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1. Abstract 21 

This research reveals new insights into the weather drivers of interannual variation in land 22 

surface phenology (LSP) across the entire European forest, while at the same time establishes 23 

a new conceptual framework for predictive modelling of LSP. Specifically, the Random Forest 24 

method, a multivariate, spatially non-stationary and non-linear machine learning approach, was 25 
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introduced for phenological modelling across very large areas and across multiple years 26 

simultaneously: the typical case for satellite-observed LSP. The RF model was fitted to the 27 

relation between LSP interannual variation and numerous climate predictor variables computed 28 

at biologically-relevant rather than human-imposed temporal scales. In addition, the legacy 29 

effect of an advanced or delayed spring on autumn phenology was explored. The RF models 30 

explained 81% and 62% of the variance in the spring and autumn LSP interannual variation, 31 

with relative errors of 10% and 20%, respectively: a level of precision that has until now been 32 

unobtainable at the continental scale. Multivariate linear regression models explained only 36% 33 

and 25%, respectively. It also allowed identification of the main drivers of the interannual 34 

variation in LSP through its estimation of variable importance. This research, thus, shows an 35 

alternative to the hitherto applied linear regression approaches for modelling LSP and paves 36 

the way for further scientific investigation based on machine learning methods. 37 

2. Introduction 38 

Vegetation phenology has emerged as an important focus for scientific research in the last few 39 

decades. The interest in vegetation phenology is twofold: inter-annual recording of the timing 40 

of phenological events allows quantification of the impacts of climate change on vegetation; 41 

and a greater understanding of phenological responses enables meaningful projections of how 42 

ecosystems will respond to future changes in climate (Menzel, 2002; Morisette et al., 2008; 43 

Peñuelas, 2009; Peñuelas and Filella, 2001). Although different approaches have been devised 44 

for the study of vegetation phenology (Rafferty et al., 2013), the characterisation and modelling 45 

of vegetation phenology at global or regional scales has been undertaken mainly through the 46 

use of long-term time-series of satellite-sensor vegetation indices (termed land surface 47 

phenology, LSP, to reflect that satellite-observed phenology includes all land covers). Most 48 

studies of LSP analyse trends in phenological events across years (Delbart et al., 2008; 49 

Jeganathan et al., 2014; Jeong et al., 2011; Karlsen et al., 2007; Myneni et al., 1997), but more 50 

recent studies present process-based models to uncover cause-effect relationships between 51 

long-term trends in phenology and its key driving variables (Ivits et al., 012; Maignan et al., 52 

2008a; Maignan et al., 2008b; Stöckli et al., 2011; Stöckli et al., 2008; Yu et al., 2015; Zhou et 53 

al., 2001). This last group of studies focuses on trends in phenology produced by trends in 54 

weather (mainly warming). However, interannual variation in LSP arising as a consequence of 55 

the inter-annual variability in weather are less studied (Cook et al., 2005; De Beurs and 56 
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Henebry, 2008; Menzel et al., 2005; Post and Stenseth, 1999; Zhang et al., 2004), with model-57 

based studies of this phenomenon being scarce (van Vliet, 2010). 58 

A higher frequency in the occurrence of extreme weather events has been observed in Europe, 59 

especially for summer temperatures (Barriopedro et al., 2011; Luterbacher et al., 2004). The 60 

summers of 2003 and 2010 in western and eastern Europe, respectively, were the warmest in 61 

the last 500 years (Barriopedro et al., 2011). Species and ecosystems respond more rapidly to 62 

these anomalies in weather than average climatic changes in most climatic scenarios (Zhao et 63 

al., 2013). Maignan et al. (2008b) and Rutishauser et al. (2008) reported that the LSP greening 64 

occurred 10 days earlier in 2007 than the average over the past three decades as a consequence 65 

of an exceptionally mild winter and spring. The study of the impacts of extreme inter-annual 66 

weather events on vegetation through the modelling of interannual variation in spring and 67 

autumn phenologies can increase our knowledge about climate-driven changes in phenology, 68 

acting as natural experiments in climate change scenarios (Rafferty et al., 2013). On the other 69 

hand, the modelling of LSP has been less explored compared to the modelling of individual 70 

plant species, and there are many aspects that remain to be understood, which limits 71 

comprehensive understanding of LSP and, therefore, of phenology at regional or global scales. 72 

A more complete modelling of LSP considering the inter-annual variation across large areas 73 

would include the capacity to interpret observations and make meaningful projections in 74 

relation to disturbances and their subsequent impacts (Morisette et al., 2008). 75 

Modelling efforts to characterize LSP have generally relied on functions (usually linear) of 76 

meteorological drivers, such as average temperature and precipitation (Ivits et al., 2012), 77 

growing degree days (GDD) (de Beurs and Henebry, 2005), light and temperature (Stöckli et 78 

al., 2011), minimum temperature, photoperiod, vapour pressure deficit (Jolly et al., 2005; 79 

Stöckli et al., 2008), or minimum relative humidity (Brown and de Beurs, 2008). However, 80 

there is lack of understanding on number of important aspects, such us the multivariate 81 

influence of meteorological variables (temperature, precipitation, solar radiation) driving 82 

phenology, or the effect of additional drivers in the modelling of autumnal phenophases 83 

(Morisette et al., 2008). For instance, Fu et al. (2014) found a “cause-effect relationship” 84 

between an earlier leaf senescence and an earlier spring flushing in leaves of warmed samples 85 

of Fagus sylvatica and Quercus robur. This legacy effect of spring phenology has been 86 

reported in recent studies using modified environments and plant species, but it has not been 87 

studied using LSP data. This latter aspect is particularly pertinent for studies that focus on inter-88 

annual variation in phenology and could potentially contribute to increased knowledge of how 89 
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climate change is affecting autumn phenology. On the other hand, many studies investigating 90 

the sensitivity of phenological events to climate variation use calendar seasonal or monthly 91 

mean climatic variables, which operate on fixed human calendar scales with a start date of 1st 92 

of January (Maignan et al., 2008b), instead of using biological scales, for example, time relative 93 

to the growing phase of plants (Pau et al., 2011). However, the modelling of interannual 94 

variation in LSP considering its potentially complicated relationship with climate in a 95 

multidimensional feature space (i.e. high number of multivariate weather drivers) might not be 96 

possible using traditional linear regression models (de Beurs and Henebry, 2005). In this sense, 97 

phenological modelling may benefit from machine learning techniques such as the Random 98 

