

1 **Organically fertilized tea plantation stimulates N₂O emissions and lowers NO fluxes in**
2 **subtropical China**

3 Zhisheng Yao ¹, Yundong Wei ¹, Chunyan Liu ^{1,*}, Xunhua Zheng ¹, Baohua Xie ²

4 ¹ State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry,
5 Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, P.R. China

6 ² Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai
7 Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P.R. China

8 * Corresponding author

9 Tel: 0086-10-62025885

10 Fax: 0086-10-62041393

11 E-mail: lcy@post.iap.ac.cn

12 **Abstract**

13 Tea plantations are rapidly expanding in China and other countries in the tropical and subtropical
14 zones, but so far there are very few studies including direct measurements on nitrogenous gases
15 fluxes from tea plantations. On the basis of 2-year field measurements from 2012 to 2014, we
16 provided an insight into the assessment of annual nitrous oxide (N_2O) and nitric oxide (NO) fluxes
17 from Chinese subtropical tea plantations under three practices of conventional urea application,
18 alternative oilcake incorporation and no nitrogen fertilization. Clearly, the N_2O and NO fluxes
19 exhibited large intra- and inter-annual variations, and furthermore their temporal variability could
20 be well described by a combination of soil environmental factors including soil mineral N,
21 water-filled pore space and temperature, based on a revised “hole-in-the-pipe” model. Averaged
22 over 2-year study, annual background N_2O and NO emissions were approximately 4.0 and 1.6 kg
23 $N\text{ ha}^{-1}\text{ yr}^{-1}$, respectively. Compared to no nitrogen fertilization, both urea and oilcake application
24 significantly stimulated annual N_2O and NO emissions, amounting to 14.4-32.7 kg $N_2O\text{-N}\text{ ha}^{-1}\text{ yr}^{-1}$
25 and at least 12.3-19.4 kg $NO\text{-N}\text{ ha}^{-1}\text{ yr}^{-1}$, respectively. In comparison with conventional urea
26 treatment, on average, the application of organic fertilizer significantly increased N_2O emission by
27 71% but decreased NO emission by 22%. Although the magnitude of N_2O and NO fluxes was
28 substantially influenced by N source, the annual direct emission factors of fertilizer N were
29 estimated to be 2.8-5.9%, 2.7-4.0% and 6.8-9.1% for N_2O , NO and N_2O+NO , respectively, which
30 are significantly higher than those defaults for global upland croplands. This indicated that the
31 rarely determined N_2O and NO formation appeared to be a significant pathway in the nitrogen
32 cycle of tea plantations, which are a potential source of national nitrogenous gases inventory.

33 **Keywords:** nitrous oxide, nitric oxide, tea plantation, nitrogen fertilizer, emission factor

34 **1 Introduction**

35 Nitrous oxide (N_2O) and nitric oxide (NO) are two of the most important anthropogenic nitrogen
36 compounds emitted to the atmosphere, which are directly or indirectly involved in global warming
37 and atmospheric chemistry (Williams et al., 1992; IPCC, 2013). It is well accepted that human
38 activities strongly influence the source of N_2O and NO, as nitrogen fertilizer applied in agriculture
39 is now the vital source of inorganic/organic nitrogen substrate for nitrification and denitrification
40 processes, leading to increased N_2O and NO emissions (McElroy and Wang, 2005; Galloway et al.,
41 2008). Recently anthropogenic emissions from the application of nitrogenous fertilizers in
42 agriculture were estimated to be 1.7-4.8 Tg N yr^{-1} for N_2O and 3.7 Tg N yr^{-1} for NO, accounting
43 for approximately 60% and 10% of the total global estimates, respectively (IPCC, 2013). However,
44 one should admit that a dearth of direct measurements of nitrogenous gases fluxes in some
45 agricultural areas makes these estimates highly uncertain, and it also results in the projection and
46 mitigation of agricultural N_2O and NO emissions posing considerable challenges (Davidson and
47 Kingerlee, 1997; Reay et al., 2012), although the measurements of these emissions have been
48 made for many decades. Taking as an example, Stehfest and Bouwman (2006) summarized
49 information from 1008 N_2O and 189 NO emission measurements in agricultural fields worldwide,
50 and indicated that the representation of number of measurements in tropical and subtropical
51 climates was only 13-14% and 23-28% for N_2O and NO, respectively. As suggested by Reay et al.
52 (2012), therefore, a central aim of future study on e.g., N_2O emissions from agricultural systems
53 should be to increase the coverage encompassing various agricultural land-use/cover types and
54 climates as well as management practices.

55 Tea is one of the three most common beverages (i.e., coffee, tea and cocoa) worldwide, and tea
56 crops are widely planted in the tropical and subtropical regions (Xue et al., 2013). China is the
57 world's largest tea producing country, and its tea plantation area had reached 1.85 million ha in
58 2009, contributing approximately 52% to the world total (Han et al., 2013a). Besides, tea is a leaf
59 harvested crop, and nitrogen is the most important nutrient for increasing the content of free amino
60 acids, an index of the quality of tea leaves (Tokuda and Hayatsu, 2004). For improving the yield
61 and quality of tea leaves, therefore, large amounts of nitrogen fertilizer are increasingly applied by
62 tea farmers. For instance, the application rates of nitrogen fertilizer to tea plantations have been as

63 high as 450-1200 kg N ha⁻¹ yr⁻¹, which significantly surpasses the recommended rate of 250-375
64 kg N ha⁻¹ yr⁻¹ for high tea yields (Tokuda and Hayatsu, 2004; Hirono and Nonaka, 2012; Fu et al.,
65 2012; Zhu et al., 2014). Not surprisingly, such high nitrogen inputs can easily induce excess
66 residual nitrogen and acidification of soil, both influence the nitrogen cycle of tea fields in which a
67 great deal of nitrogenous gases are produced (Jumadi et al., 2008; Zhu et al., 2014) . It was
68 reported that the N₂O emissions from tea fields were greatly higher than those from other upland
69 fields (Jumadi et al., 2005; Han et al., 2013a). Akiyama et al. (2006) analyzed data on N₂O
70 emissions from 36 sites with 246 measurements in Japanese agricultural fields and reported that
71 the mean fertilizer-induced emission factor of N₂O in tea fields was much higher as compared to
72 other upland fields and paddy fields. Nevertheless, there are still very few data available on N₂O
73 emissions from Chinese tea plantations (Fu et al., 2012; Li et al., 2013; Han et al., 2013a).
74 Meanwhile, tea plantations to which large amounts of nitrogen fertilizer have been added are also
75 probably one of the important sources of NO. So far, however, no study is available for NO fluxes
76 from tea fields worldwide, which hinders the development of the sound NO emission inventory
77 (Huang and Li, 2014).

78 As tea production in China has intensified to meet market demands over the past decades, public
79 concerns over the negative impacts of conventional synthetic nitrogen fertilizers application in tea
80 plantations on human health and environmental quality have also increased (Pimentel et al., 2005;
81 Han et al., 2013b). These concerns have led to increased grower interest in organically fertilized
82 tea plantations, and by 2011 approximately 45,000 ha of tea fields were under organic fertilization
83 in China (Han et al., 2013b). Furthermore, the conversion of conventional synthetic nitrogen
84 fertilization to organic fertilizer practice in tea plantations has been identified as a feasible
85 measure in the aspects of promoting soil carbon sequestration and ameliorating soil pH (Han et al.,
86 2013b; Wang et al., 2014). On the other hand, organic fertilization systems have been shown to
87 substantially affect N₂O emissions compared with conventional management practices, but the
88 influence can be either stimulatory (Akiyama and Tsuruta, 2003a, b; Syväsalo et al., 2006) or
89 marginal and even inhibitory (Akiyama and Tsuruta, 2003b; Burger et al., 2005; Petersen et al.,
90 2006; Kramer et al., 2006). Although these studies have demonstrated organic fertilizer practices
91 may improve soil quality and influence nitrogenous gases fluxes in some agricultural systems, no

92 study has specifically compared N_2O and NO emissions in response to organic and synthetic
93 nitrogen fertilizer application in tea plantations to our knowledge.

94 In this paper, we present the results of a 2-year field study in which N_2O and NO fluxes were
95 measured simultaneously in Chinese subtropical tea plantations under three practices of
96 conventional urea application, alternative organic fertilizer incorporation and no nitrogen
97 fertilization. The main objectives of the present study were to characterize and quantify annual
98 N_2O and NO fluxes and their direct emission factors across different years, and to evaluate the
99 effect of organic fertilizer management on N_2O and NO fluxes as well as to clarify the underlying
100 mechanisms and factors regulating these fluxes from tea plantations.

101 **2 Materials and methods**

102 **2.1 Site description and field treatments**

103 Field measurements were carried out in a tea planting farm ($32^{\circ}07'22''\text{N}$, $110^{\circ}43'11''\text{E}$, approx.
104 441 m above sea level) of the Agricultural Bureau of Fangxian, Hubei Province, China. The region
105 is characterized by a northern subtropical monsoon climate with cool and dry winters as well as
106 warm and humid summers. From 2003 to 2011, the mean annual precipitation and air temperature
107 for this site were 914 mm and 14.2°C , respectively. Before the campaign of tea cultivations, all
108 fields in this area had been cultivated with rice-fallow or rice-oilseed rape rotation cropping
109 system. The tea plants in the experimental field were transplanted in March 2008, thereafter it has
110 been continuously cultivated with regular synthetic nitrogen fertilizers and irrigation additions
111 according to common regional management practice. The topsoil (0-15 cm) of the experimental
112 site is of a loamy texture with (mean \pm SE, n=12) $12.7\pm0.1\%$ clay ($<0.002\text{ mm}$), $39.3\pm0.5\%$ silt
113 ($0.002\text{-}0.02\text{ mm}$), and $48.0\pm0.6\%$ sand ($0.02\text{-}2\text{ mm}$). Other important soil physiochemical
114 properties include organic carbon content of $13.6\pm0.2\text{ g kg}^{-1}$, total nitrogen content of $1.5\pm0.1\text{ g}$
115 kg^{-1} , pH of 5.0 ± 0.1 , and bulk density of $1.25\pm0.03\text{ g cm}^{-3}$.

