	to	produce	the	“Interyearly	Difference	17 
(IYD)”,	of	which	the	negative	IYD	values	only	are	used	for	further	analysis	by	calculating	18 
yearly	and	5-year	accumulation	of	IYD	values.	The	monthly	VOD	signal	as	such	is	not	19 
used	directly	for	analysis	but	only	indirectly	to	produce	yearly	IYDs,	and	no	conclusions	20 
are	based	directly	on	the	monthly	values.	In	this	respect,	the	monthly	VOD	values	are	not	21 
used	in	a	very	different	way	compared	to	the	bi-monthly	image	acquisitions	of	Landsat	22 
7,	which	are	mosaicked	and	analysed	in	order	to	produce	the	GFC	yearly	forest	loss	area	23 
dataset.	The	potential	of	producing	monthly	VOD	estimates	should	be	described	and	24 
further	discussed.	25 
The	reason	why	we	used	the	19-month	moving	average	is	to	filter	for	seasonal	variations	in	26 
the	signal.	With	using	this	averaged	signal	the	interannual	variability	in	the	start	of	the	27 
dry	season	is	minimalized	and	therefore	we	hope	to	prevent	false	detections	during	the	dry	28 
season.	We	agree	that	GFC	based	on	Landsat	7	is	for	now	the	best	dataset	available	for	29 
forest	loss	and	it	does	produce	bi	monthly	data,	but	is	only	available	from	1999	onwards,	30 
whereas	earlier	Landsat	images	do	not	provide	clear	images	on	such	a	high	temporal	31 
resolution.		32 
	33 
To	clarify	this	we	changed	in	the	Discussion,	Page	42	Line	27	to:	34 
‘While	we	would	in	general	favour	GFC	over	VOD	during	the	overlapping	periods	for	35 
reasons	mentioned	above,	the	temporal	resolution	of	VOD	is	superior	to	any	other	dataset	36 
for	our	study	period	from	1990-2010.	For	areas	with	frequent	cloud	cover	where	Landsat	37 
may	have	difficulties	in	acquiring	reliable	data,	VOD	may	be	in	a	better	position	to	map	38 
forest	loss	over	the	90s.’	39 

40 
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	1 
Forest	Plantations:	The	authors	do	not	mention	the	issue	of	forest	plantation	2 
harvesting	which	has	a	high	impact	on	the	VOD	values.	In	many	areas	(e.g.	Southern	and	3 
Central	Brazil,	Uruguay)	forest	cover	changes	in	forest	plantations	are	the	main	sources	4 
of	(temporary)	forest	cover	loss.	The	high	forest	losses	e.g.	in	the	Amazon	(land	use	5 
change)	has	different	implications	compared	to	the	high	forest	losses	in	e.g.	Southern	6 
Brazil	(mainly	land	cover	change).	This	should	be	pointed	out	in	the	manuscript.	7 
We	agree	and	changed	at	the	Discussion,	Page	42,	Line	23	to:	8 
‘In	Uruguay	many	forest	plantations	occur	(Suppl.	Figure	1,	Achard	et	al.,	2014)	and	the	9 
result	of	these	plantations	is	that	forest	losses	are	often	of	small	scale.	This	in	combination	10 
with	the	overestimation	of	VOD	with	smaller	scale	forest	losses,	could	explain	why	Uruguay	11 
shows	so	much	higher	values	on	a	country	scale,	although	additional	research	is	required	12 
to	better	understand	these	differences.’	13 
	14 
False	VOD-based	forest	loss:	The	manuscript	discusses	in	detail	the	forest	losses	in	the	15 
Amazon	rainforest	and	the	Chaco	forest,	where	the	VOD	approach	seems	to	work	16 
reasonably	well.	However,	the	discussion	addresses	only	shortly	the	issue	that	for	17 
countries	like	Chile,	Uruguay,	and	Surinam	the	VOD	approach	provides	very	different	18 
estimates	compared	to	GFC	(the	paper	mentions	only	the	different	spatial	resolutions	of	19 
the	two	datasets	as	the	probable	main	reason).	This	discussion	is	essential	and	should	be	20 
held	in	more	depth.	In	fact,	the	VOD	results	show	relatively	high	forest	loss	values	in	21 
areas	where	the	forest	cover	is	very	small	(e.g.	Uruguay).	This	issue	of	overestimation	of	22 
forest	loss	arises	also	within	Brazil	outside	the	Amazon	and	Chaco	regions:	e.g.	high	23 
forest	loss	is	estimated	for	Southern	Brazil	(Rio	Grande	do	Sul,	Santa	Catarina	and	24 
Parana	States)	for	the	period	of	2000-2004	(with	5-year	VOD	outlier	values	comparable	25 
to	those	within	the	arc	of	deforestation)	which	does	not	seem	to	correspond	to	reality.	26 
Another	example	would	be	Southern	Bahia	(South	of	Salvador)	where,	according	to	VOD	27 
data,	high	forest	loss	occurs	throughout	the	20	year	period	–	while	not	much	evidence	is	28 
found	for	this	loss	in	the	satellite	imagery.	–		29 
We	agree	with	the	reviewer	and	we	hope	to	cover	this	point	by	doing	the	grid	cell	analysis	30 
including	error	estimates	described	in	the	new	Figures	4	and	5.	We	tried	to	correct	for	this	31 
by	taking	different	VOD	classes	(e.g.	0.6-0.7,0.7-0.8,	etc.)	as	a	measure	for	tree	cover	32 
percentage	per	grid	cell.	This	however,	will	not	correct	for	size	of	the	forest	loss.	33 
	34 
Country	level	statistics:	Under	point	4.2	(Calibration	with	GFC)	the	authors	describe	35 
the	‘tuning’	of	the	VOD	outliers	to	the	GFC	forest	losses	and	state	for	some	years	36 
considerable	differences	in	forest	loss	estimates.	A	throughout	discussion	on	these	37 
differences	is	missing,	as	well	as	information	(as	mentioned	before)	on	their	spatial	38 
distribution	(apart	from	country-specific	information).		39 
We	hope	to	have	answered	this	comment	by	performing	the	per-grid	cell	analysis	and	40 
spatial	error	estimation,	see	Figures	4	and	5.	41 

42 
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	1 
Technical	corrections:	2 
Section	11500,	Line	24	(Abstract):	“One	of	the	key	findings”	mentioned	in	the	abstract	is	3 
the	decrease	of	forest	loss	in	Brazil	after	year	2005,	but	this	decrease	has	already	been	4 
reported	by	many	sources,	e.g.	by	FAO	in	the	FRA	2010	report.	The	sentence	should	thus	5 
be	changed	in	“the	analysis	of	VOD-based	forest	loss	estimates	are	in	agreement	with	6 
other	studies	that	state	:	:	:”,	or	similar.	7 
We	changed	this	in	the	Discussion,	Page	41,	Line	11,	and	refer	to	the	FRA	2010	report:	8 
‘Our	results	agree	with	earlier	work	showing	that	forest	loss	area,	and	probably	also	9 
carbon	emissions,	declined	after	peaking	in	the	year	2004	(Food	and	Agriculture	10 
Organization	of	the	United	Nations,	2010;	Macedo	et	al.,	2012;	Malhi	et	al.,	2008;	Nepstad	11 
et	al.,	2009).’	12 
	13 
Section	11501,	Line	27:	Starting	in	1972,	Landsat	MSS	had	a	spatial	resolution	of	80	m	14 
(but	was	often	resampled	to	60	m),	this	should	be	added	to	the	mentioned	resolution	of	15 
Landsat	(E)TM	spatial	resolution	of	30m		16 
We	changed	Page	28,	Line	1	to:	‘Landsat	satellite	imagery	is	the	longest	operative	option	17 
for	monitoring	vegetation.	Starting	in	1972,	through	January	1999,	the	Landsat	18 
Multispectral	Scanner	(MSS)	has	continuous	data	on	relatively	high	spatial	resolution	of	90	19 
meter.	From	1982	onwards	the	Landsat	(Enhanced)	Thematic	Mapper	((E)TM)	provides	20 
vegetation	cover	on	a	an	even	higher	spatial	resolution	of	30	meter,	with	a	16	day	revisit	21 
time.’	22 
	23 
Section	11502,	Line	8:	“coarser”	spatial	resolution	instead	of	“courser:	:	:”		24 
We	changed	this.	25 
	26 
Section	11502,	Line	12	ff.:	Achard	et	al.	2014	(global),	Eva	et	al.	2012	(regional,	for	27 
tropical	South	and	Central	America)	and	Verhegghen	et	al.	2012	(regional	approach	with	28 
MERIS	and	SPOT	VGT	data)	should	be	added	to	the	list	of	publications	mentioned	here.	29 
The	reference	“Céline	et	al.	2013”	should	be	“Ernst	et	al.	2013”,	the	first	name	and	last	30 
name	of	the	author	was	reversed	–	which	is	the	case	for	all	other	names	in	this	reference	31 
(Section	11519).	–	32 
We	changed	this	part,	Page	28,	Line	23,	of	the	Introduction	to:	33 
‘Over	the	past	years,	the	number	of	datasets	quantifying	vegetation	dynamics,	carbon	34 
stocks	and	other	relevant	vegetation	quantities	on	both	global	and	regional	scale	has	thus	35 
increased	substantially,	often	using	Landsat	and	AVHRR	data	but	also	other	data	sources	36 
including	the	Moderate-resolution	Imaging	Spectroradiometer	(MODIS,	launched	in	1999	37 
on	board	of	Terra	and	in	2002	on	Aqua),	Medium	Resolution	Imaging	Spectrometer	38 
(MERIS,	2002-2012)	and	Satellite	Pour	l’Observation	de	la	Terre	Vegetation	Program	39 
(SPOT	VGT,	from	1986	onboard	different	satellites)	(Achard	et	al.,	2014;	Baccini	et	al.,	40 
2012;	Broich	et	al.,	2011;	Ernst	et	al.,	2013;	Eva	et	al.,	2012;	Frolking	et	al.,	2012;	Jones	et	41 
al.,	2011;	de	Jong	et	al.,	2013;	Kim	et	al.,	2015;	Koh	et	al.,	2011;	Mayaux	et	al.,	1998;	Morton	42 
et	al.,	2005;	Potapov	et	al.,	2012;	Saatchi	et	al.,	2011;	Verbesselt	et	al.,	2012;	Verhegghen	et	43 
al.,	2012;	Wasige	et	al.,	2012).’	44 
	45 
Section	11502,	Line	17	(and	Section	11506,	Line	2):	INPE	is	not	the	Brazilian	Space	46 
Agency,	but	the	Brazilian	National	Institute	for	Space	Research		47 
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Section	11502,	Line	18:	the	project	called	PRODES	is	not	called	the	“Monitoring	the	1 
Gross	Deforestation	in	the	Amazon	Project”,	but	“Program	for	Deforestation	Assessment	2 
in	the	Brazilian	Legal	Amazon	with	Satellite	Imagery”		3 
We	changed	this	part,	Page	29,	Line	1,	of	the	Introduction	to:	‘One	of	the	regions	most	4 
closely	monitored	is	the	Brazilian	Legal	Amazon,	where	the	Brazilian	National	Institute	for	5 
Space	Research	(INPE)	developed	the	Program	for	Deforestation	Assessment	in	the	6 
Brazilian	Legal	Amazon	with	Satellite	Imagery	(PRODES).	PRODES	estimates	annual	7 
deforestation	since	1988	based	on	a	multi-data	approach	mostly	based	on	Landsat	data	8 
but	also	the	China-Brazil	Earth	Resource	Satellite	(CBERS-2B)	and	UK-DCM2	from	the	9 
Disaster	Monitoring	Constellation	International	Imaging	(DMCii)	(Shimabukuro	et	al.,	10 
1998).’	11 
	12 
Section	11503,	Line	27:	”:	:	:to	Landsat-derived	datasets	including:	:	:”	should	be	“:	:	:to	13 
the	Landsat-derived	datasets	of	PRODES:	:	:”		14 
We	changed	this	at	Page	30,	Line	24,	to:	‘We	detail	how	we	translated	the	VOD	signal	to	15 
forest	loss	area	by	calibrating	our	results	to	the	Global	Forest	Change	maps	of	Hansen	et	al.	16 
(2013),	which	are	subsequently	compared	to	the	Landsat-derived	PRODES-dataset.	17 
	18 
Section	11505,	Line	20:	“with”	or	“at”	instead	of	“on	a	30	m	resolution,	the	30	m	can	then	19 
be	dropped	in	the	next	sentence		20 
We	changed	this	at	Page	32,	Line	14,	to:	‘…at	a	30-meter	resolution.’	21 
	22 
Section	11506,	Line	10:	“Landsat	5/TM”	should	be	“Landsat	5	and	Landsat	7”			23 
We	changed	this	at	Page	33,	Line	3.	24 
	25 
Section	11506,	Line	14:	“shadefractioned	images”	should	be	“images	of	soil,	shade	and	26 
vegetation	fractions”	27 
We	changed	this	at	Page	33,	Line	5	to:	‘After	2002,	PRODES	started	to	use	digital	image	28 
processing	and	visual	interpretation	of	Landsat	bands	3,	4	and	5	creating	and	interpreting	29 
images	of	soil,	shade	and	vegetation	fractions	(INPE,	2013;	Shimabukuro	et	al.,	1998).’	30 
	31 
Section	11506,	Line	16:	the	method	described	does	not	yield	‘gross	forest	loss’,	it	yields	32 
‘net	forest	loss’,	for	areas	where	the	forest	loss	exceeds	forest	gain	(as	only	negative	VOD	33 
outliers	were	considered)	–		34 
We	changed	Section	3.3,	Page	35,	Line	27,	to:	35 
‘In	general,	our	method	yields	net	forest	loss	per	gridcell	within	one	year,	because	we	36 
considered	decreases	in	VOD,	which	is	the	net	result	of	deforestation,	forest	degradation	37 
and	regrowth	within	a	gridcell	per	year.’	38 
	39 
Section	11510,	Line	5	ff.:	In	Figure	3	the	arc	of	deforestation	is	not	a	‘dominant’	feature,	40 
it	is	rather	a	well-known	feature	which	is	thus	recognized	easily,	but	in	all	four	parts	of	41 
the	figure	it	is	one	among	various	areas	which	show	high	absolute	“Summed	IYD	values	42 
(-)”.		43 
We	changed	this	at	Page	36,	Line	13,	to:	‘The	largest	feature	over	our	study	period	is	the	44 
well-known	arc	of	deforestation	along	the	Southern	edge	of	the	Amazon	basin	(Fig.	3),	45 
showing	high	forest	loss	in	every	period.’	46 
	47 