Forest (RF) method (Breiman, 2001), reducing uncertainties and bias (Zhao et al., 2013). RFs 99 

have the potential to identify and model the complex non-linear relationships between 100 

phenology and climate, being able to handle a large number of predictors and determine their 101 

importance in explaining phenology. RFs has been applied with very promising results to other 102 

fields of ecology and biological sciences (Archibald et al., 2009; Darling et al., 2012; Lawler 103 

et al., 2006), as well as to the simulation of phenological shifts under different climatic change 104 

scenarios (Lebourgeois et al., 2010), but the potential for modelling climate-driven interannual 105 

variation in phenology is still to be explored. 106 

Understanding the effect of inter-annual weather variation on LSP is an essential step to 107 

establish a plausible link between recent climate variability and vegetation phenological 108 

responses at global or regional scales, and importantly to make reliable forecasts about future 109 

vegetation responses to different future climatic scenarios. The aim of this study is, therefore, 110 

to provide an explanation of the observed interannual variation in LSP of the entire European 111 

forest during the last decade, identifying the main weather drivers for spring and autumn at the 112 

continental scale. Our research offers new insights into the study of LSP by modelling the 113 

climate-driven past interannual variation in phenology, rather than trends, and using innovative 114 

multivariate non-linear machine learning techniques to evaluate multiple weather predictors at 115 

biological scales, and non-weather predictors such as the legacy effect of the date of spring 116 

onset in leaf senescence. Climate predictors used range from 30 days average values of 117 

temperature variables (max, min and avg) such as precipitation, short wave radiation and day 118 

length; trimestral cumulated values such as growing degree days or chilling requirements, 119 

among others; to the date of specific events such as the first freeze or the last freeze. Moreover, 120 

we considered flexible biological time scales in the analysis between weather and phenological 121 

events rather than calendar months. 122 
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 123 

3. Materials and Methods 124 

3.1 Data 125 

Three sources of data were used for this research: i) Satellite sensor derived temporal 126 

composites of MERIS Terrestrial Chlorophyll Index (MTCI), ii) temperature and precipitation 127 

data from the European Climate Assessment and Data (ECA&D) project (http: //www.ecad.eu) 128 

and iii) surface radiation daylight (DAL; w/m2) data and surface incoming shortwave (SIS; 129 

w/m2) radiation data from the Climate Monitoring Satellite Application Facilities (CM SAF, 130 

http://www.cmsaf.eu). 131 

We used weekly composites of MTCI data at 1 km spatial resolution from 2002 to 2012.  This 132 

dataset was supplied by the European Space Agency and processed by Airbus Defence and 133 

Space. Daily temperature (mean, minimum and maximum) and daily precipitation data were 134 

derived from the European Climate Assessment & Dataset (ECA&D) time-series (version 10.0) 135 

with spatial resolution of 0.25° ×0.25°, covering the period from 2002 to 2011 (Haylock et al., 136 

2008). The CM SAF DAL version CDR v001 (Müller and Trentmann, 2013) and SIS version 137 

CDR v002 (Posselt et al., 2012; Posselt et al., 2011) were derived from Meteosat satellite 138 

sensors at a spatial resolution of 0.05° x0.05° covering the same period as ECA&D. 139 

3.2 Phenology extraction and interannual variation in LSP computation 140 

The time-series of MERIS MTCI data was used to estimate both the onset of greenness 141 

(OG) and end of senescence (EOS) from 2003 to 2011. Data for every estimation year 142 

considered 1.5 years of data (from October in the previous year to July in the next year) 143 

because the annual pattern of vegetation growth in some parts of Europe spans across 144 

calendar years and, hence, insufficient information about LSP is captured using a single 145 

year of data. The yearly values of OG and EOS were estimated for each image pixel of the 146 

study area using the methodology described in Dash et al. (2010). This methodology 147 

consists of two major procedures: data smoothing and LSP estimation (Figure 2a). 148 

Smoothed MTCI time-series data were obtained using a discrete Fourier transform because 149 

of its advantage of requiring fewer user-defined parameters compared to other methods 150 

(Atkinson et al., 2012). The peak in the annual profile was defined as a point on the 151 

phenological curve where the first derivative changes sign from positive to negative. Next, 152 
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the derived data were searched backward and forward departing from the maximum annual 153 

peak to estimate the OG and EOS, respectively. OG was defined as a valley at the 154 

beginning of the growing season point (a change in derivative value from positive to 155 

negative) and EOS was defined as a valley point occurring at the decaying end of a 156 

phenology cycle (a change in derivative value from negative to positive). These satellite-157 

derived LSP estimates were compared to ground observations of the thousands of 158 

deciduous tree phenology records of the Pan European Phenology network (PEP725) 159 

(Rodriguez-Galiano et al., 2015a). This comparison resulted in a large spatio-temporal 160 

correlation of the phenology estimates with the spring phenophase (OG vs leaf unfolding; 161 

pseudo-R2=0.70) and autumn phenophase (EOS vs autumnal colouring; pseudo-R2=0.71). 162 

Z-score values during the study period were used as a proxy to measure interannual 163 

variation in the LSP parameters. The z-score values for a given year were defined as the 164 

difference from the multi-year mean, normalized by the standard deviation across years. 165 

The value of the targeted year was excluded in the computation of multiyear mean to 166 

enhance the inter-annual variation (Saleska et al., 2007). The spatio-temporal distribution 167 

of spring and autumn LSP z-score values is shown in Figures S1 and S2 of the supporting 168 

information, respectively. 169 

To match the spatial resolution of the ECA&D dataset, the LSP z-score values for each year 170 

were resampled to a spatial resolution of 0.25°×0.25° by calculating the median of all the LSP 171 

z-score values within this area after excluding the areas with fewer than 50 LSP estimates and 172 

the non-forest pixels according to the Globcover2005 and Globcover2009 land cover maps 173 

(http://due.esrin.esa.int/globcover/). Only LSP estimates with complete temporal coverage 174 

(2003–2011) were included in the analysis to reduce the likelihood of natural and human 175 

disturbances (Potter et al., 2003). Globcover was selected for its greater consistency with the 176 

MERIS MTCI time-series and its high geolocational accuracy (<150 m) (Bicheron et al., 2011). 177 

3.3 Computation of weather predictors 178 

A suite of weather predictors were computed for each 0.25 ×0.25° grid cell associated with the 179 

occurrence of positive or negative z-score values in LSP based on the ECA&D and CM SAF 180 

datasets (see Table 1). The predictors include temporal average values of temperature variables 181 

