The authors would like to thank the editor for the detailed comments and for taking the
time to carefully read our revision and our reply to the referees.

We believe there are a few aspects that might have been misinterpreted, especially
regarding the nature and properties of the methods applied in the study. This is not
surprising, as the methods applied here based on “machine learning” represent a new
statistical model paradigm that differs from the commonly used linear regression based
modelling of land surface phenology (LSP). LSP has previously been modelled using
traditional linear regression approaches in most of the studies in the literature.
However, this is not the case in our study, as we have used an innovative machine
learning technique called Random Forest. This has important implications for
understanding of our results and it makes an interpretation in a similar way as classical
linear multiple regression inappropriate.

There are different aspects that make machine learning techniques, such as Random
Forest, substantially different to linear regression:

i.  There are no formal distribution assumptions (non-parametric);
ii. It can learn complex patterns, taking into account any nonlinear complex
relationship between the predictor and the dependent variables (non-linearity);
iii. It can handle thousands of predictors without variable deletion (no need for
independency between explanatory variables).

We believe that the methodology proposed here is new and sound, but more
importantly this study offers new insights into the modelling and our understanding of
LSP, avoiding some of the limitations of multiple linear regressions.

A detailed response to editor comments is given below:

Comment 1: “I was missing the critical discussion of the implicit assumption that one
single model should be able to describe phenology across an entire continent, i.e.
comprising different species and climates and ecological factors. That phenology at
different locations and in differing species is driven by different drivers in differing ways
is at least more likely.”

Reply 1: We agree with the editor that having a model for the entire Europe would not
be very realistic and will not capture the contribution of key drivers. However, this is not
our case. Rather than having one single global model for the entire Europe, we have
built multiple individual models (2000) from different data subsets and using different
explanatory variables (climatic predictors). This is why the approach is termed as
‘Random Forest’. The estimates of all those models are taken into account to predict the
LSP at a given location and time. Therefore, different drivers for different
biogeographical areas are implicitly considered.



To understand our modelling approach it is important to know how the Random Forest
algorithm works. We believe that we might have failed in giving a comprehensive
explanation of the method. Therefore, we have made an effort to improve the
description of the methodology, rewriting section 3.4, adding a new figure, and
improving figure captions. Section 3.4 has been rewritten as follows:

“Conventional statistical models such as linear regression might be inappropriate for
investigating the drivers of interannual variation in phenology because many of the
relationships are likely to be non-linear (De Beurs and Henebry, 2008). In this sense,
machine learning methods have emerged as complementary alternatives to
conventional statistical techniques. Within the branch of machine learning techniques,
regression trees are particularly suitable when compared to global single predictive
models, allowing for multiple regression models using recursive partitioning (Breiman et
al., 1984). Assembling a single global model might not be representative of LSP of the
entire European continent, when there are many climatic drivers which interact in
complicated, non-linear ways and may vary spatially and temporally. For the purpose of
this paper, an alternative approach is to sub-divide, or partition, the data space into
more homogeneous regions of similar climates and ecological factors.

Regression trees use a sum of squares criterion to split the data into successively more
homogeneous subsets contained at many different structural units called nodes. Each
of the terminal nodes, has attached to it a simple regression which applies in that node
only. Therefore, different regressions can be fitted to different data subsets within one
single regression tree, which can represent different responses controlled by different
drivers (Archibald et al., 2009; Lawler et al., 2006). Additionally, the performance of
multiple regression trees can be combined to increase the predictive ability of a single
regression tree model, following the Random Forest technique (Figure 3). The RF
method is an innovative machine learning approach that can perform multivariate non-
linear regression, combining the performance of numerous regression tree algorithms
to predict the interannual variation in OG and EOS. More details regarding the
performance and the specific characteristics of a RF model can be seen in Rodriguez-
Galiano et al. (2015b); Rodriguez-Galiano et al. (2014), and Figure 3..

The Random Forest method was applied to phenological modelling across very large
areas and across multiple years simultaneously: the typical case for satellite-observed
LSP. The RF model was fitted to the relation between LSP interannual variation and
numerous climate predictor variables computed at biologically-relevant rather than
human-imposed temporal scales. We restricted our climate data choices to daily data
(average, minimum and maximum temperatures, precipitation and radiation) to
account for integrative forcing (that is, growing degree days, chilling requirements as
well as cumulative precipitation and radiation), computed from the exact day of the
phenological event backwards, rather than using the calendar months. The locations
with z-score in LSP greater than 1 (positive and negative) were selected to build a RF
predictive model on OG and EOS. Z-score values of OG or EOS for each year were
combined together with the different weather predictors. The z-score values in OG were