 21 

The	interpretation	of	figure	3	is	too	short	and	too	fuzzy	with	respect	to	the	importance	1 
of	the	figure	that	shows	the	main	results	(summed	IYD	values	(-)	indicating	forest	loss)	2 
in	their	spatial	distribution.	3 
We	included	a	spatial	error	analysis	on	a	gridcell-scale	and	added	the	following	text	to	4 
Section	4.1	Spatial	Extent,	Page	37,	Line	8:	5 
‘The	largest	errors	are	found	in	the	regions	with	dense	vegetation	and	relatively	little	6 
forest	loss	(Fig.	4,	Fig.	5).	The	RMSE	on	a	grid-cell	scale	shows	that	the	bin	with	the	lowest	7 
average	VOD	values	(0.6-0.7)	has	the	highest	error	compared	to	GFC	(Table	1).’	8 
	9 
Section	11511,	Line	5:	Equation	(4)	is	either	missing	or	not	numbered	correctly.		We	10 
changed	this	at	Page	37,	Line	5,	to:	‘We	converted	the	summed	VODoutliers	to	a	forest	loss	11 
area	according	to	Eq.	3,	where	the	slopes	varied	between	the	5	different	bins	(Table	1).’	12 
	13 
Section	11516,	Line	12:	‘strict	regulations’	is	an	imprecise	term,	it	should	be	“strict	14 
forest	law	and	effective	forest	law	enforcement”	or	similar.		15 
We	changed	this	at	Page	41,	Line	28,	to:	‘One	explanation	could	be	relocation	of	16 
agricultural	hotspots	because	of	the	strict	forest	law	and	effective	forest	law	enforcement	17 
within	Brazil	(Dobrovolski	and	Rattis,	2014).’		18 
	19 
Section	11518,	Line	7:	“:	:	:	partly	because	it	was	related	to	secondary	forest	20 
degradation”	should	be	“:	:	:partly	because	of	the	deforestation	of	secondary	forest”	or	21 
similar.		–		22 
PRODES	does	not	capture	changes	in	degradation	nor	deforestation	of	secondary	forest.	23 
Therefore	we	changed	this	sentence	at	Page	43,	Line	27,	to:	24 
‘PRODES	did	not	show	this	peak,	partly	because	it	was	related	to	secondary	forest	25 
degradation	and	deforestation,	which	is	not	captured	by	PRODES	(Fanin	and	van	der	Werf,	26 
2015).’	27 
	28 
Section	11532,	Figure	3:	The	caption	of	the	figure	is	not	correct,	as	the	figure	does	not	29 
show	forest	loss	extend,	but	the	“Summed	IYD	values	(-)”.		30 
In	the	new	and	revised	figures,	Figure	3	is	replaced	with	spatial	maps	of	forest	loss	area.	31 
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References 33 
	34 
Achard,	F.,	Beuchle,	R.,	Mayaux,	P.,	Stibig,	H.-J.,	Bodart,	C.,	Brink,	A.,	Carboni,	S.,	Desclée,	35 
B.,	Donnay,	F.,	Eva,	H.	D.,	Lupi,	A.,	Raši,	R.,	Seliger,	R.	and	Simonetti,	D.:	Determination	of	36 
tropical	deforestation	rates	and	related	carbon	losses	from	1990	to	2010,	Glob.	Chang.	37 
Biol.,	20,	2540–2554,	doi:10.1111/gcb.12605,	2014.	38 

Andela,	N.,	Liu,	Y.	Y.,	van	Dijk,	A.	I.	J.	M.,	de	Jeu,	R.	A.	M.	and	McVicar,	T.	R.:	Global	changes	39 
in	dryland	vegetation	dynamics	(1988-2008)	assessed	by	satellite	remote	sensing:	40 
Comparing	a	new	passive	microwave	vegetation	density	record	with	reflective	41 
greenness	data,	Biogeosciences,	10,	6657–6676,	doi:10.5194/bg-10-6657-2013,	2013.	42 

Anyamba,	A.	and	Tucker,	C.	J.:	Analysis	of	Sahelian	vegetation	dynamics	using	NOAA-43 
AVHRR	NDVI	data	from	1981-2003,	in	Journal	of	Arid	Environments,	vol.	63,	pp.	596–44 
614.,	2005.	45 



 22 

Baccini,	A.,	Goetz,	S.	J.,	Walker,	W.	S.,	Laporte,	N.	T.,	Sun,	M.,	Sulla-Menashe,	D.,	Hackler,	J.,	1 
Beck,	P.	S.	A.,	Dubayah,	R.,	Friedl,	M.	A.,	Samanta,	S.	and	Houghton,	R.	A.:	Estimated	2 
carbon	dioxide	emissions	from	tropical	deforestation	improved	by	carbon-density	maps,	3 
Nat.	Clim.	Chang.,	2,	182–185,	doi:10.1038/nclimate1354,	2012.	4 

Broich,	M.,	Hansen,	M.,	Stolle,	F.,	Potapov,	P.,	Margono,	B.	A.	and	Adusei,	B.:	Remotely	5 
sensed	forest	cover	loss	shows	high	spatial	and	temporal	variation	across	Sumatera	and	6 
Kalimantan,	Indonesia	2000–2008,	Environ.	Res.	Lett.,	6,	014010,	doi:10.1088/1748-7 
9326/6/1/014010,	2011.	8 

Dobrovolski,	R.	and	Rattis,	L.:	Brazil	should	help	developing	nations	to	foster	agriculture	9 
and	environmental	protection,	Front.	Ecol.	Environ.,	12,	376–376,	10 
doi:10.1890/14.WB.010,	2014.	11 

Ernst,	C.,	Mayaux,	P.,	Verhegghen,	A.,	Bodart,	C.,	Christophe,	M.	and	Defourny,	P.:	National	12 
forest	cover	change	in	Congo	Basin:	Deforestation,	reforestation,	degradation	and	13 
regeneration	for	the	years	1990,	2000	and	2005,	Glob.	Chang.	Biol.,	19,	1173–1187,	14 
doi:10.1111/gcb.12092,	2013.	15 

Eva,	H.	D.,	Achard,	F.,	Beuchle,	R.,	de	Miranda,	E.,	Carboni,	S.,	Seliger,	R.,	Vollmar,	M.,	16 
Holler,	W.	a.,	Oshiro,	O.	T.,	Arroyo,	V.	B.	and	Gallego,	J.:	Forest	cover	changes	in	tropical	17 
south	and	Central	America	from	1990	to	2005	and	related	carbon	emissions	and	18 
removals,	Remote	Sens.,	4,	1369–1391,	doi:10.3390/rs4051369,	2012.	19 

Fanin,	T.	and	van	der	Werf,	G.	R.:	Relationships	between	burned	area,	forest	cover	loss,	20 
and	land	cover	change	in	the	Brazilian	Amazon	based	on	satellite	data,	Biogeosciences,	21 
12,	6033–6043,	doi:10.5194/bg-12-6033-2015,	2015.	22 

Food	and	Agriculture	Organization	of	the	United	Nations:	Global	forest	resources	23 
assessments	main	report,	FAO	For.	Pap.,	163	[online]	Available	from:	24 
http://www.fao.org/docrep/013/i1757e/i1757e00.htm	(Accessed	10	September	25 
2014),	2010.	26 

Frolking,	S.,	Hagen,	S.,	Milliman,	T.,	Palace,	M.,	Shimbo,	J.	Z.	and	Fahnestock,	M.:	Detection	27 
of	Large-Scale	Forest	Canopy	Change	in	Pan-Tropical	Humid	Forests	2000–2009	With	28 
the	SeaWinds	Ku-Band	Scatterometer,	IEEE	Trans.	Geosci.	Remote	Sens.,	50,	2603–2617,	29 
doi:10.1109/TGRS.2011.2182516,	2012.	30 