(Tmax, Tmin and Tavg), precipitation, DAL and SIS; temporal cumulated predictors such as 182 

growing degree days, chilling, precipitation, SIS and DAL; and the date of specific events such 183 

as the onset of greenness (legacy effect for autumn phenology modelling) the first freeze or the 184 
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last freeze, as well as the difference between both dates (freeze period) for the modelling of 185 

autumn only. Growing degree days were computed using temperature thresholds of 0° and 5°. 186 

Chilling requirements were computed as the sum of negative temperatures (temperatures below 187 

0°). Freeze was defined as dates with minimum temperatures lower than -2° (Schwartz et al., 188 

2006). 189 

The different weather predictors were computed based on the 30 and 90 days previous to the 190 

day of the year (DOY) of the z-score values in OG and EOS (Figure 2b) following Schwartz 191 

et al. (2006) and Menzel et al. (2006), who found that most phenophases of plant observations 192 

in Europe correlated significantly with weather predictors representing the month of onset and 193 

the two preceding months. The chilling requirements for spring modelling and freeze predictors 194 

were an exception, as the period for its computation starts 90 days prior to the OG. Relative 195 

differences between each predictor and its multi-year average for the same period were 196 

computed to capture the inter-annual variability in climate variables at the pixel level for every 197 

predictor and to facilitate the modelling of climate-driven variation in phenology (Table 1). 198 

3.4 Modelling interannual variation in LSP 199 

Conventional statistical models such as linear regression might be inappropriate for 200 

investigating the drivers of interannual variation in phenology because many of the 201 

relationships are likely to be non-linear (De Beurs and Henebry, 2008). In this sense, machine 202 

learning methods have emerged as complementary alternatives to conventional statistical 203 

techniques. Within the branch of machine learning techniques, regression trees are particularly 204 

suitable when compared to global single predictive models, allowing for multiple regression 205 

models using recursive partitioning (Breiman, 1984). Assembling a single global model might 206 

not be representative of LSP of the entire European continent, when there are many climatic 207 

drivers which interact in complicated, non-linear ways and may vary spatially and temporally. 208 

For the purpose of this paper, an alternative approach is to sub-divide, or partition, the data 209 

space into more homogeneous regions of similar climates and ecological factors.  210 

Regression trees use a sum of squares criterion to split the data into successively more 211 

homogeneous subsets contained at many different structural units called nodes. Each of the 212 

terminal nodes, has attached to it a simple regression which applies in that node only. Therefore, 213 

different regressions can be fitted to different data subsets within one single regression tree, 214 

which can represent different responses controlled by different drivers (Archibald et al., 2009; 215 

Lawler et al., 2006). Additionally, the performance of multiple regression trees can be 216 
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combined to increase the predictive ability of a single regression tree model, following the 217 

Random Forest technique (Figure 3). The RF method is an innovative machine learning 218 

approach that can perform multivariate non-linear regression, combining the performance of 219 

numerous regression tree algorithms to predict the interannual variation in OG and EOS. More 220 

details regarding the performance and the specific characteristics of a RF model can be seen in 221 

Rodriguez-Galiano et al. (2015b); Rodriguez-Galiano et al. (2014), and Figure 3.  222 

The Random Forest method was applied to phenological modelling across very large areas and 223 

across multiple years simultaneously: the typical case for satellite-observed LSP. The RF 224 

model was fitted to the relation between LSP interannual variation and numerous climate 225 

predictor variables computed at biologically-relevant rather than human-imposed temporal 226 

scales. We restricted our climate data choices to daily data (average, minimum and maximum 227 

temperatures, precipitation and radiation) to account for integrative forcing (that is, growing 228 

degree days, chilling requirements as well as cumulative precipitation and radiation), computed 229 

from the exact day of the phenological event backwards, rather than using the calendar months. 230 

The locations with z-score in LSP greater than 1 (positive and negative) were selected to build 231 

a RF predictive model on OG and EOS. Z-score values of OG or EOS for each year were 232 

combined together with the different weather predictors. The z-score values in OG were 233 

assessed as an extra predictor to evaluate the legacy effect of an advanced or delayed spring in 234 

the modelling of EOS. The values of these variables at the selected years and locations 235 

(spatiotemporal model) were combined into a set of input feature vectors (3900 feature vectors 236 

for the spring model and 3124 for autumn) as an input to the RF algorithm. These feature 237 

vectors were divided equally into two subsets, one for the training of the models (inbag) and 238 

one as an additional test to the one internally computed by RF (out of bag; oob) to evaluate 239 

performance. RF models composed of 2000 trees were grown using different subsets of 240 

predictors, varying the number of random predictors from 1 to 9. The Random Forest method 241 

within the package implemented in the R statistical software was used to build the different 242 

models (Liaw and Wiener, 2002). 243 

3.5 Selection of the most important predictors 244 

The RF method can use the oob subset to estimate the relative importance of each predictor in 245 

the model. This property is especially useful for the present research, but also for other 246 

multivariate biological studies, where it is important to know the physical drivers of the 247 

phenomenon under investigation (Archibald et al., 2009; Lawler et al., 2006). However, the 248 
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inclusion of different measures of weather predictors may imply a large increase in the 249 

dimensionality of the datasets being used, as these variables are obtained by applying multiple 250 

functions or measures to the temperature, precipitation and radiation time-series. On the one 251 

hand, more information may be useful for the modelling process; on the other hand, an 252 

excessive number of correlated predictors or features can overwhelm the expected increase in 253 

accuracy and may introduce additional complexity limiting the ability of the method to point 254 

to possible cause-effect relationships between interannual variation in phenology and their 255 

drivers, making interpretation challenging.  256 

A feature selection approach, based on the ability of the RF to assess the relative importance 257 

of the predictors, was used to identify the minimum number of drivers which can better explain 258 

spring or autumn interannual variation in phenology. To assess the importance of each weather 259 

predictor, the RF switches one of the input predictors while keeping the rest constant, and it re-260 

evaluates the performance of the model measuring the decrease in node impurity (Breiman, 261 

