Supplement of Biogeosciences Discuss., 12, 11587–11623, 2015 http://www.biogeosciences-discuss.net/12/11587/2015/doi:10.5194/bgd-12-11587-2015-supplement © Author(s) 2015. CC Attribution 3.0 License.

Supplement of

Technical Note: An improved guideline for rapid and precise sample preparation of tree-ring stable isotope analysis

K. Schollaen et al.

Correspondence to:

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

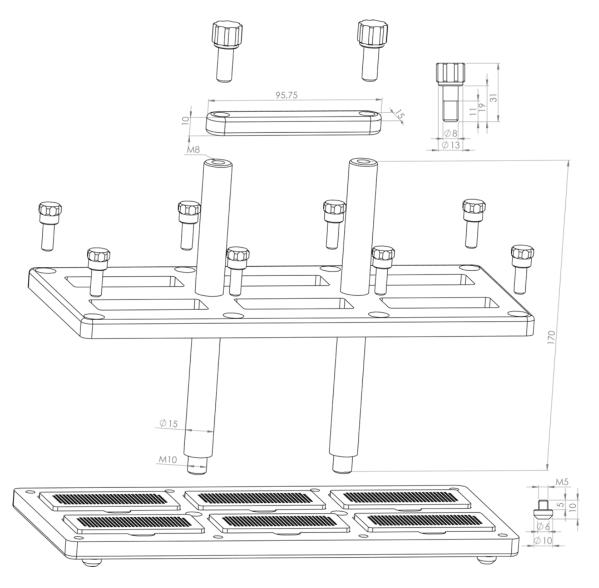


Figure S1a Technical design and dimensions of the extraction device.

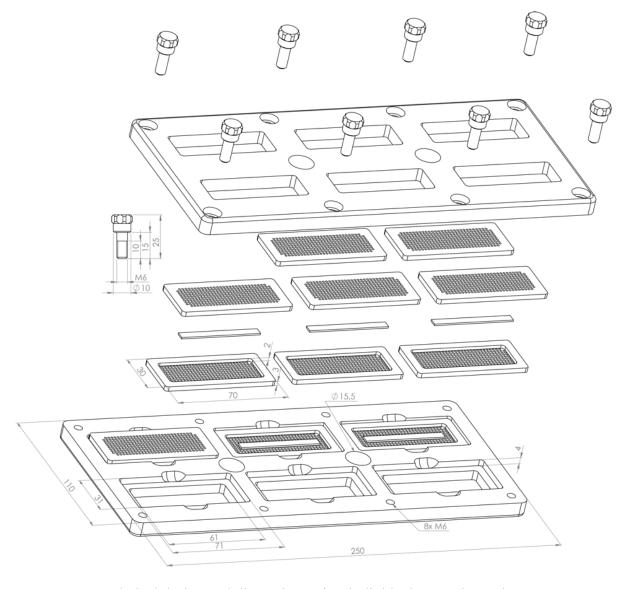


Figure S1b Technical design and dimensions of an individual extraction unit

Notes S1 Technical notes of the extraction device.

1

3

4

5

- The extraction device $(250 \times 110 \times 125 \text{ mm})$ is made of two main components:
 - 1. punching sheets function as sample holders (size: 70 x 30 mm) and
 - 2. a casing, consisting of a lower (250 mm x 110 mm, 2 mm thick) and upper mount (250 mm x 110 mm, 10 mm thick) enclosing six rectangular wells (71 x 31 mm, 4 mm deep) which hold the punching sheet sample holders
- The chemical solutions can percolate through the punching sheet holder by rectangular holes (60 x 20 mm).
- Each extraction unit has two round holes (\(\phi \) 25mm; middle hole position: 55 and 62,5mm B/L
- from left and right casing site, respectively) to give a place for bolts. The first extraction unit
- (bottom) has two screws threads instead of holes. The bolts have to be screwed in the first casing
- (bottom casing) the following units can be easily piled up of each other. On the top of the bolts a
- handle has been installed enabled a safety and costumer friendly handling of the device.
- 14 Protruding screw heads generate sufficient space between the extraction units ensuring
- appropriate circulation of chemical solutions at constant temperature.
- The extraction device is placed into a glass container (250 x 110 x 125 mm) that is made of
- single borosilicate glass plates and is glued together with aquarium glue (e.g. clear silicone
- waterproof sealant (Loctite), Henkel AG & Co. KGaA, Garching, Germany). The glue is
- resistant against the chemicals used for cellulose extraction.
- 20 About 2.5 litres of chemical solution are necessary for each extraction step.
- After each extraction process the shaking water bath, tubes and all other equipment are cleaned
- and dried, and metal components are treated with teflon spray to protect against corrosion due to
- 23 the sodium chlorite treatment during the cellulose extraction process.