Guan,	K.,	Wood,	E.	F.	and	Caylor,	K.	K.:	Multi-sensor	derivation	of	regional	vegetation	31 
fractional	cover	in	Africa,	Remote	Sens.	Environ.,	124,	653–665,	32 
doi:10.1016/j.rse.2012.06.005,	2012.	33 

INPE:	PRODES	-	Metodologia	para	o	Cálculo	da	Taxa	Anual	de	Desmatamento	na	34 
Amazônia	Legal.	[online]	Available	from:	35 
http://www.obt.inpe.br/prodes/metodologia_TaxaProdes.pdf,	2013.	36 



 23 

Jackson,	T.	J.	and	Schmugge,	T.	J.:	Vegetation	effects	on	the	microwave	emission	of	soils,	1 
Remote	Sens.	Environ.,	36,	203–212,	doi:10.1016/0034-4257(91)90057-D,	1991.	2 

Jones,	M.	O.,	Jones,	L.	A.,	Kimball,	J.	S.	and	McDonald,	K.	C.:	Satellite	passive	microwave	3 
remote	sensing	for	monitoring	global	land	surface	phenology,	Remote	Sens.	Environ.,	4 
115,	1102–1114,	doi:10.1016/j.rse.2010.12.015,	2011.	5 

de	Jong,	R.,	Verbesselt,	J.,	Zeileis,	A.	and	Schaepman,	M.	E.:	Shifts	in	global	vegetation	6 
activity	trends,	Remote	Sens.,	5,	1117–1133,	doi:10.3390/rs5031117,	2013.	7 

Joshi,	N.,	Mitchard,	E.	T.,	Woo,	N.,	Torres,	J.,	Moll-Rocek,	J.,	Ehammer,	A.,	Collins,	M.,	8 
Jepsen,	M.	R.	and	Fensholt,	R.:	Mapping	dynamics	of	deforestation	and	forest	9 
degradation	in	tropical	forests	using	radar	satellite	data,	Environ.	Res.	Lett.,	10,	034014,	10 
doi:10.1088/1748-9326/10/3/034014,	2015.	11 

Kerr,	Y.	H.	and	Njoku,	E.	G.:	Semiempirical	model	for	interpreting	microwave	emission	12 
from	semiarid	land	surfaces	as	seen	from	space,	IEEE	Trans.	Geosci.	Remote	Sens.,	28,	13 
384–393,	doi:10.1109/36.54364,	1990.	14 

Kim,	D.-H.,	Sexton,	J.	O.	and	Townshend,	J.	R.:	Accelerated	deforestation	in	the	humid	15 
tropics	from	the	1990s	to	the	2000s,	Geophys.	Res.	Lett.,	42,	3495–3501,	16 
doi:10.1002/2014GL062777,	2015.	17 

Kirdiashev,	K.	P.,	Chukhlantsev,	A.	A.	and	Shutko,	A.	M.:	Microwave	radiation	of	the	18 
earth’s	surface	in	the	presence	of	vegetation	cover,	Radio	Eng.	Electron.	Phys.,	24,	256–19 
264,	1979.	20 

Koh,	L.	P.,	Miettinen,	J.,	Liew,	S.	C.	and	Ghazoul,	J.:	Remotely	sensed	evidence	of	tropical	21 
peatland	conversion	to	oil	palm.,	Proc.	Natl.	Acad.	Sci.	U.	S.	A.,	108,	5127–32,	22 
doi:10.1073/pnas.1018776108,	2011.	23 

Liu,	Y.	Y.,	van	Dijk,	A.	I.	J.	M.,	de	Jeu,	R.	A.	M.,	Canadell,	J.	G.,	McCabe,	M.	F.,	Evans,	J.	P.	and	24 
Wang,	G.:	Recent	reversal	in	loss	of	global	terrestrial	biomass,	Nat.	Clim.	Chang.,	5,	470–25 
474,	doi:10.1038/nclimate2581,	2015.	26 

Liu,	Y.	Y.,	de	Jeu,	R.	A.	M.,	McCabe,	M.	F.,	Evans,	J.	P.	and	van	Dijk,	A.	I.	J.	M.:	Global	long-27 
term	passive	microwave	satellite-based	retrievals	of	vegetation	optical	depth,	Geophys.	28 
Res.	Lett.,	38,	L18402,	doi:10.1029/2011GL048684,	2011.	29 

Macedo,	M.	N.,	DeFries,	R.	S.,	Morton,	D.	C.,	Stickler,	C.	M.,	Galford,	G.	L.	and	Shimabukuro,	30 
Y.	E.:	Decoupling	of	deforestation	and	soy	production	in	the	southern	Amazon	during	the	31 
late	2000s,	Proc.	Natl.	Acad.	Sci.	U.	S.	A.,	109,	1341–1346,	32 
doi:10.1073/pnas.1111374109,	2012.	33 

Malhi,	Y.,	Roberts,	J.	T.,	Betts,	R.	A.,	Killeen,	T.	J.,	Li,	W.	and	Nobre,	C.	A.:	Climate	change,	34 
deforestation,	and	the	fate	of	the	Amazon.,	Science,	319,	169–172,	35 
doi:10.3832/efor0516-005,	2008.	36 



 24 

Mayaux,	P.,	Achard,	F.	and	Malingreau,	J.-P.:	Global	tropical	forest	area	measurements	1 
derived	from	coarse	resolution	satellite	imagery:	a	comparison	with	other	approaches,	2 
Environ.	Conserv.,	25,	37–52,	doi:10.1017/S0376892998000083,	1998.	3 

Mitchard,	E.	T.	A.,	Saatchi,	S.	S.,	White,	L.	J.	T.,	Abernethy,	K.	A.,	Jeffery,	K.	J.,	Lewis,	S.	L.,	4 
Collins,	M.,	Lefsky,	M.	A.,	Leal,	M.	E.,	Woodhouse,	I.	H.	and	Meir,	P.:	Mapping	tropical	5 
forest	biomass	with	radar	and	spaceborne	LiDAR	in	Lopé	National	Park,	Gabon:	6 
overcoming	problems	of	high	biomass	and	persistent	cloud,	Biogeosciences,	9,	179–191,	7 
doi:10.5194/bg-9-179-2012,	2012.	8 

Morton,	D.	C.,	DeFries,	R.	S.,	Shimabukuro,	Y.	E.,	Anderson,	L.	O.,	Del	Bon	Espírito-Santo,	9 
F.,	Hansen,	M.	and	Carroll,	M.:	Rapid	Assessment	of	Annual	Deforestation	in	the	Brazilian	10 
Amazon	Using	MODIS	Data,	Earth	Interact.,	9,	1–22,	doi:10.1175/EI139.1,	2005.	11 

Myneni,	R.	B.,	Hall,	F.	G.,	Sellers,	P.	J.	and	Marshak,	A.	L.:	The	interpretation	of	spectral	12 
vegetation	indexes,	IEEE	Trans.	Geosci.	Remote	Sens.,	33,	481–486,	13 
doi:10.1109/36.377948,	1995.	14 

Nepstad,	D.,	Soares-Filho,	B.	S.,	Merry,	F.,	Lima,	A.,	Moutinho,	P.,	Carter,	J.,	Bowman,	M.,	15 
Cattaneo,	A.,	Rodrigues,	H.,	Schwartzman,	S.,	McGrath,	D.	G.,	Stickler,	C.	M.,	Lubowski,	R.,	16 
Piris-Cabezas,	P.,	Rivero,	S.,	Alencar,	A.,	Almeida,	O.	and	Stella,	O.:	Environment.	The	end	17 
of	deforestation	in	the	Brazilian	Amazon.,	Science,	326,	1350–1351,	18 
doi:10.1126/science.1182108,	2009.	19 

Owe,	M.,	de	Jeu,	R.	A.	M.	and	Walker,	J.	P.:	A	methodology	for	surface	soil	moisture	and	20 
vegetation	optical	depth	retrieval	using	the	microwave	polarization	difference	index,	21 
IEEE	Trans.	Geosci.	Remote	Sens.,	39,	1643–1654,	doi:10.1109/36.942542,	2001.	22 

Potapov,	P.	V.,	Turubanova,	S.	A.,	Hansen,	M.	C.,	Adusei,	B.,	Broich,	M.,	Altstatt,	A.,	Mane,	L.	23 
and	Justice,	C.	O.:	Quantifying	forest	cover	loss	in	Democratic	Republic	of	the	Congo,	24 
2000-2010,	with	Landsat	ETM+	data,	Remote	Sens.	Environ.,	122,	106–116,	25 
doi:10.1016/j.rse.2011.08.027,	2012.	26 

Saatchi,	S.	S.,	Harris,	N.	L.,	Brown,	S.,	Lefsky,	M.,	Mitchard,	E.	T.	A.,	Salas,	W.,	Zutta,	B.	R.,	27 
Buermann,	W.,	Lewis,	S.	L.,	Hagen,	S.,	Petrova,	S.,	White,	L.,	Silman,	M.	and	Morel,	A.:	28 
Benchmark	map	of	forest	carbon	stocks	in	tropical	regions	across	three	continents.,	29 
Proc.	Natl.	Acad.	Sci.	U.	S.	A.,	108,	9899–9904,	doi:10.1073/pnas.1019576108,	2011.	30 

Shi,	J.,	Jackson,	T.,	Tao,	J.,	Du,	J.,	Bindlish,	R.,	Lu,	L.	and	Chen,	K.	S.:	Microwave	vegetation	31 
indices	for	short	vegetation	covers	from	satellite	passive	microwave	sensor	AMSR-E,	32 
Remote	Sens.	Environ.,	112,	4285–4300,	doi:10.1016/j.rse.2008.07.015,	2008.	33 

Shimabukuro,	Y.	E.,	Batista,	G.	T.,	Mello,	E.	M.	K.,	Moreira,	J.	C.	and	Duarte,	V.:	Using	shade	34 
fraction	image	segmentation	to	evaluate	deforestation	in	Landsat	Thematic	Mapper	35 
images	of	the	Amazon	Region,	Int.	J.	Remote	Sens.,	19,	535–541,	36 
doi:10.1080/014311698216152,	1998.	37 



 25 

Tucker,	C.,	Pinzon,	J.,	Brown,	M.,	Slayback,	D.,	Pak,	E.,	Mahoney,	R.,	Vermote,	E.	and	El	1 
Saleous,	N.:	An	extended	AVHRR	8-km	NDVI	dataset	compatible	with	MODIS	and	SPOT	2 
vegetation	NDVI	data,	Int.	J.	Remote	Sens.,	26,	4485–4498,	3 
doi:10.1080/01431160500168686,	2005.	4 

UNFCCC:	Annex	to	UNFCCC	decision	16/CMP.1	Land	use,	land-use	change	and	forestry,	5 
Rep.	Conf.	Parties	Serv.	as	Meet.	Parties	to	Kyoto	Protoc.	its	first	Sess.	held	Montr.	from	6 
28	Novemb.	to	10	December	2005,	FCCC/KP/CM,	3,	2006.	7 