2001).The differences were averaged over all 2000 trees to compute the general drivers for the 262 

interannual variation in Europe. However, different subsets of variables could be used to 263 

characterize different climates and ecological factors at every single regression tree model or 264 

node (see previous section). In order to reduce the number of drivers the least important 265 

predictor was removed iteratively at different steps. Then, a 5-fold cross-validation was applied 266 

to obtain a stable estimate of the error of the model built after predictor deletions. Finally, the 267 

model with a better trade-off between number of predictors and error was chosen as the basis 268 

for interpreting the likely drivers of interannual variation in phenology. 269 

4. Results 270 

Numerous models were built on the basis of different predictor combinations considering 271 

different temporal windows prior to the spring and autumn phenological events (see section 272 

“computation of weather predictors”). The percentage of variation (pseudo-R2) explained by 273 

different weather-LSP models is shown in the supplementary information (Table S1, S2 and 274 

S3). No previous studies have investigated in depth the parametrization of GDD for LSP and 275 

climate inter-comparison, unlike for ground phenological studies (Snyder et al., 1999). 276 

Although, we did not carry out an exhaustive analysis of the optimum GDD parametrization, 277 

our results showed a systematic pattern in spring models, presenting slightly larger pseudo-R2 278 

for models which used 0⁰ C as a threshold for the computation of GDD (rather than 5⁰ C). 279 

Regarding, the length of the temporal windows for weather function computation, spring 280 
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models using 30 and 90 days for the computation of averaged and cumulative functions were 281 

more accurate, whereas for autumn models with 90 day-averaged predictors outperformed the 282 

rest.  283 

The main drivers of interannual variation in LSP were identified through the application of a 284 

feature selection procedure (see section “selection of the most important predictors”). Spring 285 

models were more accurate than autumn, with median relative error values of 10% to 27% (12 286 

to 1 predictor), versus 26% to 60% of autumn (14 to 1 predictor). Figure 4 shows the pseudo-287 

R2 of the models as well as the relative importance of each predictor. Spring models (explained 288 

a percentage of the variance up to 81% (Figure 4a), whereas autumn explained up to 61% 289 

(Figure 4b). Cook et al. (2005), using a modelled based on GDD only, explained 63% on the 290 

variance of onset date for mixed and boreal forest. Figure 5 shows the relative error in the 291 

prediction of different models after removing the least important predictor. Regarding the 292 

relative importance of the drivers, the same ranking in importance was observed within the 293 

different models of each phenophase, which reflected the stability in the RF importance 294 

estimation, and a high reliability of the results (Figure 4). To interpret the main weather drivers 295 

of the interannual variation in phenology, simplified models with reduced number of predictors 296 

were selected for spring and autumn (see section 3.5), respectively. The spring model was 297 

composed of 6 predictors (pseudo-R2=0.77 and median relative error of 10%) and the autumn 298 

model of 5 predictors (pseudo-R2=0.59 and median relative error of 28%) (Figure 6). Our 299 

results suggest that interannual variation in the onset on greenness (LSP) of temperate forest 300 

species are driven mainly by the daily temperature of the 30 days prior to onset (but not 301 

necessarily the GDD), with the most important driver being the minimum temperature. 302 

Photoperiod was also important, the most accurate empirical prediction was obtained by a 303 

combined temperature-radiation forcing, integrating the SIS of the previous 90 days. For 304 

senescence, temperature was suggested to be more important than photoperiod in controlling 305 

the senescence process (Archetti et al., 2013; Jeong and Medvigy, 2014; Vitasse et al., 2009; 306 

Yang et al., 2012), with the most important drivers being the date of the first freeze and the 307 

accumulation of chilling temperatures. However, we did not observe a legacy effect of a much 308 

earlier or later spring onset on the date of senescence. Autumn models that included the 309 

interannual variation (z-score values) in the onset of greenness did not outperform the 310 

remaining models (see Table S2 and S3 in supplementary information) and the relative 311 

importance was low in comparison with other drivers.  312 
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5. Discussion 313 

The selection and computation of the weather predictors is an important step of phenological 314 

modelling. Most of studies on the sensitivity of phenological events to climate used human 315 

calendar scales, that is, seasonal or monthly calendar mean or cumulative climate predictors 316 

(Maignan et al., 2008a; Maignan et al., 2008b; Menzel et al., 2006; Schwartz et al., 2006), 317 

overlooking the importance of biological time-scales in phenology. However, with the 318 

increased availability of daily weather datasets, current and future studies might benefit from 319 

the use of daily information to model the drivers of plants’ circadian time-scales (Pau et al., 320 

2011). Our study advanced the modelling of vegetation phenology by improving the temporal 321 

matching between LSP interannual variation and the preceding weather conditions by 322 

analysing daily data at biological scales. Regarding, the length of the temporal windows for 323 

weather function computation, Menzel et al. (2006) showed that most phenological phases of 324 

plant species in Europe correlate significantly with mean temperatures of the month of onset 325 

and the two preceding months. However, in our study, when end of senescence was considered, 326 

a consistent divergent effect was observed between spring and autumn. Autumn phenophases 327 

might be driven by longer-term changes in weather, while for spring the average conditions of 328 

the 30 days previous to the date of onset play a more important role (Table S1, S2 and S3 in 329 

supplementary information). From a computational point of view, considering larger temporal 330 

windows for calculating averages would induce a smoothing effect, degrading the information 331 

in the predictors, whereas cumulative functions such as GDD or chilling requirements would 332 

not be affected by this effect. However, we observed a divergent response between spring and 333 

autumn and consistent throughout the models of each phenophase suggests that a biological 334 

explanation for this phenomenon might be plausible.  335 

Understanding the drivers of interannual variation in LSP amidst background inter-annual 336 

variation is a critical aspect of global change science (de Beurs and Henebry, 2005; Zhao et al., 337 

2013). To this end, the RF method is particularly pertinent, as it allows the assessment of the 338 

importance of the predictors (Figure 4). Our findings reveal that the accuracy of growing degree 339 

day-based models might be overestimated using linear regression models and that non-linear 340 

multivariate relationships between temperature (especially minimum temperature) and 341 

radiation are needed to describe the relations between phenology and weather drivers. This 342 

supports the findings of Stöckli et al. (2011) who explained temperate phenology using a 343 

combination of light and temperature. The highlighted importance of minimum temperatures 344 

might be related to the fact that minimum temperature is a better indicator of weather changes 345 
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than either the average or maximum temperature (Duncan et al., 2014; Jolly et al., 2005). 346 

Regarding GDD, although it has been applied extensively to predict vegetation phenophases , 347 

it is currently debated whether such models can detect when multiple environmental drivers 348 

are required to initiate a phenological event, or detect drivers that are relatively static across 349 

time, such as photoperiod (Stöckli et al. 2011). Our results reveal that multiple environmental 350 

drivers are required to initiate phenological events of Europe and also showed that the role of 351 

