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Tea plantations are rapidly expanding in China and other countries in the tropical and subtropical 

zones, but so far there are very few studies including direct measurements on nitrogenous gases 

fluxes from tea plantations. On the basis of 2-year field measurements from 2012 to 2014, we 

provided an insight into the assessment of annual nitrous oxide (N2O) and nitric oxide (NO) fluxes 

from Chinese subtropical tea plantations under three practices of conventional urea application, 

alternative oilcake incorporation and no nitrogen fertilization. Clearly, the N2O and NO fluxes 

exhibited large intra- and inter-annual variations, and furthermore their temporal variability could 

be well described by a combination of soil environmental factors including soil mineral N, 

water-filled pore space and temperature, based on a revised “hole-in-the-pipe” model. Averaged 

over 2-year study, annual background N2O and NO emissions were approximately 4.0 and 1.6 kg 

N ha-1 yr-1, respectively. Compared to no nitrogen fertilization, both urea and oilcake application 

significantly stimulated annual N2O and NO emissions, amounting to 14.4-32.7 kg N2O-N ha-1 yr-1 

and at least 12.3-19.4 kg NO-N ha-1 yr-1, respectively. In comparison with conventional urea 

treatment, on average, the application of organic fertilizer significantly increased N2O emission by 

71% but decreased NO emission by 22%. Although the magnitude of N2O and NO fluxes was 

substantially influenced by N source, the annual direct emission factors of fertilizer N were 

estimated to be 2.8-5.9%, 2.7-4.0% and 6.8-9.1% for N2O, NO and N2O+NO, respectively, which 

are significantly higher than those defaults for global upland croplands. This indicated that the 

rarely determined N2O and NO formation appeared to be a significant pathway in the nitrogen 

cycle of tea plantations, which are a potential source of national nitrogenous gases inventory.   

Keywords：nitrous oxide, nitric oxide, tea plantation, nitrogen fertilizer, emission factor 
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Nitrous oxide (N2O) and nitric oxide (NO) are two of the most important anthropogenic nitrogen 

compounds emitted to the atmosphere, which are directly or indirectly involved in global warming 

and atmospheric chemistry (Williams et al., 1992; IPCC, 2013). It is well accepted that human 

activities strongly influence the source of N2O and NO, as nitrogen fertilizer applied in agriculture 

is now the vital source of inorganic/organic nitrogen substrate for nitrification and denitrification 

processes, leading to increased N2O and NO emissions (McElroy and Wang, 2005; Galloway et al., 

2008). Recently anthropogenic emissions from the application of nitrogenous fertilizers in 

agriculture were estimated to be 1.7-4.8 Tg N yr-1 for N2O and 3.7 Tg N yr-1 for NO, accounting 

for approximately 60% and 10% of the total global estimates, respectively (IPCC, 2013). However, 

one should admit that a dearth of direct measurements of nitrogenous gases fluxes in some 

agricultural areas makes these estimates highly uncertain, and it also results in the projection and 

mitigation of agricultural N2O and NO emissions posing considerable challenges (Davidson and 

Kingerlee, 1997; Reay et al., 2012), although the measurements of these emissions have been 

made for many decades. Taking as an example, Stehfest and Bouwman (2006) summarized 

information from 1008 N2O and 189 NO emission measurements in agricultural fields worldwide, 

and indicated that the representation of number of measurements in tropical and subtropical 

climates was only 13-14% and 23-28% for N2O and NO, respectively. As suggested by Reay et al. 

(2012), therefore, a central aim of future study on e.g., N2O emissions from agricultural systems 

should be to increase the coverage encompassing various agricultural land-use/cover types and 

climates as well as management practices.  

Tea is one of the three most common beverages (i.e., coffee, tea and cocoa) worldwide, and tea 

crops are widely planted in the tropical and subtropical regions (Xue et al., 2013). China is the 

world’s largest tea producing country, and its tea plantation area had reached 1.85 million ha in 

2009, contributing approximately 52% to the world total (Han et al., 2013a). Besides, tea is a leaf 

harvested crop, and nitrogen is the most important nutrient for increasing the content of free amino 

acids, an index of the quality of tea leaves (Tokuda and Hayatsu, 2004). For improving the yield 

and quality of tea leaves, therefore, large amounts of nitrogen fertilizer are increasingly applied by 

tea farmers. For instance, the application rates of nitrogen fertilizer to tea plantations have been as 
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high as 450-1200 kg N ha-1 yr-1, which significantly surpasses the recommended rate of 250-375 

kg N ha-1 yr-1 for high tea yields (Tokuda and Hayatsu, 2004; Hirono and Nonaka, 2012; Fu et al., 

2012; Zhu et al., 2014). Not surprisingly, such high nitrogen inputs can easily induce excess 

residual nitrogen and acidification of soil, both influence the nitrogen cycle of tea fields in which a 

great deal of nitrogenous gases are produced (Jumadi et al., 2008; Zhu et al., 2014) . It was 

reported that the N2O emissions from tea fields were greatly higher than those from other upland 

fields (Jumadi et al., 2005; Han et al., 2013a). Akiyama et al. (2006) analyzed data on N2O 

emissions from 36 sites with 246 measurements in Japanese agricultural fields and reported that 

the mean fertilizer-induced emission factor of N2O in tea fields was much higher as compared to 

other upland fields and paddy fields. Nevertheless, there are still very few data available on N2O 

emissions from Chinese tea plantations (Fu et al., 2012; Li et al., 2013; Han et al., 2013a). 

