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1. Abstract

This research reveals new insights into the weather drivers of interannual variation in land
surface phenology (LSP) across the entire European forest, while at the same time establishes
a new conceptual framework for predictive modelling of LSP. Specifically, the Random Forest

method, a multivariate, spatially non-stationary and non-linear machine learning approach, was
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introduced for phenological modelling across very large areas and across multiple years
simultaneously: the typical case for satellite-observed LSP. The RF model was fitted to the
relation between LSP interannual variation and numerous climate predictor variables computed
at biologically-relevant rather than human-imposed temporal scales. In addition, the legacy
effect of an advanced or delayed spring on autumn phenology was explored. The RF models
explained 81% and 62% of the variance in the spring and autumn LSP interannual variation,
with relative errors of 10% and 20%, respectively: a level of precision that has until now been
unobtainable at the continental scale. Multivariate linear regression models explained only 36%
and 25%, respectively. It also allowed identification of the main drivers of the interannual
variation in LSP through its estimation of variable importance. This research, thus, shows an
alternative to the hitherto applied linear regression approaches for modelling LSP and paves

the way for further scientific investigation based on machine learning methods.

2. Introduction

Vegetation phenology has emerged as an important focus for scientific research in the last few
decades. The interest in vegetation phenology is twofold: inter-annual recording of the timing
of phenological events allows quantification of the impacts of climate change on vegetation;
and a greater understanding of phenological responses enables meaningful projections of how
ecosystems will respond to future changes in climate (Menzel, 2002; Morisette et al., 2008;
Pefiuelas, 2009; Pefiuelas and Filella, 2001). Although different approaches have been devised
for the study of vegetation phenology (Rafferty et al., 2013), the characterisation and modelling
of vegetation phenology at global or regional scales has been undertaken mainly through the
use of long-term time-series of satellite-sensor vegetation indices (termed land surface
phenology, LSP, to reflect that satellite-observed phenology includes all land covers). Most
studies of LSP analyse trends in phenological events across years (Delbart et al., 2008;
Jeganathan et al., 2014; Jeong et al., 2011; Karlsen et al., 2007; Myneni et al., 1997), but more
recent studies present process-based models to uncover cause-effect relationships between
long-term trends in phenology and its key driving variables (Ivits et al., 012; Maignan et al.,
2008a; Maignan et al., 2008b; Stockli et al., 2011; Stockli et al., 2008; Yu et al., 2015; Zhou et
al., 2001). This last group of studies focuses on trends in phenology produced by trends in
weather (mainly warming). However, interannual variation in LSP arising as a consequence of

the inter-annual variability in weather are less studied (Cook et al., 2005; De Beurs and
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Henebry, 2008; Menzel et al., 2005; Post and Stenseth, 1999; Zhang et al., 2004), with model-

based studies of this phenomenon being scarce (van Vliet, 2010).

A higher frequency in the occurrence of extreme weather events has been observed in Europe,
especially for summer temperatures (Barriopedro et al., 2011; Luterbacher et al., 2004). The
summers of 2003 and 2010 in western and eastern Europe, respectively, were the warmest in
the last 500 years (Barriopedro et al., 2011). Species and ecosystems respond more rapidly to
these anomalies in weather than average climatic changes in most climatic scenarios (Zhao et
al., 2013). Maignan et al. (2008b) and Rutishauser et al. (2008) reported that the LSP greening
occurred 10 days earlier in 2007 than the average over the past three decades as a consequence
of an exceptionally mild winter and spring. The study of the impacts of extreme inter-annual
weather events on vegetation through the modelling of interannual variation in spring and
autumn phenologies can increase our knowledge about climate-driven changes in phenology,
acting as natural experiments in climate change scenarios (Rafferty et al., 2013). On the other
hand, the modelling of LSP has been less explored compared to the modelling of individual
plant species, and there are many aspects that remain to be understood, which limits
comprehensive understanding of LSP and, therefore, of phenology at regional or global scales.
A more complete modelling of LSP considering the inter-annual variation across large areas
would include the capacity to interpret observations and make meaningful projections in

relation to disturbances and their subsequent impacts (Morisette et al., 2008).

Modelling efforts to characterize LSP have generally relied on functions (usually linear) of
meteorological drivers, such as average temperature and precipitation (Ivits et al., 2012),
growing degree days (GDD) (de Beurs and Henebry, 2005), light and temperature (Stockli et
al., 2011), minimum temperature, photoperiod, vapour pressure deficit (Jolly et al., 2005;
Stockli et al., 2008), or minimum relative humidity (Brown and de Beurs, 2008). However,
there is lack of understanding on number of important aspects, such us the multivariate
influence of meteorological variables (temperature, precipitation, solar radiation) driving
phenology, or the effect of additional drivers in the modelling of autumnal phenophases
(Morisette et al., 2008). For instance, Fu et al. (2014) found a “cause-effect relationship”
between an earlier leaf senescence and an earlier spring flushing in leaves of warmed samples
of Fagus sylvatica and Quercus robur. This legacy effect of spring phenology has been
reported in recent studies using modified environments and plant species, but it has not been
studied using LSP data. This latter aspect is particularly pertinent for studies that focus on inter-

annual variation in phenology and could potentially contribute to increased knowledge of how