Table S1 Site characteristics and tree species sampled.

	Genus	Species	Sampling site	Altitude	Reference
coniferous wood	Pine	Pinus sylvestris	vicinity of Zurich, Switzerland	Subfossil wood	Pieper et al. (2014)
	Larch	Larix decidua	Lötschental, Switzerland	2000 m asl	Treydte et al. (2014)
	Spruce	Picea abies	Lötschental, Switzerland	2000 m asl	Treydte et al. (2014)
	Juniper	Juniperus seravschanica	Sary Chelek, Kyrgyzstan	1300 m asl	-
	Douglas	Pseudotsuga menziesii	vicinity of Freiburg, Germany	500 m asl	Jansen et al. (2013)
angiosperm wood	Oak	Quercus robur	Telegrafenberg, Germany	60 m asl	-
	Teak	Tectona grandis	Donoloyo, Indonesia	380 m asl	Schollaen et al. (2013)
	Cedar	Cedrela lilloi	Purissima, Bolivia	-	Brienen et al. (2012)
	Baobab	Adansonia digitata	Klein Bolayi, South Africa	571 m asl	Slotta et al. (2014)
	Beech	Fagus sylvatica	Telegrafenberg, Germany	60 m asl	-

References

2

- Brienen, R.J.W., Helle, G., Pons, T.L., Guyot, J.L., Gloor, M., 2012. Oxygen isotopes in tree
- 5 rings are a good proxy for Amazon precipitation and El Niño-Southern Oscillation variability.
- 6 Proceedings of the National Academy of Sciences 109, 16957-16962.
- Jansen, K., Sohrt, J., Kohnle, U., Ensminger, I., Gessler, A., 2013. Tree ring isotopic
- 8 composition, radial increment and height growth reveal provenance-specific reactions of
- 9 Douglas-fir towards environmental parameters. Trees 27, 37-52.
- Pieper, H., Brauer, A., Miramont, C., Nievergelt, D., Büntgen, U., Helle, G., 2014. Annually
- resolved stable chronologies from Lateglacial Central European tree rings, EGU General
- 12 Assembly 2014, Vienna, Austria.
- Schollaen, K., Heinrich, I., Neuwirth, B., Krusic, P.J., D'Arrigo, R.D., Karvanto, O., Helle, G.,
- 14 2013. Multiple tree-ring chronologies (ring width, δ^{13} C and δ^{18} O) reveal dry and rainy season
- signals of rainfall in Indonesia. Quaternary Science Reviews 73, 170-181.
- Slotta, F., Riedel, F., Heußner, K.-U., Helle, G., 2014. The African Baobab a high-resolution
- archive for climate variability of semi-arid Africa?, 9th International Conference on
- Dendrochronology, Melbourne, Australia.
- 19 Treydte, K., Boda, S., Graf Pannatier, E., Fonti, P., Frank, D., Ullrich, B., Saurer, M., Siegwolf,
- 20 R., Battipaglia, G., Werner, W., Gessler, A., 2014. Seasonal transfer of oxygen isotopes from
- 21 precipitation and soil to the tree ring: source water versus needle water enrichment. New Phytol
- 22 202, 772-783.