Meanwhile, tea plantations to which large amounts of nitrogen fertilizer have been added are also 

probably one of the important sources of NO. So far, however, no study is available for NO fluxes 

from tea fields worldwide, which hinders the development of the sound NO emission inventory 

(Huang and Li, 2014).  
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As tea production in China has intensified to meet market demands over the past decades, public 

concerns over the negative impacts of conventional synthetic nitrogen fertilizers application in tea 

plantations on human health and environmental quality have also increased (Pimentel et al., 2005; 

Han et al., 2013b). These concerns have led to increased grower interest in organically fertilized 

tea plantations, and by 2011 approximately 45,000 ha of tea fields were under organic fertilization 

in China (Han et al., 2013b). Furthermore, the conversion of conventional synthetic nitrogen 

fertilization to organic fertilizer practice in tea plantations has been identified as a feasible 

measure in the aspects of promoting soil carbon sequestration and ameliorating soil pH (Han et al., 

2013b; Wang et al., 2014). On the other hand, organic fertilization systems have been shown to 

substantially affect N2O emissions compared with conventional management practices, but the 

influence can be either stimulatory (Akiyama and Tsuruta, 2003a, b; Syväsalo et al., 2006) or 

marginal and even inhibitory (Akiyama and Tsuruta, 2003b; Burger et al., 2005; Petersen et al., 

2006; Kramer et al., 2006). Although these studies have demonstrated organic fertilizer practices 

may improve soil quality and influence nitrogenous gases fluxes in some agricultural systems, no 
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study has specifically compared N2O and NO emissions in response to organic and synthetic 

nitrogen fertilizer application in tea plantations to our knowledge.  

In this paper, we present the results of a 2-year field study in which N2O and NO fluxes were 

measured simultaneously in Chinese subtropical tea plantations under three practices of 

conventional urea application, alternative organic fertilizer incorporation and no nitrogen 

fertilization. The main objectives of the present study were to characterize and quantify annual 

N2O and NO fluxes and their direct emission factors across different years, and to evaluate the 

effect of organic fertilizer management on N2O and NO fluxes as well as to clarify the underlying 

mechanisms and factors regulating these fluxes from tea plantations.    

2 Materials and methods 

2.1 Site description and field treatments 

Field measurements were carried out in a tea planting farm (32°07′22″N, 110°43′11″E, approx. 

441 m above sea level) of the Agricultural Bureau of Fangxian, Hubei Province, China. The region 

is characterized by a northern subtropical monsoon climate with cool and dry winters as well as 

warm and humid summers. From 2003 to 2011, the mean annual precipitation and air temperature 

for this site were 914 mm and 14.2 °C, respectively. Before the campaign of tea cultivations, all 

fields in this area had been cultivated with rice-fallow or rice-oilseed rape rotation cropping 

system. The tea plants in the experimental field were transplanted in March 2008, thereafter it has 

been continuously cultivated with regular synthetic nitrogen fertilizers and irrigation additions 

according to common regional management practice. The topsoil (0-15 cm) of the experimental 

site is of a loamy texture with (mean ± SE, n=12) 12.7±0.1% clay (<0.002 mm), 39.3±0.5% silt 

(0.002-0.02 mm), and 48.0±0.6% sand (0.02-2 mm). Other important soil physiochemical 

properties include organic carbon content of 13.6±0.2 g kg-1, total nitrogen content of 1.5±0.1 g 

kg-1, pH of 5.0±0.1, and bulk density of 1.25±0.03 g cm-3. 

Our field study was performed over the course of two consecutive years from September 2012 to 

October 2014. As shown in Table 1, three experimental treatments were set up on the tea (T) field 

with approximately 4-year-old plantation: one with additions of urea (UN) that is the local 

farmer’s conventional and common practice for this region, another with applications of organic 
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fertilizer (OM) that is likely to be used alternative practice in the future for this region, and the 

final treatment with no synthetic nitrogen fertilizers or organic fertilizers (NN) application. These 

fertilizer treatments were arranged in a randomized complete block design with four replicates, 

resulting in a total of 12 plots (each with an area of 8 m × 8 m). For the TUN plots, urea was 

applied at the common rate of 450 kg N ha-1 yr-1 in two splits (one third of annual nitrogen inputs 

as basal fertilization in the autumn time, two thirds as topdressing in the spring time). With respect 

to TOM, organic fertilizer was applied at rates and times in accordance with TUN (Table 1). The 

form of fertilizer applied in TOM was oilcake, which is a typical organic fertilizer in tea 

cultivations of China and other countries like Japan. This organic fertilizer contained 7.1% N and 

had a C:N ratio of 6.1. In addition, all treatments received equal amounts of phosphorous and 

potassium (i.e., 225 kg P2O5 ha-1 yr-1 and 225 kg K2O ha-1 yr-1) in terms of fertilizer 

recommendations by local farmers. On each replicated plot, the width of the canopy of tea plants 

was approximately 0.5 m, and the distance of inter-row space between the canopies was about 0.4 

m. All of the fertilizers were applied as band application in the inter-row space between canopies 

with widths of approximately 0.2 m, and then incorporated into soils with a depth of 

approximately 0.1 m, which is the conventional practice in tea cultivations. Due to the young 

plantation age, the present tea plants did not receive any trimming during the experimental period, 

and they also seldom experienced leaf harvest. 

2.2 Measurements of N2O and NO fluxes 

The fluxes of N2O and NO were in situ measured simultaneously using manually closed 

chamber-based techniques (Zheng et al., 2008; Yao et al., 2009). As mentioned above, all 

fertilizers were incorporated in the form of bands between the rows of tea plants, and the 

remaining area was covered by canopy under which no fertilizer was applied. To better evaluate 

gas fluxes from the tea field, a size of rectangular stainless-steel frame of 0.70 m × 0.90 m (width 

× length) was set up in each replicated plot, which covered four tea plants and parts of spaces 

between rows. That is, the frame covered the whole canopy area (i.e., 0.5 m in length) and 

two-half of the fertilized inter-row spaces on both sides of tea canopy (i.e., 0.2 m in length each 

side), representing the whole tea field landscape. To eliminate the possibility of influence on N2O 
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and NO fluxes from the temporary installation of chamber bases (Matson et al., 1990), the frames 

were inserted into the soil to a depth of 0.15 m one month before the start of flux measurements, 

and they were maintained in place throughout the entire observation period, except when it was 

removed for necessary farming practices (e.g., band fertilization). Besides, the sampling locations 

were connected with boardwalks to prevent soil disturbance during the sampling period. In general, 

flux measurements were conducted five times per week during the first week after each 

fertilization event, and three times per week during the rest of time. Almost all of the gas sampling 

was taken between 09:00 and 11:00 local standard time on each measuring day to minimize the 

influence of diurnal temperature variation. Based on the size of frames and the height of tea plants, 

insulated chambers with a bottom area of 0.70 m × 0.90 m and a height of 1.0 m were designed for 

gas samplings. These chambers were wrapped with a layer of styrofoam and aluminum foil to 

minimize temperature changes during the sampling period. Also, two circulating fans driven by 