3



90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

climate change is affecting autumn phenology. On the other hand, many studies investigating
the sensitivity of phenological events to climate variation use calendar seasonal or monthly
mean climatic variables, which operate on fixed human calendar scales with a start date of 1
of January (Maignan et al., 2008b), instead of using biological scales, for example, time relative
to the growing phase of plants (Pau et al., 2011). However, the modelling of interannual
variation in LSP considering its potentially complicated relationship with climate in a
multidimensional feature space (i.e. high number of multivariate weather drivers) might not be
possible using traditional linear regression models (de Beurs and Henebry, 2005). In this sense,
phenological modelling may benefit from machine learning techniques such as the Random
Forest (RF) method (Breiman, 2001), reducing uncertainties and bias (Zhao et al., 2013). RFs
have the potential to identify and model the complex non-linear relationships between
phenology and climate, being able to handle a large number of predictors and determine their
importance in explaining phenology. RFs has been applied with very promising results to other
fields of ecology and biological sciences (Archibald et al., 2009; Darling et al., 2012; Lawler
et al., 2006), as well as to the simulation of phenological shifts under different climatic change
scenarios (Lebourgeois et al., 2010), but the potential for modelling climate-driven interannual

variation in phenology is still to be explored.

Understanding the effect of inter-annual weather variation on LSP is an essential step to
establish a plausible link between recent climate variability and vegetation phenological
responses at global or regional scales, and importantly to make reliable forecasts about future
vegetation responses to different future climatic scenarios. The aim of this study is, therefore,
to provide an explanation of the observed interannual variation in LSP of the entire European
forest during the last decade, identifying the main weather drivers for spring and autumn at the
continental scale. Our research offers new insights into the study of LSP by modelling the
climate-driven past interannual variation in phenology, rather than trends, and using innovative
multivariate non-linear machine learning techniques to evaluate multiple weather predictors at
biological scales, and non-weather predictors such as the legacy effect of the date of spring
onset in leaf senescence. Climate predictors used range from 30 days average values of
temperature variables (max, min and avg) such as precipitation, short wave radiation and day
length; trimestral cumulated values such as growing degree days or chilling requirements,
among others; to the date of specific events such as the first freeze or the last freeze. Moreover,
we considered flexible biological time scales in the analysis between weather and phenological

events rather than calendar months.
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3. Materials and Methods

3.1 Data

Three sources of data were used for this research: i) Satellite sensor derived temporal
composites of MERIS Terrestrial Chlorophyll Index (MTCI), ii) temperature and precipitation
data from the European Climate Assessment and Data (ECA&D) project (http: //www.ecad.eu)
and iii) surface radiation daylight (DAL; w/m?) data and surface incoming shortwave (SIS;
w/m?) radiation data from the Climate Monitoring Satellite Application Facilities (CM SAF,

http://www.cmsaf.eu).

We used weekly composites of MTCI data at 1 km spatial resolution from 2002 to 2012. This
dataset was supplied by the European Space Agency and processed by Airbus Defence and
Space. Daily temperature (mean, minimum and maximum) and daily precipitation data were
derived from the European Climate Assessment & Dataset (ECA&D) time-series (version 10.0)
with spatial resolution of 0.25° x0.25°, covering the period from 2002 to 2011 (Haylock et al.,
2008). The CM SAF DAL version CDR v001 (Miiller and Trentmann, 2013) and SIS version
CDR v002 (Posselt et al., 2012; Posselt et al., 2011) were derived from Meteosat satellite

sensors at a spatial resolution of 0.05° x0.05° covering the same period as ECA&D.

3.2 Phenology extraction and interannual variation in LSP computation

The time-series of MERIS MTCI data was used to estimate both the onset of greenness
(OGQG) and end of senescence (EOS) from 2003 to 2011. Data for every estimation year
considered 1.5 years of data (from October in the previous year to July in the next year)
because the annual pattern of vegetation growth in some parts of Europe spans across
calendar years and, hence, insufficient information about LSP is captured using a single
year of data. The yearly values of OG and EOS were estimated for each image pixel of the
study area using the methodology described in Dash et al. (2010). This methodology
consists of two major procedures: data smoothing and LSP estimation (Figure 2a).
Smoothed MTCI time-series data were obtained using a discrete Fourier transform because
of its advantage of requiring fewer user-defined parameters compared to other methods
(Atkinson et al., 2012). The peak in the annual profile was defined as a point on the

phenological curve where the first derivative changes sign from positive to negative. Next,
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the derived data were searched backward and forward departing from the maximum annual
peak to estimate the OG and EOS, respectively. OG was defined as a valley at the
beginning of the growing season point (a change in derivative value from positive to
negative) and EOS was defined as a valley point occurring at the decaying end of a
phenology cycle (a change in derivative value from negative to positive). These satellite-
derived LSP estimates were compared to ground observations of the thousands of
deciduous tree phenology records of the Pan European Phenology network (PEP725)
(Rodriguez-Galiano et al., 2015a). This comparison resulted in a large spatio-temporal
correlation of the phenology estimates with the spring phenophase (OG vs leaf unfolding;

pseudo-R?=0.70) and autumn phenophase (EOS vs autumnal colouring; pseudo-R?>=0.71).