assessed as an extra predictor to evaluate the legacy effect of an advanced or delayed
spring in the modelling of EOS. The values of these variables at the selected years and
locations (spatiotemporal model) were combined into a set of input feature vectors
(3900 feature vectors for the spring model and 3124 for autumn) as an input to the RF
algorithm. These feature vectors were divided equally into two subsets, one for the
training of the models (inbag) and one as an additional test to the one internally
computed by RF (out of bag; oob) to evaluate performance. RF models composed of
2000 trees were grown using different subsets of predictors, varying the number of
random predictors from 1 to 9. The Random Forest method within the package
implemented in the R statistical software was used to build the different models (Liaw
and Wiener, 2002).
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Figure 3. The flowchart of Random Forest for regression (adapted from Rodriguez-
Galiano et al. 2015b). The RF method receives a subset of input vectors (n), made up of
one phenology z-score value and the values of the corresponding weather predictors for
a given location and year. RF builds a number K of regression trees making them grow
from different training data subsets, resampling randomly the original dataset with
replacement. Hence, most data will be used multiple times in different models. On the
other hand, when the RF makes a tree grow, it uses the best predictor within a subset
of predictors (m) which has been selected randomly from the overall set of input
predictors. These especial characteristics of RF confer a greater prediction stability and
accuracy and, at the same time, avoid the correlation of the different RTs, increasing the
diversity of patterns that can be learnt from data. The multiple predictions of all k RTs
for a given vector used as training are then averaged to obtain a unique estimation of
the phenology z-score value.

Section 3.5:



“...A feature selection approach, based on the ability of the RF to assess the relative
importance of the predictors, was used to identify the minimum number of drivers
which can better explain spring or autumn interannual variation in phenology. To
assess the importance of each weather predictor, the RF switches one of the input
predictors while keeping the rest constant, and it re-evaluates the performance of the
model measuring the decrease in node impurity (Breiman, 2001). The differences were
averaged over all 2000 trees to compute the general drivers for the interannual
variation in Europe. However, different subsets of variables could be used to
characterize different climates and ecological factors at every single regression tree
model or node (see previous section). To reduce the number of drivers the least
important predictor was removed iteratively at different steps. Then, a 5-fold cross-
validation was applied to obtain a stable estimate of the error of the model built after
predictor deletions. Finally, the model with a better trade-off between the number of
predictors and error was chosen as the basis for interpreting the likely drivers of
interannual variation in phenology.”

Comment 2: “Now, after you have mapped some model residuals, you should also use
the information to critically discuss your work in the main text. If | interpret your
supplementary graphs correctly they show distinct patterns, which shows that there is
still systematic bias which needs to be carefully analysed, explained and discussed. This
discussion should also include that the observed distribution of residuals might be and
expression of heteroscedasticity which compromises the estimation of unbiased
regression parameters.”

Reply 2: We would like to highlight that the validation of machine learning methods
relies on the ability of the method to predict from new observations (independent test)
that have not been used in the model building. Using the same training data would likely
lead to an overestimation of the performance of the method. The way we have validated
the modes is therefore an unbiased estimation of the generalisation error. Additionally,
we would like to highlight again that machine learning algorithms are non-linear, which
implies that there are no assumptions/expectations about the distribution of the
residuals (e.g. homoscedasticity).

It is true that the relative errors (from an independent test) for the multi-linear
regression model seems to be heteroscedastic. However, this is supporting the initial
hypotheses described in the manuscript: linear models might not be able to deal with
the complex patterns between LSP and climate patterns at multiple locations and times,
integrating them into a unique overall model.

The following paragraph has, thus, been included in the discussion section:

“The spatial distribution of the relative errors for RF and multivariate linear regression
is shown in Figures S3 to S6 of the supporting information. The relative errors of the
latter were significantly higher. Additionally, the residuals seemed not to be
homoscedastic suggesting that linear models might not be able to deal with the complex


http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2008.01754.x/full#b6

patterns between LSP and climate patterns at multiple locations and times, integrating
them into a unique overall model.”

Comment 3: “The figure captions in the supplementary material are by far nor complete
enough for understanding the figures (units, data sources, which test? ...). If you don’t
exactly explain what you present, the presentation is useless. Please make sure that if it
should come to a third revision to present it in appropriate quality.”

Reply 3: The figure captions in the supplementary material have been extended.

Comment 4: “l was surprised that the residuals maps are only limited to a small number
of points, | guess, where you have ground observations. You trained the model with the
satellite derived LSPs, so why don’t you present the residual maps that cover the entire
continent.”

Reply 4: We have not used ground observations in this study. The Pan European
Phenological Network (PEP725) mainly covers Germany and Austria, and the interannual
variation in LSP occurs in many other different places. However, our LSP estimates
(normal dates) were compared to those of PEP725 in a different study. Please see the
following paragraph in Section 3.2:

“...These satellite-derived LSP estimates were compared to ground observations of the
thousands of deciduous tree phenology records of the Pan European Phenology network
(PEP725) (Rodriguez-Galiano et al., 2015a). This comparison resulted in a large spatio-
temporal correlation of the phenology estimates with the spring phenophase (OG vs leaf
unfolding; pseudo-R2=0.70) and autumn phenophase (EOS vs autumnal colouring;
pseudo-R2=0.71).”

Regarding the origin of the residual maps, please see “reply 2” and the following
paragraph in section 3.4 (Modelling interannual variation in LSP):

“The values of these variables at the selected years and locations (spatiotemporal
model) were combined into a set of input feature vectors (3900 feature vectors for the
spring model and 3124 for autumn) as an input to the RF algorithm. These feature
vectors were divided equally into two subsets, one for the training of the models (inbag)
and one as an additional test to the one internally computed by RF (out of bag; oob) to
evaluate performance.”