12V DC were installed inside the sampling chamber to facilitate mixing of chamber air and thus 

inhibiting the formation of gas concentration gradients, and a hole of 2 cm diameter was fitted in 

the top panel for equilibrating the pressure during the placement of them on the base frames. This 

hole was embedded during the gas sampling using a pressure balance tube whose diameter and 

length were determined according to the recommendation of Hutchinson and Mosier (1981). To 

acquire the N2O flux, five gas samples were withdrawn from the chamber headspace using 60 ml 

polypropylene syringes fitted with three-way stopcocks at fixed intervals of 0, 10, 20, 30 and 40 

min after covering. Within 3 h after collection, the N2O concentrations of gas samples stored in 

airtight syringes were directly analyzed in the laboratory established beside the experimental field, 

using a gas chromatograph (GC, Agilent 7890A, Agilent Technologies, CA, USA) equipped with 

an electron capture detector at 330 °C on the basis of DN-CO2 method, as described in detail by 

Zheng et al. (2008). The N2O was separated by two stainless steel columns (both with an inner 

diameter of 2 mm, one with a length of 1 m and the other with a length of 2 m) packed with 

Porapak Q, 80/100 mesh at 55 °C isothermally. To ensure quality and stability assurance, the GC 

system was inserted five standard N2O samples with concentrations of 350 ppbv (the national 

center for standard matters, Beijing, China) between every 10 unknown gas samples. Results of 

GC analyses were accepted when five standard gas calibrations produced coefficient of variation 
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lower than 1%. The N2O flux was determined by the linear or nonlinear change of gas 

concentrations during the time of chamber closure, as described in detail by Wang et al. (2013). In 

this study, the minimum detection limit of N2O flux was approximately 2.6 g N m-2 h-1. 

For each NO flux measurement, gas samples were collected from the same chamber that was used 

for N2O flux measurements (Yao et al., 2009). Before closing the chamber, approximately 2.5-3 L 

gas sample from the headspace of each chamber was extracted into an evacuated bag made of inert 

aluminum-coated plastic, and this measurement was regarded as time 0 min for NO analysis. After 

40 min under chamber enclosure conditions (i.e., after finishing N2O sample collections), another 

headspace gas sample with the same volume was extracted from each chamber into another 

evacuated bag. From these bag samples, NO concentrations were analyzed within 1 h by using a 

model 42i chemiluminescence NO-NO2-NOx analyzer (Thermo Environmental Instruments Inc., 

USA). The NOx analyzer instrument was calibrated monthly in the laboratory using a TE-146i 

dilution-titration instrument (dynamic gas calibrator). A cylinder of standard gas of 50 ppmv NO 

in N2 (the national center for standard matters, Beijing, China) and a zero gas generator (Model 

111 Zero Air Supply) were used for multipoint calibrating, spanning, and zeroing of the NOx 

analyzer. The NO flux was determined from the concentration at the end of the chamber enclosure 

period by subtracting the concentration at time 0 min. It should be noted that although some 

studies deriving N2O and NO fluxes by employing either a simple linear regression method (e.g., 

Williams and Davidson, 1993; Kim and Kim, 2002; Zheng et al., 2003; Venterea et al., 2003; Li 

and Wang et al., 2007; Pang et al., 2009; Zhao et al., 2015) or a nonlinear regression model (e.g., 

Valente et al., 1995; Kroon et al., 2008; Yao et al., 2010a; Wang et al., 2013) have been widely 

adopted, it is clear that inappropriate application of a linear model to nonlinear data may seriously 

underestimate the trace gas flux (Hutchinson and Livingston, 1993; Kutzbach et al., 2007). For 

example, Kroon et al. (2008) suggested that on average, the N2O emission estimates with the 

linear regression method were 46% lower than the estimates with the exponential regression 

method. Similarly, Mei et al. (2009) conducted a field intercomparison of NO flux measurements 

with linear and nonlinear regression methods, and observed that the linear estimates of NO flux 

were 26% lower on average relative to the nonlinear method. However, to date there has been 

limited field comparison of these two methods to assess comparability of N2O or NO fluxes 
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calculated by them. Based on our data sets of NO measured in wheat fields using the automatically 

static translucent chamber-based system (the raw data from the case studies of Zheng et al., 2003 

and Yao et al., 2010a), the NO fluxes were re-estimated using linear and nonlinear regression 

methods. In order to better compare the two regression methods, a subset of data collected in the 

evening time was used that satisfied the present conditions of static opaque chamber technique. 

Finally, approximately 3489 pairs of observations were used for comparing the difference between 

the two regression methods; and the results showed that the linear model underestimated the NO 

fluxes by 3% to 59% (mean: 31%) at the 95% confidence interval, as compared to the nonlinear 

method. Overall, these findings indicate that data sets of N2O collected in this study are relatively 

reliable, but the present method of linear accumulation assumption inevitably introduce an extent 

of underestimation into the NO fluxes for cases with nonlinear accumulations. Therefore, it has to 

be noted that the NO fluxes reported in this study represent the conservative magnitude for the 

present tea plantations.  

2.3 Auxiliary measurements 

The air temperature inside the chamber headspace during the flux measurements was recorded 

with a manual thermocouple thermometer (JM624, Tianjin, China). Air pressure and temperature 

as well as daily precipitation were obtained from an automatic meteorological station set up on the 

experimental farm. The air temperature measured in the chamber enclosures and air pressure 

obtained from the meteorological station were directly utilized in the flux computations to 

calculate the gas density during the sampling conditions by using the ideal gas law. Soil (5 cm) 

temperature was automatically measured in 30 min intervals from the direct vicinity of the 

chamber frames using a HOBO temperature sensor (Onset, USA). Soil water content (0-6 cm) was 

recorded daily using a portable frequency domain reflectometry (FDR) probe (MPM-160, China). 

Three replicate soil samples (0-10 cm) in each plot were collected at 1-2 week intervals using a 3 

cm diameter gauge auger. Following the collection, the fresh samples were bulked into one 

composite sample for each treatment, and then immediately extracted with 1 M KCl and 0.05 M 

K2SO4 to determine the concentrations of soil mineral N (NH4
+ and NO3

-) and dissolved organic 

carbon (DOC), respectively, both with a soil: solution ratio of 1:5. The NH4
+, NO3

- and DOC 
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concentrations were measured simultaneously with a continuous flow colorimetric analysis 

instrument (San++, Skalar Analytical B.V., Netherlands). 