Z-score values during the study period were used as a proxy to measure interannual
variation in the LSP parameters. The z-score values for a given year were defined as the
difference from the multi-year mean, normalized by the standard deviation across years.
The value of the targeted year was excluded in the computation of multiyear mean to
enhance the inter-annual variation (Saleska et al., 2007). The spatio-temporal distribution
of spring and autumn LSP z-score values is shown in Figures S1 and S2 of the supporting

information, respectively.

To match the spatial resolution of the ECA&D dataset, the LSP z-score values for each year
were resampled to a spatial resolution of 0.25°x0.25° by calculating the median of all the LSP
z-score values within this area after excluding the areas with fewer than 50 LSP estimates and
the non-forest pixels according to the Globcover2005 and Globcover2009 land cover maps
(http://due.esrin.esa.int/globcover/). Only LSP estimates with complete temporal coverage
(2003-2011) were included in the analysis to reduce the likelihood of natural and human
disturbances (Potter et al., 2003). Globcover was selected for its greater consistency with the

MERIS MTCI time-series and its high geolocational accuracy (<150 m) (Bicheron et al., 2011).

3.3 Computation of weather predictors

A suite of weather predictors were computed for each 0.25 x0.25° grid cell associated with the
occurrence of positive or negative z-score values in LSP based on the ECA&D and CM SAF
datasets (see Table 1). The predictors include temporal average values of temperature variables
(Tmax, Tmin and Tavg), precipitation, DAL and SIS; temporal cumulated predictors such as
growing degree days, chilling, precipitation, SIS and DAL; and the date of specific events such

as the onset of greenness (legacy effect for autumn phenology modelling) the first freeze or the
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last freeze, as well as the difference between both dates (freeze period) for the modelling of
autumn only. Growing degree days were computed using temperature thresholds of 0° and 5°.
Chilling requirements were computed as the sum of negative temperatures (temperatures below
0°). Freeze was defined as dates with minimum temperatures lower than -2° (Schwartz et al.,

2006).

The different weather predictors were computed based on the 30 and 90 days previous to the
day of the year (DOY) of the z-score values in OG and EOS (Figure 2b) following Schwartz
et al. (2006) and Menzel et al. (2006), who found that most phenophases of plant observations
in Europe correlated significantly with weather predictors representing the month of onset and
the two preceding months. The chilling requirements for spring modelling and freeze predictors
were an exception, as the period for its computation starts 90 days prior to the OG. Relative
differences between each predictor and its multi-year average for the same period were
computed to capture the inter-annual variability in climate variables at the pixel level for every

predictor and to facilitate the modelling of climate-driven variation in phenology (Table 1).

3.4 Modelling interannual variation in LSP

Conventional statistical models such as linear regression might be inappropriate for
investigating the drivers of interannual variation in phenology because many of the
relationships are likely to be non-linear (De Beurs and Henebry, 2008). In this sense, machine
learning methods have emerged as complementary alternatives to conventional statistical
techniques. Within the branch of machine learning techniques, regression trees are particularly
suitable when compared to global single predictive models, allowing for multiple regression
models using recursive partitioning (Breiman, 1984). Assembling a single global model might
not be representative of LSP of the entire European continent, when there are many climatic
drivers which interact in complicated, non-linear ways and may vary spatially and temporally.
For the purpose of this paper, an alternative approach is to sub-divide, or partition, the data

space into more homogeneous regions of similar climates and ecological factors.

Regression trees use a sum of squares criterion to split the data into successively more
homogeneous subsets contained at many different structural units called nodes. Each of the
terminal nodes, has attached to it a simple regression which applies in that node only. Therefore,
different regressions can be fitted to different data subsets within one single regression tree,
which can represent different responses controlled by different drivers (Archibald et al., 2009;

Lawler et al., 2006). Additionally, the performance of multiple regression trees can be
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combined to increase the predictive ability of a single regression tree model, following the
Random Forest technique (Figure 3). The RF method is an innovative machine learning
approach that can perform multivariate non-linear regression, combining the performance of
numerous regression tree algorithms to predict the interannual variation in OG and EOS. More
details regarding the performance and the specific characteristics of a RF model can be seen in

Rodriguez-Galiano et al. (2015b); Rodriguez-Galiano et al. (2014), and Figure 3.

The Random Forest method was applied to phenological modelling across very large areas and
across multiple years simultaneously: the typical case for satellite-observed LSP. The RF
model was fitted to the relation between LSP interannual variation and numerous climate
predictor variables computed at biologically-relevant rather than human-imposed temporal
scales. We restricted our climate data choices to daily data (average, minimum and maximum
temperatures, precipitation and radiation) to account for integrative forcing (that is, growing
degree days, chilling requirements as well as cumulative precipitation and radiation), computed
from the exact day of the phenological event backwards, rather than using the calendar months.
The locations with z-score in LSP greater than 1 (positive and negative) were selected to build
a RF predictive model on OG and EOS. Z-score values of OG or EOS for each year were
combined together with the different weather predictors. The z-score values in OG were
assessed as an extra predictor to evaluate the legacy effect of an advanced or delayed spring in
the modelling of EOS. The values of these variables at the selected years and locations
(spatiotemporal model) were combined into a set of input feature vectors (3900 feature vectors
for the spring model and 3124 for autumn) as an input to the RF algorithm. These feature
vectors were divided equally into two subsets, one for the training of the models (inbag) and
one as an additional test to the one internally computed by RF (out of bag; oob) to evaluate
performance. RF models composed of 2000 trees were grown using different subsets of
predictors, varying the number of random predictors from 1 to 9. The Random Forest method
within the package implemented in the R statistical software was used to build the different

models (Liaw and Wiener, 2002).