Comment 5. Supporting strongly the point of Reviewer 2 on model selection (ref Figure
3): a) The selection of additional models should be depending on the gain of model
performance (not necessarily on RA2 only). If the performance does not increase with
increasing degrees of freedoms, using more complex models doesn’t make sense. b) Do
you have any indication for the distribution of residuals or the RMSE having improved
using more complex models.



Reply 5. We have not considered the determination coefficients only. Relative errors
were decisive in the selection of the model. Please see the following paragraph (section
3.5) and Figure 3 of the current submission:

“In order to reduce the number of drivers the least important predictor was removed
iteratively at different steps. Then, a 5-fold cross-validation was applied to obtain a
stable estimate of the error of the model built after predictor deletions. Finally, the
model with a better trade-off between number of predictors and error was chosen as
the basis for interpreting the likely drivers of interannual variation in phenology.”

Comment 6. In Figures 5 the regressions are performed including two separated data
domains (positive, negative fluctuations) . a) Why did you not use the entire data set
including small and zero fluctuations? b) Please give the regressions for the variation
within the domains. You will see the difference and will look at your results in a different
way.

Reply 6. We would like to clarify that what we are showing in this figure is a scatterplot
between the predicted values for an independent test (data that were not used in the
regression model building; see previous comments) and the real values. This information
is given as a complementary evaluation of the performance of the models, but it is not
a regression model itself. This plot shows how our predictions deviate from the actual
values in an independent dataset.

Regarding the inclusion of the zero values (no fluctuations) in the graph. It would not be
possible, as the models have been trained for variation or changes and not for the
“normal behaviour”. There are strong arguments against the inclusion of 0 values in the
machine learning modelling process. Machine learning regression algorithms are
“intelligent” and able to adapt to the data that are being modelled to minimize the
generalisation error. On the other hand, no change occurrences are by far more
abundant that changes. Consequently, the algorithms would focus on learning the
patterns that explain no changes, rather than in patterns of changes. In other words, if
we included zero values, an explanatory model of no-change would be obtained, which
misses the point.

Comment 7. When you speak of ‘temporal variability’, it is interannual variability that
you mean?

Reply 7. Yes, we have replaced “temporal variability” by “interannual variability”.

Comment 8. You speak several times of ‘biological scales’, without defining or explaining
what you mean. In fact | don’t exactly understand what you want to say with this.

Reply 8. The concept “biological scales” has been defined in the text as follows:

”...0n the other hand, many studies investigating the sensitivity of phenological events
to climate variation use calendar seasonal or monthly mean climatic variables, which
operate on fixed human calendar scales with a start date of 1% of January (Maignan et



al., 2008b), instead of using biological scales, for example, time relative to the growing
phase of plants (Pau et al., 2011).”
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1. Abstract

This research reveals new insights into the weather drivers of temperalariationinterannual

variation in land surface phenology (LSP) across the entire European forest, while at the same
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time establishes a new conceptual framework for predictive modelling of LSP. Specifically,
the Random Forest method, a multivariate, spatially non-stationary and non-linear machine
learning approach, was introduced for phenological modelling across very large areas and
across multiple years simultaneously: the typical case for satellite-observed LSP. The RF

model was fitted to the relation between LSP temperal—variationinterannual variation and

numerous climate predictor variables computed at biologically-relevant rather than human-
imposed temporal scales. In addition, the legacy effect of an advanced or delayed spring on
autumn phenology was explored. The RF models explained 81% and 62% of the variance in

the spring and autumn LSP temperalvariationinterannual variation, with relative errors of 10%

and 20%, respectively: a level of precision that has until now been unobtainable at the
continental scale. Multivariate linear regression models explained only 36% and 25%,
respectively. It also allowed identification of the main drivers of the temperal

varfatieninterannual variation in LSP through its estimation of variable importance. This

research, thus, shows an alternative to the hitherto applied linear regression approaches for
modelling LSP and paves the way for further scientific investigation based on machine learning

methods.

2. Introduction

Vegetation phenology has emerged as an important focus for scientific research in the last few
decades. The interest in vegetation phenology is twofold: inter-annual recording of the timing
of phenological events allows quantification of the impacts of climate change on vegetation;
and a greater understanding of phenological responses enables meaningful projections of how
ecosystems will respond to future changes in climate (Menzel, 2002; Morisette et al., 2008;
Pefiuelas, 2009; Pefiuelas and Filella, 2001). Although different approaches have been devised
for the study of vegetation phenology (Rafferty et al., 2013), the characterisation and modelling
of vegetation phenology at global or regional scales has been undertaken mainly through the
use of long-term time-series of satellite-sensor vegetation indices (termed land surface
phenology, LSP, to reflect that satellite-observed phenology includes all land covers). Most
studies of LSP analyse trends in phenological events across years (Delbart et al., 2008;
Jeganathan et al., 2014; Jeong et al., 2011; Karlsen et al., 2007; Myneni et al., 1997), but more
recent studies present process-based models to uncover cause-effect relationships between
long-term trends in phenology and its key driving variables (Ivits et al., 012; Maignan et al.,

2008a; Maignan et al., 2008b; Stockli et al., 2011; Stockli et al., 2008; Yu et al., 2015; Zhou et
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al., 2001). This last group of studies focuses on trends in phenology produced by trends in

weather (mainly warming). However, temperal-variationinterannual variation in LSP arising
as a consequence of the inter-annual variability in weather are less studied (Cook et al., 2005;
De Beurs and Henebry, 2008; Menzel et al., 2005; Post and Stenseth, 1999; Zhang et al., 2004),

with model-based studies of this phenomenon being scarce (van Vliet, 2010).