2.4 Statistical analysis 

Statistical analysis was conducted using the SPSS19.0 (SPSS China, Beijing, China). Before 

variance component analysis, all data were tested for normal distribution using the Nonparametric 

Tests approach, and the original data that failed the test were log transformed (P = 0.01-0.42). To 

determine differences in nitrogenous gases fluxes and soil environmental variables among 

treatments during the given pronounced flux-related event (e.g., fertilization events, growing 

period), Linear Mixed Models for randomized complete block design were used with least 

significant difference tests at P < 0.05 level. Differences in N2O and NO emissions due to main 

effects like fertilizer treatment, year, treatment × year and block × treatment as random effect were 

analyzed using Linear Mixed Models, and the model was fitted using the restricted maximum 

likelihood procedure. Multiple linear or non-linear regression analysis was applied to examine the 

correlations between N2O and NO fluxes and soil environmental factors. 

3 Results 

3.1 Environmental variables  

Annual precipitation was 804 mm from mid September 2012 to the end of September 2013, 890 

mm from the beginning of October 2013 to mid October 2014 (Fig. 1a); both values were smaller 

than the multiyear average precipitation (914 mm). Apart from the precipitation, sprinkling 

irrigation was applied four times per year depending on climatic conditions, amounting to 150 and 

135 mm for the two years, respectively. Soil temperature showed comparable fluctuations with the 

air temperature, ranging from -0.1 to 28.3 °C. The mean annual soil temperature was 14.9 and 

14.6 °C for the 2012/2013 and 2013/2014, respectively (Fig. 1a), with no treatment impacts. Soil 

water content expressed as WFPS (water-filled pore space) ranged from 20% to 80% during the 

study period, which was mainly influenced by rainfall and irrigation events. The mean WFPS 

across 2012 to 2014 were 49.1%, 49.7% and 48.6 % for TNN, TUN and TOM, respectively, with 

no significant difference among them (Fig. 1b).  
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Soil NH4
+ concentrations in TUN and TOM remarkably increased following the fertilizer 

applications in March and October, and varied from 4.1 to 654 mg N kg-1SDW (soil dry weight) 

(Fig. 2a). The temporal patterns of NO3
- concentrations were also affected by nitrogen applications, 

ranging from 2.4 to 188 mg N kg-1SDW, but the elevated peaks were observed slightly later than 

the peaks for NH4
+ (Fig. 2b), reflecting the occurrence of nitrification. In contrast, both NH4

+ and 

NO3
- concentrations in TNN were relatively stable and always below 50 mg N kg-1SDW. Clearly, 

TUN and TOM significantly enhanced soil mineral N concentrations, compared to TNN (P<0.05). 

During the study periods, soil NH4
+ averaged 17, 138 and 113 mg N kg-1SDW for TNN, TUN and 

TOM in the first year (2012-2013), respectively; and mean NH4
+ concentrations were 5.4, 172, 

106 mg N kg-1SDW for TNN, TUN and TOM in the second year (2013-2014), respectively (Fig. 

2a). Compared to TUN, TOM greatly decreased soil NH4
+ concentrations during both studied 

years, although this influence was not statistically significant for the first year. The mean NO3
- 

concentrations across 2012-2014 in TNN, TUN and TOM were around 5.7, 44 and 49 mg N 

kg-1SDW, respectively, with no significant difference between TUN and TOM for either year (Fig. 

2b).  
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Over the whole study period, soil DOC concentrations ranged from 17 to 317 mg C kg-1SDW in 

TNN, from 10 to 488 mg C kg-1SDW in TUN and from 20 to 559 mg C kg-1SDW in TOM (Fig. 

2c). The mean DOC concentrations across the both studied years were approximately 142, 146 

and 179 mg C kg-1SDW for TNN, TUN and TOM, respectively. Obviously, TOM significantly 

increased mean soil DOC concentration compared to TNN and TUN (P<0.05), but there was no 

significant difference between TUN and TNN.  

3.2 Annual N2O and NO fluxes and their direct emission factors   

Seasonal pattern of N2O fluxes was generally driven by temporal variation in air and soil 

temperatures, which was relatively higher during the tea growing season from March to 

September than in winter. The cumulative N2O release from all treatments across the tea growing 

season accounted for 54-86% of the annual emission. Meanwhile, the seasonal variability of N2O 

fluxes were also influenced by fertilization and rainfall/irrigation events (Fig. 3a). The N2O fluxes 

in TUN and TOM increased after each of the fertilizer applications, and then gradually decreased 
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to the levels comparable to those from TNN. Obviously, the N2O emissions varied significantly 

with fertilizer treatment and year. Across the investigated two years, annual N2O emissions ranged 

from 1.9 kg N ha-1 yr-1 for TNN to 32.7 kg N ha-1 yr-1 for TOM (Table 2). Compared to TNN, the 

2-year mean N2O emissions were remarkably increased by 345% and 660% for TUN and TOM, 

respectively (P<0.05). In comparison with TUN, TOM significantly increased annual N2O 

emission by 71% on average (P<0.05). On the annual scale, the direct emission factors of N2O 

were an average of 3.1% and 5.9% for tea plantations under urea and organic fertilizer treatment, 

respectively.  

Clearly, the NO fluxes demonstrated a seasonal variability that was similar to the N2O fluxes. That 

is, they were higher from March to September and lower from December to March, and also 

affected by fertilization and rainfall/irrigation events (Fig. 3b). Similar to N2O, the NO emissions 

were greatly influenced by fertilizer treatment and year. The annual NO emissions from all 

treatments ranged from 0.4 to 19.4 kg N ha-1 yr-1 (Table 2), of which 53-77% was released during 

the tea growing season. Compared to TNN, the fertilizer applications (TUN and TOM) 

significantly increased annual NO emission by 8-11 times on average (P<0.05). In contrast to N2O, 

TOM significantly decreased annual NO emission by 22% relative to TUN (P<0.05). Averaging 

across the two years, the direct emission factors of NO were 3.8% and 2.9% for TUN and TOM, 

respectively. In addition, the N2O+NO emissions were, on average, 5.6, 36.7 and 45.1 kg N ha-1 

yr-1 for TNN, TUN and TOM, respectively, indicating that alternative organic fertilization 

significantly enhanced nitrogen oxide emissions (Table 2). 

