
The authors would like to thank the editor for the detailed comments and for taking the 
time to carefully read our revision and our reply to the referees. 

We believe there are a few aspects that might have been misinterpreted, especially 
regarding the nature and properties of the methods applied in the study. This is not 
surprising, as the methods applied here based on “machine learning” represent a new 
statistical model paradigm that differs from the commonly used linear regression based 
modelling of land surface phenology (LSP). LSP has previously been modelled using 
traditional linear regression approaches in most of the studies in the literature. 
However, this is not the case in our study, as we have used an innovative machine 
learning technique called Random Forest. This has important implications for 
understanding of our results and it makes an interpretation in  a similar way as classical 
linear multiple regression inappropriate. 

There are different aspects that make machine learning techniques, such as Random 
Forest, substantially different to linear regression:  

i. There are no formal distribution assumptions (non-parametric);  
ii. It can learn complex patterns, taking into account any nonlinear complex 

relationship between the predictor and the dependent variables (non-linearity);  
iii. It can handle thousands of predictors without variable deletion (no need for 

independency between explanatory variables).  

We believe that the methodology proposed here is new and sound, but more 
importantly this study offers new insights into the modelling and our understanding of 
LSP, avoiding some of the limitations of multiple linear regressions. 

 

A detailed response to editor comments is given below: 

 

Comment 1: “I was missing the critical discussion of the implicit assumption that one 
single model should be able to describe phenology across an entire continent, i.e. 
comprising different species and climates and ecological factors. That phenology at 
different locations and in differing species is driven by different drivers in differing ways 
is at least more likely.” 

Reply 1: We agree with the editor that having a model for the entire Europe would not 
be very realistic and will not capture the contribution of key drivers. However, this is not 
our case. Rather than having one single global model for the entire Europe, we have 
built multiple individual models (2000) from different data subsets and using different 
explanatory variables (climatic predictors). This is why the approach is termed as 
‘Random Forest’. The estimates of all those models are taken into account to predict the 
LSP at a given location and time. Therefore, different drivers for different 
biogeographical areas are implicitly considered. 



To understand our modelling approach it is important to know how the Random Forest 
algorithm works. We believe that we might have failed in giving a comprehensive 
explanation of the method. Therefore, we have made an effort to improve the 
description of the methodology, rewriting section 3.4, adding a new figure, and 
improving figure captions. Section 3.4 has been rewritten as follows: 

“Conventional statistical models such as linear regression might be inappropriate for 
investigating the drivers of interannual variation in phenology because many of the 
relationships are likely to be non-linear (De Beurs and Henebry, 2008). In this sense, 
machine learning methods have emerged as complementary alternatives to 
conventional statistical techniques. Within the branch of machine learning techniques, 
regression trees are particularly suitable when compared to global single predictive 
models, allowing for multiple regression models using recursive partitioning (Breiman et 
al., 1984). Assembling a single global model might not be representative of LSP of the 
entire European continent, when there are many climatic drivers which interact in 
complicated, non-linear ways and may vary spatially and temporally. For the purpose of 
this paper, an alternative approach is to sub-divide, or partition, the data space into 
more homogeneous regions of similar climates and ecological factors.  

Regression trees use a sum of squares criterion to split the data into successively more 
homogeneous subsets contained at many different structural units called nodes. Each 
of the terminal nodes, has attached to it a simple regression which applies in that node 
only. Therefore, different regressions can be fitted to different data subsets within one 
single regression tree, which can represent different responses controlled by different 
drivers (Archibald et al., 2009; Lawler et al., 2006). Additionally, the performance of 
multiple regression trees can be combined to increase the predictive ability of a single 
regression tree model, following the Random Forest technique (Figure 3). The RF 
method is an innovative machine learning approach that can perform multivariate non-
linear regression, combining the performance of numerous regression tree algorithms 
to predict the interannual variation in OG and EOS. More details regarding the 
performance and the specific characteristics of a RF model can be seen in Rodriguez-
Galiano et al. (2015b); Rodriguez-Galiano et al. (2014), and Figure 3..  

The Random Forest method was applied to phenological modelling across very large 
areas and across multiple years simultaneously: the typical case for satellite-observed 
LSP. The RF model was fitted to the relation between LSP interannual variation and 
numerous climate predictor variables computed at biologically-relevant rather than 
human-imposed temporal scales. We restricted our climate data choices to daily data 
(average, minimum and maximum temperatures, precipitation and radiation) to 
account for integrative forcing (that is, growing degree days, chilling requirements as 
well as cumulative precipitation and radiation), computed from the exact day of the 
phenological event backwards, rather than using the calendar months. The locations 
with z-score in LSP greater than 1 (positive and negative) were selected to build a RF 
predictive model on OG and EOS. Z-score values of OG or EOS for each year were 
combined together with the different weather predictors. The z-score values in OG were 



assessed as an extra predictor to evaluate the legacy effect of an advanced or delayed 
spring in the modelling of EOS. The values of these variables at the selected years and 
locations (spatiotemporal model) were combined into a set of input feature vectors 
(3900 feature vectors for the spring model and 3124 for autumn) as an input to the RF 
algorithm. These feature vectors were divided equally into two subsets, one for the 
training of the models (inbag) and one as an additional test to the one internally 
computed by RF (out of bag; oob) to evaluate performance. RF models composed of 
2000 trees were grown using different subsets of predictors, varying the number of 
random predictors from 1 to 9. The Random Forest method within the package 
implemented in the R statistical software was used to build the different models (Liaw 
and Wiener, 2002). 

 

Figure 3. The flowchart of Random Forest for regression (adapted from Rodriguez-
Galiano et al. 2015b). The RF method receives a subset of input vectors (n), made up of 
one phenology z-score value and the values of the corresponding weather predictors for 
a given location and year. RF builds a number K of regression trees making them grow 
from different training data subsets, resampling randomly the original dataset with 
replacement. Hence, most data will be used multiple times in different models. On the 
other hand, when the RF makes a tree grow, it uses the best predictor within a subset 
of predictors (m) which has been selected randomly from the overall set of input 
predictors. These especial characteristics of RF confer a greater prediction stability and 
accuracy and, at the same time, avoid the correlation of the different RTs, increasing the 
diversity of patterns that can be learnt from data. The multiple predictions of all k RTs 
for a given vector used as training are then averaged to obtain a unique estimation of 
the phenology z-score value. 

Section 3.5: 



“…A feature selection approach, based on the ability of the RF to assess the relative 
importance of the predictors, was used to identify the minimum number of drivers 
which can better explain spring or autumn interannual variation in phenology. To 
assess the importance of each weather predictor, the RF switches one of the input 
predictors while keeping the rest constant, and it re-evaluates the performance of the 
model measuring the decrease in node impurity (Breiman, 2001). The differences were 
averaged over all 2000 trees to compute the general drivers for the interannual 
variation in Europe. However, different subsets of variables could be used to 
characterize different climates and ecological factors at every single regression tree 
model or node (see previous section). To reduce the number of drivers the least 
important predictor was removed iteratively at different steps. Then, a 5-fold cross-
validation was applied to obtain a stable estimate of the error of the model built after 
predictor deletions. Finally, the model with a better trade-off between the number of 
predictors and error was chosen as the basis for interpreting the likely drivers of 
interannual variation in phenology.” 

Comment 2: “Now, after you have mapped some model residuals, you should also use 
the information to critically discuss your work in the main text. If I interpret your 
supplementary graphs correctly they show distinct patterns, which shows that there is 
still systematic bias which needs to be carefully analysed, explained and discussed. This 
discussion should also include that the observed distribution of residuals might be and 
expression of heteroscedasticity which compromises the estimation of unbiased 
regression parameters.” 

Reply 2: We would like to highlight that the validation of machine learning methods 
relies on the ability of the method to predict from new observations (independent test) 
that have not been used in the model building. Using the same training data would likely 
lead to an overestimation of the performance of the method. The way we have validated 
the modes is therefore an unbiased estimation of the generalisation error. Additionally, 
we would like to highlight again that machine learning algorithms are non-linear, which 
implies that there are no assumptions/expectations about the distribution of the 
residuals (e.g. homoscedasticity). 

It is true that the relative errors (from an independent test) for the multi-linear 
regression model seems to be heteroscedastic. However, this is supporting the initial 
hypotheses described in the manuscript: linear models might not be able to deal with 
the complex patterns between LSP and climate patterns at multiple locations and times, 
integrating them into a unique overall model.  

The following paragraph has, thus, been included in the discussion section: 

“The spatial distribution of the relative errors for RF and multivariate linear regression 
is shown in Figures S3 to S6 of the supporting information. The relative errors of the 
latter were significantly higher. Additionally, the residuals seemed not to be 
homoscedastic suggesting that linear models might not be able to deal with the complex 

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2008.01754.x/full#b6


patterns between LSP and climate patterns at multiple locations and times, integrating 
them into a unique overall model.”  