116 Our field study was performed over the course of two consecutive years from September 2012 to
117 October 2014. As shown in Table 1, three experimental treatments were set up on the tea (T) field
118 with approximately 4-year-old plantation: one with additions of urea (UN) that is the local
119 farmer's conventional and common practice for this region, another with applications of organic

120 fertilizer (OM) that is likely to be used alternative practice in the future for this region, and the
121 final treatment with no synthetic nitrogen fertilizers or organic fertilizers (NN) application. These
122 fertilizer treatments were arranged in a randomized complete block design with four replicates,
123 resulting in a total of 12 plots (each with an area of 8 m × 8 m). For the TUN plots, urea was
124 applied at the common rate of 450 kg N ha⁻¹ yr⁻¹ in two splits (one third of annual nitrogen inputs
125 as basal fertilization in the autumn time, two thirds as topdressing in the spring time). With respect
126 to TOM, organic fertilizer was applied at rates and times in accordance with TUN (Table 1). The
127 form of fertilizer applied in TOM was oilcake, which is a typical organic fertilizer in tea
128 cultivations of China and other countries like Japan. This organic fertilizer contained 7.1% N and
129 had a C:N ratio of 6.1. In addition, all treatments received equal amounts of phosphorous and
130 potassium (i.e., 225 kg P₂O₅ ha⁻¹ yr⁻¹ and 225 kg K₂O ha⁻¹ yr⁻¹) in terms of fertilizer
131 recommendations by local farmers. On each replicated plot, the width of the canopy of tea plants
132 was approximately 0.5 m, and the distance of inter-row space between the canopies was about 0.4
133 m. All of the fertilizers were applied as band application in the inter-row space between canopies
134 with widths of approximately 0.2 m, and then incorporated into soils with a depth of
135 approximately 0.1 m, which is the conventional practice in tea cultivations. Due to the young
136 plantation age, the present tea plants did not receive any trimming during the experimental period,
137 and they also seldom experienced leaf harvest.

138 **2.2 Measurements of N₂O and NO fluxes**

139 The fluxes of N₂O and NO were in situ measured simultaneously using manually closed
140 chamber-based techniques (Zheng et al., 2008; Yao et al., 2009). As mentioned above, all
141 fertilizers were incorporated in the form of bands between the rows of tea plants, and the
142 remaining area was covered by canopy under which no fertilizer was applied. To better evaluate
143 gas fluxes from the tea field, a size of rectangular stainless-steel frame of 0.70 m × 0.90 m (width
144 × length) was set up in each replicated plot, which covered four tea plants and parts of spaces
145 between rows. That is, the frame covered the whole canopy area (i.e., 0.5 m in length) and
146 two-half of the fertilized inter-row spaces on both sides of tea canopy (i.e., 0.2 m in length each
147 side), representing the whole tea field landscape. To eliminate the possibility of influence on N₂O

148 and NO fluxes from the temporary installation of chamber bases (Matson et al., 1990), the frames
149 were inserted into the soil to a depth of 0.15 m one month before the start of flux measurements,
150 and they were maintained in place throughout the entire observation period, except when it was
151 removed for necessary farming practices (e.g., band fertilization). Besides, the sampling locations
152 were connected with boardwalks to prevent soil disturbance during the sampling period. In general,
153 flux measurements were conducted five times per week during the first week after each
154 fertilization event, and three times per week during the rest of time. Almost all of the gas sampling
155 was taken between 09:00 and 11:00 local standard time on each measuring day to minimize the
156 influence of diurnal temperature variation. Based on the size of frames and the height of tea plants,
157 insulated chambers with a bottom area of 0.70 m × 0.90 m and a height of 1.0 m were designed for
158 gas samplings. These chambers were wrapped with a layer of styrofoam and aluminum foil to
159 minimize temperature changes during the sampling period. Also, two circulating fans driven by
160 12V DC were installed inside the sampling chamber to facilitate mixing of chamber air and thus
161 inhibiting the formation of gas concentration gradients, and a hole of 2 cm diameter was fitted in
162 the top panel for equilibrating the pressure during the placement of them on the base frames. This
163 hole was embedded during the gas sampling using a pressure balance tube whose diameter and
164 length were determined according to the recommendation of Hutchinson and Mosier (1981). To
165 acquire the N₂O flux, five gas samples were withdrawn from the chamber headspace using 60 ml
166 polypropylene syringes fitted with three-way stopcocks at fixed intervals of 0, 10, 20, 30 and 40
167 min after covering. Within 3 h after collection, the N₂O concentrations of gas samples stored in
168 airtight syringes were directly analyzed in the laboratory established beside the experimental field,
169 using a gas chromatograph (GC, Agilent 7890A, Agilent Technologies, CA, USA) equipped with
170 an electron capture detector at 330 °C on the basis of DN-CO₂ method, as described in detail by
171 Zheng et al. (2008). The N₂O was separated by two stainless steel columns (both with an inner
172 diameter of 2 mm, one with a length of 1 m and the other with a length of 2 m) packed with
173 Porapak Q, 80/100 mesh at 55 °C isothermally. To ensure quality and stability assurance, the GC
174 system was inserted five standard N₂O samples with concentrations of 350 ppbv (the national
175 center for standard matters, Beijing, China) between every 10 unknown gas samples. Results of
176 GC analyses were accepted when five standard gas calibrations produced coefficient of variation

177 lower than 1%. The N₂O flux was determined by the linear or nonlinear change of gas
178 concentrations during the time of chamber closure, as described in detail by Wang et al. (2013). In
179 this study, the minimum detection limit of N₂O flux was approximately 2.6 $\mu\text{g N m}^{-2} \text{ h}^{-1}$.
180 For each NO flux measurement, gas samples were collected from the same chamber that was used
181 for N₂O flux measurements (Yao et al., 2009). Before closing the chamber, approximately 2.5-3 L
182 gas sample from the headspace of each chamber was extracted into an evacuated bag made of inert
183 aluminum-coated plastic, and this measurement was regarded as time 0 min for NO analysis. After
184 40 min under chamber enclosure conditions (i.e., after finishing N₂O sample collections), another
185 headspace gas sample with the same volume was extracted from each chamber into another
186 evacuated bag. From these bag samples, NO concentrations were analyzed within 1 h by using a
187 model 42*i* chemiluminescence NO-NO₂-NO_x analyzer (Thermo Environmental Instruments Inc.,
188 USA). The NO_x analyzer instrument was calibrated monthly in the laboratory using a TE-146*i*
189 dilution-titration instrument (dynamic gas calibrator). A cylinder of standard gas of 50 ppmv NO
190 in N₂ (the national center for standard matters, Beijing, China) and a zero gas generator (Model
191 111 Zero Air Supply) were used for multipoint calibrating, spanning, and zeroing of the NO_x
192 analyzer. The NO flux was determined from the concentration at the end of the chamber enclosure
193 period by subtracting the concentration at time 0 min. It should be noted that although some
194 studies deriving N₂O and NO fluxes by employing either a simple linear regression method (e.g.,
195 Williams and Davidson, 1993; Kim and Kim, 2002; Zheng et al., 2003; Venterea et al., 2003; Li
196 and Wang et al., 2007; Pang et al., 2009; Zhao et al., 2015) or a nonlinear regression model (e.g.,
197 Valente et al., 1995; Kroon et al., 2008; Yao et al., 2010a; Wang et al., 2013) have been widely
198 adopted, it is clear that inappropriate application of a linear model to nonlinear data may seriously
199 underestimate the trace gas flux (Hutchinson and Livingston, 1993; Kutzbach et al., 2007). For
200 example, Kroon et al. (2008) suggested that on average, the N₂O emission estimates with the
201 linear regression method were 46% lower than the estimates with the exponential regression
202 method. Similarly, Mei et al. (2009) conducted a field intercomparison of NO flux measurements
203 with linear and nonlinear regression methods, and observed that the linear estimates of NO flux
204 were 26% lower on average relative to the nonlinear method. However, to date there has been
205 limited field comparison of these two methods to assess comparability of N₂O or NO fluxes

206 calculated by them. Based on our data sets of NO measured in wheat fields using the automatically
207 static translucent chamber-based system (the raw data from the case studies of Zheng et al., 2003
208 and Yao et al., 2010a), the NO fluxes were re-estimated using linear and nonlinear regression
209 methods. In order to better compare the two regression methods, a subset of data collected in the
210 evening time was used that satisfied the present conditions of static opaque chamber technique.
211 Finally, approximately 3489 pairs of observations were used for comparing the difference between
212 the two regression methods; and the results showed that the linear model underestimated the NO
213 fluxes by 3% to 59% (mean: 31%) at the 95% confidence interval, as compared to the nonlinear
214 method. Overall, these findings indicate that data sets of N₂O collected in this study are relatively
215 reliable, but the present method of linear accumulation assumption inevitably introduce an extent
216 of underestimation into the NO fluxes for cases with nonlinear accumulations. Therefore, it has to
217 be noted that the NO fluxes reported in this study represent the conservative magnitude for the
218 present tea plantations.

219 **2.3 Auxiliary measurements**

220 The air temperature inside the chamber headspace during the flux measurements was recorded
221 with a manual thermocouple thermometer (JM624, Tianjin, China). Air pressure and temperature
222 as well as daily precipitation were obtained from an automatic meteorological station set up on the
223 experimental farm. The air temperature measured in the chamber enclosures and air pressure
224 obtained from the meteorological station were directly utilized in the flux computations to
225 calculate the gas density during the sampling conditions by using the ideal gas law. Soil (5 cm)
226 temperature was automatically measured in 30 min intervals from the direct vicinity of the
227 chamber frames using a HOBO temperature sensor (Onset, USA). Soil water content (0-6 cm) was
228 recorded daily using a portable frequency domain reflectometry (FDR) probe (MPM-160, China).
229 Three replicate soil samples (0-10 cm) in each plot were collected at 1-2 week intervals using a 3
230 cm diameter gauge auger. Following the collection, the fresh samples were bulked into one
231 composite sample for each treatment, and then immediately extracted with 1 M KCl and 0.05 M
232 K₂SO₄ to determine the concentrations of soil mineral N (NH₄⁺ and NO₃⁻) and dissolved organic
233 carbon (DOC), respectively, both with a soil: solution ratio of 1:5. The NH₄⁺, NO₃⁻ and DOC

234 concentrations were measured simultaneously with a continuous flow colorimetric analysis
235 instrument (San++, Skalar Analytical B.V., Netherlands).

236 **2.4 Statistical analysis**

237 Statistical analysis was conducted using the SPSS19.0 (SPSS China, Beijing, China). Before
238 variance component analysis, all data were tested for normal distribution using the Nonparametric
239 Tests approach, and the original data that failed the test were log transformed ($P = 0.01-0.42$). To
240 determine differences in nitrogenous gases fluxes and soil environmental variables among
241 treatments during the given pronounced flux-related event (e.g., fertilization events, growing
242 period), Linear Mixed Models for randomized complete block design were used with least
243 significant difference tests at $P < 0.05$ level. Differences in N_2O and NO emissions due to main
244 effects like fertilizer treatment, year, treatment \times year and block \times treatment as random effect were
245 analyzed using Linear Mixed Models, and the model was fitted using the restricted maximum
246 likelihood procedure. Multiple linear or non-linear regression analysis was applied to examine the
247 correlations between N_2O and NO fluxes and soil environmental factors.