3.3 Relationships of N2O and NO fluxes with soil environmental factors 

Across the 2-year study period, stepwise multiple regression analysis showed that WFPS was the 

key factor controlling N2O and NO fluxes for both TUN and TOM. Furthermore, a nonlinear 

response curve best described the decreases in molar ratios of NO to N2O fluxes with increasing 

WFPS (Fig. 4). However, variations in WFPS could explain only 22-30% of the variance in the 

ratios, suggesting the importance of some other factors (e.g., soil mineral N and temperature) on 

regulating these fluxes. To better evaluate the combined effects of soil environmental factors on 

N2O and NO fluxes, therefore, the revised “hole-in-the-pipe” model as described by Yao et al. 
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(2015) and Yan et al. (2015) was tested in this study. Over the entire study period, the analysis 

results displayed that the temporal variations of N2O and NO fluxes in TUN and TOM could be 

well described by a combination of soil environmental factors, including soil mineral N, WFPS 

and temperature. That is, for TUN:

 

317 

318 

319 

320 

KRT
WFPSLn)NOLn(NHNOONLn

9.13
)(53.230.0)( 342    , R2=0.97, P<0.01; and 321 

KRT
WFPSLn)NOLn(NHNOONLn

6.13
)(68.217.0)( 342    , R2=0.96, P<0.01 for 

TOM; in which R and Tk are the molar gas constant (8.31 J mol-1 k-1) and soil temperature in 

Kelvin, respectively.  
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4 Discussion 

4.1 Intra- and inter-annual variations of N2O and NO fluxes and related environmental 

factors 

Currently, the existing studies on tea fields only focused on N2O fluxes (Jumadi et al., 2005; 

Akiyama et al., 2006; Gogoi and Baruah, 2011; Fu et al., 2012; Han et al., 2013a; Yamamoto et al., 

2014), and therefore they are not directly comparable to our present study. Our results 

demonstrated annual characteristics of N2O and NO fluxes simultaneously, which is important for 

better understanding of how the climatic and environmental factors affecting soil nitrogen turnover 

processes in tea plantations. Generally, the subtropical climate is characterized by the hot-humid 

season from April through September and the cool-dry season from October through March every 

year, leading to significant seasonal variations in soil environmental factors (Lin et al., 2010). 

Driven by the seasonality of soil temperature, WFPS, NH4
+ and NO3

- contents, the N2O and NO 

fluxes showed large temporal variations (Skiba et al., 1998; Williams et al., 1999; Yan et al., 2015), 

characterizing by significantly higher during the tea growing season than in winter in this study 

(Fig. 3). The present result is in agreement with previous studies conducted in other agricultural 

systems under the subtropical climate, such as in vegetable fields (Min et al., 2012; Yao et al., 

2015), paddy rice-upland crop rotation ecosystems (Yao et al., 2013) and orchard plantations (Lin 

et al., 2010), highlighting the climatic controls on N2O and NO fluxes. Furthermore, up to 97% of 
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the variance in N2O and NO fluxes could be explained by the combined effects of soil temperature, 

WFPS and mineral N content, indicating an essential role of the environmental factors on N2O and 

NO fluxes. Overall, the knowledge of temporal variations in N2O and NO fluxes and their related 

driving forces plays an important role for up-scaling nitrogenous gas fluxes to the regional and 

global scale.  

On the other hand, our study clearly demonstrated that annual N2O and NO emissions were 

significantly affected by the factor of year (Fig. 3), even though the field management and soil 

temperature were comparable across the two study years. A presumable reason for the pronounced 

inter-annual variations of N2O and NO fluxes was the difference in precipitation, particularly 

rainfall distribution throughout a year. For example, the cumulative rainfall of 94 mm over a 

period from 20th to 26th June, 2013 was received that brought soil water content changing from 

25% to 64% WFPS on average (Fig. 1). As was also observed by our auxiliary measurements that 

soil NH4
+ and NO3

- increased after rainfall events during this period (Fig. 2a-b), the 

drying-rewetting event could enhance the availability of nitrogen substrate and stimulate microbial 

activity (Davidson, 1992; Williams et al., 1992; Yao et al., 2010b), and thus, resulting in the 

following elevated fluxes of N2O and NO (Fig. 3a-b). Similarly, a number of studies also reported 

that the large inter-annual variability in N2O and NO fluxes were mainly influenced by the 

difference in annual distribution of the precipitation (e.g., Akiyama and Tsuruta, 2003b; Yao et al., 

2013). 

4.2 Fertilizer type influencing annual N2O and NO emissions 

As tea plantations displayed high N2O production activities, they might be a major source of 

nitrogenous gases in agricultural systems (Tokuda and Hayatsu, 2001, 2004; Zhu et al., 2014). Our 

observations confirmed earlier findings, with annual N2O emissions ranging from 14.4 to 32.7 kg 

N ha-1 yr-1 and NO emissions from 12.3 to 19.4 kg N ha-1 yr-1 for the fertilized tea plantations 

(Table 2). Generally, our annual N2O emissions were within the range of the reported magnitudes 

of 4.3-30.9 kg N ha-1 yr-1 for Chinese subtropical tea fields (Fu et al., 2012; Han et al., 2013a). 