 

Comment 3: “The figure captions in the supplementary material are by far nor complete 
enough for understanding the figures (units, data sources, which test? ...). If you don’t 
exactly explain what you present, the presentation is useless. Please make sure that if it 
should come to a third revision to present it in appropriate quality.” 

Reply 3: The figure captions in the supplementary material have been extended. 

Comment 4: “I was surprised that the residuals maps are only limited to a small number 
of points, I guess, where you have ground observations. You trained the model with the 
satellite derived LSPs, so why don’t you present the residual maps that cover the entire 
continent.” 

Reply 4: We have not used ground observations in this study. The Pan European 
Phenological Network (PEP725) mainly covers Germany and Austria, and the interannual 
variation in LSP occurs in many other different places. However, our LSP estimates 
(normal dates) were compared to those of PEP725 in a different study. Please see the 
following paragraph in Section 3.2: 

“…These satellite-derived LSP estimates were compared to ground observations of the 
thousands of deciduous tree phenology records of the Pan European Phenology network 
(PEP725) (Rodriguez-Galiano et al., 2015a). This comparison resulted in a large spatio-
temporal correlation of the phenology estimates with the spring phenophase (OG vs leaf 
unfolding; pseudo-R2=0.70) and autumn phenophase (EOS vs autumnal colouring; 
pseudo-R2=0.71).” 

Regarding the origin of the residual maps, please see “reply 2” and the following 
paragraph in section 3.4 (Modelling interannual variation in LSP): 

“The values of these variables at the selected years and locations (spatiotemporal 
model) were combined into a set of input feature vectors (3900 feature vectors for the 
spring model and 3124 for autumn) as an input to the RF algorithm. These feature 
vectors were divided equally into two subsets, one for the training of the models (inbag) 
and one as an additional test to the one internally computed by RF (out of bag; oob) to 
evaluate performance.” 

Comment 5. Supporting strongly the point of Reviewer 2 on model selection (ref Figure 
3): a) The selection of additional models should be depending on the gain of model 
performance (not necessarily on R^2 only). If the performance does not increase with 
increasing degrees of freedoms, using more complex models doesn’t make sense. b) Do 
you have any indication for the distribution of residuals or the RMSE having improved 
using more complex models.  



Reply 5. We have not considered the determination coefficients only. Relative errors 
were decisive in the selection of the model. Please see the following paragraph (section 
3.5) and Figure 3 of the current submission: 

“In order to reduce the number of drivers the least important predictor was removed 
iteratively at different steps. Then, a 5-fold cross-validation was applied to obtain a 
stable estimate of the error of the model built after predictor deletions. Finally, the 
model with a better trade-off between number of predictors and error was chosen as 
the basis for interpreting the likely drivers of interannual variation in phenology.”  

Comment 6. In Figures 5 the regressions are performed including two separated data 
domains (positive, negative fluctuations) . a) Why did you not use the entire data set 
including small and zero fluctuations? b) Please give the regressions for the variation 
within the domains. You will see the difference and will look at your results in a different 
way. 

Reply 6. We would like to clarify that what we are showing in this figure is a scatterplot 
between the predicted values for an independent test (data that were not used in the 
regression model building; see previous comments) and the real values. This information 
is given as a complementary evaluation of the performance of the models, but it is not 
a regression model itself. This plot shows how our predictions deviate from the actual 
values in an independent dataset. 

Regarding the inclusion of the zero values (no fluctuations) in the graph. It would not be 
possible, as the models have been trained for variation or changes and not for the 
“normal behaviour”. There are strong arguments against the inclusion of 0 values in the 
machine learning modelling process. Machine learning regression algorithms are 
“intelligent” and able to adapt to the data that are being modelled to minimize the 
generalisation error. On the other hand, no change occurrences are by far more 
abundant that changes. Consequently, the algorithms would focus on learning the 
patterns that explain no changes, rather than in patterns of changes. In other words, if 
we included zero values, an explanatory model of no-change would be obtained, which 
misses the point. 

Comment 7. When you speak of ‘temporal variability’, it is interannual variability that 
you mean?  

Reply 7. Yes, we have replaced “temporal variability” by “interannual variability”. 

Comment 8. You speak several times of ‘biological scales’, without defining or explaining 
what you mean. In fact I don’t exactly understand what you want to say with this.  

Reply 8. The concept “biological scales” has been defined in the text as follows: 

”…On the other hand, many studies investigating the sensitivity of phenological events 
to climate variation use calendar seasonal or monthly mean climatic variables, which 
operate on fixed human calendar scales with a start date of 1st of January (Maignan et 



al., 2008b), instead of using biological scales, for example, time relative to the growing 
phase of plants (Pau et al., 2011).” 
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1. Abstract 22 

This research reveals new insights into the weather drivers of temporal variationinterannual 23 

variation in land surface phenology (LSP) across the entire European forest, while at the same 24 
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time establishes a new conceptual framework for predictive modelling of LSP. Specifically, 25 

the Random Forest method, a multivariate, spatially non-stationary and non-linear machine 26 

learning approach, was introduced for phenological modelling across very large areas and 27 

across multiple years simultaneously: the typical case for satellite-observed LSP. The RF 28 

model was fitted to the relation between LSP temporal variationinterannual variation and 29 

numerous climate predictor variables computed at biologically-relevant rather than human-30 

imposed temporal scales. In addition, the legacy effect of an advanced or delayed spring on 31 

autumn phenology was explored. The RF models explained 81% and 62% of the variance in 32 

the spring and autumn LSP temporal variationinterannual variation, with relative errors of 10% 33 

and 20%, respectively: a level of precision that has until now been unobtainable at the 34 

continental scale. Multivariate linear regression models explained only 36% and 25%, 35 

respectively. It also allowed identification of the main drivers of the temporal 36 

variationinterannual variation in LSP through its estimation of variable importance. This 37 

research, thus, shows an alternative to the hitherto applied linear regression approaches for 38 

modelling LSP and paves the way for further scientific investigation based on machine learning 39 

methods. 40 

2. Introduction 41 

Vegetation phenology has emerged as an important focus for scientific research in the last few 42 

decades. The interest in vegetation phenology is twofold: inter-annual recording of the timing 43 

of phenological events allows quantification of the impacts of climate change on vegetation; 44 

and a greater understanding of phenological responses enables meaningful projections of how 45 

ecosystems will respond to future changes in climate (Menzel, 2002; Morisette et al., 2008; 46 

Peñuelas, 2009; Peñuelas and Filella, 2001). Although different approaches have been devised 47 

for the study of vegetation phenology (Rafferty et al., 2013), the characterisation and modelling 48 

of vegetation phenology at global or regional scales has been undertaken mainly through the 49 

use of long-term time-series of satellite-sensor vegetation indices (termed land surface 50 

phenology, LSP, to reflect that satellite-observed phenology includes all land covers). Most 51 

studies of LSP analyse trends in phenological events across years (Delbart et al., 2008; 52 

Jeganathan et al., 2014; Jeong et al., 2011; Karlsen et al., 2007; Myneni et al., 1997), but more 53 

recent studies present process-based models to uncover cause-effect relationships between 54 

long-term trends in phenology and its key driving variables (Ivits et al., 012; Maignan et al., 55 

2008a; Maignan et al., 2008b; Stöckli et al., 2011; Stöckli et al., 2008; Yu et al., 2015; Zhou et 56 
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al., 2001). This last group of studies focuses on trends in phenology produced by trends in 57 

weather (mainly warming). However, temporal variationinterannual variation in LSP arising 58 

as a consequence of the inter-annual variability in weather are less studied (Cook et al., 2005; 59 

De Beurs and Henebry, 2008; Menzel et al., 2005; Post and Stenseth, 1999; Zhang et al., 2004), 60 

with model-based studies of this phenomenon being scarce (van Vliet, 2010). 61 

A higher frequency in the occurrence of extreme weather events has been observed in Europe, 62 

especially for summer temperatures (Barriopedro et al., 2011; Luterbacher et al., 2004). The 63 

summers of 2003 and 2010 in western and eastern Europe, respectively, were the warmest in 64 

the last 500 years (Barriopedro et al., 2011). Species and ecosystems respond more rapidly to 65 

these anomalies in weather than average climatic changes in most climatic scenarios (Zhao et 66 

al., 2013). Maignan et al. (2008b) and Rutishauser et al. (2008) reported that the LSP greening 67 

occurred 10 days earlier in 2007 than the average over the past three decades as a consequence 68 

of an exceptionally mild winter and spring. The study of the impacts of extreme inter-annual 69 

weather events on vegetation through the modelling of temporal variationinterannual variation 70 

in spring and autumn phenologies can increase our knowledge about climate-driven changes 71 

in phenology, acting as natural experiments in climate change scenarios (Rafferty et al., 2013). 72 