GDD alone in driving spring phenology might be overestimated due to an over-reliance on 352 

linear models. GDD had the largest linear association with vegetation phenology interannual 353 

variation, while the linear correlation between LSP and others drivers that were revealed as 354 

very important by the RF was small (see Tables 1 and 2). A simple linear analysis between 355 

GDD and phenology could ignore complex non-linear associations between phenology and 356 

predictors as well as synergies between weather drivers. Regarding the senescence phase, the 357 

autumn models had a weaker predictive power compared the spring models. There is still lack 358 

of clear understanding of mechanism autumn senescence, however, temperature, and 359 

particularly the dates of freeze, has been suggested as major driver for autumn phenology.  360 

The RF method provided an important alternative over simple, but less accurate analysis based 361 

on linear regression for the analysis of interannual variation in spring and autumn phenology. 362 

A further comparison with a linear regression analysis suggested that there might be a non-363 

linear relationship between the interannual variation in LSP and the weather drivers. 364 

Multivariate linear regression models were also fitted from the same combination of predictors 365 

selected as optimal by Random Forest. Multivariate linear models explained only 36% and 26% 366 

of the variance in spring and autumn phenology interannual variation across the continental 367 

scale. Additionally, a linear regression between predicted values from RF and observed 368 

interannual variation in phenology produced R2 values equal to 0.90 and 0.68 for spring and 369 

autumn LSP interannual variation, respectively (Figure 6a and 6b). On the other hand, the 370 

correlations between the predictions of linear regression models and observations were much 371 

weaker, with R2 values of 0.39 and 0.25 (Figure 6c and 6d). Linear models under-predicted a 372 

delay in the phenophases (positive z-score values) and over-predicted the advances (negative 373 

z-score values). The spatial distribution of the relative errors for RF and multivariate linear 374 

regression is shown in Figures S3 to S6 of the supporting information. The relative errors of 375 

the latter were significantly higher. Additionally, the residuals seemed not to be homoscedastic 376 

suggesting that linear models might not be able to deal with the complex patterns between LSP 377 
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and climate patterns at multiple locations and times, integrating them into a unique overall 378 

model. 379 

A new approach to model interannual variation in LSP was presented in this paper based on 380 

the application of the RF model to a set of climate predictors at biological scales. This new 381 

modelling technique has numerous advantages for the modelling of climate-driven interannual 382 

variation in LSP. It is a non-parametric multivariate method which allows for non-linear 383 

relationships between (compared to traditional linear models) phenology and climate and can 384 

consider a large number of weather predictors in the modelling process. This provides potential 385 

opportunity to capture the impact of all possible environmental/weather drivers on vegetation 386 

phenology. The proposed method can recognize complex patterns between LSP and climate at 387 

multiple locations and times, integrating them into a unique overall model, rather than 388 

generating multiple models over a geographical area and for different years. Additionally it is 389 

data-driven, which means that there is no need to incorporate previous knowledge about the 390 

specific responses of vegetation to different predominant weather controls (i.e. temperature, 391 

rainfall, and photoperiod), allowing weather drivers to automatically shift both temporally and 392 

spatially. Therefore, it is highly generalizable, being applicable to different biogeographical 393 

regions where the phenology is controlled by different factors. This flexibility or generalization 394 

capacity of RF models to transition from one driver to another without the need for a model 395 

change also promotes its application to different climate change scenarios. We succeeded in 396 

modelling the interannual variation in LSP phenology as observed from satellite-sensors in the 397 

European Forest, while using the same type of input data, the same model, and the same model 398 

parameters for the entire European continent. 399 
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Table 1. Predictors used in the modelling of the interannual variation in LSP. * predicted over 569 

a period of 90 days. ** predicted over a period of the 30 and 90 days previous to the date of 570 

the z-score value. 571 

OG anomalies EOS anomalies 

Averages (M): 

Maximum temperature (TX)** Maximum temperature (TX)** 

Minimum temperature (TN)** Minimum temperature (TN)** 

Average temperature (TG)** Average temperature (TG)** 

Precipitation (PP)** Precipitation (PP)** 

Surface incoming shortwave radiation (SIS)** Surface incoming shortwave radiation (SIS)** 

Surface radiation daylight (DAL)** Surface radiation daylight (DAL)** 

Cumulates (C) 

Growing Degree Days (0º C threshold) (GDD)** Growing Degree Days (0º C threshold) (GDD)** 

Growing Degree Days (5º C threshold) (GDD)** Growing Degree Days (5º C threshold) (GDD)** 

Chilling requirements (CHIL)* Chilling requirements (CHIL)** 

Precipitation (PP)** Precipitation (PP)** 

Surface incoming shortwave radiation (SIS)** Surface incoming shortwave radiation (SIS)** 

Surface radiation daylight (DAL)** Surface radiation daylight (DAL)** 

Date of specific events 

First freeze (FF)* First freeze (FF)* 

Last freeze (LF)* OG z-score value (OGA) (legacy effect of an 

advanced or delayed spring) 
Period of freeze (PF)* 

572 
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Table 2. Correlations between the predictors used in the modelling of spring interannual variation in LSP. Significant correlations between the 1 
anomalies and the predictors are given in bold (p < 0.05). 2 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

1 Anom. 1.00 -0.40 -0.43 -0.11 -0.09 -0.12 -0.10 -0.11 -0.10 0.24 -0.03 -0.03 -0.03 -0.14 -0.04 -0.04 -0.33 -0.16 -0.16 -0.04 -0.06 -0.06 -0.45 -0.46 -0.12 -0.31 -0.03 

2  GDD090 -0.40 1.00 0.93 0.11 0.14 0.11 0.13 0.11 0.15 -0.64 0.00 -0.01 -0.01 0.23 0.01 0.01 -0.12 -0.06 -0.06 0.04 -0.05 -0.05 0.67 0.64 0.18 -0.11 0.05 

3  GDD590 -0.43 0.93 1.00 0.11 0.10 0.11 0.10 0.11 0.11 -0.47 -0.01 -0.01 -0.01 0.16 0.01 0.01 0.03 0.04 0.04 0.06 0.03 0.03 0.74 0.75 0.16 0.03 0.06 