248 **3 Results**

249 **3.1 Environmental variables**

250 Annual precipitation was 804 mm from mid September 2012 to the end of September 2013, 890
251 mm from the beginning of October 2013 to mid October 2014 (Fig. 1a); both values were smaller
252 than the multiyear average precipitation (914 mm). Apart from the precipitation, sprinkling
253 irrigation was applied four times per year depending on climatic conditions, amounting to 150 and
254 135 mm for the two years, respectively. Soil temperature showed comparable fluctuations with the
255 air temperature, ranging from -0.1 to 28.3 °C. The mean annual soil temperature was 14.9 and
256 14.6 °C for the 2012/2013 and 2013/2014, respectively (Fig. 1a), with no treatment impacts. Soil
257 water content expressed as WFPS (water-filled pore space) ranged from 20% to 80% during the
258 study period, which was mainly influenced by rainfall and irrigation events. The mean WFPS
259 across 2012 to 2014 were 49.1%, 49.7% and 48.6 % for TNN, TUN and TOM, respectively, with
260 no significant difference among them (Fig. 1b).

261 Soil NH_4^+ concentrations in TUN and TOM remarkably increased following the fertilizer
262 applications in March and October, and varied from 4.1 to 654 mg N kg^{-1} SDW (soil dry weight)
263 (Fig. 2a). The temporal patterns of NO_3^- concentrations were also affected by nitrogen applications,
264 ranging from 2.4 to 188 mg N kg^{-1} SDW, but the elevated peaks were observed slightly later than
265 the peaks for NH_4^+ (Fig. 2b), reflecting the occurrence of nitrification. In contrast, both NH_4^+ and
266 NO_3^- concentrations in TNN were relatively stable and always below 50 mg N kg^{-1} SDW. Clearly,
267 TUN and TOM significantly enhanced soil mineral N concentrations, compared to TNN ($P<0.05$).
268 During the study periods, soil NH_4^+ averaged 17, 138 and 113 mg N kg^{-1} SDW for TNN, TUN and
269 TOM in the first year (2012-2013), respectively; and mean NH_4^+ concentrations were 5.4, 172,
270 106 mg N kg^{-1} SDW for TNN, TUN and TOM in the second year (2013-2014), respectively (Fig.
271 2a). Compared to TUN, TOM greatly decreased soil NH_4^+ concentrations during both studied
272 years, although this influence was not statistically significant for the first year. The mean NO_3^-
273 concentrations across 2012-2014 in TNN, TUN and TOM were around 5.7, 44 and 49 mg N
274 kg^{-1} SDW, respectively, with no significant difference between TUN and TOM for either year (Fig.
275 2b).

276 Over the whole study period, soil DOC concentrations ranged from 17 to 317 mg C kg^{-1} SDW in
277 TNN, from 10 to 488 mg C kg^{-1} SDW in TUN and from 20 to 559 mg C kg^{-1} SDW in TOM (Fig.
278 2c). The mean DOC concentrations across the both studied years were approximately 142, 146
279 and 179 mg C kg^{-1} SDW for TNN, TUN and TOM, respectively. Obviously, TOM significantly
280 increased mean soil DOC concentration compared to TNN and TUN ($P<0.05$), but there was no
281 significant difference between TUN and TNN.

282 **3.2 Annual N_2O and NO fluxes and their direct emission factors**

283 Seasonal pattern of N_2O fluxes was generally driven by temporal variation in air and soil
284 temperatures, which was relatively higher during the tea growing season from March to
285 September than in winter. The cumulative N_2O release from all treatments across the tea growing
286 season accounted for 54-86% of the annual emission. Meanwhile, the seasonal variability of N_2O
287 fluxes were also influenced by fertilization and rainfall/irrigation events (Fig. 3a). The N_2O fluxes
288 in TUN and TOM increased after each of the fertilizer applications, and then gradually decreased

289 to the levels comparable to those from TNN. Obviously, the N_2O emissions varied significantly
290 with fertilizer treatment and year. Across the investigated two years, annual N_2O emissions ranged
291 from $1.9 \text{ kg N ha}^{-1} \text{ yr}^{-1}$ for TNN to $32.7 \text{ kg N ha}^{-1} \text{ yr}^{-1}$ for TOM (Table 2). Compared to TNN, the
292 2-year mean N_2O emissions were remarkably increased by 345% and 660% for TUN and TOM,
293 respectively ($P<0.05$). In comparison with TUN, TOM significantly increased annual N_2O
294 emission by 71% on average ($P<0.05$). On the annual scale, the direct emission factors of N_2O
295 were an average of 3.1% and 5.9% for tea plantations under urea and organic fertilizer treatment,
296 respectively.

297 Clearly, the NO fluxes demonstrated a seasonal variability that was similar to the N_2O fluxes. That
298 is, they were higher from March to September and lower from December to March, and also
299 affected by fertilization and rainfall/irrigation events (Fig. 3b). Similar to N_2O , the NO emissions
300 were greatly influenced by fertilizer treatment and year. The annual NO emissions from all
301 treatments ranged from 0.4 to $19.4 \text{ kg N ha}^{-1} \text{ yr}^{-1}$ (Table 2), of which 53-77% was released during
302 the tea growing season. Compared to TNN, the fertilizer applications (TUN and TOM)
303 significantly increased annual NO emission by 8-11 times on average ($P<0.05$). In contrast to N_2O ,
304 TOM significantly decreased annual NO emission by 22% relative to TUN ($P<0.05$). Averaging
305 across the two years, the direct emission factors of NO were 3.8% and 2.9% for TUN and TOM,
306 respectively. In addition, the $\text{N}_2\text{O}+\text{NO}$ emissions were, on average, 5.6, 36.7 and $45.1 \text{ kg N ha}^{-1}$
307 yr^{-1} for TNN, TUN and TOM, respectively, indicating that alternative organic fertilization
308 significantly enhanced nitrogen oxide emissions (Table 2).

309 **3.3 Relationships of N_2O and NO fluxes with soil environmental factors**

310 Across the 2-year study period, stepwise multiple regression analysis showed that WFPS was the
311 key factor controlling N_2O and NO fluxes for both TUN and TOM. Furthermore, a nonlinear
312 response curve best described the decreases in molar ratios of NO to N_2O fluxes with increasing
313 WFPS (Fig. 4). However, variations in WFPS could explain only 22-30% of the variance in the
314 ratios, suggesting the importance of some other factors (e.g., soil mineral N and temperature) on
315 regulating these fluxes. To better evaluate the combined effects of soil environmental factors on
316 N_2O and NO fluxes, therefore, the revised “hole-in-the-pipe” model as described by Yao et al.

317 (2015) and Yan et al. (2015) was tested in this study. Over the entire study period, the analysis
318 results displayed that the temporal variations of N₂O and NO fluxes in TUN and TOM could be
319 well described by a combination of soil environmental factors, including soil mineral N, WFPS
320 and temperature. That is, for TUN:

321 $Ln(N_2O + NO) = 0.30Ln(NH_4^+ + NO_3^-) + 2.53Ln(WFPS) - \frac{13.9}{RT_K}$, R²=0.97, P<0.01; and

322 $Ln(N_2O + NO) = 0.17Ln(NH_4^+ + NO_3^-) + 2.68Ln(WFPS) - \frac{13.6}{RT_K}$, R²=0.96, P<0.01 for

323 TOM; in which R and T_k are the molar gas constant (8.31 J mol⁻¹ k⁻¹) and soil temperature in
324 Kelvin, respectively.

325 **4 Discussion**

326 **4.1 Intra- and inter-annual variations of N₂O and NO fluxes and related environmental
327 factors**

328 Currently, the existing studies on tea fields only focused on N₂O fluxes (Jumadi et al., 2005;
329 Akiyama et al., 2006; Gogoi and Baruah, 2011; Fu et al., 2012; Han et al., 2013a; Yamamoto et al.,
330 2014), and therefore they are not directly comparable to our present study. Our results
331 demonstrated annual characteristics of N₂O and NO fluxes simultaneously, which is important for
332 better understanding of how the climatic and environmental factors affecting soil nitrogen turnover
333 processes in tea plantations. Generally, the subtropical climate is characterized by the hot-humid
334 season from April through September and the cool-dry season from October through March every
335 year, leading to significant seasonal variations in soil environmental factors (Lin et al., 2010).
336 Driven by the seasonality of soil temperature, WFPS, NH₄⁺ and NO₃⁻ contents, the N₂O and NO
337 fluxes showed large temporal variations (Skiba et al., 1998; Williams et al., 1999; Yan et al., 2015),
338 characterizing by significantly higher during the tea growing season than in winter in this study
339 (Fig. 3). The present result is in agreement with previous studies conducted in other agricultural
340 systems under the subtropical climate, such as in vegetable fields (Min et al., 2012; Yao et al.,
341 2015), paddy rice-upland crop rotation ecosystems (Yao et al., 2013) and orchard plantations (Lin
342 et al., 2010), highlighting the climatic controls on N₂O and NO fluxes. Furthermore, up to 97% of

343 the variance in N_2O and NO fluxes could be explained by the combined effects of soil temperature,
344 WFPS and mineral N content, indicating an essential role of the environmental factors on N_2O and
345 NO fluxes. Overall, the knowledge of temporal variations in N_2O and NO fluxes and their related
346 driving forces plays an important role for up-scaling nitrogenous gas fluxes to the regional and
347 global scale.

348 On the other hand, our study clearly demonstrated that annual N_2O and NO emissions were
349 significantly affected by the factor of year (Fig. 3), even though the field management and soil
350 temperature were comparable across the two study years. A presumable reason for the pronounced
351 inter-annual variations of N_2O and NO fluxes was the difference in precipitation, particularly
352 rainfall distribution throughout a year. For example, the cumulative rainfall of 94 mm over a
353 period from 20th to 26th June, 2013 was received that brought soil water content changing from
354 25% to 64% WFPS on average (Fig. 1). As was also observed by our auxiliary measurements that
355 soil NH_4^+ and NO_3^- increased after rainfall events during this period (Fig. 2a-b), the
356 drying-rewetting event could enhance the availability of nitrogen substrate and stimulate microbial
357 activity (Davidson, 1992; Williams et al., 1992; Yao et al., 2010b), and thus, resulting in the
358 following elevated fluxes of N_2O and NO (Fig. 3a-b). Similarly, a number of studies also reported
359 that the large inter-annual variability in N_2O and NO fluxes were mainly influenced by the
360 difference in annual distribution of the precipitation (e.g., Akiyama and Tsuruta, 2003b; Yao et al.,
361 2013).