On the other hand, the modelling of LSP has been less explored compared to the modelling of 73 

individual plant species, and there are many aspects that remain to be understood, which limits 74 

comprehensive understanding of LSP and, therefore, of phenology at regional or global scales. 75 

A more complete modelling of LSP considering the inter-annual variation across large areas 76 

would include the capacity to interpret observations and make meaningful projections in 77 

relation to disturbances and their subsequent impacts (Morisette et al., 2008). 78 

Modelling efforts to characterize LSP have generally relied on functions (usually linear) of 79 

meteorological drivers, such as average temperature and precipitation (Ivits et al., 2012), 80 

growing degree days (GDD) (de Beurs and Henebry, 2005), light and temperature (Stöckli et 81 

al., 2011), minimum temperature, photoperiod, vapour pressure deficit (Jolly et al., 2005; 82 

Stöckli et al., 2008), or minimum relative humidity (Brown and de Beurs, 2008). However, 83 

there is lack of understanding on number of important aspects, such us the multivariate 84 

influence of meteorological variables (temperature, precipitation, solar radiation) driving 85 

phenology, or the effect of additional drivers in the modelling of autumnal phenophases 86 

(Morisette et al., 2008). For instance, Fu et al. (2014) found a “cause-effect relationship” 87 

between an earlier leaf senescence and an earlier spring flushing in leaves of warmed samples 88 

of Fagus sylvatica and Quercus robur. This legacy effect of spring phenology has been 89 
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reported in recent studies using modified environments and plant species, but it has not been 90 

studied using LSP data. This latter aspect is particularly pertinent for studies that focus on inter-91 

annual variation in phenology and could potentially contribute to increased knowledge of how 92 

climate change is affecting autumn phenology. On the other hand, many studies investigating 93 

the sensitivity of phenological events to climate variation use calendar seasonal or monthly 94 

mean climatic variables, which operate on fixed human calendar scales with a start date of 1st 95 

of January (Maignan et al., 2008b), instead of using biological scales, for example, time relative 96 

to the growing phase of plants daily data to build weather variables meaningful at biological 97 

scales (Pau et al., 2011). However, the modelling of interannual variation in LSP considering 98 

its potentially complicated relationship with climate in a multidimensional feature space (i.e. 99 

high number of multivariate weather drivers) might not be possible using traditional linear 100 

regression models (de Beurs and Henebry, 2005). In this sense, phenological modelling may 101 

benefit from machine learning techniques such as the Random Forest (RF) method (Breiman, 102 

2001), reducing uncertainties and bias (Zhao et al., 2013). RFs have the potential to identify 103 

and model the complex non-linear relationships between phenology and climate, being able to 104 

handle a large number of predictors and determine their importance in explaining phenology. 105 

RFs has been applied with very promising results to other fields of ecology and biological 106 

sciences (Archibald et al., 2009; Darling et al., 2012; Lawler et al., 2006), as well as to the 107 

simulation of phenological shifts under different climatic change scenarios (Lebourgeois et al., 108 

2010), but the potential for modelling climate-driven temporal variationinterannual variation 109 

in phenology is still to be explored. 110 

Understanding the effect of inter-annual weather variation on LSP is an essential step to 111 

establish a plausible link between recent climate variability and vegetation phenological 112 

responses at global or regional scales, and importantly to make reliable forecasts about future 113 

vegetation responses to different future climatic scenarios. The aim of this study is, therefore, 114 

to provide an explanation of the observed temporal variationinterannual variation in LSP of the 115 

entire European forest during the last decade, identifying the main weather drivers for spring 116 

and autumn at the continental scale. Our research offers new insights into the study of LSP by 117 

modelling the climate-driven past temporal variationinterannual variation in phenology, rather 118 

than trends, and using innovative multivariate non-linear machine learning techniques to 119 

evaluate multiple weather predictors at biological scales, and non-weather predictors such as 120 

the legacy effect of the date of spring onset in leaf senescence. Climate predictors used range 121 

from 30 days average values of temperature variables (max, min and avg) such as precipitation, 122 
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short wave radiation and day length; trimestral cumulated values such as growing degree days 123 

or chilling requirements, among others; to the date of specific events such as the first freeze or 124 

the last freeze. Moreover, we considered flexible biological time scales in the analysis between 125 

weather and phenological events rather than calendar months. 126 

  127 

3. Materials and Methods 128 

3.1 Data 129 

Three sources of data were used for this research: i) Satellite sensor derived temporal 130 

composites of MERIS Terrestrial Chlorophyll Index (MTCI), ii) temperature and precipitation 131 

data from the European Climate Assessment and Data (ECA&D) project (http: //www.ecad.eu) 132 

and iii) surface radiation daylight (DAL; w/m2) data and surface incoming shortwave (SIS; 133 

w/m2) radiation data from the Climate Monitoring Satellite Application Facilities (CM SAF, 134 

http://www.cmsaf.eu). 135 

We used weekly composites of MTCI data at 1 km spatial resolution from 2002 to 2012.  This 136 

dataset was supplied by the European Space Agency and processed by Airbus Defence and 137 

Space. Daily temperature (mean, minimum and maximum) and daily precipitation data were 138 

derived from the European Climate Assessment & Dataset (ECA&D) time-series (version 10.0) 139 

with spatial resolution of 0.25° ×0.25°, covering the period from 2002 to 2011 (Haylock et al., 140 

2008). The CM SAF DAL version CDR v001 (Müller and Trentmann, 2013) and SIS version 141 

CDR v002 (Posselt et al., 2012; Posselt et al., 2011) were derived from Meteosat satellite 142 

sensors at a spatial resolution of 0.05° x0.05° covering the same period as ECA&D. 143 

3.2 Phenology extraction and temporal variationinterannual variation in LSP 144 

computation 145 

The time-series of MERIS MTCI data was used to estimate both the onset of greenness 146 

(OG) and end of senescence (EOS) from 2003 to 2011. Data for every estimation year 147 

considered 1.5 years of data (from October in the previous year to July in the next year) 148 

because the annual pattern of vegetation growth in some parts of Europe spans across 149 

calendar years and, hence, insufficient information about LSP is captured using a single 150 

year of data. The yearly values of OG and EOS were estimated for each image pixel of the 151 
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study area using the methodology described in Dash et al. (2010). This methodology 152 

consists of two major procedures: data smoothing and LSP estimation (Figure 2a). 153 

Smoothed MTCI time-series data were obtained using a discrete Fourier transform because 154 

of its advantage of requiring fewer user-defined parameters compared to other methods 155 

(Atkinson et al., 2012). The peak in the annual profile was defined as a point on the 156 

phenological curve where the first derivative changes sign from positive to negative. Next, 157 

the derived data were searched backward and forward departing from the maximum annual 158 

peak to estimate the OG and EOS, respectively. OG was defined as a valley at the 159 

beginning of the growing season point (a change in derivative value from positive to 160 

negative) and EOS was defined as a valley point occurring at the decaying end of a 161 

phenology cycle (a change in derivative value from negative to positive). These satellite-162 

derived LSP estimates were compared to ground observations of the thousands of 163 

deciduous tree phenology records of the Pan European Phenology network (PEP725) 164 

(Rodriguez-Galiano et al., 2015a). This comparison resulted in a large spatio-temporal 165 

correlation of the phenology estimates with the spring phenophase (OG vs leaf unfdolding; 166 

pseudo-R2=0.70) and autumn phenophase (EOS vs autumnal colouring; pseudo-R2=0.71). 167 

Z-score values during the study period were used as a proxy to measure temporal 168 

variationinterannual variation in the LSP parameters. The z-score values for a given year 169 

were defined as the difference from the multi-year mean, normalized by the standard 170 

deviation across years. The value of the targeted year was excluded in the computation of 171 

multiyear mean to enhance the inter-annual variation (Saleska et al., 2007). The spatio-172 

temporal distribution of spring and autumn LSP z-score values is shown in Figures S1 and 173 

S2 of the supporting information, respectively. 174 

To match the spatial resolution of the ECA&D dataset, the LSP z-score values for each year 175 

were resampled to a spatial resolution of 0.25°×0.25° by calculating the median of all the LSP 176 

z-score values within this area after excluding the areas with fewer than 50 LSP estimates and 177 

the non-forest pixels according to the Globcover2005 and Globcover2009 land cover maps 178 

(http://due.esrin.esa.int/globcover/). Only LSP estimates with complete temporal coverage 179 

(2003–2011) were included in the analysis to reduce the likelihood of natural and human 180 

disturbances (Potter et al., 2003). Globcover was selected for its greater consistency with the 181 