4  MTG30 -0.11 0.11 0.11 1.00 0.99 1.00 0.99 1.00 0.98 -0.05 0.89 0.89 0.89 0.20 0.97 0.96 0.02 0.00 0.00 0.31 -0.01 -0.01 0.17 0.15 0.28 0.07 0.31 

5  MTG90 -0.09 0.14 0.10 0.99 1.00 0.98 1.00 0.99 1.00 -0.13 0.88 0.88 0.88 0.25 0.96 0.96 -0.03 -0.03 -0.03 0.30 -0.04 -0.04 0.10 0.09 0.29 0.02 0.31 

6  MTX30 -0.12 0.11 0.11 1.00 0.98 1.00 0.99 0.99 0.98 -0.04 0.89 0.89 0.88 0.19 0.96 0.96 0.03 0.00 0.00 0.32 -0.01 -0.01 0.18 0.16 0.27 0.08 0.32 

7  MTX90 -0.10 0.13 0.10 0.99 1.00 0.99 1.00 0.99 1.00 -0.11 0.89 0.89 0.89 0.23 0.96 0.96 -0.03 -0.03 -0.03 0.30 -0.04 -0.04 0.10 0.09 0.28 0.02 0.31 

8  MTN30 -0.11 0.11 0.11 1.00 0.99 0.99 0.99 1.00 0.98 -0.06 0.89 0.89 0.89 0.21 0.96 0.96 0.02 0.01 0.01 0.31 0.00 0.00 0.16 0.14 0.29 0.06 0.31 

9  MTN90 -0.10 0.15 0.11 0.98 1.00 0.98 1.00 0.98 1.00 -0.15 0.88 0.88 0.88 0.26 0.96 0.96 -0.04 -0.03 -0.03 0.29 -0.03 -0.03 0.10 0.09 0.30 0.02 0.30 

10  CHIL 0.24 -0.64 -0.47 -0.05 -0.13 -0.04 -0.11 -0.06 -0.15 1.00 -0.01 0.00 0.00 -0.25 0.00 0.00 0.28 0.11 0.11 0.03 0.06 0.06 -0.24 -0.26 -0.16 0.26 0.01 

11  FF -0.03 0.00 -0.01 0.89 0.88 0.89 0.89 0.89 0.88 -0.01 1.00 1.00 1.00 -0.01 0.88 0.88 -0.04 -0.05 -0.05 0.00 -0.06 -0.06 0.00 -0.01 -0.01 -0.03 0.00 

12  LF -0.03 -0.01 -0.01 0.89 0.88 0.89 0.89 0.89 0.88 0.00 1.00 1.00 1.00 -0.01 0.88 0.88 -0.04 -0.05 -0.05 0.00 -0.06 -0.06 -0.01 -0.01 -0.01 -0.03 0.00 

13  PF -0.03 -0.01 -0.01 0.89 0.88 0.88 0.89 0.89 0.88 0.00 1.00 1.00 1.00 -0.02 0.88 0.88 -0.04 -0.05 -0.05 0.00 -0.06 -0.06 -0.01 -0.01 -0.01 -0.03 0.00 

14  CRR90 -0.14 0.23 0.16 0.20 0.25 0.19 0.23 0.21 0.26 -0.25 -0.01 -0.01 -0.02 1.00 0.20 0.20 0.01 0.06 0.06 0.53 0.04 0.04 0.09 0.07 0.77 0.11 0.58 

15  MRR30 -0.04 0.01 0.01 0.97 0.96 0.96 0.96 0.96 0.96 0.00 0.88 0.88 0.88 0.20 1.00 1.00 0.00 -0.03 -0.03 0.31 -0.03 -0.03 0.03 0.03 0.26 0.05 0.31 

16  MRR90 -0.04 0.01 0.01 0.96 0.96 0.96 0.96 0.96 0.96 0.00 0.88 0.88 0.88 0.20 1.00 1.00 0.00 -0.03 -0.03 0.31 -0.03 -0.03 0.03 0.02 0.26 0.05 0.31 

17  CSIS90 -0.33 -0.12 0.03 0.02 -0.03 0.03 -0.03 0.02 -0.04 0.28 -0.04 -0.04 -0.04 0.01 0.00 0.00 1.00 0.80 0.80 0.16 0.57 0.57 0.22 0.22 0.12 0.96 0.15 

18  MSIS30 -0.16 -0.06 0.04 0.00 -0.03 0.00 -0.03 0.01 -0.03 0.11 -0.05 -0.05 -0.05 0.06 -0.03 -0.03 0.80 1.00 1.00 0.06 0.90 0.90 0.23 0.24 0.15 0.77 0.06 

19  MSIS90 -0.16 -0.06 0.04 0.00 -0.03 0.00 -0.03 0.01 -0.03 0.11 -0.05 -0.05 -0.05 0.06 -0.03 -0.03 0.80 1.00 1.00 0.06 0.90 0.90 0.23 0.24 0.15 0.77 0.06 

20  CDAL90 -0.04 0.04 0.06 0.31 0.30 0.32 0.30 0.31 0.29 0.03 0.00 0.00 0.00 0.53 0.31 0.31 0.16 0.06 0.06 1.00 0.05 0.05 0.11 0.10 0.78 0.28 0.99 

21  MDAL30 -0.06 -0.05 0.03 -0.01 -0.04 -0.01 -0.04 0.00 -0.03 0.06 -0.06 -0.06 -0.06 0.04 -0.03 -0.03 0.57 0.90 0.90 0.05 1.00 1.00 0.23 0.23 0.13 0.55 0.05 

22  MDAL90 -0.06 -0.05 0.03 -0.01 -0.04 -0.01 -0.04 0.00 -0.03 0.06 -0.06 -0.06 -0.06 0.04 -0.03 -0.03 0.57 0.90 0.90 0.05 1.00 1.00 0.23 0.23 0.13 0.55 0.05 

23  GDD030 -0.45 0.67 0.74 0.17 0.10 0.18 0.10 0.16 0.10 -0.24 0.00 -0.01 -0.01 0.09 0.03 0.03 0.22 0.23 0.23 0.11 0.23 0.23 1.00 0.97 0.16 0.23 0.11 

24  GDD530 -0.46 0.64 0.75 0.15 0.09 0.16 0.09 0.14 0.09 -0.26 -0.01 -0.01 -0.01 0.07 0.03 0.02 0.22 0.24 0.24 0.10 0.23 0.23 0.97 1.00 0.15 0.24 0.10 