362 **4.2 Fertilizer type influencing annual N_2O and NO emissions**

363 As tea plantations displayed high N_2O production activities, they might be a major source of
364 nitrogenous gases in agricultural systems (Tokuda and Hayatsu, 2001, 2004; Zhu et al., 2014). Our
365 observations confirmed earlier findings, with annual N_2O emissions ranging from 14.4 to 32.7 kg
366 $\text{N ha}^{-1} \text{yr}^{-1}$ and NO emissions from 12.3 to 19.4 kg $\text{N ha}^{-1} \text{yr}^{-1}$ for the fertilized tea plantations
367 (Table 2). Generally, our annual N_2O emissions were within the range of the reported magnitudes
368 of 4.3-30.9 kg $\text{N ha}^{-1} \text{yr}^{-1}$ for Chinese subtropical tea fields (Fu et al., 2012; Han et al., 2013a).
369 Based on the thorough review of Akiyama et al. (2006), annual N_2O emissions were presented
370 from 0.6 to 61.0 kg $\text{N ha}^{-1} \text{yr}^{-1}$ for Japanese tea plantations, with a mean value of 24.3 kg N ha^{-1}

371 yr^{-1} . Obviously, the mean annual N_2O emission in our study (mean: $24.1 \pm 4.0 \text{ kg N ha}^{-1} \text{ yr}^{-1}$) was
372 well consistent with the Japanese estimated value. In contrast, the magnitude of N_2O emissions
373 from the present tea plantations was much higher than that from the paddy rice-fallow cropping
374 systems in the same region ($0.8\text{--}6.6 \text{ kg N ha}^{-1} \text{ yr}^{-1}$, Yao et al., 2014). With respect to NO , this is the
375 first time reporting annual NO emission for tea plantations to our knowledge. On average, tea
376 plantations released at least $16.8 \text{ kg N ha}^{-1} \text{ yr}^{-1}$ NO into the atmosphere, which fell within the
377 range of $1.1\text{--}47.1 \text{ kg N ha}^{-1} \text{ yr}^{-1}$ for Chinese conventional vegetable fields under the subtropical
378 climate (e.g., Li and Wang, 2007; Mei et al., 2009; Deng et al., 2012; Yao et al., 2015). As these
379 authors acknowledged, their high NO emissions for vegetable fields were mainly attributed to
380 quite high nitrogen inputs, ranging from 317 to $1464 \text{ kg N ha}^{-1} \text{ yr}^{-1}$. Nevertheless, our observed
381 annual NO emissions were relatively higher as compared to those estimates of $0.5\text{--}6.5 \text{ kg N ha}^{-1}$
382 yr^{-1} for rice-wheat cropping systems with nitrogen application rates of $150\text{--}375 \text{ kg N ha}^{-1} \text{ yr}^{-1}$
383 (Zheng et al., 2003; Yao et al., 2013; Zhao et al., 2015) and of $4.0\text{--}6.9 \text{ kg N ha}^{-1} \text{ yr}^{-1}$ for forest
384 ecosystems (Li et al., 2007) in Chinese subtropical regions.

385 Although the fertilized tea plantations emitted large amounts of N_2O and NO , the magnitude of
386 these emissions was significantly influenced by the applied fertilizer type. That is, organically
387 fertilized tea plantation increased N_2O emission by 71% but decreased NO emission by 22%,
388 compared to conventional urea application (Table 2). Our stimulatory effect of organic fertilization
389 on N_2O emission and simultaneously inhibitory impact on NO emission supports the findings of
390 some previous studies (Thornton et al., 1998; Akiyama and Tsuruta, 2003a, b; Hayakawa et al.,
391 2009). However, other studies showed that organic fertilization may reduce N_2O emissions or that
392 emissions of N_2O and NO were not affected at all (Harrison et al., 1995; Akiyama and Tsuruta,
393 2003b; Vallejo et al., 2006; Yao et al., 2009). It was generally accepted that the NO to N_2O
394 emission ratio was used as a potential indicator for distinguishing between nitrification and
395 denitrification process (Anderson and Levine, 1986; Skiba et al., 1992; Harrison et al., 1995;
396 Williams et al., 1998). As calculated from the results of Table 2, the molar ratios of NO to N_2O
397 emissions were in the range of 1.8-2.5 for the TUN plots but < 1.0 in the TOM plots. This may
398 indicate that nitrification was probably the dominant process for N_2O and NO production in the
399 conventional urea treatment, while denitrification would be more dominant process in organic

400 fertilization, although both nitrification and denitrification could occur under the present soil
401 moisture conditions (i.e., 20%-80%WFPS) according to a conceptual model proposed by
402 Davidson (1991). Denitrifiers have a very high affinity for NO and tend to utilize it in preference
403 to N₂O as a substrate even in well-aerated soils (Conrad, 2002; Yamulki and Jarvis, 2002). It is
404 therefore to be expected the differences in N₂O and NO emission response between urea and
405 organic fertilizer treatment. This view was further supported by our observations on soil NH₄⁺ and
406 DOC. It is well recognized that NH₄⁺ enhanced NO fluxes since it affected nitrification, whereas
407 the addition of DOC generally diminished these fluxes by enhancing soil respiration and thereby
408 inducing the anaerobic conditions that favored the production of N₂O and the consumption of NO
409 through denitrification (Granli and Bockman, 1994; Vallejo et al., 2006; Meijide et al., 2007). In
410 this study, therefore, TOM with lower NH₄⁺ and higher DOC, emitted more N₂O and less NO than
411 those of TUN. Alternatively, opposite trends observed for N₂O and NO emissions between TUN
412 and TOM was probably regulated by soil heterotrophic nitrification, the direct oxidation of organic
413 N to NO₃⁻ without passing through mineralization (Müller et al., 2004; Islam et al., 2007). It has
414 been identified that heterotrophic nitrification, especially for acidic soils with organic amendments,
415 plays an important role in soil nitrogen transformations, including the production and consumption
416 processes of NH₄⁺ and NO₃⁻ as well as N₂O and NO (Dunfield and Knowles, 1998; Zhu et al.,
417 2011, 2014; Medinets et al., 2015). Hence, one can assume that given WFPS being comparable in
418 all treatments, heterotrophic nitrification was the most important process for consumption of NO
419 and production of N₂O in the organic fertilizer treatment, whereas autotrophic nitrification
420 dominated in urea application. Besides, it has been validated that soils receiving organic
421 amendments significantly reduce NO fluxes as a result of increased NO consumption via aerobic
422 co-oxidation reactions in heterotrophic bacteria (Baumgärtner et al., 1996; Dunfield and Knowles,
423 1998; Conrad, 2002). This assumption could be also supported by our measurements on soil NH₄⁺
424 and NO₃⁻. That is, TOM showed comparable even slightly higher NO₃⁻ relative to TUN, although
425 TUN demonstrated relatively high NH₄⁺ due to the rapid release of urea hydrolysis (Fig. 2a-b).
426 This indicated that heterotrophic nitrification contributed substantially to the production of NO₃⁻ in
427 TOM, because the application of organic matter can enhance the direct oxidation of organic N to
428 NO₃⁻ via soil heterotrophic nitrification (Zhu et al., 2011, 2014). Overall, although our data

429 supported the above mentioned views, the exact reaction mechanisms were not determined
430 directly in the present study. Therefore, further detailed investigations are needed to provide a
431 complete assessment on the relative contribution of autotrophic nitrification, heterotrophic
432 nitrification and denitrification to N_2O and NO fluxes from tea plantations, based on new
433 approaches and techniques, e.g., ^{15}N tracing techniques (Müller et al., 2007).

434 **4.3 Background N_2O and NO emissions and direct emission factors of fertilizer N**

435 Although background N_2O and NO emissions occurring in the zero-N control have been
436 recognized as a major component for developing national emission inventory of nitrogenous gases
437 (Zheng et al., 2004; Huang and Li, 2014), direct measurements on background emissions,
438 especially measurements covering an entire year for tea plantations have been rare (Akiyama et al.,
439 2006). In our study, the mean annual background emissions were $4.0 \text{ kg N ha}^{-1} \text{ yr}^{-1}$ for N_2O and at
440 least $1.6 \text{ kg N ha}^{-1} \text{ yr}^{-1}$ for NO, respectively (Table 2). Our background N_2O emission is
441 comparable to the preliminary estimate of $3.66\text{-}4.24 \text{ kg N ha}^{-1} \text{ yr}^{-1}$ for Japanese tea fields
442 (Akiyama et al., 2006), but it is relatively lower than the reported value of $7.1 \text{ kg N ha}^{-1} \text{ yr}^{-1}$ for
443 another tea field in the Chinese subtropical region (Fu et al., 2012). Nevertheless, these
444 background N_2O emissions revealed by present and previous studies in tea plantations are
445 generally higher than those estimates for cereal grain croplands (ranging from 0.1 to 3.67 kg N
446 $\text{ha}^{-1} \text{ yr}^{-1}$, with a mean of $1.35 \text{ kg N ha}^{-1} \text{ yr}^{-1}$, Gu et al., 2007) and vegetable fields ($1.1\text{-}2.7 \text{ kg N}$
447 $\text{ha}^{-1} \text{ yr}^{-1}$, Wang et al., 2011; Liu et al., 2013) in China, or the recommended default value of 1 kg N
448 $\text{ha}^{-1} \text{ yr}^{-1}$ by IPCC (IPCC, 2006). Similarly, our mean background NO emission from tea
449 plantations is greater relative to cereal grain croplands ($0.2\text{-}0.9 \text{ kg N ha}^{-1} \text{ yr}^{-1}$, Yao et al., 2013; Yan
450 et al., 2015) and vegetable fields ($0.2\text{-}0.8 \text{ kg N ha}^{-1} \text{ yr}^{-1}$, Yao et al., 2015) in China. These
451 comparisons highlight the characteristic of high background N_2O and NO emissions from tea
452 plantations, which is probably due to long-term heavy nitrogen fertilization and subsequent soil
453 acidification (Tokuda and Hayatsu, 2004; Yamamoto et al., 2014). Soil acidity appears to be an
454 important factor in affecting biotic and abiotic processes and consequently promoting nitrogen
455 losses, such as enhancing N_2O production ratios from nitrification and depressing the conversion
456 of N_2O to N_2 in denitrification (Zhu et al., 2011) as well as inducing chemodenitrification for NO

457 production (Venterea et al., 2003; Medinets et al., 2015). It should, however, be noted that with
458 limited data available from tea plantations of the world and consequently the high uncertainties of
459 meta-analytic results, caution should be exercised in the interpretation of the differences in
460 background emissions of N_2O and NO between the current and previous studies.