MERIS MTCI time-series and its high geolocational accuracy (<150 m) (Bicheron et al., 2011). 182 
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3.3 Computation of weather predictors 183 

A suite of weather predictors were computed for each 0.25 ×0.25° grid cell associated with the 184 

occurrence of positive or negative z-score values in LSP based on the ECA&D and CM SAF 185 

datasets (see Table 1). The predictors include temporal average values of temperature variables 186 

(Tmax, Tmin and Tavg), precipitation, DAL and SIS; temporal cumulated predictors such as 187 

growing degree days, chilling, precipitation, SIS and DAL; and the date of specific events such 188 

as the onset of greenness (legacy effect for autumn phenology modelling) the first freeze or the 189 

last freeze, as well as the difference between both dates (freeze period) for the modelling of 190 

autumn only. Growing degree days were computed using temperature thresholds of 0° and 5°. 191 

Chilling requirements were computed as the sum of negative temperatures (temperatures below 192 

0°). Freeze was defined as dates with minimum temperatures lower than -2° (Schwartz et al., 193 

2006). 194 

The different weather predictors were computed based on the 30 and 90 days previous to the 195 

day of the year (DOY) of the z-score values in OG and EOS (Figure 2b) following Schwartz 196 

et al. (2006) and Menzel et al. (2006), who found that most phenophases of plant observations 197 

in Europe correlated significantly with weather predictors representing the month of onset and 198 

the two preceding months. The chilling requirements for spring modelling and freeze predictors 199 

were an exception, as the period for its computation starts 90 days prior to the OG. Relative 200 

differences between each predictor and its multi-year average for the same period were 201 

computed to capture the inter-annual variability in climate variables at the pixel level for every 202 

predictor and to facilitate the modelling of climate-driven variation in phenology (Table 1). 203 

3.4 Modelling temporal variationinterannual variation in LSP 204 

CConventional statistical models such as linear regression might be inappropriate for 205 

investigating the drivers of interannual variation in phenology because many of the 206 

relationships are likely to be non-linear (De Beurs and Henebry, 2008). In this sense, machine 207 

learning methods have emerged as complementary alternatives to conventional statistical 208 

techniques. Within the branch of machine learning techniques, regression trees are particularly 209 

suitable when compared to global single predictive models, allowing for multiple regression 210 

models using recursive partitioning (Breiman, 1984). Assembling a single global model might 211 

not be representative of LSP of the entire European continent, when there are many climatic 212 

drivers which interact in complicated, non-linear ways and may vary spatially and temporally. 213 
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For the purpose of this paper, an alternative approach is to sub-divide, or partition, the data 214 

space into more homogeneous regions of similar climates and ecological factors.  215 

Regression trees use a sum of squares criterion to split the data into successively more 216 

homogeneous subsets contained at many different structural units called nodes. Each of the 217 

terminal nodes, has attached to it a simple regression which applies in that node only. Therefore, 218 

different regressions can be fitted to different data subsets within one single regression tree, 219 

which can represent different responses controlled by different drivers (Archibald et al., 2009; 220 

Lawler et al., 2006). Additionally, the performance of multiple regression trees can be 221 

combined to increase the predictive ability of a single regression tree model, following the 222 

Random Forest technique (Figure 3). The RF method is an innovative machine learning 223 

approach that can perform multivariate non-linear regression, combining the performance of 224 

numerous regression tree algorithms to predict the interannual variation in OG and EOS. More 225 

details regarding the performance and the specific characteristics of a RF model can be seen in 226 

Rodriguez-Galiano et al. (2015b); Rodriguez-Galiano et al. (2014), and Figure 3.  227 

The Random Forest method was applied to phenological modelling across very large areas and 228 

across multiple years simultaneously: the typical case for satellite-observed LSP. The RF 229 

model was fitted to the relation between LSP interannual variation and numerous climate 230 

predictor variables computed at biologically-relevant rather than human-imposed temporal 231 

scales. We restricted our climate data choices to daily data (average, minimum and maximum 232 

temperatures, precipitation and radiation) to account for integrative forcing (that is, growing 233 

degree days, chilling requirements as well as cumulative precipitation and radiation), computed 234 

from the exact day of the phenological event backwards, rather than using the calendar months. 235 

The locations with z-score in LSP greater than 1 (positive and negative) were selected to build 236 

a RF predictive model on OG and EOS. Z-score values of OG or EOS for each year were 237 

combined together with the different weather predictors. The z-score values in OG were 238 

assessed as an extra predictor to evaluate the legacy effect of an advanced or delayed spring in 239 

the modelling of EOS. The values of these variables at the selected years and locations 240 

(spatiotemporal model) were combined into a set of input feature vectors (3900 feature vectors 241 

for the spring model and 3124 for autumn) as an input to the RF algorithm. These feature 242 

vectors were divided equally into two subsets, one for the training of the models (inbag) and 243 

one as an additional test to the one internally computed by RF (out of bag; oob) to evaluate 244 

performance. RF models composed of 2000 trees were grown using different subsets of 245 

predictors, varying the number of random predictors from 1 to 9. The Random Forest method 246 
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within the package implemented in the R statistical software was used to build the different 247 

models (Liaw and Wiener, 2002).onventional statistical models such as linear regression might 248 

be inappropriate for investigating the drivers of temporal variation in phenology because many 249 

of the relationships are likely to be non-linear (De Beurs and Henebry, 2008). In this sense, 250 

machine learning methods have emerged as complementary alternatives to conventional 251 

statistical techniques. Within the branch of machine learning techniques, regression trees are 252 

particularly suitable when compared to global single predictive models, allowing for multiple 253 

regression models using recursive partitioning (Breiman et al., 1984). Assembling a single 254 

global model might not be representative of the phenomenon under study when there are many 255 

predictors which interact in complicated, non-linear ways and may vary spatially and 256 

temporally. An alternative approach is to sub-divide, or partition, the space into more 257 

homogeneous regions of similar characteristics. Regression trees use a sum of squares criterion 258 

to split the data into successively more homogeneous subsets. Therefore, different regression 259 

models can be fitted to different data subsets, which can represent different responses 260 

controlled by different drivers (Archibald et al., 2009; Lawler et al., 2006). For the purpose of 261 

this paper, this latter property makes regression trees particularly advantageous. 262 

Different approaches have been proposed in the last few years to increase the predictive ability 263 

of regression tree models. Among all of them RFs are probably the most popular technique due 264 

to the simplicity of their applicability, interpretability of the models, and the robustness of 265 

predictions (Rodriguez-Galiano et al., 2015b). The RF method is an innovative machine 266 

learning approach that can perform multivariate non-linear regression, combining the 267 

performance of numerous regression tree algorithms to predict the temporal variation in OG 268 

and EOS. The RF method receives a subset of  x
 
input vectors, made up of one phenology z-269 

score value and the values of the corresponding weather predictors considered in the regression. 270 

RF builds a number K of regression trees (individual regression models) and averages the 271 

results (Breiman, 2001). After K such trees   
1

K
T x  are grown, the RF regression predictor 272 

becomes: 273 

   
1

1ˆ


 
K

K
rf

k

f x T x
K  274 

More details regarding the performance and the specific characteristics of a RF model can be 275 

seen in Rodriguez-Galiano et al. (2015b); Rodriguez-Galiano et al. (2014).  276 
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Random Forest method was applied to phenological modelling across very large areas and 277 

across multiple years simultaneously: the typical case for satellite-observed LSP. The RF 278 

model was fitted to the relation between LSP temporal variation and numerous climate 279 

predictor variables computed at biologically-relevant rather than human-imposed temporal 280 

scales. We restricted our climate data choices to daily data (average, minimum and maximum 281 

temperatures, precipitation and radiation) to account for integrative forcing (that is, growing 282 

degree days, chilling requirements as well as cumulative precipitation and radiation), computed 283 

from the exact day of the phenological event backwards, rather than using the calendar months 284 

of the calendar months. The locations with z-score in LSP greater than 1 (positive and negative) 285 

were selected to build a RF predictive model on OG and EOS. Z-score values of OG or EOS 286 

for each year were combined together with the different weather predictors. The z-score values 287 

in OG were assessed as an extra predictor to evaluate the legacy effect of an advanced or 288 

delayed spring in the modelling of EOS. The values of these variables at the selected years and 289 

locations (spatiotemporal model) were combined into a set of input feature vectors (3900 290 

feature vectors for the spring model and 3124 for autumn) as an input to the RF algorithm. 291 

These feature vectors were divided equally into two subsets, one for the training of the models 292 

and one as an additional test to the one internally computed by RF (out of bag; oob) to evaluate 293 

performance. RF models composed of 2000 trees were grown using different subsets of 294 

predictors, varying the number of random predictors from 1 to 9. Random Forest method within 295 

the package implemented in the R statistical software was used to build the different models 296 