Verbesselt,	J.,	Zeileis,	A.	and	Herold,	M.:	Near	real-time	disturbance	detection	using	8 
satellite	image	time	series,	Remote	Sens.	Environ.,	123,	98–108,	9 
doi:10.1016/j.rse.2012.02.022,	2012.	10 

Verhegghen,	A.,	Mayaux,	P.,	de	Wasseige,	C.	and	Defourny,	P.:	Mapping	Congo	Basin	11 
vegetation	types	from	300	m	and	1	km	multi-sensor	time	series	for	carbon	stocks	and	12 
forest	areas	estimation,	Biogeosciences,	9,	5061–5079,	doi:10.5194/bg-9-5061-2012,	13 
2012.	14 

Wasige,	J.	E.,	Groen,	T.	A.,	Smaling,	E.	and	Jetten,	V.:	Monitoring	basin-scale	land	cover	15 
changes	in	Kagera	Basin	of	Lake	Victoria	using:	Ancillary	data	and	remote	sensing,	Int.	J.	16 
Appl.	Earth	Obs.	Geoinf.,	21,	32–42,	doi:10.1016/j.jag.2012.08.005,	2012.	17 

Zhu,	Z.,	Bi,	J.,	Pan,	Y.,	Ganguly,	S.,	Anav,	A.,	Xu,	L.,	Samanta,	A.,	Piao,	S.,	Nemani,	R.	R.	and	18 
Myneni,	R.	B.:	Global	data	sets	of	vegetation	leaf	area	index	(LAI)3g	and	fraction	of	19 
photosynthetically	active	radiation	(FPAR)3g	derived	from	global	inventory	modeling	20 
and	mapping	studies	(GIMMS)	normalized	difference	vegetation	index	(NDVI3G)	for	the	21 
period	1981	to	2,	Remote	Sens.,	5,	927–948,	doi:10.3390/rs5020927,	2013.	22 

	23 

24 



 26 

Annual South American forest loss estimates based on 1 

passive microwave remote sensing (1990-2010) 2 

 3 

M. J. E. van Marle1 , G. R. van der Werf1 , R. A. M. de Jeu1,2 and Y. Y. Liu3 4 

[1]{Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, the 5 

Netherlands} 6 

[2]{now at Transmissivity B.V. , Space Technology Centre, Noordwijk, the Netherlands} 7 

[3]{ARC Centre of Excellence for Climate System Science & Climate Change Research 8 

Centre, University of New South Wales, Sydney, Australia} 9 

Correspondence to: M. J. E. van Marle (m.j.e.van.marle@vu.nl) 10 

 11 

Abstract 12 

Consistent forest loss estimates are important to understand the role of forest loss and 13 

deforestation in the global carbon cycle, for biodiversity studies, and to estimate the 14 

mitigation potential of reducing deforestation. To date, most studies have relied on optical 15 

satellite data and new efforts have greatly improved our quantitative knowledge on forest 16 

dynamics. However, most of these studies yield results for only a relatively short time period 17 

or are limited to certain countries. We have quantified large-scale forest losses over a 21-year 18 

period (1990-2010) in the tropical biomes of South America using remotely sensed vegetation 19 

optical depth (VOD). This passive microwave satellite-based indicator of vegetation water 20 

content and vegetation density has a much coarser spatial resolution than optical data but its 21 

temporal resolution is higher and VOD is not impacted by aerosols and cloud cover. We used 22 

the merged VOD product of the Advanced Microwave Scanning Radiometer (AMSR-E) and 23 

Special Sensor Microwave Imager (SSM/I) observations, and developed a change detection 24 

algorithm to quantify spatial and temporal variations in forest loss dynamics. Our results 25 

compared reasonably well with the newly developed Landsat-based Global Forest Change 26 

(GFC) maps, available for the 2001 onwards period (r2=0.90 when comparing annual country-27 

level estimates). This allowed us to convert our identified changes in VOD to forest loss area 28 

and compute these from 1990 onwards. We also compared these calibrated results to 29 



 27 

PRODES (r2=0.60 when comparing annual state-level estimates). We found that South 1 

American forest exhibited substantial interannual variability without a clear trend during the 2 

1990s, but increased from 2000 until 2004. After 2004, forest loss decreased again, except for 3 

two smaller peaks in 2007 and 2010. For a large part, these trends were driven by changes in 4 

Brazil, which was responsible for 56% of the total South American forest loss area over our 5 

study period according to our results. One of the key findings of our study is that while forest 6 

losses decreased in Brazil after 2005, increases in other countries partly offset this trend 7 

suggesting that South American forest losses as a whole decreased much less than that in 8 

Brazil. 9 

 10 

1 Introduction 11 

There are large uncertainties in the spatial and temporal patterns of forest loss and associated 12 

fluxes of carbon in the tropical ecosystems (Grainger, 2008; Hansen et al., 2010; Malhi, 2010; 13 

Pan et al., 2011). Forest losses can be either natural, for example due to windthrow or natural 14 

fires, or anthropogenic, usually labeled deforestation. Deforestation carbon emissions are a 15 

significant but declining fraction of total anthropogenic CO2 emissions (van der Werf et al., 16 

2009). In Amazonia, tropical deforestation was the main source of carbon emissions (Morton 17 

et al., 2008), at least during their 2003 to 2007 study period. More than half of the total forest 18 

carbon is stored in tropical intact forests, from which 56% is stored in living biomass and 19 

32% in the soil. The remaining 12% is stored in dead wood and litter (Pan et al., 2011). In 20 

South America, deforestation is mainly caused by expansion of agriculture and area used for 21 

cattle ranging (FAO, 2006; Fearnside, 2005; Geist and Lambin, 2002), and the continent is 22 

responsible for almost half of the tropical deforestation emissions (Harris et al., 2012; Pan et 23 

al., 2011). Over the last 30 years soybean production has expanded rapidly in Amazonia, 24 

partly driven by improved yield-increasing and labor-saving technologies (Grau et al., 2005; 25 

Naylor et al., 2005).  26 

Historically, widely used datasets for forest area changes and timber harvesting in the 80s and 27 

90s are the forest resource assessments (FRAs), as reported by countries to the United Nations 28 

Food and Agriculture Organization (UN FAO) (FAO, 2006), but which are known to suffer 29 

from issues regarding consistency (Grainger, 2008). Satellite observations overcome some of 30 

the issues found in earlier FAO datasets, because they systematically monitor in space and 31 

time. Over the last three decades several satellite-based deforestation datasets have been 32 



 28 

developed. Landsat satellite imagery is the longest operative option for monitoring vegetation. 1 

Starting in 1972, through January 1999, the Landsat Multispectral Scanner (MSS) has 2 

continuous data on relatively high spatial resolution of 90 meter. From 1982 onwards the 3 

Landsat (Enhanced) Thematic Mapper ((E)TM) provides vegetation cover on a an even higher 4 

spatial resolution of 30 meter, with a 16 day revisit time. However, the effective temporal 5 

resolution is much lower because of cloud cover issues, which often persists not only in the 6 

wet season but also during the dry season between June and November in the Amazon basin 7 

south of the equator (Costa and Foley, 1998). Therefore, these observations are mostly used in 8 

annual or multi-year analyses, but there is a need for alternative non-optical data techniques to 9 

provide time-series on a monthly or higher temporal resolution (Asner, 2001). Other widely 10 

used satellite products for vegetation are the Normalized Difference Vegetation Index 11 

(NDVI), often derived from the Advanced Very High Resolution Radiometer (AVHRR). 12 

NDVI is sensitive to canopy greenness (Anyamba and Tucker, 2005; Tucker et al., 2005; Zhu 13 

et al., 2013). This dataset has a higher temporal, but coarser spatial resolution than Landsat, 14 

and is also sensitive to aerosols and cloud cover. Other vegetation datasets that can capture 15 

vegetation dynamics are for example the observations based on long-wavelength radar 16 

backscatter (Joshi et al., 2015), where deforestation, forest degradation and the follow-up 17 

vegetation cover could be captured, and those based on observations from the SeaWinds Ku-18 

band scatterometer (Frolking et al., 2012), which have shown to capture gross forest loss in 19 

the tropics. Also LiDar data can be used to estimate forest biomass, and can thus capture 20 

vegetation dynamics (Mitchard et al., 2012). Data availability for Radar and LiDar datasets is 21 

usually from 1998 onwards. 22 

Over the past years, the number of datasets quantifying vegetation dynamics, carbon stocks 23 

and other relevant vegetation quantities on both global and regional scale has thus increased 24 

substantially, often using Landsat and AVHRR data but also other data sources including the 25 

Moderate-resolution Imaging Spectroradiometer (MODIS, launched in 1999 on board of 26 

Terra and in 2002 on Aqua), Medium Resolution Imaging Spectrometer (MERIS, 2002-2012) 27 

and Satellite Pour l’Observation de la Terre Vegetation Program (SPOT VGT, from 1986 28 

onboard different satellites) (Achard et al., 2014; Baccini et al., 2012; Broich et al., 2011; 29 

Ernst et al., 2013; Eva et al., 2012; Frolking et al., 2012; Jones et al., 2011; de Jong et al., 30 

2013; Kim et al., 2015; Koh et al., 2011; Mayaux et al., 1998; Morton et al., 2005; Potapov et 31 

al., 2012; Saatchi et al., 2011; Verbesselt et al., 2012; Verhegghen et al., 2012; Wasige et al., 32 

2012). 33 
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One of the regions most closely monitored is the Brazilian Legal Amazon, where the 1 

Brazilian National Institute for Space Research (INPE) developed the Program for 2 

Deforestation Assessment in the Brazilian Legal Amazon with Satellite Imagery (PRODES). 3 

PRODES estimates annual deforestation since 1988 based on a multi-data approach mostly 4 

based on Landsat data but also the China-Brazil Earth Resource Satellite (CBERS-2B) and 5 

UK-DCM2 from the Disaster Monitoring Constellation International Imaging (DMCii) 6 

(Shimabukuro et al., 1998). Other efforts include the recently published global maps of global 7 

forest gains and losses for the 2001-2012 period also using Landsat data (Hansen et al., 2013). 8 

In addition to the previously mentioned datasets mostly based on visible and infrared 9 

wavelengths, passive microwave observations can also be used to characterize vegetation 10 

dynamics. Vegetation optical depth (VOD) is a vegetation attenuation parameter in the 11 

microwave domain. This parameter was first described by Kirdiashev et al. (1979) in a zero-12 

order radiative transfer model for vegetation canopies. VOD is primarily sensitive to the 13 

vegetation water content and also captures information about the vegetation structure 14 

(Jackson and Schmugge, 1991; Kerr and Njoku, 1990; Kirdiashev et al., 1979). 15 

The longer wavelengths of passive microwave enables sensitivity of VOD not only to the 16 

leafy part, but also to woody parts of vegetation (Andela et al., 2013). Therefore VOD yields 17 

information about both the photosynthetic and non-photosynthetic parts of aboveground 18 

vegetation, based on the water content (Jones et al., 2011; Shi et al., 2008). VOD is shown to 19 

be highly correlated with aboveground biomass (Liu et al., 2011a; Owe et al., 2001) and thus 20 

yields information about the net forest loss; the balance between decreases in forest loss due 21 

to deforestation and degradation and increases in forest extend due to regrowth or thickening. 22 