461 In this study, the mean annual emission factor of NO for TUN was 3.8%, which was substantially
462 higher than those estimated for Chinese rice fields (0.04%) and uplands (0.67%) (Huang and Li,
463 2014), or the average value of 0.7% for global upland croplands (Bouwman et al., 2002; Yan et al.,
464 2005). The NO emissions from TUN were greatly reduced by practicing TOM, giving emission
465 factor of 2.9% (Table 2). Although the NO emission factors were lower for TOM relative to TUN,
466 TOM could not be proposed as a preferred management option for tea plantations because it
467 emitted much higher N_2O or N_2O+NO . The N_2O emission factors obtained on this study site (i.e.,
468 3.1% for TUN and 5.9% for TOM) were considerably higher than those estimated for Japanese tea
469 fields (2.8%, Akiyama et al., 2006) and another Chinese subtropical tea field (1.9-2.2%, Fu et al.,
470 2012), or the IPCC default value of 1% for global upland croplands (IPCC, 2006). These results
471 corroborated the assertion that tea plantations were an important source of atmospheric N_2O in
472 tropical and subtropical regions, and furthermore they extended the earlier findings by
473 demonstrating the characteristic of high NO and N_2O+NO emissions from tea plantations.

474 It is noteworthy that although our investigated tea plantations represent the major and typical
475 tea-planting types in Chinese subtropical regions, the obtained background and direct emission
476 factors of N_2O and NO could not be simply extrapolated to a regional scale due to the limited site
477 results (e.g., only four chamber-spatial measurements for each treatment) and the characteristics of
478 high spatial variability of nitrogenous gases fluxes (e.g., Li et al., 2013). A more holistic approach
479 for regional estimates of N_2O and NO emissions from tea plantations should be based on
480 meta-analysis of published nitrogenous gases fluxes to obtain representative background and
481 direct emission factors or on the basis of biogeochemical modeling validated by regional field data,
482 as suggested methodologies by IPCC (IPCC, 2006).

483 **5 Conclusions**

484 Based on two-year field measurements, this study provided an integrated evaluation on N_2O and

485 NO emissions in response to no nitrogen fertilization, conventional urea and alternative oilcake
486 application in Chinese subtropical tea plantations. Clearly, both N_2O and NO emissions varied
487 substantially within a year and between different years, which was chiefly driven by the
488 fertilization events and the distribution and size of rain events. Soil water-filled pore space,
489 temperature and mineral nitrogen content appeared to be the major factors regulating the
490 seasonality of N_2O and NO fluxes, and their correlation could be well presented by a revised
491 “hole-in-the-pipe” model. Compared to no nitrogen fertilization, the application of urea and
492 organic fertilizer to tea plantations stimulated annual N_2O and NO emissions. On average, the
493 organic fertilizer induced emission factor of N_2O (i.e., 5.9%) was significantly higher than the
494 urea-induced emission factor of 3.1%; however, the urea-induced emission factor of NO (i.e.,
495 3.8%) was significantly higher than the organic fertilizer induced emission factor of 2.9%. In total,
496 the substitution of conventional urea by organic fertilizer in tea plantations significantly increased
497 $\text{N}_2\text{O}+\text{NO}$ emissions, and this stimulation effect should be taken into account in designing and
498 evaluating soil carbon sequestration strategy of organic fertilization. Although the magnitude of
499 N_2O and NO emissions was significantly influenced by the applied fertilizer type, annual emission
500 factors of N_2O and NO induced by either urea or organic fertilizer application were all
501 substantially higher than those defaults for global upland croplands, indicating tea plantations may
502 contribute substantially to total N_2O and NO emissions from croplands in China. The results from
503 this study, however, may not necessarily indicate the feasible fertilizer management option in the
504 tea plantations, as a result of only presenting two nitrogen-trace gas species (i.e., N_2O and NO).
505 Therefore, when we finally provide a complete evaluation of nitrogen fertilizer practice in tea
506 plantations from an integrated agronomic and environmental point of view, future field
507 measurements are necessary to include the climatically and environmentally important carbon-
508 and nitrogen- trace gas fluxes (i.e., CH_4 , CO_2 , NO, N_2O and NH_3) as well as plant qualities and
509 yields.

510 **Acknowledgements**

511 This study was financially supported by the Ministry of Science and Technology of China
512 (2012CB417106), the National Nature Science Foundation of China (41305129, 41321064) and

513 the Youth Innovation Promotion Association CAS (2013055). We are also grateful to Yanbing Du,
514 Ping Li, and Siqi Li for their assistance in field and laboratory measurements.

515 **References**

516 Akiyama, H., and Tsuruta, H.: Nitrous oxide, nitric oxide, and nitrogen dioxide fluxes from soils
517 after manure and urea application, *Journal of Environmental Quality*, 32, 423-431, 2003a.

518 Akiyama, H., and Tsuruta, H.: Effect of organic matter application on N₂O, NO, and NO₂ fluxes
519 from an Andisol field, *Global Biogeochemical Cycles*, 17, 1100, doi:10.1029/2002GB002016,
520 2003b.

521 Akiyama, H., Yan, X., and Yagi, K.: Estimations of emission factors for fertilizer-induced direct
522 N₂O emissions from agricultural soils in Japan: summary of available data, *Soil Science and*
523 *Plant Nutrition*, 52, 774-787, 2006.

524 Anderson, I.C., and Levine, J.S.: Relative rates of nitric oxide and nitrous oxide production by
525 nitrifiers, denitrifiers and nitrates respirers, *Applied and Environmental Microbiology*, 51,
526 938-944, 1986.

527 Baumgärtner, M., Koschorreck, M., and Conrad, R.: Oxidative consumption of nitric oxide by
528 heterotrophic bacteria in soil, *FEMS Microbiology Ecology*, 19, 165-170, 1996.

529 Bouwman, A.F., Boumans, L.J.M., and Batjes, N.H.: Emissions of N₂O and NO from fertilized
530 fields: Summary of available measurement data, *Global Biogeochemical Cycles*, 16, 1058,
531 doi:10.1029/2001GB001811, 2002.

532 Burger, M., Jackson, L.E., Lundquist, E., Louie, D.T., Miller, R.L., Rolston, D.E., and Scow, K.M.:
533 Microbial responses and nitrous oxide emissions during wetting and drying of organically
534 and conventionally managed soils under tomatoes, *Biology and Fertility of Soils*, 42, 109-118,
535 2005.

536 Conrad, R.: Microbiological and biochemical background of production and consumption of NO
537 and N₂O in soil, *Trace Gas Exchange in Forest Ecosystems*, 3, 3-33, 2002.

538 Davidson, E.A.: Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In: Rogers,
539 J.E., Whitman, W.B. (Eds), *Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen oxides, and Halomethanes*. American Society of Microbiology,
540 2005.

541 Washington DC, pp. 219-235, 1991.

542 Davidson, E.A.: Sources of nitric oxide and nitrous oxide following wetting of dry soil, Soil
543 Science Society of America Journal, 56, 95-102, 1992.

544 Davidson, E.A., and Kingerlee, W.: A global inventory of nitric oxide emissions from soils,
545 Nutrient Cycling in Agroecosystems, 48, 37-50, 1997.

546 Deng, J., Zhou, Z., Zheng, X., Liu, C., Yao, Z., Xie, B., Cui, F., Han, S., and Zhu, J.: Annual
547 emissions of nitrous oxide and nitric oxide from rice-wheat rotation and vegetable fields: a
548 case study in the Tai-Lake region, China, Plant and Soil, 360, 37-53, 2012.

549 Dunfield, P., and Knowles, R.: Organic matter, heterotrophic activity, and NO consumption in
550 soils, Global Change Biology, 4, 199-207, 1998.

551 Fu, X., Li, Y., Su, W., Shen, J., Xiao, R., Tong, C., and Wu, J.: Annual dynamics of N₂O emissions
552 from a tea field in southern subtropical China, Plant Soil and Environment, 58, 373-378,
553 2012.

554 Galloway, J.N., Townsend, A.R., Erisman, J.W., Bekunda, M., Cai, Z., Frenney, J.R., Martinelli,
555 L.A., Seitzinger, S.P., and Sutton, M.A.: Transformation of the nitrogen cycle: Recent trends,
556 questions, and potential solutions, Science, 320, 889-892, 2008.

557 Gogoi, B., and Baruah, K.K.: Nitrous oxide emission from tea (*Camellia sinensis* (L.) O.
558 kuntze)-planted soils of North East India and soil parameters associated with the emission,
559 Current Science, 101, 531-536, 2011.

560 Granli, T., and Bockman, O.C.: Processes that from N₂O in soils, nitrogen oxide from agriculture,
561 Norwegian Journal of Agricultural Sciences, 12, 18-22, 1994.

562 Gu, J., Zheng, X., Wang, Y., Ding, W., Zhu, B., Chen, X., Wang, Y., Zhao, Z., Shi, Y., and Zhu, J.:
563 Regulatory effects of soil properties on background N₂O emissions from agricultural soils in
564 China, Plant and Soil, 295, 53-65, 2007.

565 Han, W., Xu, J., Wei, K., Shi, Y., and Ma, L.: Estimation of N₂O emission from tea garden soils,
566 their adjacent vegetable garden and forest soils in eastern China, Environmental Earth
567 Sciences, 70, 2495-2500, 2013a.

568 Han, W., Xu, J., Wei, K., Shi, R., and Ma, L.: Soil carbon sequestration, plant nutrients and
569 biological activities affected by organic farming system in tea (*Camellia sinensis* (L.) O.

570 Kuntze) fields, *Soil Science and Plant Nutrition*, 59, 727-739, 2013b.

571 Harrison, R., Yamulki, S., Goulding, K.W.T., and Webster, C.P.: Effect of fertilizer application on
572 NO and N₂O fluxes from agricultural fields, *Journal of Geophysical Research*, 100,
573 25923-25931, 1995.

574 Hayakawa, A., Akiyama, H., Sudo, S., and Yagi, K.: N₂O and NO emissions from an Andisol field
575 as influenced by pelleted poultry manure, *Soil Biology and Biochemistry*, 41, 521-529, 2009.

576 Hirono, Y., and Nonaka, K.: Nitrous oxide emissions from green tea fields in Japan: contribution
577 of emissions from soil between rows and soil under the canopy of tea plants, *Soil Science and*
578 *Plant Nutrition*, 58, 384-392, 2012.

579 Huang, Y., and Li, D.: Soil nitric oxide emissions from terrestrial ecosystems in China: a synthesis
580 of modeling and measurements, *Scientific Report*, 4, 7406, doi:10.1038/srep07406, 2014.

581 Hutchinson, G.L., and Mosier, A.R.: Improved soil cover method for field measurement of nitrous
582 oxide fluxes, *Soil Science Society of America Journal*, 45, 311-316, 1981.

583 Hutchinson, G.L., and Livingston, G.P.: Use of chamber systems to measure trace gas fluxes, In:
584 Harper, L.A. (Eds), *Agricultural Ecosystem Effects on Trace Gases and Global Climate*, Am.
585 Soc. Agron., Madison, Wis., pp. 63-78, 1993.