Based on the thorough review of Akiyama et al. (2006), annual N2O emissions were presented 

from 0.6 to 61.0 kg N ha-1 yr-1 for Japanese tea plantations, with a mean value of 24.3 kg N ha-1 
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yr-1. Obviously, the mean annual N2O emission in our study (mean: 24.1±4.0 kg N ha-1 yr-1) was 

well consistent with the Japanese estimated value. In contrast, the magnitude of N2O emissions 

from the present tea plantations was much higher than that from the paddy rice-fallow cropping 

systems in the same region (0.8-6.6 kg N ha-1 yr-1, Yao et al., 2014). With respect to NO, this is the 

first time reporting annual NO emission for tea plantations to our knowledge. On average, tea 

plantations released at least 16.8 kg N ha-1 yr-1 NO into the atmosphere, which fell within the 

range of 1.1-47.1 kg N ha-1 yr-1 for Chinese conventional vegetable fields under the subtropical 

climate (e.g., Li and Wang, 2007; Mei et al., 2009; Deng et al., 2012; Yao et al., 2015). As these 

authors acknowledged, their high NO emissions for vegetable fields were mainly attributed to 

quite high nitrogen inputs, ranging from 317 to 1464 kg N ha-1 yr-1. Nevertheless, our observed 

annual NO emissions were relatively higher as compared to those estimates of 0.5-6.5 kg N ha-1 

yr-1 for rice-wheat cropping systems with nitrogen application rates of 150-375 kg N ha-1 yr-1 

(Zheng et al., 2003; Yao et al., 2013; Zhao et al., 2015) and of 4.0-6.9 kg N ha-1 yr-1 for forest 

ecosystems (Li et al., 2007) in Chinese subtropical regions.  
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Although the fertilized tea plantations emitted large amounts of N2O and NO, the magnitude of 

these emissions was significantly influenced by the applied fertilizer type. That is, organically 

fertilized tea plantation increased N2O emission by 71% but decreased NO emission by 22%, 

compared to conventional urea application (Table 2). Our stimulatory effect of organic fertilization 

on N2O emission and simultaneously inhibitory impact on NO emission supports the findings of 

some previous studies (Thornton et al., 1998; Akiyama and Tsuruta, 2003a, b; Hayakawa et al., 

2009). However, other studies showed that organic fertilization may reduce N2O emissions or that 

emissions of N2O and NO were not affected at all (Harrison et al., 1995; Akiyama and Tsuruta, 

2003b; Vallejo et al., 2006; Yao et al., 2009). It was generally accepted that the NO to N2O 

emission ratio was used as a potential indicator for distinguishing between nitrification and 

denitrification process (Anderson and Levine, 1986; Skiba et al., 1992; Harrison et al., 1995; 

Williams et al., 1998). As calculated from the results of Table 2, the molar ratios of NO to N2O 

emissions were in the range of 1.8-2.5 for the TUN plots but < 1.0 in the TOM plots. This may 

indicate that nitrification was probably the dominant process for N2O and NO production in the 

conventional urea treatment, while denitrification would be more dominant process in organic 
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fertilization, although both nitrification and denitrification could occur under the present soil 

moisture conditions (i.e., 20%-80%WFPS) according to a conceptual model proposed by 

Davidson (1991). Denitrifiers have a very high affinity for NO and tend to utilize it in preference 

to N2O as a substrate even in well-aerated soils (Conrad, 2002; Yamulki and Jarvis, 2002). It is 

therefore to be expected the differences in N2O and NO emission response between urea and 

organic fertilizer treatment. This view was further supported by our observations on soil NH4
+ and 

DOC. It is well recognized that NH4
+ enhanced NO fluxes since it affected nitrification, whereas 

the addition of DOC generally diminished these fluxes by enhancing soil respiration and thereby 

inducing the anaerobic conditions that favored the production of N2O and the consumption of NO 

through denitrification (Granli and Bockman, 1994; Vallejo et al., 2006; Meijide et al., 2007). In 

this study, therefore, TOM with lower NH4
+ and higher DOC, emitted more N2O and less NO than 

those of TUN. Alternatively, opposite trends observed for N2O and NO emissions between TUN 

and TOM was probably regulated by soil heterotrophic nitrification, the direct oxidation of organic 

N to NO3
- without passing through mineralization (Müller et al., 2004; Islam et al., 2007). It has 

been identified that heterotrophic nitrification, especially for acidic soils with organic amendments, 

plays an important role in soil nitrogen transformations, including the production and consumption 

processes of NH4
+ and NO3

- as well as N2O and NO (Dunfield and Knowles, 1998; Zhu et al., 

2011, 2014; Medinets et al., 2015). Hence, one can assume that given WFPS being comparable in 

all treatments, heterotrophic nitrification was the most important process for consumption of NO 

and production of N2O in the organic fertilizer treatment, whereas autotrophic nitrification 

dominated in urea application. Besides, it has been validated that soils receiving organic 

amendments significantly reduce NO fluxes as a result of increased NO consumption via aerobic 

co-oxidation reactions in heterotrophic bacteria (Baumgärtner et al., 1996; Dunfield and Knowles, 

1998; Conrad, 2002). This assumption could be also supported by our measurements on soil NH4
+ 

and NO3
-. That is, TOM showed comparable even slightly higher NO3

- relative to TUN, although 

TUN demonstrated relatively high NH4
+ due to the rapid release of urea hydrolysis (Fig. 2a-b). 

This indicated that heterotrophic nitrification contributed substantially to the production of NO3
- in 

TOM, because the application of organic matter can enhance the direct oxidation of organic N to 

NO3
- via soil heterotrophic nitrification (Zhu et al., 2011, 2014). Overall, although our data 
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supported the above mentioned views, the exact reaction mechanisms were not determined 

directly in the present study. Therefore, further detailed investigations are needed to provide a 

complete assessment on the relative contribution of autotrophic nitrification, heterotrophic 

nitrification and denitrification to N2O and NO fluxes from tea plantations, based on new 

approaches and techniques, e.g., 15N tracing techniques (Müller et al., 2007).  

4.3 Background N2O and NO emissions and direct emission factors of fertilizer N  

Although background N2O and NO emissions occurring in the zero-N control have been 

recognized as a major component for developing national emission inventory of nitrogenous gases 

(Zheng et al., 2004; Huang and Li, 2014), direct measurements on background emissions, 

especially measurements covering an entire year for tea plantations have been rare (Akiyama et al., 

2006). In our study, the mean annual background emissions were 4.0 kg N ha-1 yr-1 for N2O and at 

least 1.6 kg N ha-1 yr-1 for NO, respectively (Table 2). Our background N2O emission is 

comparable to the preliminary estimate of 3.66-4.24 kg N ha-1 yr-1 for Japanese tea fields 