3.5 Selection of the most important predictors

The RF method can use the oob subset to estimate the relative importance of each predictor in
the model. This property is especially useful for the present research, but also for other
multivariate biological studies, where it is important to know the physical drivers of the

phenomenon under investigation (Archibald et al., 2009; Lawler et al., 2006). However, the
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inclusion of different measures of weather predictors may imply a large increase in the
dimensionality of the datasets being used, as these variables are obtained by applying multiple
functions or measures to the temperature, precipitation and radiation time-series. On the one
hand, more information may be useful for the modelling process; on the other hand, an
excessive number of correlated predictors or features can overwhelm the expected increase in
accuracy and may introduce additional complexity limiting the ability of the method to point
to possible cause-effect relationships between interannual variation in phenology and their

drivers, making interpretation challenging.

A feature selection approach, based on the ability of the RF to assess the relative importance
of the predictors, was used to identify the minimum number of drivers which can better explain
spring or autumn interannual variation in phenology. To assess the importance of each weather
predictor, the RF switches one of the input predictors while keeping the rest constant, and it re-
evaluates the performance of the model measuring the decrease in node impurity (Breiman,
2001).The differences were averaged over all 2000 trees to compute the general drivers for the
interannual variation in Europe. However, different subsets of variables could be used to
characterize different climates and ecological factors at every single regression tree model or
node (see previous section). In order to reduce the number of drivers the least important
predictor was removed iteratively at different steps. Then, a 5-fold cross-validation was applied
to obtain a stable estimate of the error of the model built after predictor deletions. Finally, the
model with a better trade-off between number of predictors and error was chosen as the basis

for interpreting the likely drivers of interannual variation in phenology.

4. Results

Numerous models were built on the basis of different predictor combinations considering
different temporal windows prior to the spring and autumn phenological events (see section
“computation of weather predictors”). The percentage of variation (pseudo-R?) explained by
different weather-LSP models is shown in the supplementary information (Table S1, S2 and
S3). No previous studies have investigated in depth the parametrization of GDD for LSP and
climate inter-comparison, unlike for ground phenological studies (Snyder et al., 1999).
Although, we did not carry out an exhaustive analysis of the optimum GDD parametrization,
our results showed a systematic pattern in spring models, presenting slightly larger pseudo-R?
for models which used 0° C as a threshold for the computation of GDD (rather than 5° C).

Regarding, the length of the temporal windows for weather function computation, spring
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models using 30 and 90 days for the computation of averaged and cumulative functions were
more accurate, whereas for autumn models with 90 day-averaged predictors outperformed the

rest.

The main drivers of interannual variation in LSP were identified through the application of a
feature selection procedure (see section “selection of the most important predictors”). Spring
models were more accurate than autumn, with median relative error values of 10% to 27% (12
to 1 predictor), versus 26% to 60% of autumn (14 to 1 predictor). Figure 4 shows the pseudo-
R? of the models as well as the relative importance of each predictor. Spring models (explained
a percentage of the variance up to 81% (Figure 4a), whereas autumn explained up to 61%
(Figure 4b). Cook et al. (2005), using a modelled based on GDD only, explained 63% on the
variance of onset date for mixed and boreal forest. Figure 5 shows the relative error in the
prediction of different models after removing the least important predictor. Regarding the
relative importance of the drivers, the same ranking in importance was observed within the
different models of each phenophase, which reflected the stability in the RF importance
estimation, and a high reliability of the results (Figure 4). To interpret the main weather drivers
of the interannual variation in phenology, simplified models with reduced number of predictors
were selected for spring and autumn (see section 3.5), respectively. The spring model was
composed of 6 predictors (pseudo-R*=0.77 and median relative error of 10%) and the autumn
model of 5 predictors (pseudo-R*=0.59 and median relative error of 28%) (Figure 6). Our
results suggest that interannual variation in the onset on greenness (LSP) of temperate forest
species are driven mainly by the daily temperature of the 30 days prior to onset (but not
necessarily the GDD), with the most important driver being the minimum temperature.
Photoperiod was also important, the most accurate empirical prediction was obtained by a
combined temperature-radiation forcing, integrating the SIS of the previous 90 days. For
senescence, temperature was suggested to be more important than photoperiod in controlling
the senescence process (Archetti et al., 2013; Jeong and Medvigy, 2014; Vitasse et al., 2009;
Yang et al., 2012), with the most important drivers being the date of the first freeze and the
accumulation of chilling temperatures. However, we did not observe a legacy effect of a much
earlier or later spring onset on the date of senescence. Autumn models that included the
interannual variation (z-score values) in the onset of greenness did not outperform the
remaining models (see Table S2 and S3 in supplementary information) and the relative

importance was low in comparison with other drivers.
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5. Discussion