A higher frequency in the occurrence of extreme weather events has been observed in Europe,
especially for summer temperatures (Barriopedro et al., 2011; Luterbacher et al., 2004). The
summers of 2003 and 2010 in western and eastern Europe, respectively, were the warmest in
the last 500 years (Barriopedro et al., 2011). Species and ecosystems respond more rapidly to
these anomalies in weather than average climatic changes in most climatic scenarios (Zhao et
al., 2013). Maignan et al. (2008b) and Rutishauser et al. (2008) reported that the LSP greening
occurred 10 days earlier in 2007 than the average over the past three decades as a consequence
of an exceptionally mild winter and spring. The study of the impacts of extreme inter-annual

weather events on vegetation through the modelling of temperal-variationinterannual variation

in spring and autumn phenologies can increase our knowledge about climate-driven changes
in phenology, acting as natural experiments in climate change scenarios (Rafferty et al., 2013).
On the other hand, the modelling of LSP has been less explored compared to the modelling of
individual plant species, and there are many aspects that remain to be understood, which limits
comprehensive understanding of LSP and, therefore, of phenology at regional or global scales.
A more complete modelling of LSP considering the inter-annual variation across large areas
would include the capacity to interpret observations and make meaningful projections in

relation to disturbances and their subsequent impacts (Morisette et al., 2008).

Modelling efforts to characterize LSP have generally relied on functions (usually linear) of
meteorological drivers, such as average temperature and precipitation (Ivits et al., 2012),
growing degree days (GDD) (de Beurs and Henebry, 2005), light and temperature (Stockli et
al., 2011), minimum temperature, photoperiod, vapour pressure deficit (Jolly et al., 2005;
Stockli et al., 2008), or minimum relative humidity (Brown and de Beurs, 2008). However,
there is lack of understanding on number of important aspects, such us the multivariate
influence of meteorological variables (temperature, precipitation, solar radiation) driving
phenology, or the effect of additional drivers in the modelling of autumnal phenophases
(Morisette et al., 2008). For instance, Fu et al. (2014) found a “cause-effect relationship”
between an earlier leaf senescence and an earlier spring flushing in leaves of warmed samples

of Fagus sylvatica and Quercus robur. This legacy effect of spring phenology has been

3
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reported in recent studies using modified environments and plant species, but it has not been
studied using LSP data. This latter aspect is particularly pertinent for studies that focus on inter-
annual variation in phenology and could potentially contribute to increased knowledge of how
climate change is affecting autumn phenology. On the other hand, many studies investigating
the sensitivity of phenological events to climate variation use calendar seasonal or monthly

mean climatic variables, which operate on fixed human calendar scales with a start date of 1%

of January (Maignan et al., 2008b), instead of using biological scales, for example, time relative

to the growing phase of plants-dai

seates (Pau et al., 2011). However, the modelling of interannual variation in LSP considering
its potentially complicated relationship with climate in a multidimensional feature space (i.e.
high number of multivariate weather drivers) might not be possible using traditional linear
regression models (de Beurs and Henebry, 2005). In this sense, phenological modelling may
benefit from machine learning techniques such as the Random Forest (RF) method (Breiman,
2001), reducing uncertainties and bias (Zhao et al., 2013). RFs have the potential to identify
and model the complex non-linear relationships between phenology and climate, being able to
handle a large number of predictors and determine their importance in explaining phenology.
RFs has been applied with very promising results to other fields of ecology and biological
sciences (Archibald et al., 2009; Darling et al., 2012; Lawler et al., 2006), as well as to the
simulation of phenological shifts under different climatic change scenarios (Lebourgeois et al.,

2010), but the potential for modelling climate-driven temperal-variatieninterannual variation

in phenology is still to be explored.

Understanding the effect of inter-annual weather variation on LSP is an essential step to
establish a plausible link between recent climate variability and vegetation phenological
responses at global or regional scales, and importantly to make reliable forecasts about future
vegetation responses to different future climatic scenarios. The aim of this study is, therefore,

to provide an explanation of the observed temperal-variationinterannual variation in LSP of the

entire European forest during the last decade, identifying the main weather drivers for spring
and autumn at the continental scale. Our research offers new insights into the study of LSP by

modelling the climate-driven past temperal-variationinterannual variation in phenology, rather

than trends, and using innovative multivariate non-linear machine learning techniques to
evaluate multiple weather predictors at biological scales, and non-weather predictors such as
the legacy effect of the date of spring onset in leaf senescence. Climate predictors used range

from 30 days average values of temperature variables (max, min and avg) such as precipitation,
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short wave radiation and day length; trimestral cumulated values such as growing degree days
or chilling requirements, among others; to the date of specific events such as the first freeze or
the last freeze. Moreover, we considered flexible biological time scales in the analysis between

weather and phenological events rather than calendar months.