(Liaw and Wiener, 2002). 297 

3.5 Selection of the most important predictors 298 

The RF method can use the oob subset to estimate the relative importance of each predictor in 299 

the model. This property is especially useful for the present research, but also for other 300 

multivariate biological studies, where it is important to know the physical drivers of the 301 

phenomenon under investigation (Archibald et al., 2009; Lawler et al., 2006). However, the 302 

inclusion of different measures of weather predictors may imply a large increase in the 303 

dimensionality of the datasets being used, as these variables are obtained by applying multiple 304 

functions or measures to the temperature, precipitation and radiation time-series. On the one 305 

hand, more information may be useful for the modelling process; on the other hand, an 306 

excessive number of correlated predictors or features can overwhelm the expected increase in 307 

accuracy and may introduce additional complexity limiting the ability of the method to point 308 
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to possible cause-effect relationships between temporal variationinterannual variation in 309 

phenology and their drivers, making interpretation challenging.  310 

A feature selection approach, based on the ability of the RF to assess the relative importance 311 

of the predictors, was used to identify the minimum number of drivers which can better explain 312 

spring or autumn interannual variation in phenology. To assess the importance of each weather 313 

predictor, the RF switches one of the input predictors while keeping the rest constant, and it re-314 

evaluates the performance of the model measuring the decrease in node impurity (Breiman, 315 

2001).The differences were averaged over all 2000 trees to compute the general drivers for the 316 

interannual variation in Europe. However, different subsets of variables could be used to 317 

characterize different climates and ecological factors at every single regression tree model or 318 

node (see previous section). In order to reduce the number of drivers the least important 319 

predictor was removed iteratively at different steps. Then, a 5-fold cross-validation was applied 320 

to obtain a stable estimate of the error of the model built after predictor deletions. Finally, the 321 

model with a better trade-off between number of predictors and error was chosen as the basis 322 

for interpreting the likely drivers of interannual variation in phenology.A feature selection 323 

approach, based on the ability of the RF to assess the relative importance of the predictors, was 324 

used to identify the minimum number of drivers which can better explain spring or autumn 325 

temporal variation in phenology. To assess the importance of each weather predictor, the RF 326 

switches one of the input predictors while keeping the rest constant, and it re-evaluates the 327 

performance of the model measuring the decrease in node impurity (Breiman, 2001). The 328 

differences were averaged over all 2000 trees. In order to reduce the number of drivers the least 329 

important predictor was removed iteratively at different steps. Then, a 5-fold cross-validation 330 

was applied to obtain a stable estimate of the error of the model built after predictor deletions. 331 

Finally, the model with a better trade-off between number of predictors and error was chosen 332 

as the basis for interpreting the likely drivers of temporal variation in phenology.  333 

4. Results 334 

Numerous models were built on the basis of different predictor combinations considering 335 

different temporal windows prior to the spring and autumn phenological events (see section 336 

“computation of weather predictors”). The percentage of variation (pseudo-R2) explained by 337 

different weather-LSP models is shown in the supplementary information (Table S1, S2 and 338 

S3). No previous studies have investigated in depth the parametrization of GDD for LSP and 339 

climate inter-comparison, unlike for ground phenological studies (Snyder et al., 1999). 340 
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Although, we did not carry out an exhaustive analysis of the optimum GDD parametrization, 341 

our results showed a systematic pattern in spring models, presenting slightly larger pseudo-R2 342 

for models which used 0⁰ C as a threshold for the computation of GDD (rather than 5⁰ C). 343 

Regarding, the length of the temporal windows for weather function computation, spring 344 

models using 30 and 90 days for the computation of averaged and cumulative functions were 345 

more accurate, whereas for autumn models with 90 day-averaged predictors outperformed the 346 

rest.  347 

The main drivers of temporal variationinterannual variation in LSP were identified through the 348 

application of a feature selection procedure (see section “selection of the most important 349 

predictors”). Spring models were more accurate than autumn, with median relative error values 350 

of 10% to 27% (12 to 1 predictor), versus 26% to 60% of autumn (14 to 1 predictor). Figure 351 

43 shows the pseudo-R2 of the models as well as the relative importance of each predictor. 352 

Spring models (explained a percentage of the variance up to 81% (Figure 43a), whereas autumn 353 

explained up to 61% (Figure 43b). Cook et al. (2005), using a modelled based on GDD only, 354 

explained 63% on the variance of onset date for mixed and boreal forest. Figure 54 shows the 355 

relative error in the prediction of different models after removing the least important predictor. 356 

Regarding the relative importance of the drivers, the same ranking in importance was observed 357 

within the different models of each phenophase, which reflected the stability in the RF 358 

importance estimation, and a high reliability of the results (Figure 43). To interpret the main 359 

weather drivers of the temporal variationinterannual variation in phenology, simplified models 360 

with reduced number of predictors were selected for spring and autumn (see section 3.5), 361 

respectively. The spring model was composed of 6 predictors (pseudo-R2=0.77 and median 362 

relative error of 10%) and the autumn model of 5 predictors (pseudo-R2=0.59 and median 363 

relative error of 28%) (Figure 65). Our results suggest that temporal variationinterannual 364 

variation in the onset on greenness (LSP) of temperate forest species are driven mainly by the 365 

daily temperature of the 30 days prior to onset (but not necessarily the GDD), with the most 366 

important driver being the minimum temperature. Photoperiod was also important, the most 367 

accurate empirical prediction was obtained by a combined temperature-radiation forcing, 368 

integrating the SIS of the previous 90 days. For senescence, temperature was suggested to be 369 

more important than photoperiod in controlling the senescence process (Archetti et al., 2013; 370 

Jeong and Medvigy, 2014; Vitasse et al., 2009; Yang et al., 2012), with the most important 371 

drivers being the date of the first freeze and the accumulation of chilling temperatures. 372 

However, we did not observe a legacy effect of a much earlier or later spring onset on the date 373 
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of senescence. Autumn models that included the temporal variationinterannual variation (z-374 

score values) in the onset of greenness did not outperform the remaining models (see Table S2 375 

and S3 in supplementary information) and the relative importance was low in comparison with 376 

other drivers.  377 

5. Discussion 378 

The selection and computation of the weather predictors is an important step of phenological 379 

modelling. Most of studies on the sensitivity of phenological events to climate used human 380 

calendar scales, that is, seasonal or monthly calendar mean or cumulative climate predictors 381 

(Maignan et al., 2008a; Maignan et al., 2008b; Menzel et al., 2006; Schwartz et al., 2006), 382 

overlooking the importance of biological time-scales in phenology. However, with the 383 

increased availability of daily weather datasets, current and future studies might benefit from 384 

the use of daily information to model the drivers of plants’ circadian time-scales (Pau et al., 385 

2011). Our study advanced the modelling of vegetation phenology by improving the temporal 386 

matching between LSP temporal variationinterannual variation and the preceding weather 387 

conditions by analysing daily data at biological scales. Regarding, the length of the temporal 388 

windows for weather function computation, Menzel et al. (2006) showed that most 389 

phenological phases of plant species in Europe correlate significantly with mean temperatures 390 

of the month of onset and the two preceding months. However, in our study, when end of 391 

senescence was considered, a consistent divergent effect was observed between spring and 392 

autumn. Autumn phenophases might be driven by longer-term changes in weather, while for 393 

spring the average conditions of the 30 days previous to the date of onset play a more important 394 

role (Table S1, S2 and S3 in supplementary information). From a computational point of view, 395 

considering larger temporal windows for calculating averages would induce a smoothing effect, 396 

degrading the information in the predictors, whereas cumulative functions such as GDD or 397 

chilling requirements would not be affected by this effect. However, we observed a divergent 398 

response between spring and autumn and consistent throughout the models of each phenophase 399 

suggests that a biological explanation for this phenomenon might be plausible.  400 

Understanding the drivers of temporal variationinterannual variation in LSP amidst 401 

background inter-annual variation is a critical aspect of global change science (de Beurs and 402 

Henebry, 2005; Zhao et al., 2013). To this end, the RF method is particularly pertinent, as it 403 

allows the assessment of the importance of the predictors (Figure 43). Our findings reveal that 404 

the accuracy of growing degree day-based models might be overestimated using linear 405 
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regression models and that non-linear multivariate relationships between temperature 406 

(especially minimum temperature) and radiation are needed to describe the relations between 407 

phenology and weather drivers. This supports the findings of Stöckli et al. (2011) who 408 

explained temperate phenology using a combination of light and temperature. The highlighted 409 

importance of minimum temperatures might be related to the fact that minimum temperature 410 

is a better indicator of weather changes than either the average or maximum temperature 411 