586 IPCC (Intergovernmental Panel on Climate Change), *IPCC Guidelines for National Greenhouse
587 Gas Inventories* [M]. IPCC / IGES, Hayama, Japan, 2006.

588 IPCC (Intergovernmental Panel on Climate Change), In: Stocker, T.F., Qin, D., Plattner, G. K.,
589 Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds),
590 *Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the*
591 *Fifth Assessment Report of the Intergovernmental Panel on Climate Change*. Cambridge
592 University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.

593 Islam, A., Chen, D., and White, R.E.: Heterotrophic and autotrophic nitrification in two acid
594 pasture soils, *Soil Biology and Biochemistry*, 39, 972-975, 2007.

595 Jumadi, O., Hala, Y., Anas, I., Ali, A., Sakamoto, K., Saigusa, M., Yagi, K., and Inubushi, K.:
596 Community structure of ammonia oxidizing bacteria and their potential to produce nitrous
597 oxide and carbon dioxide in acid tea soils, *Geomicrobiology Journal*, 25, 381-389, 2008.

598 Jumadi, O., Hala, Y., and Inubushi, K.: Production and emission of nitrous oxide and responsible

599 microorganisms in upland acid soil in Indonesia, *Soil Science and Plant Nutrition*, 51,
600 693-696, 2005.

601 Kim, D.S., and Kim, J.C.: Soil nitric and nitrous oxide emissions from agricultural and tidal flat
602 fields in southwestern Korea, *Journal of Environmental Engineering and Science*, 1, 359-369,
603 2002.

604 Kramer, S.B., Reganold, J.P., Glover, J.D., Bohannan, B.J.M., and Mooney, H.A.: Reduced nitrate
605 leaching and enhanced denitrifier activity and efficiency in organically fertilized soils, *PNAS*,
606 103, 4522-4527, 2006.

607 Kroon, P.S., Hensen, A., van den Bulk, W.C.M., Jongejan, P.A.C., and Vermeulen, A.T.: The
608 importance of reducing the systematic error due to non-linearity in N₂O flux measurements
609 by static chambers, *Nutrient Cycling in Agroecosystems*, 82, 175-186, 2008.

610 Kutzbach, L., Schneider, J., Sachs, T., Giebels, M., Nykanen, H., Shurpali, N.J., Martikainen, P.J.,
611 Alm, J., and Wilmking, M.: CO₂ flux determination by closed-chamber methods can be
612 seriously biased by inappropriate application of linear regression, *Biogeosciences*, 4,
613 1005-1025, 2007.

614 Li, D., and Wang, X.: Nitric oxide emission from a typical vegetable field in the Pearl River Delta,
615 China, *Atmospheric Environment*, 41, 9498-9505, 2007.

616 Li, D., Wang, X., Mo, J., Sheng, G., and Fu, J.: Soil nitric oxide emissions from two subtropical
617 humid forests in south China, *Journal of Geophysical Research*, 112, D23302,
618 doi:10.1029/2007JD008680, 2007.

619 Li, Y., Fu, X., Liu, X., Shen, J., Luo, Q., Xiao, R., Li, Y.Y., Tong, C., and Wu, J.: Spatial variability
620 and distribution of N₂O emissions from a tea field during the dry season in subtropical central
621 China, *Geoderma*, 193-194, 1-12, 2013.

622 Lin, S., Iqbal, J., Hu, R., and Feng, M.: N₂O emissions from different land uses in min-subtropical
623 China, *Agriculture Ecosystems and Environment*, 136, 40-48, 2010.

624 Liu, Q., Qin, Y., Zou, J., Guo, Y., and Gao, Z.: Annual nitrous oxide emissions from open-air and
625 greenhouse vegetable cropping systems in China, *Plant and Soil*, 370, 223-233, 2013.

626 Matson, P.A., Vitousek, P.M., Livingston, G.P., and Swanberg, N.A.: Sources of variations in
627 nitrous oxide flux from Amazonian ecosystems, *Journal of Geophysical Research*, 95,

628 16789-16798, 1990.

629 630 McElroy, M.B., and Wang, Y.X.: Human and animal wastes: Implications for atmospheric N₂O
and NO_x, *Global Biogeochemical Cycles*, 19, GB2008, doi:10.1029/2004GB002429, 2005.

631 632 Medinets, S., Skiba, U., Rennenberg, H., and Butterbach-Bahl, K.: A review of soil NO
transformation: Associated processes and possible physiological significance on organisms,
633 *Soil Biology and Biochemistry*, 80, 92-117, 2015.

634 635 Mei, B., Zheng, X., Xie, B., Dong, H., Zhou, Z., Wang, R., Deng, J., Cui, F., Tong, H., and Zhu, J.:
Nitric oxide emissions from conventional vegetable fields in southeastern China,
636 *Atmospheric Environment*, 43, 2762-2769, 2009.

637 638 639 Meijide, A., Díez, J.A., Sánchez-Martín, L., López-Fernández, S., and Vallejo, A.: Nitrogen oxide
emissions from an irrigated maize crop amended with treated pig slurries and composts in a
Mediterranean climate, *Agriculture Ecosystems and Environment*, 121, 383-394, 2007.

640 641 642 Min, J., Shi, W., Xing, G., Powlson, D., and Zhu, Z.: Nitrous oxide emissions from vegetables
grown in a polytunnel treated with high rates of applied nitrogen fertilizers in Southern China,
Soil Use and Management, 28, 70-77, 2012.

643 644 645 Müller, C., Rütting, T., Kattge, J., Laughlin, R.J., and Stevens, R.J.: Estimation of parameters in
complex ¹⁵N tracing models via Monte Carlo sampling, *Soil Biology and Biochemistry*, 39,
715-726, 2007.

646 647 Müller, C., Stevens, R.J., and Laughlin, R.J.: A ¹⁵N tracing model to analyse N transformations in
old grassland soil, *Soil Biology and Biochemistry*, 36, 619-632, 2004.

648 649 650 Pang, X., Mu, Y., Lee, X., Fang, S., Yuan, J., and Huang, D.: Nitric oxides and nitrous oxide fluxes
from typical vegetables cropland in China: effects of canopy, soil properties and field
management, *Atmospheric Environment*, 43, 2571-2578, 2009.

651 652 653 654 Petersen, S.Q., Regina, K., Pöllinger, A., Rigler, E., Valli, L., Yamulki, S., Esala, M., Fabbri, C.,
Syväsalo, E., and Vinther, F.P.: Nitrous oxide emissions from organic and conventional crop
rotations in five European countries, *Agriculture Ecosystems and Environment*, 112, 200-206,
2006.

655 656 Pimentel, D., Hepperly, P., Hanson, J., Douds, D., and Seidel, R.: Environmental, energetic, and
economic comparisons of organic and conventional farming systems, *Biosciences*, 55,

657 573-582, 2005.

658 Reay, D.S., Davidson, E.A., Smith, K.A., Smith, P., Melillo, J.M., Dentener, F., and Crutzen, P.J.:
659 Global agriculture and nitrous oxide emissions, *Nature Climate Change*, 2, 410-416, 2012.

660 Skiba, U., Hargreaves, K.J., Fowler, D., and Smith, K.A.: Fluxes of nitric and nitrous oxides from
661 agriculture soils in a cool temperature climate, *Atmospheric Environment*, 26, 2477-2488,
662 1992.

663 Skiba, U.M., Sheppard, L.J., MacDonald, J., and Fowler, D.: Some key environmental variables
664 controlling nitrous oxide emissions from agricultural and semi-natural soils in Scotland,
665 *Atmospheric Environment*, 32, 3311-3320, 1998.

666 Stehfest, E., and Bouwman, L.: N₂O and NO emission from agricultural fields and soils under
667 natural vegetation: summarizing available measurement data and modeling of global annual
668 emissions, *Nutrient Cycling in Agroecosystems*, 74, 207-228, 2006.

669 Syväsalo, E., Regina, K., Turtola, E., Lemola, R., and Esala, M.: Fluxes of nitrous oxide and
670 methane, and nitrogen leaching from organically and conventionally cultivated sandy soil in
671 western Finland, *Agriculture Ecosystems and Environment*, 113, 342-348, 2006.

672 Thornton, F.C., Shurpali, N.J., Bock, B.R., and Reddy, K.C.: N₂O and NO emissions from poultry
673 litter and urea applications to Bermuda grass, *Atmospheric Environment*, 32, 1623-1630,
674 1998.

675 Tokuda, S., and Hayatsu, M.: Nitrous oxide emission potential of 21 acidic tea field soils in Japan,
676 *Soil Science and Plant Nutrition*, 47, 637-642, 2001.

677 Tokuda, S., and Hayatsu, M.: Nitrous oxide flux from a tea field amended with a large amount of
678 nitrogen fertilizer and soil environmental factors controlling the flux, *Soil Science and Plant
679 Nutrition*, 50, 365-374, 2004.

680 Valente, R.J., Thornton, F.C., and Williams, E.J.: Field comparison of static and flow-through
681 chamber techniques for measurement of soil NO emission, *Journal of Geophysical Research*,
682 100, D10, 21147-21152, 1995.

683 Vallejo, A., Skiba, U.M., García-Torres, L., Arce, A., López-Fernández, S., and Sánchez-Martín,
684 L.: Nitrogen oxides emission from soils bearing a potato crop as influenced by fertilization
685 with treated pig slurries and composts, *Soil Biology and Biochemistry*, 38, 2782-2793, 2006.

686 Venterea, R.T., Groffman, P.M., Verchot, L.V., Magill, A.H., Aber, J.D., and Streudler, P.A.:
687 Nitrogen oxide gas emissions from temperate forest soils receiving long-term nitrogen inputs,
688 Global Change Biology, 9, 346-357, 2003.

689 Wang, J., Xiong, Z., and Yan, X.: Fertilizer-induced emission factors and background emissions
690 of N₂O from vegetable fields in China, Atmospheric Environment, 45, 6923-6929, 2011.

691 Wang, K., Zheng, X., Pihlatie, M., Vesala, T., Liu, C., Haapanala, S., Mammarella, I., Rannik, Ü.,
692 and Liu, H.: Comparison between static chamber and tunable diode laser-based eddy
693 covariance techniques for measuring nitrous oxide fluxes from a cotton field, Agricultural
694 and Forest Meteorology, 171-172, 9-19, 2013.

695 Wang, L., Butterly, C.R., Wang, Y., Herath, H.M.S.K., Xi, Y.G., and Xiao, X.J.: Effect of crop
696 residue biochar on soil acidity amelioration in strongly acidic tea garden soils, Soil Use and
697 Management, 30, 119-128, 2014.

698 Williams, D.L., Ineson, P., and Coward, P.A.: Temporal variations in nitrous oxide fluxes from
699 urine-affected grassland, Soil Biology and Biochemistry, 31, 779-788, 1999.