3. Materials and Methods

3.1 Data

Three sources of data were used for this research: i) Satellite sensor derived temporal
composites of MERIS Terrestrial Chlorophyll Index (MTCI), i1) temperature and precipitation
data from the European Climate Assessment and Data (ECA&D) project (http: /www.ecad.eu)
and iii) surface radiation daylight (DAL; w/m?) data and surface incoming shortwave (SIS;
w/m?) radiation data from the Climate Monitoring Satellite Application Facilities (CM SAF,

http://www.cmsaf.eu).

We used weekly composites of MTCI data at 1 km spatial resolution from 2002 to 2012. This
dataset was supplied by the European Space Agency and processed by Airbus Defence and
Space. Daily temperature (mean, minimum and maximum) and daily precipitation data were
derived from the European Climate Assessment & Dataset (ECA&D) time-series (version 10.0)
with spatial resolution of 0.25° x0.25°, covering the period from 2002 to 2011 (Haylock et al.,
2008). The CM SAF DAL version CDR v001 (Miiller and Trentmann, 2013) and SIS version
CDR v002 (Posselt et al., 2012; Posselt et al., 2011) were derived from Meteosat satellite

sensors at a spatial resolution of 0.05° x0.05° covering the same period as ECA&D.

3.2 Phenology extraction and temperal-variationinterannual variation in LSP

computation

The time-series of MERIS MTCI data was used to estimate both the onset of greenness
(OG) and end of senescence (EOS) from 2003 to 2011. Data for every estimation year
considered 1.5 years of data (from October in the previous year to July in the next year)
because the annual pattern of vegetation growth in some parts of Europe spans across
calendar years and, hence, insufficient information about LSP is captured using a single

year of data. The yearly values of OG and EOS were estimated for each image pixel of the
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study area using the methodology described in Dash et al. (2010). This methodology
consists of two major procedures: data smoothing and LSP estimation (Figure 2a).
Smoothed MTCI time-series data were obtained using a discrete Fourier transform because
of its advantage of requiring fewer user-defined parameters compared to other methods
(Atkinson et al., 2012). The peak in the annual profile was defined as a point on the
phenological curve where the first derivative changes sign from positive to negative. Next,
the derived data were searched backward and forward departing from the maximum annual
peak to estimate the OG and EOS, respectively. OG was defined as a valley at the
beginning of the growing season point (a change in derivative value from positive to
negative) and EOS was defined as a valley point occurring at the decaying end of a
phenology cycle (a change in derivative value from negative to positive). These satellite-
derived LSP estimates were compared to ground observations of the thousands of
deciduous tree phenology records of the Pan European Phenology network (PEP725)
(Rodriguez-Galiano et al., 2015a). This comparison resulted in a large spatio-temporal
correlation of the phenology estimates with the spring phenophase (OG vs leaf unfdolding;
pseudo-R?>=0.70) and autumn phenophase (EOS vs autumnal colouring; pseudo-R*=0.71).

Z-score values during the study period were used as a proxy to measure temperal

vartationinterannual variation in the LSP parameters. The z-score values for a given year

were defined as the difference from the multi-year mean, normalized by the standard
deviation across years. The value of the targeted year was excluded in the computation of
multiyear mean to enhance the inter-annual variation (Saleska et al., 2007). The spatio-
temporal distribution of spring and autumn LSP z-score values is shown in Figures S1 and

S2 of the supporting information, respectively.

To match the spatial resolution of the ECA&D dataset, the LSP z-score values for each year
were resampled to a spatial resolution of 0.25°x0.25° by calculating the median of all the LSP
z-score values within this area after excluding the areas with fewer than 50 LSP estimates and
the non-forest pixels according to the Globcover2005 and Globcover2009 land cover maps
(http://due.esrin.esa.int/globcover/). Only LSP estimates with complete temporal coverage
(2003-2011) were included in the analysis to reduce the likelihood of natural and human
disturbances (Potter et al., 2003). Globcover was selected for its greater consistency with the

MERIS MTCI time-series and its high geolocational accuracy (<150 m) (Bicheron et al., 2011).
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3.3 Computation of weather predictors

A suite of weather predictors were computed for each 0.25 x0.25° grid cell associated with the
occurrence of positive or negative z-score values in LSP based on the ECA&D and CM SAF
datasets (see Table 1). The predictors include temporal average values of temperature variables
(Tmax, Tmin and Tavg), precipitation, DAL and SIS; temporal cumulated predictors such as
growing degree days, chilling, precipitation, SIS and DAL; and the date of specific events such
as the onset of greenness (legacy effect for autumn phenology modelling) the first freeze or the
last freeze, as well as the difference between both dates (freeze period) for the modelling of
autumn only. Growing degree days were computed using temperature thresholds of 0° and 5°.
Chilling requirements were computed as the sum of negative temperatures (temperatures below
0°). Freeze was defined as dates with minimum temperatures lower than -2° (Schwartz et al.,

2006).