(Duncan et al., 2014; Jolly et al., 2005). Regarding GDD, although it has been applied 412 

extensively to predict vegetation phenophases , it is currently debated whether such models can 413 

detect when multiple environmental drivers are required to initiate a phenological event, or 414 

detect drivers that are relatively static across time, such as photoperiod (Stöckli et al. 2011). 415 

Our results reveal that multiple environmental drivers are required to initiate phenological 416 

events of Europe and also showed that the role of GDD alone in driving spring phenology 417 

might be overestimated due to an over-reliance on linear models. GDD had the largest linear 418 

association with vegetation phenology temporal variationinterannual variation, while the linear 419 

correlation between LSP and others drivers that were revealed as very important by the RF was 420 

small (see Tables 1 and 2). A simple linear analysis between GDD and phenology could ignore 421 

complex non-linear associations between phenology and predictors as well as synergies 422 

between weather drivers. Regarding the senescence phase, the autumn models had a weaker 423 

predictive power compared the spring models. There is still lack of clear understanding of 424 

mechanism autumn senescence, however, temperature, and particularly the dates of freeze, has 425 

been suggested as major driver for autumn phenology.  426 

The RF method provided an important alternative over simple, but less accurate analysis based 427 

on linear regression for the analysis of temporal variationinterannual variation in spring and 428 

autumn phenology. A further comparison with a linear regression analysis suggested that there 429 

might be a non-linear relationship between the temporal variationinterannual variation in LSP 430 

and the weather drivers. Multivariate linear regression models were also fitted from the same 431 

combination of predictors selected as optimal by Random Forest. Multivariate linear models 432 

explained only 36% and 26% of the variance in spring and autumn phenology temporal 433 

variationinterannual variation across the continental scale. Additionally, a linear regression 434 

between predicted values from RF and observed temporal variationinterannual variation in 435 

phenology produced R2 values equal to 0.90 and 0.68 for spring and autumn LSP temporal 436 

variationinterannual variation, respectively (Figure 65a and 64b). On the other hand, the 437 

correlations between the predictions of linear regression models and observations were much 438 
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weaker, with R2 values of 0.39 and 0.25 (Figure 65c and 65d). Linear models under-predicted 439 

a delay in the phenophases (positive z-score values) and over-predicted the advances (negative 440 

z-score values). The spatial distribution of the relative errors for RF and multivariate linear 441 

regression is shown in Figures S3 to S6 of the supporting information. The relative errors of 442 

the latter were significantly higher. Additionally, the residuals seemed not to be homoscedastic 443 

suggesting that linear models might not be able to deal with the complex patterns between LSP 444 

and climate patterns at multiple locations and times, integrating them into a unique overall 445 

model. 446 

A new approach to model temporal variationinterannual variation in LSP was presented in this 447 

paper based on the application of the RF model to a set of climate predictors at biological scales. 448 

This new modelling technique has numerous advantages for the modelling of climate-driven 449 

temporal variationinterannual variation in LSP. It is a non-parametric multivariate method 450 

which allows for non-linear relationships between (compared to traditional linear models) 451 

phenology and climate and can consider a large number of weather predictors in the modelling 452 

process. This provides potential opportunity to capture the impact of all possible 453 

environmental/weather drivers on vegetation phenology. The proposed method can recognize 454 

complex patterns between LSP and climate at multiple locations and times, integrating them 455 

into a unique overall model, rather than generating multiple models over a geographical area 456 

and for different years. Additionally it is data-driven, which means that there is no need to 457 

incorporate previous knowledge about the specific responses of vegetation to different 458 

predominant weather controls (i.e. temperature, rainfall, and photoperiod), allowing weather 459 

drivers to automatically shift both temporally and spatially. Therefore, it is highly generalizable, 460 

being applicable to different biogeographical regions where the phenology is controlled by 461 

different factors. This flexibility or generalization capacity of RF models to transition from one 462 

driver to another without the need for a model change also promotes its application to different 463 

climate change scenarios. We succeeded in modelling the temporal variationinterannual 464 

variation in LSP phenology as observed from satellite-sensors in the European Forest, while 465 

using the same type of input data, the same model, and the same model parameters for the 466 

entire European continent. 467 
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Table 1. Predictors used in the modelling of the temporal variationinterannual variation in LSP. 635 

* predicted over a period of 90 days. ** predicted over a period of the 30 and 90 days previous 636 

to the date of the z-score value. 637 

OG anomalies EOS anomalies 

Averages (M): 

Maximum temperature (TX)** Maximum temperature (TX)** 

Minimum temperature (TN)** Minimum temperature (TN)** 

Average temperature (TG)** Average temperature (TG)** 

Precipitation (PP)** Precipitation (PP)** 

Surface incoming shortwave radiation (SIS)** Surface incoming shortwave radiation (SIS)** 

Surface radiation daylight (DAL)** Surface radiation daylight (DAL)** 

Cumulates (C) 

Growing Degree Days (0º C threshold) (GDD)** Growing Degree Days (0º C threshold) (GDD)** 

Growing Degree Days (5º C threshold) (GDD)** Growing Degree Days (5º C threshold) (GDD)** 

Chilling requirements (CHIL)* Chilling requirements (CHIL)** 

Precipitation (PP)** Precipitation (PP)** 

Surface incoming shortwave radiation (SIS)** Surface incoming shortwave radiation (SIS)** 

Surface radiation daylight (DAL)** Surface radiation daylight (DAL)** 

Date of specific events 

First freeze (FF)* First freeze (FF)* 

Last freeze (LF)* OG z-score value (OGA) (legacy effect of an 

advanced or delayed spring) 
Period of freeze (PF)* 

638 
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Table 2. Correlations between the predictors used in the modelling of spring temporal variationinterannual variation in LSP. Significant correlations 1 
between the anomalies and the predictors are given in bold (p < 0.05). 2 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

1 Anom. 1.00 -0.40 -0.43 -0.11 -0.09 -0.12 -0.10 -0.11 -0.10 0.24 -0.03 -0.03 -0.03 -0.14 -0.04 -0.04 -0.33 -0.16 -0.16 -0.04 -0.06 -0.06 -0.45 -0.46 -0.12 -0.31 -0.03 

2  GDD090 -0.40 1.00 0.93 0.11 0.14 0.11 0.13 0.11 0.15 -0.64 0.00 -0.01 -0.01 0.23 0.01 0.01 -0.12 -0.06 -0.06 0.04 -0.05 -0.05 0.67 0.64 0.18 -0.11 0.05 

3  GDD590 -0.43 0.93 1.00 0.11 0.10 0.11 0.10 0.11 0.11 -0.47 -0.01 -0.01 -0.01 0.16 0.01 0.01 0.03 0.04 0.04 0.06 0.03 0.03 0.74 0.75 0.16 0.03 0.06 

4  MTG30 -0.11 0.11 0.11 1.00 0.99 1.00 0.99 1.00 0.98 -0.05 0.89 0.89 0.89 0.20 0.97 0.96 0.02 0.00 0.00 0.31 -0.01 -0.01 0.17 0.15 0.28 0.07 0.31 

5  MTG90 -0.09 0.14 0.10 0.99 1.00 0.98 1.00 0.99 1.00 -0.13 0.88 0.88 0.88 0.25 0.96 0.96 -0.03 -0.03 -0.03 0.30 -0.04 -0.04 0.10 0.09 0.29 0.02 0.31 

6  MTX30 -0.12 0.11 0.11 1.00 0.98 1.00 0.99 0.99 0.98 -0.04 0.89 0.89 0.88 0.19 0.96 0.96 0.03 0.00 0.00 0.32 -0.01 -0.01 0.18 0.16 0.27 0.08 0.32 

7  MTX90 -0.10 0.13 0.10 0.99 1.00 0.99 1.00 0.99 1.00 -0.11 0.89 0.89 0.89 0.23 0.96 0.96 -0.03 -0.03 -0.03 0.30 -0.04 -0.04 0.10 0.09 0.28 0.02 0.31 

8  MTN30 -0.11 0.11 0.11 1.00 0.99 0.99 0.99 1.00 0.98 -0.06 0.89 0.89 0.89 0.21 0.96 0.96 0.02 0.01 0.01 0.31 0.00 0.00 0.16 0.14 0.29 0.06 0.31 

9  MTN90 -0.10 0.15 0.11 0.98 1.00 0.98 1.00 0.98 1.00 -0.15 0.88 0.88 0.88 0.26 0.96 0.96 -0.04 -0.03 -0.03 0.29 -0.03 -0.03 0.10 0.09 0.30 0.02 0.30 

10  CHIL 0.24 -0.64 -0.47 -0.05 -0.13 -0.04 -0.11 -0.06 -0.15 1.00 -0.01 0.00 0.00 -0.25 0.00 0.00 0.28 0.11 0.11 0.03 0.06 0.06 -0.24 -0.26 -0.16 0.26 0.01 