Furthermore, the advantage of low frequency (<20 GHz) microwave remote sensing is that 23 

aerosols and clouds have a negligible effect on the observations, so even areas with regular 24 

cloud cover are observed frequently, which makes it suitable to use for global vegetation 25 

monitoring at daily time steps.  26 

Comparing AVHRR NDVI and passive microwave based VOD datasets with a record longer 27 

than 20 years, Liu et al. (2011) showed that both datasets had similar seasonal cycles. VOD 28 

however also shows interannual variations in regions with water stress, which corresponds for 29 

a large part to variations in precipitation. VOD was more sensitive to changes in woody 30 

vegetation compared to NDVI, whereas NDVI was more sensitive to herbaceous changes 31 

(Andela et al. 2013). This is the result of NDVI being more sensitive to canopy greenness 32 



 30 

(Myneni et al., 1995) and VOD being more sensitive to water content, relatively speaking. 1 

Thus, when forest is converted to large-scale cropland, the canopy greenness not necessarily 2 

drops, whereas the total water content of the aboveground biomass does show a drop (Liu et 3 

al., 2011a). 4 

The main disadvantage of these low-frequency passive observations is that a large footprint is 5 

needed to yield an observable signal, making this dataset most suitable for large regional and 6 

continental-scale studies. These retrievals therefore have a relatively coarse resolution, 7 

compared to observations in the visible and near infrared spectra. Furthermore the presence of 8 

open water regions affects the signal. This, in combination with the large footprint of the 9 

gridded product, may lead to underestimation of VOD when grid cells are close to large open 10 

waters (Jones et al., 2011). VOD is retrieved from several satellite sensors. The observations 11 

retrieved from the Advanced Microwave Scanning Radiometer (AMSR-E) and Special Sensor 12 

Microwave Imager (SSM/I) have been merged to one dataset with a spatial resolution of 13 

0.25°, based on Cumulative Distribution Function (CDF) matching. This merged VOD dataset 14 

has been used to study vegetation dynamics in different ecosystems on both global and 15 

regional scales (Andela et al., 2013; Liu et al., 2012, 2013, 2015; Poulter et al., 2014; Zhou et 16 

al., 2014). Guan et al. (2012) compared QuickScat Ku-band backscatter coefficients (dB) with 17 

VOD and NDVI and noted that the three datasets are comparable, but that dB shows abnormal 18 

high values when more bare soil is present in the pixel. 19 

This paper aims to estimate large-scale forest losses in South America. We show how the 20 

merged VOD product can be used to estimate forest loss for South America on a country-21 

level scale, but we also point towards limitations of our approach and the dataset. The main 22 

novelty of our approach is the relatively long (1988-2011) time series based on a consistent 23 

data stream. We detail how we translated the VOD signal to forest loss area by calibrating our 24 

results to the Global Forest Change maps of Hansen et al. (2013), which are subsequently 25 

compared to the Landsat-derived PRODES-dataset. We then provide a country-level analysis 26 

of the newly derived maps, and zoom in on Brazil to present a state-level analysis of forest 27 

loss over the 1990-2010 period. This time period is somewhat shorter than the time span of 28 

the VOD dataset due to the requirements of the change detection algorithm we developed. 29 

 30 



 31 

2 Datasets 1 

In this section we describe the datasets we used in our analysis. First, we give more 2 

information on the VOD dataset that is used for our estimation of forest losses (Sect 2.1), 3 

followed by describing the two datasets we used for comparison: the Global Forest Change 4 

(GFC, Sect. 2.2), which besides being used for comparing the spatio-temporal variability is 5 

also used to translate our results to area estimates, and the PRODES dataset (Sect. 2.3). 6 

2.1 Vegetation Optical Depth (VOD) 7 

Forest loss estimates in this article are based on VOD, which is derived from passive 8 

microwave remote sensing. Passive microwave remote sensing differs from active microwave 9 

remote sensing (Radar) in the sense that radar transmits a long-wavelength microwave signal 10 

through the atmosphere and then records the amount of energy backscattered, whereas passive 11 

systems record electromagnetic energy that was reflected or emitted from the surface of the 12 

Earth. VOD was first introduced by Kirdiashev et al. (1979), and then modified to be used in 13 

the well-known omega-tau model (Mo et al., 1982). Kirdiashev et al. (1979) already described 14 

the relationship between VOD and vegetation water content. This relationship was further 15 

simplified by Jackson and Schmugge (1991) where the vegetation water content was directly 16 

related to VOD. The algorithm of the VOD dataset we used here is based on the land 17 

parameter retrieval model (LPRM) (Meesters et al., 2005; Owe et al., 2001, 2008). LPRM is 18 

based on a radiative transfer model and solves simultaneously for soil moisture and VOD. It 19 

can be applied to passive microwave sensors and has been used in numerous studies (see de 20 

Jeu et al., 2014). VOD can be used as a measure for biomass (Liu et al., 2015) , which is in 21 

terms of forest loss, the net forest loss (equals the net sum of deforestation, degradation and 22 

regrowth) in a 0.25° grid cell. 23 

The VOD time series used here is based on merging observations from two sensors (Liu et al., 24 

2011a). The different observations come from SSM/I (1988-2007) and AMSR-E (July 2002-25 

September 2011). These two sensors have different specifications regarding wavelength, 26 

viewing angle and spatial footprint and therefore the absolute values of the retrieved VOD 27 

values differ. Their relative dynamics, however, are similar (Liu et al., 2011a). In the merging 28 

procedure the AMSR-E retrievals were used as a reference, because this product has the 29 

higher accuracy due to its relatively low frequency. The cumulative distribution frequency 30 

(CDF) matching technique was used for rescaling SSM/I to match AMSR-E. For the period 31 
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July 2002 through September 2011 AMSR-E data are used. Before July 2002, SSM/I 1 

observations are used. Full details on the merging process can be found in Liu et al. (2011a, 2 

2011b). In this study, we used monthly values, which were derived from the merged VOD 3 

dataset (version January 2015) by averaging the daily data fields, and were resampled to 4 

0.25°. VOD observations are dimensionless and their values range from 0 to 1.5. At a certain 5 

point, when VOD values exceed 0.8, the vegetation becomes so dense that the soil component 6 

in the radiative transfer becomes very small. This is a gradual process and when VOD values 7 

are higher than 0.8 additional checks are necessary before using the values in vegetation 8 

studies. When VOD exceeds 1.2 smaller scale variations in the vegetation canopy cannot be 9 

captured anymore (Owe et al., 2001). 10 

2.2 Global Forest Change (GFC) 11 

Hansen et al. (2013) released early 2014 the Global Forest Change (GFC) project gridded 12 

dataset, which is probably the most data rich and computer intensive production of global 13 

forest change maps. It contains annual maps over the time period 2001-2013 at a 30-meter 14 

resolution. The maps are based on the 30-meter Landsat 7 Enhanced Thematic Mapper Plus 15 

(ETM+) scenes, which were resampled and normalized to create a gridded dataset of cloud-16 

free image observations. Forest loss is defined in GFC as a change from forest to non-forest 17 

state, comprising deforestation and degradation. In our analysis, we used the annual forest 18 

loss dataset and reprocessed these to the 0.25° resolution of our analysis by summing the 30-19 

meter values. While regrowth is detected and reported, we focused on the forest loss data 20 

when we used GFC for comparison; regrowth is thus not included in our analysis of GFC. We 21 

did not include the 2000 forest cover map as mask for forested areas to avoid omitting areas 22 

that were deforested before 2000. 23 

2.3 PRODES deforestation 24 

The Brazilian space agency INPE provides annual gross deforestation maps of the Brazilian 25 

Legal Amazon within the Program for Deforestation Assessment in the Brazilian Legal 26 

Amazonia (PRODES). INPE defines deforestation as the gross deforestation rate of the 27 

conversion of intact forests (old growth forest) to a different land use such as agro-pasture, 28 

wood exploration areas and silviculture. Degradation and deforestation of regenerating 29 

secondary forests are not monitored by PRODES (INPE, 2013). 30 
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Although PRODES covers a relatively long time period, the method of detection of 1 

deforestation has changed over time. For the time period 1988-2002 the detection of 2 

deforestation polygons was done by visual interpretation of Landsat 5 and Landsat 7 scenes. 3 

More recently these polygons were manually digitized in the PRODES Analog project (INPE, 4 

2013). After 2002, PRODES started to use digital image processing and visual interpretation 5 

of Landsat bands 3, 4 and 5 creating and interpreting images of soil, shade and vegetation 6 

fractions (INPE, 2013; Shimabukuro et al., 1998). Deforestation is reported once per year in 7 

August based on changes over the previous 12-month period. Deforestation within PRODES 8 

is defined as clear-cut areas of primary forests exceeding 6.25 ha. Because of this threshold in 9 

detection omitting deforestation smaller than 6.25 ha, INPE reports that underestimation of 10 

deforestation occurs. Furthermore there may be unobserved areas due to cloud cover in the 11 

Landsat images during the time period of visual interpretation until 2005 (INPE, 2013). 12 

 13 

3 Methods 14 

In this section we will first explain the pre-processing of the data (Sect. 3.1), followed by 15 

explaining the methodology used to detect forest losses (Sect. 3.2). Finally we will explain 16 

how the detected changes were converted to forest loss area (Sect. 3.3) 17 

3.1 Data selection 18 

We aimed to estimate gross forest loss for each 0.25° pixel on an annual basis, which will be 19 

explained in Sect. 3.2. We first filtered the available data to circumvent false detections 20 

related to the use of microwave data. The excluded grid cells are shown in Fig. 1, and the data 21 

exclusion was based on two criteria: 22 

1. Average VOD values should be below 1.2. This is to prevent false detection in densely 23 

vegetated areas without clear forest loss. The value was based on Owe et al (2001), 24 

who stated that VOD values larger than 1.2 cannot be used to detect significant 25 

vegetation changes. When vegetation is very dense, the VOD signal becomes noisy 26 

and potential changes in forest cover cannot be detected anymore. These pixels are 27 

mainly found in the middle of the Amazon forest, where forest loss rates are low. In 28 

addition, we excluded grid cells where VOD values were on average below 0.6 to 29 

maintain a focus on forested grid cells. Also when forest loss occurs in the early stages 30 

of the time series, the average VOD value will not be below this limit of 0.6. This 31 
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value was based on the comparison between VOD and MODIS-based Vegetation 1 

Continuous Fields (VCF), which provides information about the fraction tree cover in 2 

a pixel. Our VOD threshold of 0.6 corresponds to 10% tree cover for two-third of the 3 

pixels, a number more often used to define forest (Saatchi et al., 2011; UNFCCC, 4 

2006) although there is no consensus about this definition. 5 

2. Large open water should be avoided. Open water affects microwave emissions and can 6 

lead to underestimation of VOD (Jones et al., 2011). Therefore 0.25° grid cells, which 7 

contain more than 50% open water based on the Global Lakes and Wetlands Database 8 