The different weather predictors were computed based on the 30 and 90 days previous to the
day of the year (DOY) of the z-score values in OG and EOS (Figure 2b) following Schwartz
et al. (2006) and Menzel et al. (2006), who found that most phenophases of plant observations
in Europe correlated significantly with weather predictors representing the month of onset and
the two preceding months. The chilling requirements for spring modelling and freeze predictors
were an exception, as the period for its computation starts 90 days prior to the OG. Relative
differences between each predictor and its multi-year average for the same period were
computed to capture the inter-annual variability in climate variables at the pixel level for every

predictor and to facilitate the modelling of climate-driven variation in phenology (Table 1).

3.4 Modelling temporal-variationinterannual variation in LSP

CConventional statistical models such as linear regression might be inappropriate for

investigating the drivers of interannual variation in phenology because many of the

relationships are likely to be non-linear (De Beurs and Henebry, 2008). In this sense, machine

learning methods have emerged as complementary alternatives to conventional statistical

techniques. Within the branch of machine learning technigues, regression trees are particularly

suitable when compared to global single predictive models, allowing for multiple regression

models using recursive partitioning (Breiman, 1984). Assembling a single global model might

not be representative of LSP of the entire European continent, when there are many climatic

drivers which interact in complicated, non-linear ways and may vary spatially and temporally.
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For the purpose of this paper, an alternative approach is to sub-divide, or partition, the data

space into more homogeneous regions of similar climates and ecological factors.

Regression trees use a sum of squares criterion to split the data into successively more

homogeneous subsets contained at many different structural units called nodes. Each of the

terminal nodes, has attached to it a simple regression which applies in that node only. Therefore,

different regressions can be fitted to different data subsets within one single regression tree,

which can represent different responses controlled by different drivers (Archibald et al., 2009;

Lawler et al., 2006). Additionally, the performance of multiple regression trees can be

combined to increase the predictive ability of a single regression tree model, following the

Random Forest technique (Figure 3). The RF method is an innovative machine learning

approach that can perform multivariate non-linear regression, combining the performance of

numerous regression tree algorithms to predict the interannual variation in OG and EOS. More

details regarding the performance and the specific characteristics of a RF model can be seen in

Rodriguez-Galiano et al. (2015b); Rodriguez-Galiano et al. (2014), and Figure 3.

The Random Forest method was applied to phenological modelling across very large areas and

across multiple vears simultaneously: the typical case for satellite-observed LSP. The RF

model was fitted to the relation between LSP interannual variation and numerous climate

predictor variables computed at biologically-relevant rather than human-imposed temporal

scales. We restricted our climate data choices to daily data (average, minimum and maximum

temperatures, precipitation and radiation) to account for integrative forcing (that is, erowing

degree days, chilling requirements as well as cumulative precipitation and radiation), computed

from the exact day of the phenological event backwards, rather than using the calendar months.

The locations with z-score in LSP greater than 1 (positive and negative) were selected to build

a RF predictive model on OG and EOS. Z-score values of OG or EOS for each year were

combined together with the different weather predictors. The z-score values in OG were

assessed as an extra predictor to evaluate the legacy effect of an advanced or delayed spring in

the modelling of EOS. The values of these variables at the selected years and locations

(spatiotemporal model) were combined into a set of input feature vectors (3900 feature vectors

for the spring model and 3124 for autumn) as an input to the RF algorithm. These feature

vectors were divided equally into two subsets, one for the training of the models (inbag) and

one as an additional test to the one internally computed by RF (out of bag: oob) to evaluate

performance. RF models composed of 2000 trees were grown using different subsets of

predictors, varying the number of random predictors from 1 to 9. The Random Forest method

8
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within the package implemented in the R statistical software was used to build the different

models (Liaw and Wiener, 2002).onventional statistical- models-such-aslinear regression-might
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3.5 Selection of the most important predictors

The RF method can use the oob subset to estimate the relative importance of each predictor in
the model. This property is especially useful for the present research, but also for other
multivariate biological studies, where it is important to know the physical drivers of the
phenomenon under investigation (Archibald et al., 2009; Lawler et al., 2006). However, the
inclusion of different measures of weather predictors may imply a large increase in the
dimensionality of the datasets being used, as these variables are obtained by applying multiple
functions or measures to the temperature, precipitation and radiation time-series. On the one
hand, more information may be useful for the modelling process; on the other hand, an
excessive number of correlated predictors or features can overwhelm the expected increase in

accuracy and may introduce additional complexity limiting the ability of the method to point
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to possible cause-effect relationships between temperal—variationinterannual variation in

phenology and their drivers, making interpretation challenging.