11  FF -0.03 0.00 -0.01 0.89 0.88 0.89 0.89 0.89 0.88 -0.01 1.00 1.00 1.00 -0.01 0.88 0.88 -0.04 -0.05 -0.05 0.00 -0.06 -0.06 0.00 -0.01 -0.01 -0.03 0.00 

12  LF -0.03 -0.01 -0.01 0.89 0.88 0.89 0.89 0.89 0.88 0.00 1.00 1.00 1.00 -0.01 0.88 0.88 -0.04 -0.05 -0.05 0.00 -0.06 -0.06 -0.01 -0.01 -0.01 -0.03 0.00 

13  PF -0.03 -0.01 -0.01 0.89 0.88 0.88 0.89 0.89 0.88 0.00 1.00 1.00 1.00 -0.02 0.88 0.88 -0.04 -0.05 -0.05 0.00 -0.06 -0.06 -0.01 -0.01 -0.01 -0.03 0.00 

14  CRR90 -0.14 0.23 0.16 0.20 0.25 0.19 0.23 0.21 0.26 -0.25 -0.01 -0.01 -0.02 1.00 0.20 0.20 0.01 0.06 0.06 0.53 0.04 0.04 0.09 0.07 0.77 0.11 0.58 

15  MRR30 -0.04 0.01 0.01 0.97 0.96 0.96 0.96 0.96 0.96 0.00 0.88 0.88 0.88 0.20 1.00 1.00 0.00 -0.03 -0.03 0.31 -0.03 -0.03 0.03 0.03 0.26 0.05 0.31 

16  MRR90 -0.04 0.01 0.01 0.96 0.96 0.96 0.96 0.96 0.96 0.00 0.88 0.88 0.88 0.20 1.00 1.00 0.00 -0.03 -0.03 0.31 -0.03 -0.03 0.03 0.02 0.26 0.05 0.31 

17  CSIS90 -0.33 -0.12 0.03 0.02 -0.03 0.03 -0.03 0.02 -0.04 0.28 -0.04 -0.04 -0.04 0.01 0.00 0.00 1.00 0.80 0.80 0.16 0.57 0.57 0.22 0.22 0.12 0.96 0.15 

18  MSIS30 -0.16 -0.06 0.04 0.00 -0.03 0.00 -0.03 0.01 -0.03 0.11 -0.05 -0.05 -0.05 0.06 -0.03 -0.03 0.80 1.00 1.00 0.06 0.90 0.90 0.23 0.24 0.15 0.77 0.06 

19  MSIS90 -0.16 -0.06 0.04 0.00 -0.03 0.00 -0.03 0.01 -0.03 0.11 -0.05 -0.05 -0.05 0.06 -0.03 -0.03 0.80 1.00 1.00 0.06 0.90 0.90 0.23 0.24 0.15 0.77 0.06 

20  CDAL90 -0.04 0.04 0.06 0.31 0.30 0.32 0.30 0.31 0.29 0.03 0.00 0.00 0.00 0.53 0.31 0.31 0.16 0.06 0.06 1.00 0.05 0.05 0.11 0.10 0.78 0.28 0.99 

21  MDAL30 -0.06 -0.05 0.03 -0.01 -0.04 -0.01 -0.04 0.00 -0.03 0.06 -0.06 -0.06 -0.06 0.04 -0.03 -0.03 0.57 0.90 0.90 0.05 1.00 1.00 0.23 0.23 0.13 0.55 0.05 

22  MDAL90 -0.06 -0.05 0.03 -0.01 -0.04 -0.01 -0.04 0.00 -0.03 0.06 -0.06 -0.06 -0.06 0.04 -0.03 -0.03 0.57 0.90 0.90 0.05 1.00 1.00 0.23 0.23 0.13 0.55 0.05 

23  GDD030 -0.45 0.67 0.74 0.17 0.10 0.18 0.10 0.16 0.10 -0.24 0.00 -0.01 -0.01 0.09 0.03 0.03 0.22 0.23 0.23 0.11 0.23 0.23 1.00 0.97 0.16 0.23 0.11 

24  GDD530 -0.46 0.64 0.75 0.15 0.09 0.16 0.09 0.14 0.09 -0.26 -0.01 -0.01 -0.01 0.07 0.03 0.02 0.22 0.24 0.24 0.10 0.23 0.23 0.97 1.00 0.15 0.24 0.10 

25  CRR30 -0.12 0.18 0.16 0.28 0.29 0.27 0.28 0.29 0.30 -0.16 -0.01 -0.01 -0.01 0.77 0.26 0.26 0.12 0.15 0.15 0.78 0.13 0.13 0.16 0.15 1.00 0.18 0.79 

26  CSIS30 -0.31 -0.11 0.03 0.07 0.02 0.08 0.02 0.06 0.02 0.26 -0.03 -0.03 -0.03 0.11 0.05 0.05 0.96 0.77 0.77 0.28 0.55 0.55 0.23 0.24 0.18 1.00 0.28 

27  CDAL30 -0.03 0.05 0.06 0.31 0.31 0.32 0.31 0.31 0.30 0.01 0.00 0.00 0.00 0.58 0.31 0.31 0.15 0.06 0.06 0.99 0.05 0.05 0.11 0.10 0.79 0.28 1.00 
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Table 3. Correlations between the predictors used in the modelling of autumn temporal variationinterannual variation in LSP. Significant 1 
correlations between the anomalies and the predictors are given in bold (p < 0.05). 2 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

1 Anom. 1 0.10 0.31 0.34 0.33 0.36 0.28 0.30 0.28 0.27 0.26 0.34 0.01 -0.03 0.34 0.07 0.07 0.04 -0.05 -0.05 -0.05 0.00 -0.01 -0.08 -0.08 -0.09 -0.15 

2 OGA 0.10 1.00 0.06 0.08 0.14 0.16 0.05 0.15 0.02 0.07 0.05 0.19 -0.02 -0.04 0.01 0.02 -0.05 -0.07 0.06 -0.02 -0.02 -0.10 -0.11 0.01 0.01 -0.06 -0.10 

3 GDD030  0.31 0.06 1.00 0.97 0.54 0.58 0.94 0.53 0.88 0.42 0.87 0.62 -0.54 -0.52 0.25 0.09 0.10 0.11 0.03 -0.09 -0.09 -0.01 0.01 -0.22 -0.22 -0.11 -0.22 

4 GDD530  0.34 0.08 0.97 1.00 0.53 0.60 0.86 0.49 0.80 0.37 0.80 0.59 -0.41 -0.40 0.24 0.11 0.11 0.10 0.07 -0.10 -0.10 -0.03 -0.01 -0.23 -0.23 -0.15 -0.25 

5 GDD090  0.33 0.14 0.54 0.53 1.00 0.98 0.49 0.95 0.54 0.90 0.36 0.85 -0.14 -0.24 0.12 0.05 0.13 0.09 -0.15 -0.07 -0.07 0.04 -0.05 -0.14 -0.14 0.08 -0.14 

6 GDD590  0.36 0.16 0.58 0.60 0.98 1.00 0.49 0.92 0.54 0.85 0.37 0.84 -0.10 -0.20 0.14 0.07 0.13 0.09 -0.11 -0.07 -0.07 0.02 -0.06 -0.14 -0.14 0.04 -0.19 

7 MTG30  0.28 0.05 0.94 0.86 0.49 0.49 1.00 0.56 0.93 0.44 0.94 0.63 -0.71 -0.66 0.24 0.04 0.10 0.09 -0.01 -0.02 -0.02 0.02 0.05 -0.13 -0.13 -0.09 -0.17 

8 MTG90 0.30 0.15 0.53 0.49 0.95 0.92 0.56 1.00 0.61 0.93 0.43 0.89 -0.28 -0.36 0.12 -0.01 0.13 0.09 -0.18 0.02 0.02 0.07 -0.01 -0.03 -0.03 0.09 -0.11 

9 MTX30  0.28 0.02 0.88 0.80 0.54 0.54 0.93 0.61 1.00 0.58 0.78 0.60 -0.58 -0.54 0.20 -0.09 0.12 0.07 -0.09 0.03 0.03 0.23 0.14 -0.09 -0.09 0.17 -0.06 

10 MTX90 0.27 0.07 0.42 0.37 0.90 0.85 0.44 0.93 0.58 1.00 0.28 0.73 -0.16 -0.24 0.09 -0.05 0.13 0.05 -0.31 0.02 0.02 0.17 0.07 -0.03 -0.03 0.23 0.07 