(Akiyama et al., 2006), but it is relatively lower than the reported value of 7.1 kg N ha-1 yr-1 for 

another tea field in the Chinese subtropical region (Fu et al., 2012). Nevertheless, these 

background N2O emissions revealed by present and previous studies in tea plantations are 

generally higher than those estimates for cereal grain croplands (ranging from 0.1 to 3.67 kg N 

ha-1 yr-1, with a mean of 1.35 kg N ha-1 yr-1, Gu et al., 2007) and vegetable fields (1.1-2.7 kg N 

ha-1 yr-1, Wang et al., 2011; Liu et al., 2013) in China, or the recommended default value of 1 kg N 

ha-1 yr-1 by IPCC (IPCC, 2006). Similarly, our mean background NO emission from tea 

plantations is greater relative to cereal grain croplands (0.2-0.9 kg N ha-1 yr-1, Yao et al., 2013; Yan 

et al., 2015) and vegetable fields (0.2-0.8 kg N ha-1 yr-1, Yao et al., 2015) in China. These 

comparisons highlight the characteristic of high background N2O and NO emissions from tea 

plantations, which is probably due to long-term heavy nitrogen fertilization and subsequent soil 

acidification (Tokuda and Hayatsu, 2004; Yamamoto et al., 2014). Soil acidity appears to be an 

important factor in affecting biotic and abiotic processes and consequently promoting nitrogen 

losses, such as enhancing N2O production ratios from nitrification and depressing the conversion 

of N2O to N2 in denitrification (Zhu et al., 2011) as well as inducing chemodenitrification for NO 
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production (Venterea et al., 2003; Medinets et al., 2015). It should, however, be noted that with 

limited data available from tea plantations of the world and consequently the high uncertainties of 

meta-analytic results, caution should be exercised in the interpretation of the differences in 

background emissions of N2O and NO between the current and previous studies.  

In this study, the mean annual emission factor of NO for TUN was 3.8%, which was substantially 

higher than those estimated for Chinese rice fields (0.04%) and uplands (0.67%) (Huang and Li, 

2014), or the average value of 0.7% for global upland croplands (Bouwman et al., 2002; Yan et al., 

2005). The NO emissions from TUN were greatly reduced by practicing TOM, giving emission 

factor of 2.9% (Table 2). Although the NO emission factors were lower for TOM relative to TUN, 

TOM could not be proposed as a preferred management option for tea plantations because it 

emitted much higher N2O or N2O+NO. The N2O emission factors obtained on this study site (i.e., 

3.1% for TUN and 5.9% for TOM) were considerably higher than those estimated for Japanese tea 

fields (2.8%, Akiyama et al., 2006) and another Chinese subtropical tea field (1.9-2.2%, Fu et al., 

2012), or the IPCC default value of 1% for global upland croplands (IPCC, 2006). These results 

corroborated the assertion that tea plantations were an important source of atmospheric N2O in 

tropical and subtropical regions, and furthermore they extended the earlier findings by 

demonstrating the characteristic of high NO and N2O+NO emissions from tea plantations.  

It is noteworthy that although our investigated tea plantations represent the major and typical 

tea-planting types in Chinese subtropical regions, the obtained background and direct emission 

factors of N2O and NO could not be simply extrapolated to a regional scale due to the limited site 

results (e.g., only four chamber-spatial measurements for each treatment) and the characteristics of 

high spatial variability of nitrogenous gases fluxes (e.g., Li et al., 2013). A more holistic approach 

for regional estimates of N2O and NO emissions from tea plantations should be based on 

meta-analysis of published nitrogenous gases fluxes to obtain representative background and 

direct emission factors or on the basis of biogeochemical modeling validated by regional field data, 

as suggested methodologies by IPCC (IPCC, 2006). 

5 Conclusions 

Based on two-year field measurements, this study provided an integrated evaluation on N2O and 
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NO emissions in response to no nitrogen fertilization, conventional urea and alternative oilcake 

application in Chinese subtropical tea plantations. Clearly, both N2O and NO emissions varied 

substantially within a year and between different years, which was chiefly driven by the 

fertilization events and the distribution and size of rain events. Soil water-filled pore space, 

temperature and mineral nitrogen content appeared to be the major factors regulating the 

seasonality of N2O and NO fluxes, and their correlation could be well presented by a revised 

“hole-in-the-pipe” model. Compared to no nitrogen fertilization, the application of urea and 

organic fertilizer to tea plantations stimulated annual N2O and NO emissions. On average, the 

organic fertilizer induced emission factor of N2O (i.e., 5.9%) was significantly higher than the 

urea-induced emission factor of 3.1%; however, the urea-induced emission factor of NO (i.e., 

3.8%) was significantly higher than the organic fertilizer induced emission factor of 2.9%. In total, 

the substitution of conventional urea by organic fertilizer in tea plantations significantly increased 

N2O+NO emissions, and this stimulation effect should be taken into account in designing and 

evaluating soil carbon sequestration strategy of organic fertilization.  Although the magnitude of 

N2O and NO emissions was significantly influenced by the applied fertilizer type, annual emission 

factors of N2O and NO induced by either urea or organic fertilizer application were all 

substantially higher than those defaults for global upland croplands, indicating tea plantations may 

contribute substantially to total N2O and NO emissions from croplands in China. The results from 

this study, however, may not necessarily indicate the feasible fertilizer management option in the 

tea plantations, as a result of only presenting two nitrogen-trace gas species (i.e., N2O and NO). 

Therefore, when we finally provide a complete evaluation of nitrogen fertilizer practice in tea 

plantations from an integrated agronomic and environmental point of view, future field 

measurements are necessary to include the climatically and environmentally important carbon- 

and nitrogen- trace gas fluxes (i.e., CH4, CO2, NO, N2O and NH3) as well as plant qualities and 

yields.  
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Table 1. Field management of synthetic and organic nitrogen fertilizers for tea plantations under 

different treatments during the period of 2012-2014 

773 

774 

 Nitrogen application rate (kg N ha-1) 
 TNN TUN TOM * 

Application date 

Basal fertilization 0 Urea (150) Oilcake (150) 8 Oct (2012) 
6 Oct (2013) 

Topdressing 0 Urea (300) Oilcake (300) 18 Feb (2013) 
1 Mar (2014) 