(GLWD, Lehner and Döll, 2004), were masked out. 9 

We excluded these grid cells also from GFC and PRODES data when we compared the 10 

results. Therefore, total South American forest losses over 2001-2010 for GFC reported here 11 

are on average 4% lower than without the data exclusion, which also gives an indication of 12 

our underestimation due to masking out of these grid cells. 13 

3.2 Detection of forest losses 14 

Our method is a change detection method based on the principle that VOD is directly related 15 

to the above ground living biomass. Therefore persistent changes in VOD over time are 16 

related to changes in biomass (Liu et al., 2015), for example when forest is converted to non-17 

forest. Basically we track the full time series and inspect whether there are sudden drops in 18 

the signal that could be the result of forest loss. Our approach is based on 4 steps and 19 

explained using an example grid cell located in the Brazilian state of Mato Grosso, where 20 

forest losses have been high during the 2000-2005 interval according to Hansen et al. (2010). 21 

As a first step we deseasonalized the time series based on a 19-month moving average of 22 

VOD (VODMovingAVG, Fig. 2a): 23 

VODMovingAVG (lat, lon,m) = Average(VODobs (lat, lon,m− 9 :m+ 9))    (1) 24 

where lat,lon,m is the latitude (lat), longitude (lon) and month (m). With m-9:m+9 we refer to 25 

all data points 9 months before until 9 months after the specific month. This approach was 26 

preferred over taking out the seasonal cycle based on the average of all cycles because the 27 

seasonal cycle from forest and non-forest is different. In addition, a longer moving average 28 

masks part of the signal due to droughts or anomalous wet periods which also influence VOD. 29 

We also tested longer averaging windows (See Sect. 4.5 for details about the tested windows), 30 
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but the results were relatively insensitive to this and it decreased the numbers of years over 1 

which we could report. In the example grid cell VODMovingAVG decreased most strongly during 2 

2002-2005 (Fig. 2a). 3 

To estimate where forest loss potentially occurred and how this was partitioned over different 4 

year(s), in the second step we calculated the difference of VODMovingAVG with the same 5 

variable 12 months earlier, and label this the inter-yearly-difference (IYD, Fig. 2b): 6 

IYD(lat, lon,m) =VODMovingAVG (lat, lon,m)−VODMovingAVG (lat, lon,m−12)   (2) 7 

When the IYD was below 0, this specific month was detected as possible moment for forest 8 

loss. In the third step, we tested using a two-sided t-test whether IYD was negative because of 9 

forest losses, or because of other reasons, for example due to natural interannual variability 10 

related to rainfall. The first group of the t-test consisted of all VOD observations preceding 11 

the month where IYD was negative. The second group consisted of all other VOD 12 

observations from that moment until the end of the time series. When the p-value was smaller 13 

than 0.05, we flagged the grid cell and month as forest loss (Fig. 2b). These three steps were 14 

done for every grid cell and month from October 1989 until January 2011. 15 

In the fourth and final step, we calculated the sum of the absolute IYD values to which we will 16 

refer to as VODoutliers in the rest of this paper. This was done from 1990 through 2010 to get 17 

annual values (Fig. 2b).  18 

3.3 Conversion to area forest loss 19 

Our method yields the number of VODoutliers per year for each grid cell, which is related 20 

qualitatively to the amount of forest loss and may thus yield insight into the spatial and 21 

temporal dynamics of forest loss. However, to go one step further and convert our results to 22 

the area of forest loss we calibrated our results to the gross forest loss estimates of GFC. 23 

Because of the large differences in spatial resolution (30 meter for GFC and 0.25° for VOD) 24 

and because our dataset is most useful for large-scale assessments, we calibrated the 25 

conversion of the VODoutliers to area based on a country-level approach for the overlapping 26 

time period (2001 – 2010). In general, our method yields net forest loss per gridcell within 27 

one year, because we considered decreases in VOD, which is the net result of deforestation, 28 

forest degradation and regrowth within a gridcell per year. 29 
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Because VOD and biomass are not linearly related, we binned VOD in 5 groups comprising 1 

the average VOD values between 0.6 and 1.2 (0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1.0 and 1.0-1.2). 2 

The last bin was larger to arrive at more robust regression outcomes, because there are fewer 3 

grid cells with VOD above 1.0. For every bin we performed a Pearson regression (Pearson 4 

performed preferably, compared to Spearman) forced through the origin, with all VODoutliers 5 

per year related to the same GFC values. Based on the linear regression, we obtained a slope 6 

for each VOD bin, which was used to convert VODoutliers to gross forest loss area per 0.25° 7 

grid cell (Eq. 3). 8 

VODareaforestloss (year) = VODoutliers (year,bin) x slope(bin)
bin=1

5
∑  (3)  9 

 10 

4 Results 11 

4.1 Spatial extent 12 

The largest feature over our study period is the well-known arc of deforestation along the 13 

Southern edge of the Amazon basin (Fig. 3), showing high forest loss in every period. Highest 14 

forest losses were observed in the Brazilian states Mato Grosso, Pará and Maranhão. 15 

However, forest loss rates were not uniform in space and time, Fig. 3 shows that forest loss 16 

rates have fluctuated with lowest forest loss observed during the 1995-1999 period and the 17 

highest forest loss observed over 2000-2004 period.  18 

While forest loss in South America is most often associated with this arc of deforestation, also 19 

other regions experienced forest loss. One is the region extending from Northern Argentina to 20 

Bolivia via Paraguay (Fig. 3a, label 1), also known as the Chaco region, showing high forest 21 

loss over the full time period. Forest losses in this region are expanding and increasing in 22 

intensity over time. Another region extends from the southeastern part of Paraguay into Brazil 23 

along the border of the Brazilian state Mato Grosso do Sul (Fig. 3a, label 2).  During the 24 

1995-1999 period forest loss was on the rise here and increased to a maximum during the 25 

2000-2004 period, but decreased during the 2005-2009 epoch. 26 

Finally, the region north of Manaus in the Brazilian states of Roraima and Amazonas (Fig. 3a, 27 

label 3) which partly consists of wooded savanna, also showed high forest loss. Here the 28 

forest losses increased and expanded during the 1990s with the biggest change between the 29 

first and second half of the 1990s. Forest losses stayed relatively stable during the first half of 30 
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the 00s. During the 2005-2009 time window some intense forest losses disappeared. Besides 1 

these three large regions, several smaller fluctuations occurred. These can mostly be seen in 2 

the southeastern Brazilian state Minas Gerais. 3 

4.2 Calibration with GFC 4 

We converted the summed VODoutliers to a forest loss area according to Eq. 3, where the slopes 5 

varied between the 5 different bins (Table 1). The Pearson correlation on a grid-scale was 6 

lowest (r2=0.52) for the bin with the average VOD from 0.6-0.7. The other 4 bins had 7 

correlations ranging from r2=0.63 to 0.80 (Table 1). The largest errors are found in the regions 8 

with dense vegetation and relatively little forest loss (Fig. 4, Fig. 5). The RMSE on a grid-cell 9 

scale shows that the bin with the lowest average VOD values (0.6-0.7) has the highest error 10 

compared to GFC (Table 1).  11 

On a country-scale the correlations per bin were higher with the lowest (r2=0.63) for the bin 12 

with the lowest average VOD (0.6-0.7) and the 4 other bins with increasing correlations from 13 

r2=0.84 to 0.96 (Table 1). The country-level comparison of our VODoutliers with GFC forest 14 

losses had a Pearson linear agreement of r2=0.90 (p<0.001). In Fig. 6 the country-level VOD 15 

and GFC forest loss area estimates are plotted against each other along with the 1:1 line. Most 16 

data points were reasonably close to this line, although VOD overpredicted forest loss 17 

towards the lower end of the spectrum. Especially in the countries with the lowest forest loss, 18 

including Surinam, Uruguay, French Guiana and Guyana, our method yielded more forest 19 

loss than GFC. As a percentage of the available area per country (Table 2) Uruguay (0.65%), 20 

Surinam (0.22%), French Guiana (0.14%) and Guyana (0.13%) also showed higher average 21 

forest losses over the overlapping time period based on VOD. Chile is on the other hand the 22 

country where VOD provides lower forest loss estimates for the overlapping time period (-23 

0.18%) compared to GFC. The country with the largest relative forest losses is Paraguay for 24 

both VOD (1.05%) and GFC (0.98%). In Fig. 7 we show these derived annual forest losses 25 

from VOD for the full time period, along with GFC for 2001 trough 2010. Obviously the 26 

average forest loss area for the overlapping period agrees between both datasets because our 27 

approach was tuned to match GFC, but the spatial and temporal variability can be different 28 

and thus yields new insights. 29 

The main differences between VOD and GFC are thus that VOD estimates higher forest 30 

losses for the countries Uruguay, Paraguay and Chile compared to GFC. Furthermore, 31 
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although VOD and GFC agreed on Brazil being the main driver of South American forest 1 

losses (54% for VOD and 68% for GFC), VOD estimates higher interannual variability in 2 

this. This is mainly the case in 2001, 2006 and 2009, where VOD estimated 36%-41% less 3 

Brazilian forest loss compared to GFC (Table 2).  4 

The main feature in the GFC time series is the peak in 2004 (with values of 49 and 58 5 

thousand km2yr-1 for GFC and VOD respectively). VOD also shows this peak, but indicates 6 

that the two preceding years were high as well, making for a broader peak (2002-2004) with 7 

comparable values. The higher VOD values in 2002 and 2003 than GFC were mainly the 8 

result from higher estimated forest losses in Argentina and Paraguay. From 2005 onwards 9 

both datasets agreed on the decreasing forest loss rates and the interruptions in 2007, 2008 10 

and 2010, although the exact patterns differed.  11 

Following Brazil, the countries with the highest forest losses were Argentina, Bolivia, 12 

Colombia and Paraguay, each responsible for 5-8% of total South American forest losses. The 13 

difference between VOD and GFC in relative contribution of each country to the total South 14 

American forest losses is on average 2% with the maximum difference of 13% for Brazil (All 15 

absolute differences, see Table 2).  16 

4.3 Country-level trends 17 

4.3.1 2001-2010 18 

To further compare VOD with GFC, we also calculated the trends per country, based on 19 

linear regression, over the 2001-2010 period in absolute values and as a percentage relative to 20 

their average forest loss over that time period (Table 2). It should be noted that not all the 21 

trends are statistically significant, partly because of the large interannual variability (Fig. 7, 22 

Table 2). The overall trend for all South American forest losses over the overlapping time 23 

period is negative for both datasets with a relative slope of -2.9 and -1.4 % yr-2, for VOD and 24 

GFC respectively, which in absolute terms corresponds to -1121 km2yr-2 and -568 km2yr-2. 25 

For individual countries in general both datasets agreed and these trends were highly variable 26 

(Table 2).   27 

4.3.2 1990-2010  28 

Focusing on the full time series, Fig. 7 indicates that total forest losses in South America were 29 

not stable or monotonically in- or decreasing. Instead, they appear to be highly dynamic -at 30 
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least from a VOD perspective-, especially during the first few years of our study period 1 