The selection and computation of the weather predictors is an important step of phenological
modelling. Most of studies on the sensitivity of phenological events to climate used human
calendar scales, that is, seasonal or monthly calendar mean or cumulative climate predictors
(Maignan et al., 2008a; Maignan et al., 2008b; Menzel et al., 2006; Schwartz et al., 2006),
overlooking the importance of biological time-scales in phenology. However, with the
increased availability of daily weather datasets, current and future studies might benefit from
the use of daily information to model the drivers of plants’ circadian time-scales (Pau et al.,
2011). Our study advanced the modelling of vegetation phenology by improving the temporal
matching between LSP interannual variation and the preceding weather conditions by
analysing daily data at biological scales. Regarding, the length of the temporal windows for
weather function computation, Menzel et al. (2006) showed that most phenological phases of
plant species in Europe correlate significantly with mean temperatures of the month of onset
and the two preceding months. However, in our study, when end of senescence was considered,
a consistent divergent effect was observed between spring and autumn. Autumn phenophases
might be driven by longer-term changes in weather, while for spring the average conditions of
the 30 days previous to the date of onset play a more important role (Table S1, S2 and S3 in
supplementary information). From a computational point of view, considering larger temporal
windows for calculating averages would induce a smoothing effect, degrading the information
in the predictors, whereas cumulative functions such as GDD or chilling requirements would
not be affected by this effect. However, we observed a divergent response between spring and
autumn and consistent throughout the models of each phenophase suggests that a biological

explanation for this phenomenon might be plausible.

Understanding the drivers of interannual variation in LSP amidst background inter-annual
variation is a critical aspect of global change science (de Beurs and Henebry, 2005; Zhao et al.,
2013). To this end, the RF method is particularly pertinent, as it allows the assessment of the
importance of the predictors (Figure 4). Our findings reveal that the accuracy of growing degree
day-based models might be overestimated using linear regression models and that non-linear
multivariate relationships between temperature (especially minimum temperature) and
radiation are needed to describe the relations between phenology and weather drivers. This
supports the findings of Stockli et al. (2011) who explained temperate phenology using a
combination of light and temperature. The highlighted importance of minimum temperatures

might be related to the fact that minimum temperature is a better indicator of weather changes
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than either the average or maximum temperature (Duncan et al., 2014; Jolly et al., 2005).
Regarding GDD, although it has been applied extensively to predict vegetation phenophases ,
it is currently debated whether such models can detect when multiple environmental drivers
are required to initiate a phenological event, or detect drivers that are relatively static across
time, such as photoperiod (Stockli et al. 2011). Our results reveal that multiple environmental
drivers are required to initiate phenological events of Europe and also showed that the role of
GDD alone in driving spring phenology might be overestimated due to an over-reliance on
linear models. GDD had the largest linear association with vegetation phenology interannual
variation, while the linear correlation between LSP and others drivers that were revealed as
very important by the RF was small (see Tables 1 and 2). A simple linear analysis between
GDD and phenology could ignore complex non-linear associations between phenology and
predictors as well as synergies between weather drivers. Regarding the senescence phase, the
autumn models had a weaker predictive power compared the spring models. There is still lack
of clear understanding of mechanism autumn senescence, however, temperature, and

particularly the dates of freeze, has been suggested as major driver for autumn phenology.

The RF method provided an important alternative over simple, but less accurate analysis based
on linear regression for the analysis of interannual variation in spring and autumn phenology.
A further comparison with a linear regression analysis suggested that there might be a non-
linear relationship between the interannual variation in LSP and the weather drivers.
Multivariate linear regression models were also fitted from the same combination of predictors
selected as optimal by Random Forest. Multivariate linear models explained only 36% and 26%
of the variance in spring and autumn phenology interannual variation across the continental
scale. Additionally, a linear regression between predicted values from RF and observed
interannual variation in phenology produced R? values equal to 0.90 and 0.68 for spring and
autumn LSP interannual variation, respectively (Figure 6a and 6b). On the other hand, the
correlations between the predictions of linear regression models and observations were much
weaker, with R? values of 0.39 and 0.25 (Figure 6¢ and 6d). Linear models under-predicted a
delay in the phenophases (positive z-score values) and over-predicted the advances (negative
z-score values). The spatial distribution of the relative errors for RF and multivariate linear
regression is shown in Figures S3 to S6 of the supporting information. The relative errors of
the latter were significantly higher. Additionally, the residuals seemed not to be homoscedastic

suggesting that linear models might not be able to deal with the complex patterns between LSP
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and climate patterns at multiple locations and times, integrating them into a unique overall

model.

A new approach to model interannual variation in LSP was presented in this paper based on
the application of the RF model to a set of climate predictors at biological scales. This new
modelling technique has numerous advantages for the modelling of climate-driven interannual
variation in LSP. It is a non-parametric multivariate method which allows for non-linear
relationships between (compared to traditional linear models) phenology and climate and can
consider a large number of weather predictors in the modelling process. This provides potential
opportunity to capture the impact of all possible environmental/weather drivers on vegetation
phenology. The proposed method can recognize complex patterns between LSP and climate at
multiple locations and times, integrating them into a unique overall model, rather than
generating multiple models over a geographical area and for different years. Additionally it is
data-driven, which means that there is no need to incorporate previous knowledge about the
specific responses of vegetation to different predominant weather controls (i.e. temperature,
rainfall, and photoperiod), allowing weather drivers to automatically shift both temporally and
spatially. Therefore, it is highly generalizable, being applicable to different biogeographical
regions where the phenology is controlled by different factors. This flexibility or generalization
capacity of RF models to transition from one driver to another without the need for a model
change also promotes its application to different climate change scenarios. We succeeded in
modelling the interannual variation in LSP phenology as observed from satellite-sensors in the
European Forest, while using the same type of input data, the same model, and the same model

parameters for the entire European continent.
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569  Table 1. Predictors used in the modelling of the interannual variation in LSP. * predicted over
570  aperiod of 90 days. ** predicted over a period of the 30 and 90 days previous to the date of

571 the z-score value.