25  CRR30 -0.12 0.18 0.16 0.28 0.29 0.27 0.28 0.29 0.30 -0.16 -0.01 -0.01 -0.01 0.77 0.26 0.26 0.12 0.15 0.15 0.78 0.13 0.13 0.16 0.15 1.00 0.18 0.79 

26  CSIS30 -0.31 -0.11 0.03 0.07 0.02 0.08 0.02 0.06 0.02 0.26 -0.03 -0.03 -0.03 0.11 0.05 0.05 0.96 0.77 0.77 0.28 0.55 0.55 0.23 0.24 0.18 1.00 0.28 

27  CDAL30 -0.03 0.05 0.06 0.31 0.31 0.32 0.31 0.31 0.30 0.01 0.00 0.00 0.00 0.58 0.31 0.31 0.15 0.06 0.06 0.99 0.05 0.05 0.11 0.10 0.79 0.28 1.00 
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Table 3. Correlations between the predictors used in the modelling of autumn interannual variation in LSP. Significant correlations between the 1 
anomalies and the predictors are given in bold (p < 0.05). 2 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

1 Anom. 1 0.10 0.31 0.34 0.33 0.36 0.28 0.30 0.28 0.27 0.26 0.34 0.01 -0.03 0.34 0.07 0.07 0.04 -0.05 -0.05 -0.05 0.00 -0.01 -0.08 -0.08 -0.09 -0.15 

2 OGA 0.10 1.00 0.06 0.08 0.14 0.16 0.05 0.15 0.02 0.07 0.05 0.19 -0.02 -0.04 0.01 0.02 -0.05 -0.07 0.06 -0.02 -0.02 -0.10 -0.11 0.01 0.01 -0.06 -0.10 

3 GDD030  0.31 0.06 1.00 0.97 0.54 0.58 0.94 0.53 0.88 0.42 0.87 0.62 -0.54 -0.52 0.25 0.09 0.10 0.11 0.03 -0.09 -0.09 -0.01 0.01 -0.22 -0.22 -0.11 -0.22 

4 GDD530  0.34 0.08 0.97 1.00 0.53 0.60 0.86 0.49 0.80 0.37 0.80 0.59 -0.41 -0.40 0.24 0.11 0.11 0.10 0.07 -0.10 -0.10 -0.03 -0.01 -0.23 -0.23 -0.15 -0.25 

5 GDD090  0.33 0.14 0.54 0.53 1.00 0.98 0.49 0.95 0.54 0.90 0.36 0.85 -0.14 -0.24 0.12 0.05 0.13 0.09 -0.15 -0.07 -0.07 0.04 -0.05 -0.14 -0.14 0.08 -0.14 

6 GDD590  0.36 0.16 0.58 0.60 0.98 1.00 0.49 0.92 0.54 0.85 0.37 0.84 -0.10 -0.20 0.14 0.07 0.13 0.09 -0.11 -0.07 -0.07 0.02 -0.06 -0.14 -0.14 0.04 -0.19 

7 MTG30  0.28 0.05 0.94 0.86 0.49 0.49 1.00 0.56 0.93 0.44 0.94 0.63 -0.71 -0.66 0.24 0.04 0.10 0.09 -0.01 -0.02 -0.02 0.02 0.05 -0.13 -0.13 -0.09 -0.17 

8 MTG90 0.30 0.15 0.53 0.49 0.95 0.92 0.56 1.00 0.61 0.93 0.43 0.89 -0.28 -0.36 0.12 -0.01 0.13 0.09 -0.18 0.02 0.02 0.07 -0.01 -0.03 -0.03 0.09 -0.11 

9 MTX30  0.28 0.02 0.88 0.80 0.54 0.54 0.93 0.61 1.00 0.58 0.78 0.60 -0.58 -0.54 0.20 -0.09 0.12 0.07 -0.09 0.03 0.03 0.23 0.14 -0.09 -0.09 0.17 -0.06 

10 MTX90 0.27 0.07 0.42 0.37 0.90 0.85 0.44 0.93 0.58 1.00 0.28 0.73 -0.16 -0.24 0.09 -0.05 0.13 0.05 -0.31 0.02 0.02 0.17 0.07 -0.03 -0.03 0.23 0.07 

11 MTN30  0.26 0.05 0.87 0.80 0.36 0.37 0.94 0.43 0.78 0.28 1.00 0.61 -0.76 -0.70 0.26 0.16 0.08 0.09 0.08 -0.06 -0.06 -0.17 -0.04 -0.14 -0.14 -0.30 -0.24 

12 MTN90 0.34 0.19 0.62 0.59 0.85 0.84 0.63 0.89 0.60 0.73 0.61 1.00 -0.39 -0.48 0.19 0.12 0.13 0.12 0.04 -0.02 -0.02 -0.07 -0.12 -0.06 -0.06 -0.08 -0.31 

13 CHIL30  0.01 -0.02 -0.54 -0.41 -0.14 -0.10 -0.71 -0.28 -0.58 -0.16 -0.76 -0.39 1.00 0.91 -0.08 -0.05 0.00 0.01 -0.05 -0.05 -0.05 0.09 -0.01 -0.01 -0.01 0.17 0.10 

14 CHIL90  -0.03 -0.04 -0.52 -0.40 -0.24 -0.20 -0.66 -0.36 -0.54 -0.24 -0.70 -0.48 0.91 1.00 -0.09 -0.04 0.00 0.01 -0.05 -0.08 -0.08 0.08 0.01 -0.04 -0.04 0.16 0.15 

15 FF  0.34 0.01 0.25 0.24 0.12 0.14 0.24 0.12 0.20 0.09 0.26 0.19 -0.08 -0.09 1.00 -0.10 0.05 0.04 -0.08 0.01 0.01 0.01 0.07 -0.05 -0.05 -0.08 -0.04 

16 CRR30  0.07 0.02 0.09 0.11 0.05 0.07 0.04 -0.01 -0.09 -0.05 0.16 0.12 -0.05 -0.04 -0.10 1.00 0.12 0.04 0.51 -0.17 -0.17 -0.42 -0.25 -0.12 -0.12 -0.46 -0.25 

17 MRR30  0.07 -0.05 0.10 0.11 0.13 0.13 0.10 0.13 0.12 0.13 0.08 0.13 0.00 0.00 0.05 0.12 1.00 0.47 0.08 -0.03 -0.03 -0.02 -0.03 -0.03 -0.03 -0.02 -0.04 