(1990-1994). After that, forest losses were fluctuating without a clear trend until about 2001, 2 

with 1991, 1995 and 1999 being high forest loss years. After this fluctuating period a period 3 

with relatively high forest losses started, with 2002-2005 being 4 subsequent years with high 4 

forest losses. After 2005 forest losses decreased, with interruptions in 2007 and 2010 (Fig. 7). 5 

We calculated the linear trends over the whole time period and the two decades 1990-2000 6 

and 2000-2010 separately (Table 3). Over 1990-2010 Uruguay showed a clear relative 7 

increasing trend of almost 7% yr-2 (in absolute values 60 km2yr-2). Over the same time period 8 

also Argentina, Chile, Paraguay and Venezuela showed substantial in- or decreasing trends 9 

larger than 3% yr-2. When investigating the decades 1990-2000 and 2000-2010 separately, 10 

additional patterns emerged. During the 1990s Argentina, Brazil, Colombia, Ecuador and 11 

Uruguay had trends exceeding 5% yr-2. During the 2000s, Brazil, Ecuador and Surinam 12 

showed trends below -5% yr-2. The strongest differences per decade were found in Brazil 13 

(where the forest loss trend changed from +9.8% yr-2 in the 1990s to -7% yr-2 in the 2000s) 14 

Colombia (-16.7% yr-2 to 0.88% yr-2) and in Uruguay (+11.9% yr-2 to -2.1% yr-2) (Table 3). 15 

Other countries with substantial different trends between the two periods were Argentina 16 

5.8% yr-2 to 3.4% yr-2), French Guiana (-3.8% yr-2 to 6.3% yr-2), Peru (-4.6% yr-2 to 2.4% yr-2) 17 

and Surinam (-4% yr-2 to 5.9% yr-2). 18 

4.4 Brazilian state-level comparison with PRODES 19 

In addition to a comparison on country scale, we also compared our results for the Brazilian 20 

states within the legal Amazon using the PRODES dataset (Fig. 8). PRODES covers a longer 21 

period than GFC, but provides only data for the Legal Amazon. We do not expect PRODES 22 

and our dataset to compare perfectly given that PRODES detects only deforestation of 23 

primary forests and VOD detects both deforestation and degradation including forest loss of 24 

secondary forest. Nevertheless, the Pearson’s r2 over the full 21-year time period between 25 

these two datasets was 0.60 (p<0.001) with a RMSE of 1.6E3 km2yr-1 on a state-level. 26 

Our results show for the Brazilian states a highly dynamic pattern with no steadily in- or 27 

decreasing trend (Fig. 8). The most notable difference between both datasets is that VOD 28 

suggest that 1991, 1999, 2002 and 2010 were high forest loss years, which PRODES did not 29 

show. Furthermore PRODES showed increasing deforestation from 2002 until a peak in 2004, 30 

whereas VOD peaked in 2005. While there are substantial differences in the temporal 31 
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variability in the VOD and PRODES datasets, they do agree on where most forest losses 1 

occurred: Pará and Mato Grosso. Combined, these two states were responsible for 69% and 2 

61%, for PRODES and VOD respectively, of all Brazilian Legal Amazon deforestation 3 

(PRODES) and forest loss (VOD). The total average forest loss in the Legal Amazon from 4 

1990 through 2010 (excluding 1993, which is missing in PRODES) was 16.6E3 km2yr-1 and 5 

15.2E3 km2yr-1 for PRODES and VOD respectively. The states with largest relative 6 

differences between VOD forest loss and PRODES deforestation are Amazonas and Roraima, 7 

with 1307 km2yr-1 and 499 km2yr-1 respectively. These regions have little forest loss. The 8 

gridded errors for these states for VOD compared with GFC for the overlapping time period 9 

are relatively large: 705% and 399 % for Amazonas and Roraima respectively (Fig. 4, Table 10 

4). 11 

4.5 Sensitivity Analysis  12 

Our forest loss detection approach was based on several assumptions, and we tested how 13 

sensitive our results are to two main assumptions. First we tested whether the way we used 14 

the t-test (i.e. group 1 consists of all data until IYD is negative and group 2 consists of all data 15 

after this moment) is valid, or whether a fixed or smaller time period would capture forest 16 

losses better. The main reason to test this is that based on our method, group sizes in the t-test 17 

are not equal and group 2 could become so large, that recovery of vegetation could have taken 18 

place. Therefore we performed the same detection method, but now with the t-test group sizes 19 

fixed to 12, 24 or 36 months. This implies that the detectable time period changed to 1990-20 

2010, 1991-2009 and 1992-2008 for the three different group sizes. The results showed for 21 

both the country-level analysis and the state-level analysis that our original method (without a 22 

fixed time period) yielded the highest correlations with GFC and PRODES. In general we 23 

found that correlation decreased with decreasing group sizes.  24 

Besides the t-test group sizes, we also tested whether excluding grid cells that were not 25 

normally distributed would make a difference. This was done because a t-test requires 26 

normally distributed data. We tested three scenarios. 27 

1. The standard scenario, where we excluded grid cells where the total average VOD was 28 

either larger than 1.2 or below 0.6, and GLWD was larger than 50%. 29 

2. As 1., but we also excluded grid cells that were not normally distributed (p=0.10). 30 

3. As 1., but we also excluded grid cells that were not normally distributed (p=0.05) 31 



 41 

Excluding these not-normally distributed grid cells in scenario 2 and 3 implied that 1 

respectively 25% and 32% of the total South American forest losses based on GFC would be 2 

missed. However, the Pearson’s r2 for all three scenarios stayed 0.90. Based on these results 3 

we assumed that excluding the not-normally distributed points did not have an effect on the 4 

large-scale country-level analysis and we used all grid cells based on scenario 1 in our 5 

analysis. 6 

 7 

5 Discussion 8 

Our results indicated that the patterns of forest losses change over both space and time, 9 

although the well-known arc of deforestation remained the single largest feature in South 10 

America over our full study period. Our results agree with earlier work showing that forest 11 

loss area, and probably also carbon emissions, declined after peaking in the year 2004 (Food 12 

and Agriculture Organization of the United Nations, 2010; Macedo et al., 2012; Malhi et al., 13 

2008; Nepstad et al., 2009). This decrease in forest losses is observed mainly because Brazil 14 

reduced forest loss through a combination of conservation policies (law enforcement, 15 

expansion of the governmental protection of the Amazon area and strict control of these 16 

enforcement by suspension of credit to landowners violating the rules) and because of 17 

changes in prices of agricultural outputs from 2005 onwards (Nepstad et al., 2009). 18 

While forest losses in the arc of deforestation, the region around the southern border of Mato 19 

Grosso do Sul (Fig. 3a, label 2) and the region around Manaus (Fig 3a, label 3) declined after 20 

2004, in the Gran Chaco region (Fig. 3a, label 1) it increased over the time, as shown earlier 21 

by Chen et al. (2013). In this region the observed forest losses are in areas where deciduous 22 

broadleaf forest (>10 metres tall) with closed canopy is converted to shorter (<10 metres) 23 

Chacoan woodlands and agricultural areas (Steininger et al., 2001) and could be related to soy 24 

bean production in this region (Boletta et al., 2006; Gasparri and Grau, 2009; Zak et al., 25 

2004). This is in line with our trends and time series (Fig 7, Table 2) where both VOD and 26 

GFC show an increasing trend for Argentina over 2001-2010, whereas a decreasing trend over 27 

that time period occurred in Brazil (Table 2). One explanation could be relocation of 28 

agricultural hotspots because of the strict forest law and effective forest law enforcement 29 

within Brazil (Dobrovolski and Rattis, 2014). 30 

The spatial pattern of forest losses in Northern Brazil in the states of Amazonas and Roraima 31 

(Fig. 3, label 3) can partly be explained by forest fires (Fearnside, 2000); the peak during the 32 
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1995-2000 time period for example could be caused by the El Niño drought fire events during 1 

1997 and 1998 (Barbosa and Fearnside, 1999). This is supported by fire emissions estimates 2 

for this region derived from the Global Fire Emissions Database (van der Werf et al., 2010). 3 

During these droughts, man-made fires destroyed millions of hectares of fragmented and 4 

natural forest (Laurance, 1998). This increase that continued during the 2000s in Amazonas 5 

and Roraima is not seen anymore in the country-level time series (Fig. 7), because these 6 

changes are relatively small compared to the changes in the arc of deforestation. 7 

In the country-level analysis between VOD and GFC the latter indicates higher average South 8 

American forest losses, with a difference of 3126 km2yr-1 or 7.6% yr-1 of average VOD forest 9 

loss. The country with the largest absolute contribution in both datasets is Brazil. In GFC 10 

Brazil had a 10% larger contribution to the South American total forest loss than in VOD. 11 

This could be caused by the difference in what both GFC and VOD measure. GFC measures 12 

gross forest loss while, due to our methodology, VOD yields net forest loss. In areas with 13 

much regrowth, VOD will therefore underestimate forest loss compared to GFC. This also has 14 

the consequence that VOD is most reliable in areas where deforestation is the dominant 15 

change. Another reason could be the different spatial resolutions of both satellite products 16 

where both datasets are based on. GFC is based on Landsat, which has a spatial resolution of 17 

30 meters and can capture more small-scale forest loss events, which will be missed in our 18 

dataset based on VOD with its much coarser 0.25° resolution. The difference in spatial 19 

resolution could also be the reason why other countries, such as Chile, show less forest losses 20 

and higher interannual variability in VOD than in GFC, and why countries with relatively 21 

little forest losses, such as Uruguay, Surinam, French Guiana and Guyana had more forest 22 

losses based on VOD (Fig. 6). In Uruguay many forest plantations occur (Suppl. Figure 1, 23 

Achard et al., 2014) and the result of these plantations is that forest losses are often of small 24 

scale. This in combination with the overestimation of VOD with smaller scale forest losses, 25 

could explain why Uruguay shows so much higher values on a country scale, although 26 

additional research is required to better understand these differences. While we would in 27 

general favour GFC over VOD during the overlapping periods for reasons mentioned above, 28 

the temporal resolution of VOD is superior to any other dataset for our study period from 29 

1990-2010. For areas with frequent cloud cover where Landsat may have difficulties in 30 

acquiring reliable data, VOD may be in a better position to map forest loss over the 90s. 31 
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We also compared our results for the whole time period from 1990 through 2010 with 1 

PRODES data in a state-level comparison and they had a Pearson r2 of 0.66. As mentioned 2 

earlier, to some degree the comparison is one of apples and oranges because PRODES 3 

provides annual estimates of deforestation in pixels where no deforestation has occurred 4 

before, whereas the VOD dataset will give information about deforestation and degradation 5 

and potentially regrowth. Although forest loss based on VOD includes degradation and 6 

regrowth, PRODES shows on average over the whole time period 1451 km2yr-1 (9.6% yr-1 of 7 

the total average legal Amazon forest loss according to VOD) more deforestation than VOD. 8 

This could be caused by the differences in methodology and spatial resolution of both datasets 9 

we mentioned before, but also potential inconsistencies in PRODES could play a role; until 10 