700 Williams, E.J., and Davidson, E.A.: An intercomparison of two chamber methods for the
701 determination of emission of nitric oxide from soil, Atmospheric Environment, 27A,
702 2107-2113, 1993.

703 Williams, E.J., Hutchinson, G.L., and Fehsenfeld, F.C.: NO_x and N₂O emissions from soil, Global
704 Biogeochemical Cycles, 6, 351-388, 1992.

705 Williams, P.H., Jarvis, S.C., and Dixon, E.: Emission of nitric oxide and nitrous oxide from soil
706 under field and laboratory conditions, Soil Biology and Biochemistry, 30, 1885-1893, 1998.

707 Xue, H., Ren, X., Li, S., Wu, X., Cheng, H., Xu, B., GU, B., Yang, G., Peng, C., Ge, Y., and Chang,
708 J.: Assessment of private economic benefits and positive environmental externalities of tea
709 plantation in China, Environmental Monitoring and Assessment, 185, 8501-8516, 2013.

710 Yamamoto, A., Akiyama, H., Naokawa, T., Miyazaki, Y., Honda, Y., Sano, Y., Nakajima, Y., and
711 Yagi, K.: Lime-nitrogen application affects nitrification, denitrification, and N₂O emission in
712 an acidic tea soil, Biology and Fertility of Soils, 50, 53-62, 2014.

713 Yamulki, S., and Jarvis, S.C.: Short-term effects of tillage and compaction on nitrous oxide, nitric
714 oxide, nitrogen dioxide, methane and carbon dioxide fluxes from glassland, Biology and

715 Fertility of Soils, 36, 224-231, 2002.

716 Yan, G., Yao, Z., Zheng, X., and Liu, C.: Characteristics of annual nitrous and nitric oxide
717 emissions from major cereal crops in the North China Plain under alternative fertilizer
718 management, Agriculture Ecosystems and Environment, 207, 67-78, 2015.

719 Yan, X., Ohara, T., and Akimoto, H.: Statistical modeling of global soil NO_x emissions, Global
720 Biogeochemical Cycles, 19, GB3019, doi:10.1029/2004GB002276, 2005.

721 Yao, Z., Du, Y., Tao, Y., Zheng, X., Liu, C., Lin, S., and Butterbach-Bahl, K.: Water-saving ground
722 cover rice production system reduces net greenhouse gas fluxes in an annual rice-based
723 cropping system, Biogeosciences, 11, 6221-6236, 2014.

724 Yao, Z., Liu, C., Dong, H., Wang, R., and Zheng, X.: Annual nitric and nitrous oxide fluxes from
725 Chinese Subtropical plastic greenhouse and conventional vegetable cultivations,
726 Environmental Pollution, 196, 89-97, 2015.

727 Yao, Z., Zhou, Z., Zheng, X., Xie, B., Liu, C., Butterbach-Bahl, K., and Zhu, J.: Effects of tillage
728 during the nonwaterlogged period on nitrous oxide and nitric oxide emissions in typical
729 Chinese rice-wheat rotation ecosystems, Journal of Geophysical Research, 115, G01013,
730 doi:10.1029/2009JG001088, 2010a.

731 Yao, Z., Wu, X., Wolf, B., Dannenmann, M., Butterbach-Bahl, K., Brüggemann, N., Chen, W.,
732 and Zheng, X.: Soil-atmosphere exchange potential of NO and N₂O in different land use
733 types of Inner Mongolia as affected by soil temperature, soil moisture, freeze-thaw, and
734 drying-wetting events, Journal of Geophysical Research, 115, D17116,
735 doi:10.1029/2009JD013528, 2010b.

736 Yao, Z., Zheng, X., Wang, R., Dong, H., Xie, B., Mei, B., Zhou, Z., and Zhu, J.: Greenhouse gas
737 fluxes and NO release from a Chinese subtropical rice-winter wheat rotation system under
738 nitrogen fertilizer management, Journal of Geophysical Research:Biogeosciences, 118,
739 623-638, 2013.

740 Yao, Z., Zheng, X., Xie, B., Mei, B., Wang, R., Butterbach-Bahl, K., Zhu, J., and Yin, R.: Tillage
741 and crop residue management significantly affects N-trace gas emissions during the non-rice
742 season of a subtropical rice-wheat rotation, Soil Biology and Biochemistry, 41, 2131-2140,
743 2009.

744 Zhao, M., Tian, Y., Zhang, M., Yao, Y., Ao, Y., Yin, B., and Zhu, Z.: Nonlinear response of nitric
745 oxide emissions to a nitrogen application gradient: A case study during the wheat season in a
746 Chinese rice-wheat rotation system, *Atmospheric Environment*, 102, 200-208, 2015.

747 Zheng, X., Han, S., Huang, Y., Wang, Y., and Wang, M.: Re-quantifying the emission factors
748 based on field measurements and estimating the direct N₂O emission from Chinese croplands,
749 *Global Biogeochemical Cycles*, 18, GB2018, doi:10.1029/2003GB002167, 2004.

750 Zheng, X., Huang, Y., Wang, Y., and Wang, M.: Seasonal characteristics of nitric oxide emission
751 from a typical Chinese rice-wheat rotation during the non-waterlogged period, *Global
752 Change Biology*, 9, 219-227, 2003.

753 Zheng, X., Mei, B., Wang, Y.H., Xie, B., Wang, Y.S., Dong, H., Xu, H., Chen, G., Cai, Z., Yue, J.,
754 Gu, J., Su, F., Zou, J., and Zhu, J.: Quantification of N₂O fluxes from soil-plant systems may
755 be biased by the applied gas chromatograph methodology, *Plant and Soil*, 311, 211-234,
756 2008.

757 Zhu, T., Zhang, J., and Cai, Z.: The contribution of nitrogen transformation processes to total N₂O
758 emission from soils used for intensive vegetable cultivation, *Plant and Soil*, 343, 313-327,
759 2011.

760 Zhu, T., Zhang, J., Meng, T., Zhang, Y., Yang J., Müller, C., and Cai, Z.: Tea plantation destroys
761 soil retention of NO₃⁻ and increase N₂O emissions in subtropical China, *Soil Biology and
762 Biochemistry*, 73, 106-114, 2014.

763

764

765

766

767

768

769

770

771

772

773 **Table 1.** Field management of synthetic and organic nitrogen fertilizers for tea plantations under
 774 different treatments during the period of 2012-2014

	Nitrogen application rate (kg N ha ⁻¹)			Application date
	TNN	TUN	TOM [*]	
Basal fertilization	0	Urea (150)	Oilcake (150)	8 Oct (2012) 6 Oct (2013)
Topdressing	0	Urea (300)	Oilcake (300)	18 Feb (2013) 1 Mar (2014)
Total	0	450	450	

775 ^{*} The fertilizer of oilcake contained 7.1% N and had a C:N ratio of 6.1

776

777

778

779

780 **Table 2.** Annual cumulative emissions of nitrous oxide (N₂O, in kg N ha⁻¹ yr⁻¹), nitric oxide (NO,
 781 in kg N ha⁻¹ yr⁻¹) and N₂O plus NO (in kg N ha⁻¹ yr⁻¹) as well as their respective direct emission
 782 factors (EF_d, in %) for tea plantations under different fertilizer treatments during the period of
 783 2012-2014

Year	Treatment ^b	N ₂ O ^c	EF _{d-N₂O}	NO ^c	EF _{d-NO}	N ₂ O+NO ^c	EF _{d-N₂O+NO}
2012-2013	TNN	6.2±0.3a		2.8±0.5a		9.0±0.4a	
	TUN	21.1±2.5b	3.3±0.5	19.4±0.3b	3.7±0.1	40.6±2.6b	7.0±0.6
	TOM	32.7±0.7c	5.9±0.2	17.0±0.4c	3.2±0.1	49.8±1.0c	9.1±0.2
2013-2014	TNN	1.9±0.1a		0.4±0.1a		2.3±0.2a	
	TUN	14.4±2.6b	2.8±0.6	18.3±0.5b	4.0±0.1	32.8±2.2b	6.8±0.5
	TOM	28.1±1.3c	5.8±0.3	12.3±1.1c	2.7±0.3	40.5±2.3c	8.5±0.5
2012-2014 ^a	TNN	4.0 ± 0.1a		1.6±0.2a		5.6±0.2a	
	TUN	17.8±2.5b	3.1±0.6	18.9±0.4b	3.8±0.1	36.7±2.4b	6.9±0.5
	TOM	30.4±0.9c	5.9±0.2	14.7±0.6c	2.9±0.1	45.1±1.4c	8.8±0.3

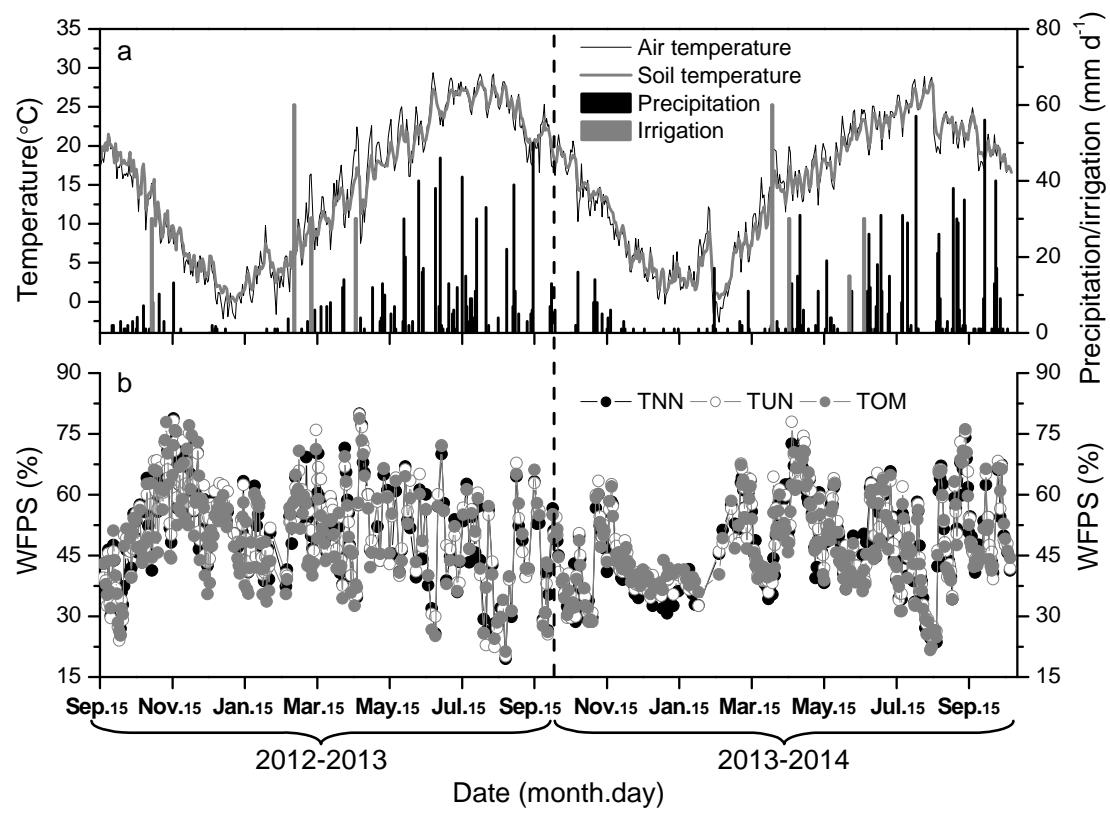
784 Data shown are means ± standard errors of 4-spatial replicates. ^a Mean values of the two
 785 investigated years. ^b TNN, no nitrogen fertilizer application; TUN, the common practice with urea
 786 application rate of 450 kg N ha⁻¹ yr⁻¹; and TOM, the alternative practice with organic fertilizer
 787 application rate of 450 kg N ha⁻¹ yr⁻¹. ^c Different letters within the same column indicate
 788 significant differences among treatments in each year at $P < 0.05$ level.