A feature selection approach, based on the ability of the RF to assess the relative importance

of the predictors, was used to identify the minimum number of drivers which can better explain

spring or autumn interannual variation in phenology. To assess the importance of each weather

predictor, the RF switches one of the input predictors while keeping the rest constant, and it re-

evaluates the performance of the model measuring the decrease in node impurity (Breiman,

2001).The differences were averaged over all 2000 trees to compute the general drivers for the

interannual variation in Europe. However, different subsets of variables could be used to

characterize different climates and ecological factors at every single regression tree model or

node (see previous section). In order to reduce the number of drivers the least important

predictor was removed iteratively at different steps. Then, a 5-fold cross-validation was applied

to obtain a stable estimate of the error of the model built after predictor deletions. Finally, the

model with a better trade-off between number of predictors and error was chosen as the basis

for interpreting the likely drivers of interannual variation in phenology.A—feature-selection

4. Results

Numerous models were built on the basis of different predictor combinations considering
different temporal windows prior to the spring and autumn phenological events (see section
“computation of weather predictors”). The percentage of variation (pseudo-R?) explained by
different weather-LSP models is shown in the supplementary information (Table S1, S2 and
S3). No previous studies have investigated in depth the parametrization of GDD for LSP and

climate inter-comparison, unlike for ground phenological studies (Snyder et al., 1999).

11
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Although, we did not carry out an exhaustive analysis of the optimum GDD parametrization,
our results showed a systematic pattern in spring models, presenting slightly larger pseudo-R?
for models which used 0° C as a threshold for the computation of GDD (rather than 5° C).
Regarding, the length of the temporal windows for weather function computation, spring
models using 30 and 90 days for the computation of averaged and cumulative functions were
more accurate, whereas for autumn models with 90 day-averaged predictors outperformed the

rest.

The main drivers of temperal-variationinterannual variation in LSP were identified through the

application of a feature selection procedure (see section “selection of the most important

predictors™). Spring models were more accurate than autumn, with median relative error values
of 10% to 27% (12 to 1 predictor), versus 26% to 60% of autumn (14 to 1 predictor). Figure
43 shows the pseudo-R? of the models as well as the relative importance of each predictor.
Spring models (explained a percentage of the variance up to 81% (Figure 43a), whereas autumn
explained up to 61% (Figure 43b). Cook et al. (2005), using a modelled based on GDD only,
explained 63% on the variance of onset date for mixed and boreal forest. Figure 54 shows the
relative error in the prediction of different models after removing the least important predictor.
Regarding the relative importance of the drivers, the same ranking in importance was observed
within the different models of each phenophase, which reflected the stability in the RF
importance estimation, and a high reliability of the results (Figure 43). To interpret the main
weather drivers of the temperal-variationinterannual variation in phenology, simplified models

with reduced number of predictors were selected for spring and autumn (see section 3.5),

respectively. The spring model was composed of 6 predictors (pseudo-R?>=0.77 and median
relative error of 10%) and the autumn model of 5 predictors (pseudo-R*=0.59 and median
relative error of 28%) (Figure 65). Our results suggest that temperal—variatieninterannual
variation in the onset on greenness (LSP) of temperate forest species are driven mainly by the
daily temperature of the 30 days prior to onset (but not necessarily the GDD), with the most
important driver being the minimum temperature. Photoperiod was also important, the most
accurate empirical prediction was obtained by a combined temperature-radiation forcing,
integrating the SIS of the previous 90 days. For senescence, temperature was suggested to be
more important than photoperiod in controlling the senescence process (Archetti et al., 2013;
Jeong and Medvigy, 2014; Vitasse et al., 2009; Yang et al., 2012), with the most important
drivers being the date of the first freeze and the accumulation of chilling temperatures.

However, we did not observe a legacy effect of a much earlier or later spring onset on the date
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of senescence. Autumn models that included the temperal-variationinterannual variation (z-

score values) in the onset of greenness did not outperform the remaining models (see Table S2
and S3 in supplementary information) and the relative importance was low in comparison with

other drivers.

5. Discussion

The selection and computation of the weather predictors is an important step of phenological
modelling. Most of studies on the sensitivity of phenological events to climate used human
calendar scales, that is, seasonal or monthly calendar mean or cumulative climate predictors
(Maignan et al., 2008a; Maignan et al., 2008b; Menzel et al., 2006; Schwartz et al., 2006),
overlooking the importance of biological time-scales in phenology. However, with the
increased availability of daily weather datasets, current and future studies might benefit from
the use of daily information to model the drivers of plants’ circadian time-scales (Pau et al.,
2011). Our study advanced the modelling of vegetation phenology by improving the temporal
matching between LSP temperalartationinterannual variation and the preceding weather

conditions by analysing daily data at biological scales. Regarding, the length of the temporal
windows for weather function computation, Menzel et al. (2006) showed that most
phenological phases of plant species in Europe correlate significantly with mean temperatures
of the month of onset and the two preceding months. However, in our study, when end of
senescence was considered, a consistent divergent effect was observed between spring and
autumn. Autumn phenophases might be driven by longer-term changes in weather, while for
spring the average conditions of the 30 days previous to the date of onset play a more important
role (Table S1, S2 and S3 in supplementary information). From a computational point of view,
considering larger temporal windows for calculating averages would induce a smoothing effect,
degrading the information in the predictors, whereas cumulative functions such as GDD or
chilling requirements would not be affected by this effect. However, we observed a divergent
response between spring and autumn and consistent throughout the models of each phenophase

suggests that a biological explanation for this phenomenon might be plausible.