2002 PRODES is based on visual interpretation, after which PRODES digital was used. On a 11 

state-level VOD overestimates forest loss area in the states of Amazonas and Roraima, which 12 

is mostly related to the relatively low and small-scale forest losses in these states (Fig. 4, 13 

Table 4). 14 

One of the most striking differences between VOD and PRODES were the years 1991, 1999 15 

and 2010 when VOD was much higher than PRODES. The underlying reasons may not be 16 

directly related to forest loss. In 1991 this difference could be explained by the eruption of 17 

Mount Pinatubo, which had the result that over the whole tropics the average VOD was 18 

higher than before (Kobayashi and Dye, 2005; Liu et al., 2011a). The peak in 1999 in VOD 19 

was mainly caused by an increase in the state of Amazonas. During 1999 heavy floodings 20 

occurred in this region (Chen et al., 2010). Since VOD is sensitive to large waters, the VOD 21 

signal could have been influenced by this event. Finally the peak in 2010 could be caused by 22 

drought that hit the Amazon that year (Lewis et al., 2011). Amazon forests are sensitive to 23 

increasing moisture stress and this could affect above ground biomass (Phillips et al., 2009). 24 

This supports the findings of Liu et al. (2012), who noticed that VOD responded to 25 

interannual variability in precipitation for tropical regions. However, this 2010 peak in forest 26 

loss was also detected by GFC. PRODES did not show this peak, partly because it was related 27 

to secondary forest degradation and deforestation, which is not captured by PRODES (Fanin 28 

and van der Werf, 2015). This indicates the need to better reconcile the differences between 29 

these various estimates and not rely on one single dataset. 30 
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6 Conclusions 1 

We have used a new satellite-based dataset using microwave observations to estimate forest 2 

losses in South America for the 1990-2010 period in a consistent manner. Our approach may 3 

have difficulties in capturing small-scale forest loss and may be impacted on interannual 4 

scales by anomalous dry or wet conditions, and is therefore most useful for regional, long-5 

term assessments. The long study period of our study enables us to improve on characterizing 6 

the spatiotemporal dynamic nature of forest loss. Our results confirm the well-known 7 

decrease of forest loss in the Brazilian Amazon since 2005, but indicate no trend over the full 8 

time period. In the regions south of the arc of deforestation, forest loss has increased over the 9 

full time period. This includes Argentina, Bolivia, Chile, and Paraguay where trends up to 4% 10 

yr-2 were observed over 1990-2010, partly offsetting the reductions in forest loss in Brazil.  11 

Each of the datasets used here has limitations for mapping forest loss including length of time 12 

period (GFC), limited spatial domain and focus on detecting only pristine forest loss 13 

(PRODES), and coarse resolution and influence of droughts and wet periods on the detected 14 

signal (VOD). This indicates that better understanding the differences between those, and 15 

other, forest loss datasets requires more scrutiny and that uncertainties are large when relying 16 

on one single dataset. This was a first approach towards a better forest loss dataset using VOD 17 

to better understand forest loss dynamics. The added value of our analysis is mostly providing 18 

new annual forest loss estimates during the 1990s, a period not covered by GFC, MODIS and 19 

other satellite datasets. Regarding future opportunities, more research is needed to know 20 

exactly what VOD represents, potentially comparing with existing LiDAR-based benchmark 21 

datasets (Baccini et al., 2012; Saatchi et al., 2011). 22 
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 Table 1. Grid-cell level slope and Pearson correlation (r2) for both grid-cell and country-level 1 
between annual GFC forest losses (km2yr-1) and IYD (yr-1) per different VOD bin for the 2 
overlapping time-period. Furthermore the corresponding Coefficient of Variation (CV in %), 3 
which is based on the Root Mean Square Error (RMSE in km2) between both datasets. 4 

VOD bin 
Gridcell-scale Country-scale 
slope 
 

r2 
 

CV (%) RMSE (km2)  r2 
 

CV (%)  RMSE (km2) 

0.6-0.7 22.4 0.63 804  15.7 0.63  203  666 
0.7-0.8 34.8 0.52 163  3.7 0.84 122  586 
0.8-0.9 61.7 0.80 147  5.0 0.84 83  567 
0.9-1.0 79.4 0.72 134 4.7 0.88 92  684 
1.0-1.2 82.7 0.72 253 3.2 0.96 53  366 

5 
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Table 2. Country-level forest loss estimates (total area, contribution to total South American 1 

forest loss, contribution of forest loss as a percentage of the masked-country area, as well as 2 

absolute and relative trends) for VOD and GFC for the overlapping time period (2001-2010). 3 

Asterisks indicate the significance, where *=p>0.25 **=p<0.25 ***=p<0.05 4 

 Average forest loss 2001-2010 Slope 2001-2010 
 

 Absolute (km2yr-1) Percentage of total 
forest loss area 
(Absolute / Total) 

Percentage of masked 
country area (%) 

Absolute (km2yr-2) 
 

Relative  
(Absolute/Average) 

 VOD GFC VOD GFC VOD GFC VOD GFC VOD GFC 

Argentina 4517 3329 11.73% 8.29% 0.61% 0.53% 79* 358** 1.68% 11.00% 

Bolivia 3045 2338 8.07% 5.89% 0.39% 0.33% 21* 166*** 0.75% 7.84% 

Brazil 21926 27317 55.18% 67.81% 0.32% 0.39% -1385** -1530** -6.47% -5.55% 

Chile 173 408 0.50% 1.04% 0.12% 0.30% 35** 17*** 18.62% 4.19% 

Colombia 1899 1861 4.95% 4.75% 0.20% 0.21% -2* 65** -0.13% 3.46% 

Ecuador 450 305 1.24% 0.79% 0.18% 0.15% -63** 19** -14.19% 6.21% 

Fr. Guiana 115 17 0.33% 0.04% 0.16% 0.02% 13** 0* 11.08% 1.18% 

Guyana 288 50 0.75% 0.13% 0.16% 0.03% -3* 0* -1.24% -0.61% 

Peru 1077 1047 3.06% 2.69% 0.12% 0.13% 52* 84*** 4.46% 8.24% 

Paraguay 3030 2556 7.68% 6.49% 1.05% 0.98% 115* 213*** 3.93% 8.78% 

Surinam 276 29 0.75% 0.08% 0.25% 0.03% 34*** 2** 12.57% 8.69% 

Uruguay 868 122 2.28% 0.31% 0.77% 0.12% 131* 18*** 13.61% 15.43% 

Venezuela 1322 658 3.46% 1.70% 0.21% 0.11% -148*** 20* -13.65% 3.12% 

Total 38987 40038 100.00% 100.00%   -1121* -568* -2.94% -1.42% 

 5 

6 
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Table 3. Trends in forest losses based on VOD for the whole time period (1990-2010) and the 1 

decades 1990-2000 and 2000-2010. Absolute values indicate the slope based on Pearson 2 

linear regression and the relative values are the absolute values relative to the average forest 3 

loss for that country over the full 21-year time period. Asterisks indicate the significance, 4 

where *=p>0.25 **=p<0.25 ***=p<0.05 5 
 Slope 1990-2010 Slope 1990-2000 Slope 2000-2010 Difference 00s-90s 
 km2yr-2 % km2yr-2 % km2yr-2 % km2yr-2 % 
Argentina 170*** 4.58% 182** 5.76% 109* 3.43% -73 -2.32% 

Bolivia 49** 1.92% 92* 0.75% 72* 0.59% -20 -0.16% 

Brazil -59* -0.27% 1078* 9.79% -765* -6.95% -1843 -16.74% 

Chile 9** 5.23% 35*** 3.34% 23** 2.21% -12 -1.13% 

Colombia -36* -1.88% -197** -16.69% 10* 0.88% 208 17.57% 

Ecuador -12* -2.67% -42** -14.85% -35* -12.58% 6 2.27% 

Fr. Guiana 0* -0.31% -8* -3.76% 13*** 6.34% 21 10.10% 

Guyana -8** -2.72% -16* -2.12% 4* 0.50% 20 2.61% 

Peru -23* -1.79% -85* -4.55% 45** 2.39% 130 6.94% 

Paraguay 98** 3.99% 32* 2.35% 12* 0.86% -21 -1.49% 

Surinam 5* 2.25% -21** -4.03% 31*** 5.91% 53 9.94% 

Uruguay 60*** 6.99% 130*** 11.91% -23* -2.08% -152 -13.99% 

Venezuela -50*** -3.97% -57* -0.30% -80** -0.42% -23 -0.12% 

Total 204* 0.55% 1122* 3.01% -584* -1.57% -1706 -4.58% 

6 
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Table 4. Average error on a state-level. The error is defined as the VOD minus GFC forest 1 

loss area as a percentage of GFC forest loss for the overlapping time period per state in the 2 

Legal Amazon.  3 

State (VOD-GFC) / GFC (mean % yr-1) 
Acre  17  
Amapá  50 
Amazonas  399 
Maranhâo  17 
Mato Grosso  35 
Pará  94 
Rondônia  37 
Roraima  705 
Tocantins  2 

4 
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 1 

Figure 1. Grid cells that were excluded from our analysis: VOD avg: grid cells with an 2 

average VOD that is either above 1.2 or below 0.6 and thus outside the usable range for our 3 

study. GLWD: grid cells containing more than 50% open water, which makes the VOD signal 4 

to become unreliable. Both: grid cells containing more than 50% open water and where VOD 5 

is outside the usable range. 6 

7 
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1 
Figure 2. Example 0.25° grid cell in the Brazilian state of Mato Grosso. A: Observed monthly 2 

VOD signal and 19-month moving average (VODMovingAVG). B: Interyearly difference (IYD), 3 

whether it met the t-test criteria, and annually summed IYD values taking only negative values 4 

into account. For comparison the corresponding GFC values are also given. 5 

6 
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 1 

Figure 3. Forest loss extent based on the VODoutliers for the 5-year epochs. Grey means no 2 

data. 3 

4 

1. 2. 

3. 
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 1 

Figure 4. Error estimates for each grid cell. The error is defined as VOD minus GFC forest 2 

loss area as a percentage of GFC for the overlapping time period. White means no forest loss 3 

is observed in both datasets. 4 

5 
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 1 

Figure 5. Error between GFC and VOD versus mean GFC forest loss, where the error is 2 

defined as VOD minus GFC forest loss area as a percentage of GFC for the overlapping time 3 

period. 4 

5 
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 1 

Figure 6. Country-level comparison of calibrated VOD and GFC forest losses based on annual 2 

totals (2001 - 2010). The inset shows the same data on a linear scale. The red lines depict the 3 

1:1 line. 4 

5 



 62 

 1 

Figure 7. Country-level time series of annual totals of forest loss according to GFC (2001 - 2 

2010) and VOD (1990 - 2010). 3 

4 
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 1 

Figure 8. Time series of deforestation (PRODES) and forest loss area (VOD) for the Brazilian 2 

states in the Amazon (1990 – 2010). PRODES deforestation data is missing for 1993. VOD 3 

data is unreliable for 1991 as a result of the eruption of Mount Pinatubo. 4 