11 MTN30  0.26 0.05 0.87 0.80 0.36 0.37 0.94 0.43 0.78 0.28 1.00 0.61 -0.76 -0.70 0.26 0.16 0.08 0.09 0.08 -0.06 -0.06 -0.17 -0.04 -0.14 -0.14 -0.30 -0.24 

12 MTN90 0.34 0.19 0.62 0.59 0.85 0.84 0.63 0.89 0.60 0.73 0.61 1.00 -0.39 -0.48 0.19 0.12 0.13 0.12 0.04 -0.02 -0.02 -0.07 -0.12 -0.06 -0.06 -0.08 -0.31 

13 CHIL30  0.01 -0.02 -0.54 -0.41 -0.14 -0.10 -0.71 -0.28 -0.58 -0.16 -0.76 -0.39 1.00 0.91 -0.08 -0.05 0.00 0.01 -0.05 -0.05 -0.05 0.09 -0.01 -0.01 -0.01 0.17 0.10 

14 CHIL90  -0.03 -0.04 -0.52 -0.40 -0.24 -0.20 -0.66 -0.36 -0.54 -0.24 -0.70 -0.48 0.91 1.00 -0.09 -0.04 0.00 0.01 -0.05 -0.08 -0.08 0.08 0.01 -0.04 -0.04 0.16 0.15 

15 FF  0.34 0.01 0.25 0.24 0.12 0.14 0.24 0.12 0.20 0.09 0.26 0.19 -0.08 -0.09 1.00 -0.10 0.05 0.04 -0.08 0.01 0.01 0.01 0.07 -0.05 -0.05 -0.08 -0.04 

16 CRR30  0.07 0.02 0.09 0.11 0.05 0.07 0.04 -0.01 -0.09 -0.05 0.16 0.12 -0.05 -0.04 -0.10 1.00 0.12 0.04 0.51 -0.17 -0.17 -0.42 -0.25 -0.12 -0.12 -0.46 -0.25 

17 MRR30  0.07 -0.05 0.10 0.11 0.13 0.13 0.10 0.13 0.12 0.13 0.08 0.13 0.00 0.00 0.05 0.12 1.00 0.47 0.08 -0.03 -0.03 -0.02 -0.03 -0.03 -0.03 -0.02 -0.04 

18 MRR90 0.04 -0.07 0.11 0.10 0.09 0.09 0.09 0.09 0.07 0.05 0.09 0.12 0.01 0.01 0.04 0.04 0.47 1.00 0.06 -0.01 -0.01 -0.02 -0.04 -0.02 -0.02 -0.02 -0.08 

19 CRR90  -0.05 0.06 0.03 0.07 -0.15 -0.11 -0.01 -0.18 -0.09 -0.31 0.08 0.04 -0.05 -0.05 -0.08 0.51 0.08 0.06 1.00 -0.04 -0.05 -0.14 -0.18 -0.05 -0.05 -0.20 -0.39 

20 MSIS30  -0.05 -0.02 -0.09 -0.10 -0.07 -0.07 -0.02 0.02 0.03 0.02 -0.06 -0.02 -0.05 -0.08 0.01 -0.17 -0.03 -0.01 -0.04 1.00 1.00 0.56 0.66 0.88 0.88 0.05 -0.04 

21 MSIS90 -0.05 -0.02 -0.09 -0.10 -0.07 -0.07 -0.02 0.02 0.03 0.02 -0.06 -0.02 -0.05 -0.08 0.01 -0.17 -0.03 -0.01 -0.05 1.00 1.00 0.55 0.66 0.88 0.88 0.05 -0.04 

22 CSIS30  0.00 -0.10 -0.01 -0.03 0.04 0.02 0.02 0.07 0.23 0.17 -0.17 -0.07 0.09 0.08 0.01 -0.42 -0.02 -0.02 -0.14 0.56 0.55 1.00 0.80 0.30 0.30 0.66 0.28 

23 CSIS90  -0.01 -0.11 0.01 -0.01 -0.05 -0.06 0.05 -0.01 0.14 0.07 -0.04 -0.12 -0.01 0.01 0.07 -0.25 -0.03 -0.04 -0.18 0.66 0.66 0.80 1.00 0.31 0.31 0.18 0.40 

24 MDAL30 -0.08 0.01 -0.22 -0.23 -0.14 -0.14 -0.13 -0.03 -0.09 -0.03 -0.14 -0.06 -0.01 -0.04 -0.05 -0.12 -0.03 -0.02 -0.05 0.88 0.88 0.30 0.31 1.00 1.00 0.05 -0.05 

25 MDAL90  -0.08 0.01 -0.22 -0.23 -0.14 -0.14 -0.13 -0.03 -0.09 -0.03 -0.14 -0.06 -0.01 -0.04 -0.05 -0.12 -0.03 -0.02 -0.05 0.88 0.88 0.30 0.31 1.00 1.00 0.05 -0.05 

26 CDAL30  -0.09 -0.06 -0.11 -0.15 0.08 0.04 -0.09 0.09 0.17 0.23 -0.30 -0.08 0.17 0.16 -0.08 -0.46 -0.02 -0.02 -0.20 0.05 0.05 0.66 0.18 0.05 0.05 1.00 0.41 

27 CDAL90  -0.15 -0.10 -0.22 -0.25 -0.14 -0.19 -0.17 -0.11 -0.06 0.07 -0.24 -0.31 0.10 0.15 -0.04 -0.25 -0.04 -0.08 -0.39 -0.04 -0.04 0.28 0.40 -0.05 -0.05 0.41 1.00 
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 1 

Figure 1. Spatial distribution of Globcover broadleaved deciduous forest and needleleaved 2 
evergreen forest in 2005 (a) and 2009 (b).  3 
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 1 

Figure 2. Flow-chart illustrating the methodology. A) Phenology extraction and temporal 2 

variationinterannual variation in LSP computation. B) Computation of weather predictors. C) 3 

Modelling of temporal variationinterannual variation in phenology. 4 

  5 
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 1 

Figure 3. The flowchart of Random Forest for regression (adapted from Rodriguez-Galiano et 2 

al. 2015b). The RF method receives a subset of input vectors (n), made up of one phenology z-3 

score value and the values of the corresponding weather predictors for a given location and 4 

year. RF builds a number K of regression trees making them grow from different training data 5 

subsets, resampling randomly the original dataset with replacement. Hence, most data will be 6 

used multiple times in different models. On the other hand, when the RF makes a tree grow, it 7 

uses the best predictor within a subset of predictors (m) which has been selected randomly from 8 

the overall set of input predictors. These especial characteristics of RF confer a greater 9 

prediction stability and accuracy and, at the same time, avoid the correlation of the different 10 

RTs, increasing the diversity of patterns that can be learnt from data. The multiple predictions 11 

of all k RTs for a given vector used as training are then averaged to obtain a unique estimation 12 

of the phenology z-score value.  13 
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 1 

Figure 43. Relative importance of each independent variable in predicting phenology temporal 2 

variationinterannual variation in Europe.  Different models derived from the feature selection 3 

approach are represented in each column. Numbers given over each column represent the 4 

coefficient determination of each model. Plots at the top and bottom represent the spring (a) 5 

and autumn temporal variationinterannual variation in LSP (b), respectively. The names of 6 

predictors follows the notation: Prefix M and C represent the mean and cumulated functions; 7 

TX, TN and TG: maximum, minimum and average temperature, respectively; PP: precipitation; 8 

SIS: surface incoming shortwave radiation; DAL: surface radiation daylight; GDD: growing 9 
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degree days; CHIL: chilling requirements; FF, LF and PF: first, last and period of freeze, 1 

respectively.  2 
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 1 

Figure 54. Relative error of the models fitted as a result of the feature selection approach. 2 

Median (interior horizontal line), mean (interior square), 1% and 99% quantiles (edge of boxes), 3 

range (extremes). Relative errors were calculated for the prediction of 1,974 and 1,576 4 

independent observations for spring (a) and autumn (b), respectively. See previous figure for 5 

the weather predictor variables in the models, as shown in the x-axis.  6 

  7 



 

29 
 

 1 

Figure 65. Scatterplots between observed anomalies in LSP and the predictions calculated 2 

using a selection of weather predictors (see Figure 2 and Figure 3). Plots for spring phenology 3 

are shown on the left panel (blue; a, c) and autumn on the right (red; b, d). Random Forest 4 

predictions are given in the upper panel (a, b) and those of the linear regression in the bottom 5 

(c, d) panel. The dashed lines represent an exact 1:1 relationship (expected fitting), the solid 6 

lines show a linear regression of these data. The explained variances (percentage R2) and RMSE 7 

values are 90% and 0.43 (spring Random Forest model), 68% and 0.92 (autumn Random Forest 8 

model), 39% and 1.04 (spring Linear model) and 25% 1.40 (autumn linear model). 9 
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