Total 0 450 450  
* The fertilizer of oilcake contained 7.1% N and had a C:N ratio of 6.1 775 
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Table 2. Annual cumulative emissions of nitrous oxide (N2O, in kg N ha-1 yr-1), nitric oxide (NO, 

in kg N ha-1 yr-1) and N2O plus NO (in kg N ha-1 yr-1) as well as their respective direct emission 

factors ( , in %) for tea plantations under different fertilizer treatments during the period of 

2012-2014 

dEF

Year Treatmentb N2O
c 

ONd 2
EF 

NOc 
NOdEF 

N2O+NOc 
NOONd 2

EF 

2012-2013 TNN 6.2±0.3a  2.8±0.5a  9.0±0.4a  

 TUN 21.1±2.5b 3.3±0.5 19.4±0.3b 3.7±0.1 40.6±2.6b 7.0±0.6 

 TOM 32.7±0.7c 5.9±0.2 17.0±0.4c 3.2±0.1 49.8±1.0c 9.1±0.2 

2013-2014 TNN 1.9±0.1a  0.4±0.1a  2.3±0.2a  

 TUN 14.4±2.6b 2.8±0.6 18.3±0.5b 4.0±0.1 32.8±2.2b 6.8±0.5 

 TOM 28.1±1.3c 5.8±0.3 12.3±1.1c 2.7±0.3 40.5±2.3c 8.5±0.5 

2012-2014a TNN 4.0 ± 0.1a  1.6±0.2a  5.6±0.2a  

 TUN 17.8±2.5b 3.1±0.6 18.9±0.4b 3.8±0.1 36.7±2.4b 6.9±0.5 

 TOM 30.4±0.9c 5.9±0.2 14.7±0.6c 2.9±0.1 45.1±1.4c 8.8±0.3 
Data shown are means ± standard errors of 4-spatial replicates. a Mean values of the two 

investigated years. b TNN, no nitrogen fertilizer application; TUN, the common practice with urea 

application rate of 450 kg N ha-1 yr-1; and TOM, the alternative practice with organic fertilizer 

application rate of 450 kg N ha-1 yr-1. c Different letters within the same column indicate 

significant differences among treatments in each year at P < 0.05 level. 
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Figure captions  

Figure 1. The temporal changes of (a) air and soil (5 cm) temperatures, daily precipitation and 

irrigation, and (b) soil water content expressed as WFPS (water-filled pore space) at a depth of 0-6 

cm for all the fertilizer treatments (i.e., the common practice with urea application (TUN), the 

alternative practice with organic fertilizer application (TOM), and no nitrogen fertilizer application 

(TNN)) in tea plantations during the period from September 2012 to October 2014. 

Figure 2. Seasonal changes of the soil (a) ammonium (NH4
+), (b) nitrate (NO3

-), and (c) dissolved 

organic carbon (DOC) concentrations (mean ± standard error) for all the fertilizer treatments ((i.e., 

the common practice with urea application (TUN), the alternative practice with organic fertilizer 

application (TOM), and no nitrogen fertilizer application (TNN)) in tea plantations during the 

period from September 2012 to October 2014. SDW is the abbreviation of soil dry weight.  

Figure 3. Seasonal changes of (a) nitrous oxide (N2O), and (b) nitric oxide (NO) fluxes (mean ± 

standard error) for all the fertilizer treatments ((i.e., the common practice with urea application 

(TUN), the alternative practice with organic fertilizer application (TOM), and no nitrogen fertilizer 

application (TNN)) in tea plantations during the period from September 2012 to October 2014. 

The downward arrows denote the time of fertilization.  

Figure 4. Effect of soil water content (expressed as WFPS, water-filled pore space) on the molar 

ratios of nitric oxide (NO) to nitrous oxide (N2O) fluxes in the fertilized treatments (i.e., the 

common practice with urea application (TUN), and the alternative practice with organic fertilizer 

application (TOM)) across the 2-year study period.  



 

15

30

45

60

75

90

15

30

45

60

75

90

0

20

40

60

80

b

2013-2014

Sep.15Jul.15May.15Mar.15Jan.15Nov.15

W
F

P
S

 (
%

)
 

 TNN  TUN  TOM

W
F

P
S

 (
%

)

Date (month.day)

Sep.15 Sep.15Jul.15May.15Mar.15Jan.15Nov.15

2012-2013

0

5

10

15

20

25

30

35

 

 Air temperature
 Soil temperature
 Precipitation
 Irrigation

T
e

m
pe

ra
tu

re
(

C
)

a

 P
re

ci
pi

ta
tio

n/
ir

ri
ga

tio
n 

(m
m

 d
-1
)

 

Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 31



 

0
100
200
300
400
500
600
700 c

D
O

C
 (

m
g

 C
 k

g-1
S

D
W

)

Date (month.day)
2013-2014

Sep.15Jul.15May.15Mar.15Jan.15Nov.15Sep.15 Sep.15Jul.15May.15Mar.15Jan.15Nov.15

2012-2013

0

50

100

150

200

250 b

 N
O

3- 
(m

g 
N

 k
g-1

S
D

W
)

0
150
300
450
600
750
900  TNN  TUN  TOM

 

N
H

4

+
 (

m
g 

N
 k

g
-1
S

D
W

)
a

 
Figure 2. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 32



 

0

500

1000

1500

2000

2500
b

N
O

 fl
ux

 (
g

 N
 m

-2
 h

-1
)

Date (month.day)
2013-2014

Sep.15Jul.15May.15Mar.15Jan.15Nov.15Sep.15 Sep.15Jul.15May.15Mar.15Jan.15Nov.15

2012-2013

0

1000

2000

3000

4000

5000

6000

7000
 TNN  TUN  TOM

N
2O

 fl
ux

 (
g

 N
 m

-2
 h

-1
)

a

 
Figure 3. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 33



 

20 30 40 50 60 70 80

0

3

6

9

12

15

 W FPS
m ol eR 051.09.22 

N
O

:N
2
O

 r
a

tio
 b

y 
m

o
le

 (
R

m
ol
)

WFPS (%)

a: TUN

(R2=0.22, P<0.01)

20 30 40 50 60 70 80

0

2

4

6

8

10

(R2=0.30, P<0.01)

 W F P S
m o l eR 0 5 7.04.1 6 

N
O

:N
2
O

 r
a

tio
 b

y 
m

o
le

 (
R

m
ol
)

WFPS (%)

b: TOM

 
Figure 4. 
 

 34