OG anomalies EOS anomalies

Averages (M):

Maximum temperature (TX)™ Maximum temperature (TX)™
Minimum temperature (TN)™ Minimum temperature (TN)™
Average temperature (TG)™ Average temperature (TG)™
Precipitation (PP)™ Precipitation (PP)""

Surface incoming shortwave radiation (SIS)™ Surface incoming shortwave radiation (SIS)™
Surface radiation daylight (DAL)" Surface radiation daylight (DAL)""

Cumulates (C)

Growing Degree Days (0° C threshold) (GDD)™ Growing Degree Days (0° C threshold) (GDD)™
Growing Degree Days (5° C threshold) (GDD)*" Growing Degree Days (5° C threshold) (GDD)™
Chilling requirements (CHIL)" Chilling requirements (CHIL)"
Precipitation (PP)™ Precipitation (PP)™
Surface incoming shortwave radiation (SIS)™ Surface incoming shortwave radiation (SIS)™
Surface radiation daylight (DAL)™ Surface radiation daylight (DAL)"™

Date of specific events

First freeze (FF)" First freeze (FF)"

Last freeze (LF)" OG z-score value (OGA) (legacy effect of an

d d or delayed spri
Period of freeze (PF)" advanced or delayed spring)

572
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1  Table 2. Correlations between the predictors used in the modelling of spring interannual variation in LSP. Significant correlations between the
2 anomalies and the predictors are given in bold (p < 0.05).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
1 Anom. 100 -0.40 -043 -0.11 -0.09 -0.12 -0.10 -0.11 -0.10 024 -0.03 -003 -003 -0.14 -004 -0.04 -033 -0.16 -0.16 -0.04 -0.06 -0.06 -0.45 -0.46 -0.12 -031 -0.03
2 GDD090 2040 100 093 011 014 011 013 011 015 -064 000 -001 -001 023 001 001 -012 -0.06 -006 004 -005 -005 067 064 018 -0.11 005
3 GDD590 043 093 100 011 010 011 010 011 011 -047 -0.01 -001 -001 016 001 001 003 004 004 006 003 003 074 075 016 003 0.06
4 MTG30 2011 011 011 100 099 100 099 100 098 -005 08 08 08 020 097 096 002 000 000 031 -001 -001 017 015 028 007 031
5 MTG90 20.09 014 010 099 100 098 100 099 100 -0.13 088 08 088 025 096 096 -003 -0.03 -003 030 -004 -0.04 010 009 029 002 031
6  MTX30 0.2 011 011 100 098 100 099 099 098 -004 08 08 088 019 096 096 003 000 000 032 -001 -0.01 018 016 027 008 032
7 MTX90 0.0 013 010 099 100 099 100 099 100 -0.11 08 08 089 023 096 096 -003 -003 -003 030 -004 -0.04 010 009 028 002 031
8  MTN30 0.1 011 011 100 099 099 099 100 098 -006 08 08 089 021 09 096 002 001 00l 031 000 000 016 014 029 006 031
9 MTN9O 0.0 015 011 098 100 098 100 098 100 -0.15 08 08 088 026 096 096 -0.04 -003 -003 029 -003 -0.03 010 009 030 002 030
10 CHIL 024 -0.64 -047 -005 -0.13 -004 -0.1 -006 -0.5 100 -0.0 000 000 -025 000 000 028 011 011 003 006 006 -024 -026 -0.16 026 0.0
11 FF 003 000 -001 089 08 089 089 089 088 -001 100 100 100 -0.01 088 088 -004 -005 -005 000 -006 -0.06 000 -0.01 -0.01 -003 0.00
12 LF 003 -001 -001 089 088 089 089 089 088 000 100 100 100 -0.01 088 088 -0.04 -005 -005 000 -006 -0.06 -0.01 -0.01 -0.01 -003 0.0
13 PF 003 -001 -001 089 088 088 089 089 088 000 100 100 100 -002 088 0838 -0.04 -005 -005 000 -006 -0.06 -0.01 -0.01 -0.01 -003 0.00
14 CRR90 0.4 023 016 020 025 019 023 021 026 -025 -0.01 -001 -002 100 020 020 00l 006 006 053 004 004 009 007 077 011 058
15 MRR30 -0.04 001 001 097 096 096 096 096 096 000 08 08 085 020 100 100 000 -003 -003 031 -003 -0.03 003 003 026 005 031
16  MRR90 -0.04 001 001 096 096 096 096 096 096 000 08 08 085 020 100 100 000 -003 -003 031 -003 -0.03 003 002 026 005 031
17 CSIS90 2033 012 003 002 -003 003 -0.03 002 -0.04 028 -0.04 -004 -004 001 000 000 100 080 08 016 057 057 022 022 012 09 0.5
18 MSIS30 20.16 -0.06 004 000 -003 000 -0.03 00l -0.03 0.1 -0.05 -005 -0.05 006 -0.03 -0.03 080 100 100 006 090 090 023 024 0I5 077 0.06
19 MSIS90 20.16 -0.06 004 000 -003 000 -0.03 00l -0.03 0.1 -0.05 -005 -0.05 006 -0.03 -0.03 080 100 100 006 090 090 023 024 0I5 077 0.06
20 CDAL90 004 004 006 031 030 032 030 031 029 003 000 000 000 053 031 031 016 006 006 100 005 005 011 010 078 028 099
21 MDAL30 20.06 -005 003 -001 -0.04 -0.01 -0.04 000 -003 006 -006 -006 -0.06 004 -0.03 -0.03 057 090 090 005 100 100 023 023 013 055 005
22 MDAL90 20.06 -005 003 -001 -0.04 -0.01 -0.04 000 -003 006 -006 -006 -0.06 004 -0.03 -0.03 057 09 090 005 100 100 023 023 013 055 005
23 GDD030 045 067 074 017 010 018 010 016 010 -024 000 -001 -0.0 009 003 003 022 023 023 011 023 023 100 097 016 023 0.1