18 MRR90 0.04 -0.07 0.11 0.10 0.09 0.09 0.09 0.09 0.07 0.05 0.09 0.12 0.01 0.01 0.04 0.04 0.47 1.00 0.06 -0.01 -0.01 -0.02 -0.04 -0.02 -0.02 -0.02 -0.08 

19 CRR90  -0.05 0.06 0.03 0.07 -0.15 -0.11 -0.01 -0.18 -0.09 -0.31 0.08 0.04 -0.05 -0.05 -0.08 0.51 0.08 0.06 1.00 -0.04 -0.05 -0.14 -0.18 -0.05 -0.05 -0.20 -0.39 

20 MSIS30  -0.05 -0.02 -0.09 -0.10 -0.07 -0.07 -0.02 0.02 0.03 0.02 -0.06 -0.02 -0.05 -0.08 0.01 -0.17 -0.03 -0.01 -0.04 1.00 1.00 0.56 0.66 0.88 0.88 0.05 -0.04 

21 MSIS90 -0.05 -0.02 -0.09 -0.10 -0.07 -0.07 -0.02 0.02 0.03 0.02 -0.06 -0.02 -0.05 -0.08 0.01 -0.17 -0.03 -0.01 -0.05 1.00 1.00 0.55 0.66 0.88 0.88 0.05 -0.04 

22 CSIS30  0.00 -0.10 -0.01 -0.03 0.04 0.02 0.02 0.07 0.23 0.17 -0.17 -0.07 0.09 0.08 0.01 -0.42 -0.02 -0.02 -0.14 0.56 0.55 1.00 0.80 0.30 0.30 0.66 0.28 

23 CSIS90  -0.01 -0.11 0.01 -0.01 -0.05 -0.06 0.05 -0.01 0.14 0.07 -0.04 -0.12 -0.01 0.01 0.07 -0.25 -0.03 -0.04 -0.18 0.66 0.66 0.80 1.00 0.31 0.31 0.18 0.40 

24 MDAL30 -0.08 0.01 -0.22 -0.23 -0.14 -0.14 -0.13 -0.03 -0.09 -0.03 -0.14 -0.06 -0.01 -0.04 -0.05 -0.12 -0.03 -0.02 -0.05 0.88 0.88 0.30 0.31 1.00 1.00 0.05 -0.05 

25 MDAL90  -0.08 0.01 -0.22 -0.23 -0.14 -0.14 -0.13 -0.03 -0.09 -0.03 -0.14 -0.06 -0.01 -0.04 -0.05 -0.12 -0.03 -0.02 -0.05 0.88 0.88 0.30 0.31 1.00 1.00 0.05 -0.05 

26 CDAL30  -0.09 -0.06 -0.11 -0.15 0.08 0.04 -0.09 0.09 0.17 0.23 -0.30 -0.08 0.17 0.16 -0.08 -0.46 -0.02 -0.02 -0.20 0.05 0.05 0.66 0.18 0.05 0.05 1.00 0.41 

27 CDAL90  -0.15 -0.10 -0.22 -0.25 -0.14 -0.19 -0.17 -0.11 -0.06 0.07 -0.24 -0.31 0.10 0.15 -0.04 -0.25 -0.04 -0.08 -0.39 -0.04 -0.04 0.28 0.40 -0.05 -0.05 0.41 1.00 
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 1 

Figure 1. Spatial distribution of Globcover broadleaved deciduous forest and needleleaved 2 
evergreen forest in 2005 (a) and 2009 (b).  3 
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Figure 2. Flow-chart illustrating the methodology. A) Phenology extraction and interannual 2 

variation in LSP computation. B) Computation of weather predictors. C) Modelling of 3 

interannual variation in phenology. 4 
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Figure 3. The flowchart of Random Forest for regression (adapted from Rodriguez-Galiano et 2 

al. 2015b). The RF method receives a subset of input vectors (n), made up of one phenology z-3 

score value and the values of the corresponding weather predictors for a given location and 4 

year. RF builds a number K of regression trees making them grow from different training data 5 

subsets, resampling randomly the original dataset with replacement. Hence, most data will be 6 

used multiple times in different models. On the other hand, when the RF makes a tree grow, it 7 

uses the best predictor within a subset of predictors (m) which has been selected randomly from 8 

the overall set of input predictors. These especial characteristics of RF confer a greater 9 

prediction stability and accuracy and, at the same time, avoid the correlation of the different 10 

RTs, increasing the diversity of patterns that can be learnt from data. The multiple predictions 11 

of all k RTs for a given vector used as training are then averaged to obtain a unique estimation 12 

of the phenology z-score value.  13 
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 1 

Figure 4. Relative importance of each independent variable in predicting phenology interannual 2 

variation in Europe. Different models derived from the feature selection approach are 3 

represented in each column. Numbers given over each column represent the coefficient 4 

determination of each model. Plots at the top and bottom represent the spring (a) and autumn 5 

interannual variation in LSP (b), respectively. The names of predictors follows the notation: 6 

Prefix M and C represent the mean and cumulated functions; TX, TN and TG: maximum, 7 

minimum and average temperature, respectively; PP: precipitation; SIS: surface incoming 8 

shortwave radiation; DAL: surface radiation daylight; GDD: growing degree days; CHIL: 9 

chilling requirements; FF, LF and PF: first, last and period of freeze, respectively. 10 



 

25 
 

 1 

Figure 5. Relative error of the models fitted as a result of the feature selection approach. Median 2 

(interior horizontal line), mean (interior square), 1% and 99% quantiles (edge of boxes), range 3 

(extremes). Relative errors were calculated for the prediction of 1,974 and 1,576 independent 4 

observations for spring (a) and autumn (b), respectively. See previous figure for the weather 5 

predictor variables in the models, as shown in the x-axis.  6 
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Figure 6. Scatterplots between observed anomalies in LSP and the predictions calculated using 2 

a selection of weather predictors (see Figure 2 and Figure 3). Plots for spring phenology are 3 

shown on the left panel (blue; a, c) and autumn on the right (red; b, d). Random Forest 4 

predictions are given in the upper panel (a, b) and those of the linear regression in the bottom 5 

(c, d) panel. The dashed lines represent an exact 1:1 relationship (expected fitting), the solid 6 

lines show a linear regression of these data. The explained variances (percentage R2) and RMSE 7 

values are 90% and 0.43 (spring Random Forest model), 68% and 0.92 (autumn Random Forest 8 

model), 39% and 1.04 (spring Linear model) and 25% 1.40 (autumn linear model). 9 