789

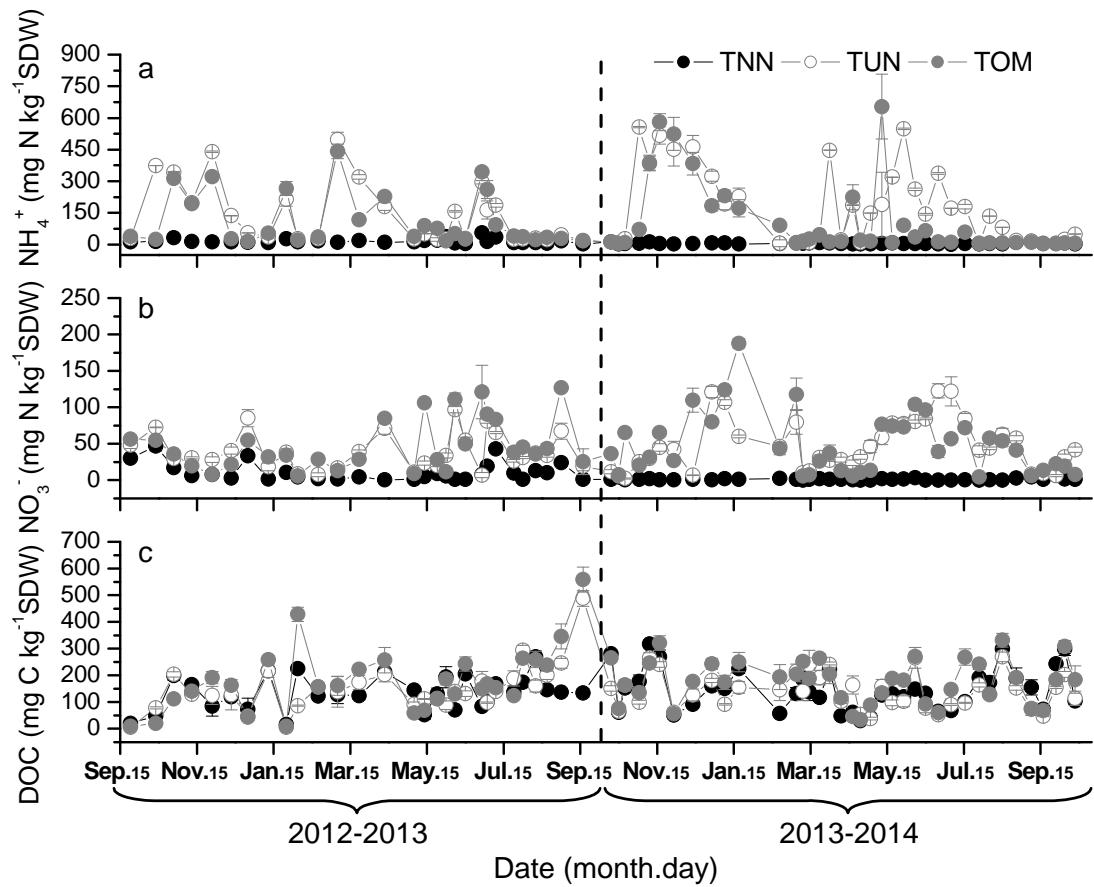
790

791

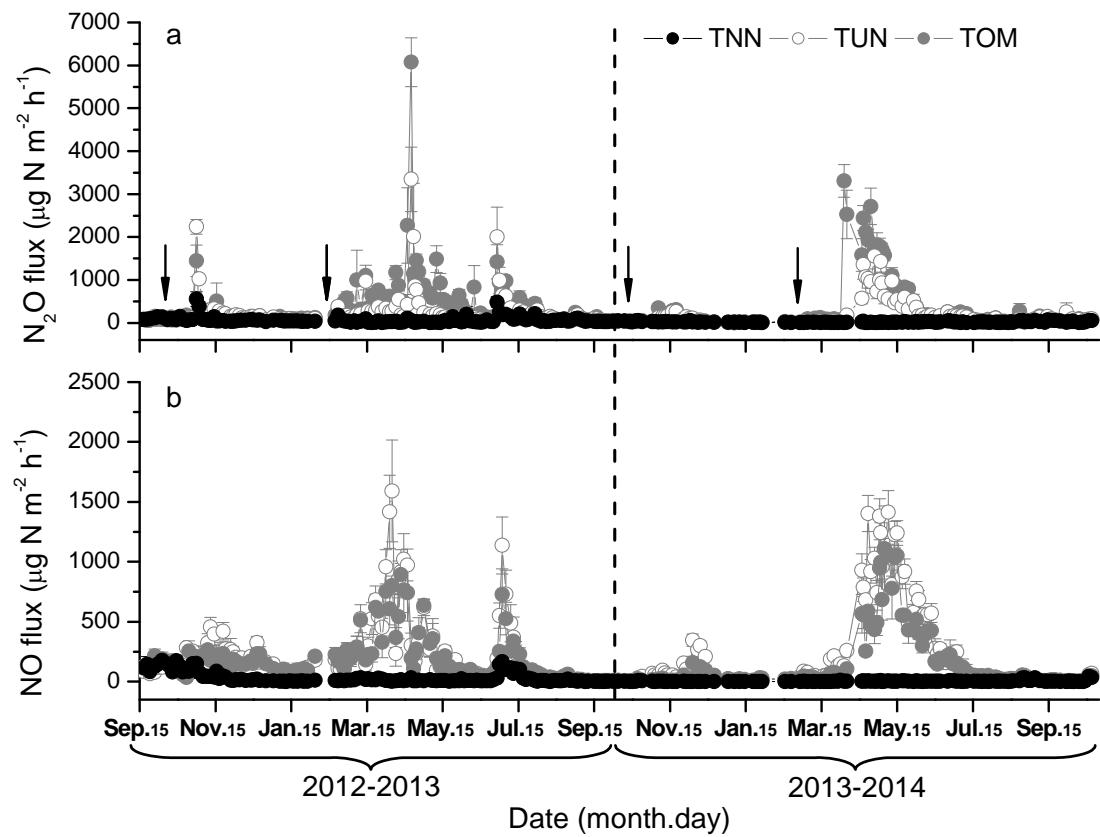
792


793 **Figure captions**

794 **Figure 1.** The temporal changes of (a) air and soil (5 cm) temperatures, daily precipitation and
795 irrigation, and (b) soil water content expressed as WFPS (water-filled pore space) at a depth of 0-6
796 cm for all the fertilizer treatments (i.e., the common practice with urea application (TUN), the
797 alternative practice with organic fertilizer application (TOM), and no nitrogen fertilizer application
798 (TNN)) in tea plantations during the period from September 2012 to October 2014.


799 **Figure 2.** Seasonal changes of the soil (a) ammonium (NH_4^+), (b) nitrate (NO_3^-), and (c) dissolved
800 organic carbon (DOC) concentrations (mean \pm standard error) for all the fertilizer treatments ((i.e.,
801 the common practice with urea application (TUN), the alternative practice with organic fertilizer
802 application (TOM), and no nitrogen fertilizer application (TNN)) in tea plantations during the
803 period from September 2012 to October 2014. SDW is the abbreviation of soil dry weight.

804 **Figure 3.** Seasonal changes of (a) nitrous oxide (N_2O), and (b) nitric oxide (NO) fluxes (mean \pm
805 standard error) for all the fertilizer treatments ((i.e., the common practice with urea application
806 (TUN), the alternative practice with organic fertilizer application (TOM), and no nitrogen fertilizer
807 application (TNN)) in tea plantations during the period from September 2012 to October 2014.
808 The downward arrows denote the time of fertilization.


809 **Figure 4.** Effect of soil water content (expressed as WFPS, water-filled pore space) on the molar
810 ratios of nitric oxide (NO) to nitrous oxide (N_2O) fluxes in the fertilized treatments (i.e., the
811 common practice with urea application (TUN), and the alternative practice with organic fertilizer
812 application (TOM)) across the 2-year study period.

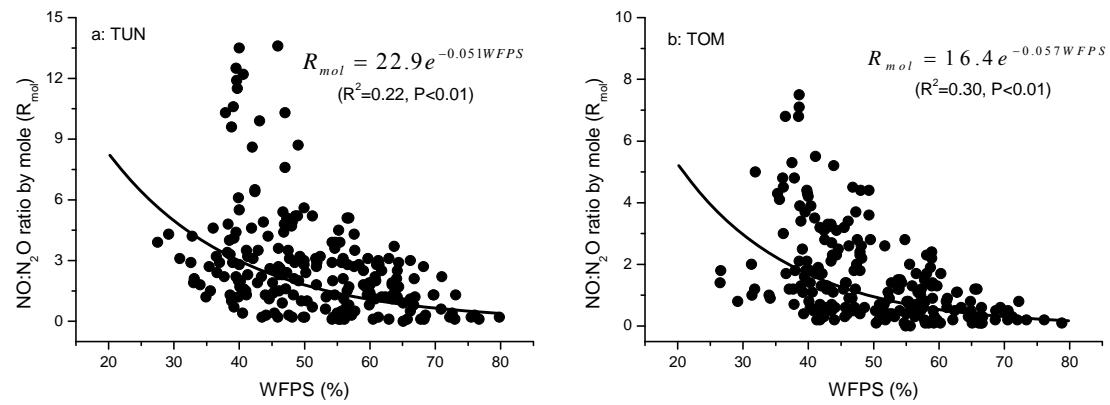

Figure 1.

Figure 2.

Figure 3.

Figure 4.