24 GDD530 046 064 075 015 009 016 009 014 009 -026 -0.01 -001 -001 007 003 002 022 024 024 010 023 023 097 100 0I5 024 0.0
25 CRR30 0.2 018 016 028 029 027 028 029 030 -0.16 -0.01 -001 -0.0 077 026 026 012 015 0I5 078 013 013 016 015 100 018 079
26 CSIS30 2031 011 003 007 002 008 002 006 002 026 -0.03 -003 -003 011 005 005 09 077 077 028 055 055 023 024 018 100 028
27 CDAL30 003 005 006 031 031 032 031 031 030 00l 000 000 000 058 031 031 015 006 006 099 005 005 011 010 079 028 1.00
3
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1  Table 3. Correlations between the predictors used in the modelling of autumn interannual variation in LSP. Significant correlations between the
2 anomalies and the predictors are given in bold (p < 0.05).
1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
1 Anom. 1010 031 034 033 036 028 030 028 027 026 034 001 -003 034 007 007 004 -005 -005 -005 000 -001 -0.08 -0.08 -0.09 -0.15
2 0GA 010" 100 006 008 014 016 005 015 002 007 005 019 -002 -004 001 002 -005 -007 006 -002 -002 -010 -0.11 00l 00l -006 -0.10
3 GDD030 031 006 100 097 054 058 094 053 088 042 087 062 -054 -052 025 009 010 011 003 -009 -009 -001 001 -022 -022 -0.11 -022
4 GDD530 034 008 097 100 053 060 086 049 080 037 080 059 -041 -040 024 011 011 010 007 -010 -0.10 -003 -001 -023 -023 -015 -025
5 GDD090 033 014 054 053 100 098 049 095 054 090 036 085 -0.14 -024 012 005 013 009 -015 -007 -007 004 -005 -0.14 -0.14 008 -0.14
6 GDD590 036 016 058 060 098 100 049 092 054 085 037 084 -010 -020 014 007 013 009 -011 -007 -007 002 -006 -0.14 -0.14 004 -0.19
7 MTG30 028 005 094 086 049 049 100 056 093 044 094 063 -071 -066 024 004 010 009 -001 -002 -002 002 005 -013 -0.13 -009 -0.17
8  MTG90 030 g1s 053 049 095 092 056 100 061 093 043 089 -028 -036 012 -001 013 009 -0.18 002 002 007 -001 -003 -003 009 -0.11
9 MTX30 028 002 088 080 054 054 093 061 100 058 078 060 -058 -0.54 020 -009 0.2 007 -009 003 003 023 014 -009 -009 017 -0.06
10 MTX90 027 007 042 037 090 085 044 093 058 100 028 073 -016 -024 009 -005 013 005 -031 002 002 017 007 -003 -003 023 007
11 MTN30 026 005 087 080 036 037 094 043 078 028 100 061 -076 -070 026 016 008 009 008 -006 -006 -0.17 -004 -0.14 -0.14 -030 -024
12 MTN90 034 019 062 059 085 084 063 089 060 073 061 100 -039 -048 019 012 013 012 004 -002 -002 -007 -012 -006 -006 -008 -031
13 CHIL30 001 902 -054 -041 -014 -010 -071 -028 -058 -016 -076 -039 100 091 -008 -005 000 00l -005 -005 -005 009 -001 -001 -001 017 0.10
14 CHIL90 003 004 -052 -040 -024 -020 -066 -036 -054 -024 -070 -048 091 100 -009 -0.04 000 001 -005 -0.08 -008 008 001 -0.04 -004 016 0.I5
15 FF 034 001 025 024 012 014 024 012 020 009 026 019 -008 -009 100 -0.10 005 004 -008 00l 00l 00l 007 -005 -005 -0.08 -0.04
16 CRR30 007 002 009 011 005 007 004 -001 -009 -005 016 012 -005 -0.04 -010 100 012 004 051 -017 -0.17 -042 -025 -0.12 -0.12 -046 -025
17 MRR30 007 905 010 011 013 013 010 013 012 013 008 013 000 000 005 012 100 047 008 -003 -003 -002 -003 -003 -003 -002 -0.04
18 MRR90 004" 007 011 010 009 009 009 009 007 005 009 012 001 001 004 004 047 100 006 -001 -001 -002 -004 -002 -002 -002 -0.08
19 CRR90 005 006 003 007 -015 -011 -001 -0.18 -009 -031 008 004 -005 -0.05 -0.08 05 008 006 1.00 -0.04 -005 -0.14 -0.18 -0.05 -0.05 -020 -0.39
20 MSIS30 005 002 009 -010 -007 -007 -002 002 003 002 -006 -002 -005 -008 00l -0.17 -003 -001 -004 100 100 056 066 088 088 005 -0.04
21 MSIS90 005 002 009 -010 -007 -007 -002 002 003 002 -006 -002 -005 -008 00l -0.17 -003 -001 -005 100 100 055 066 088 088 005 -0.04
22 CSIS30 000 910 -001 -003 004 002 002 007 023 017 -017 -007 009 008 001 -042 -002 -002 -0.14 056 055 100 080 030 030 066 028
23 CSIS90 001 011 001 -001 -005 -006 005 -001 014 007 -004 -0.012 -001 00l 007 -025 -003 -004 -0.I8 066 066 080 100 031 031 0.8 040
24 MDAL30 008 901 022 023 -014 -0.14 -013 -003 -009 -003 -014 -006 -0.01 -004 -005 -0.12 -003 -002 -005 088 088 030 031 100 100 005 -0.05
25 MDAL90 008 001 022 -023 -014 014 013 -003 -009 -003 -0.4 -006 -0.01 -0.04 -005 -0.2 -003 -002 -005 08 08 030 031 100 100 005 -0.05
26 CDAL30 009 006 -011 -015 008 004 -009 009 007 023 -030 -008 017 016 -0.08 -046 -0.02 -0.02 -020 005 005 066 018 005 005 100 04l
27 CDAL90 015 010 -022 -025 -014 -019 -0.07 -0.11 -0.06 007 024 031 0.0 0.5 -0.04 025 -0.04 -0.08 -039 -0.04 -0.04 028 040 -0.05 -0.05 041 _1.00
3

20



;-
 Closed broadleaved deciduous forest ™ Closed needleleaved evergreen forest

2 Figure 1. Spatial distribution of Globcover broadleaved deciduous forest and needleleaved
3 evergreen forest in 2005 (a) and 2009 (b).
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Figure 2. Flow-chart illustrating the methodology. A) Phenology extraction and interannual

variation in LSP computation. B) Computation of weather predictors. C) Modelling of

interannual variation in phenology.
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Figure 3. The flowchart of Random Forest for regression (adapted from Rodriguez-Galiano et
al. 2015b). The RF method receives a subset of input vectors (n), made up of one phenology z-
score value and the values of the corresponding weather predictors for a given location and
year. RF builds a number K of regression trees making them grow from different training data
subsets, resampling randomly the original dataset with replacement. Hence, most data will be
used multiple times in different models. On the other hand, when the RF makes a tree grow, it
uses the best predictor within a subset of predictors (m) which has been selected randomly from
the overall set of input predictors. These especial characteristics of RF confer a greater
prediction stability and accuracy and, at the same time, avoid the correlation of the different
RTs, increasing the diversity of patterns that can be learnt from data. The multiple predictions
of all k RTs for a given vector used as training are then averaged to obtain a unique estimation

of the phenology z-score value.
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Figure 4. Relative importance of each independent variable in predicting phenology interannual
variation in Europe. Different models derived from the feature selection approach are
represented in each column. Numbers given over each column represent the coefficient
determination of each model. Plots at the top and bottom represent the spring (a) and autumn
interannual variation in LSP (b), respectively. The names of predictors follows the notation:
Prefix M and C represent the mean and cumulated functions; TX, TN and TG: maximum,
minimum and average temperature, respectively; PP: precipitation; SIS: surface incoming
shortwave radiation; DAL: surface radiation daylight; GDD: growing degree days; CHIL:

chilling requirements; FF, LF and PF: first, last and period of freeze, respectively.
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Figure 5. Relative error of the models fitted as a result of the feature selection approach. Median
(interior horizontal line), mean (interior square), 1% and 99% quantiles (edge of boxes), range
(extremes). Relative errors were calculated for the prediction of 1,974 and 1,576 independent
observations for spring (a) and autumn (b), respectively. See previous figure for the weather

predictor variables in the models, as shown in the x-axis.
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Figure 6. Scatterplots between observed anomalies in LSP and the predictions calculated using
a selection of weather predictors (see Figure 2 and Figure 3). Plots for spring phenology are
shown on the left panel (blue; a, ¢) and autumn on the right (red; b, d). Random Forest
predictions are given in the upper panel (a, b) and those of the linear regression in the bottom
(c, d) panel. The dashed lines represent an exact 1:1 relationship (expected fitting), the solid
lines show a linear regression of these data. The explained variances (percentage R?) and RMSE
values are 90% and 0.43 (spring Random Forest model), 68% and 0.92 (autumn Random Forest
model), 39% and 1.04 (spring Linear model) and 25% 1.40 (autumn linear model).
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