Understanding the drivers of temperal—vartatieninterannual variation in LSP amidst

background inter-annual variation is a critical aspect of global change science (de Beurs and
Henebry, 2005; Zhao et al., 2013). To this end, the RF method is particularly pertinent, as it
allows the assessment of the importance of the predictors (Figure 43). Our findings reveal that

the accuracy of growing degree day-based models might be overestimated using linear
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regression models and that non-linear multivariate relationships between temperature
(especially minimum temperature) and radiation are needed to describe the relations between
phenology and weather drivers. This supports the findings of Stockli et al. (2011) who
explained temperate phenology using a combination of light and temperature. The highlighted
importance of minimum temperatures might be related to the fact that minimum temperature
is a better indicator of weather changes than either the average or maximum temperature
(Duncan et al., 2014; Jolly et al., 2005). Regarding GDD, although it has been applied
extensively to predict vegetation phenophases , it is currently debated whether such models can
detect when multiple environmental drivers are required to initiate a phenological event, or
detect drivers that are relatively static across time, such as photoperiod (Stockli et al. 2011).
Our results reveal that multiple environmental drivers are required to initiate phenological
events of Europe and also showed that the role of GDD alone in driving spring phenology
might be overestimated due to an over-reliance on linear models. GDD had the largest linear

association with vegetation phenology temperal-variationinterannual variation, while the linear

correlation between LSP and others drivers that were revealed as very important by the RF was
small (see Tables 1 and 2). A simple linear analysis between GDD and phenology could ignore
complex non-linear associations between phenology and predictors as well as synergies
between weather drivers. Regarding the senescence phase, the autumn models had a weaker
predictive power compared the spring models. There is still lack of clear understanding of
mechanism autumn senescence, however, temperature, and particularly the dates of freeze, has

been suggested as major driver for autumn phenology.

The RF method provided an important alternative over simple, but less accurate analysis based

on linear regression for the analysis of temperal-variationinterannual variation in spring and

autumn phenology. A further comparison with a linear regression analysis suggested that there

might be a non-linear relationship between the temperalvariationinterannual variation in LSP

and the weather drivers. Multivariate linear regression models were also fitted from the same
combination of predictors selected as optimal by Random Forest. Multivariate linear models
explained only 36% and 26% of the variance in spring and autumn phenology temperal
vartattoninterannual variation across the continental scale. Additionally, a linear regression
between predicted values from RF and observed temperal-variationinterannual variation in
phenology produced R? values equal to 0.90 and 0.68 for spring and autumn LSP temperal

vartattoninterannual variation, respectively (Figure 65a and 64b). On the other hand, the

correlations between the predictions of linear regression models and observations were much
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weaker, with R? values of 0.39 and 0.25 (Figure 65c and 65d). Linear models under-predicted

a delay in the phenophases (positive z-score values) and over-predicted the advances (negative

z-score values)._The spatial distribution of the relative errors for RF and multivariate linear

regression is shown in Figures S3 to S6 of the supporting information. The relative errors of

the latter were significantly higher. Additionally, the residuals seemed not to be homoscedastic

suggesting that linear models might not be able to deal with the complex patterns between LSP

and climate patterns at multiple locations and times, integrating them into a unique overall

model.

A new approach to model temperal-variationinterannual variation in LSP was presented in this

paper based on the application of the RF model to a set of climate predictors at biological scales.
This new modelling technique has numerous advantages for the modelling of climate-driven

temperal—variatieninterannual variation in LSP. It is a non-parametric multivariate method

which allows for non-linear relationships between (compared to traditional linear models)
phenology and climate and can consider a large number of weather predictors in the modelling
process. This provides potential opportunity to capture the impact of all possible
environmental/weather drivers on vegetation phenology. The proposed method can recognize
complex patterns between LSP and climate at multiple locations and times, integrating them
into a unique overall model, rather than generating multiple models over a geographical area
and for different years. Additionally it is data-driven, which means that there is no need to
incorporate previous knowledge about the specific responses of vegetation to different
predominant weather controls (i.e. temperature, rainfall, and photoperiod), allowing weather
drivers to automatically shift both temporally and spatially. Therefore, it is highly generalizable,
being applicable to different biogeographical regions where the phenology is controlled by
different factors. This flexibility or generalization capacity of RF models to transition from one
driver to another without the need for a model change also promotes its application to different
climate change scenarios. We succeeded in modelling the temperal—variatieninterannual
variation in LSP phenology as observed from satellite-sensors in the European Forest, while
using the same type of input data, the same model, and the same model parameters for the

entire European continent.
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’635 Table 1. Predictors used in the modelling of the temperal-variationinterannual variation in LSP.
636  * predicted over a period of 90 days. ** predicted over a period of the 30 and 90 days previous

637  to the date of the z-score value.

OG anomalies

EOS anomalies

Averages (M):

Maximum temperature (TX)™
Minimum temperature (TN)™*
Average temperature (TG)™
Precipitation (PP)"*

Surface incoming shortwave radiation (SIS)™

Surface radiation daylight (DAL)"

Maximum temperature (TX)"™
Minimum temperature (TN)**
Average temperature (TG)™
Precipitation (PP)"*

Surface incoming shortwave radiation (SIS)™

Surface radiation daylight (DAL)""

Cumulates (C)

Growing Degree Days (0° C threshold) (GDD)™
Growing Degree Days (5° C threshold) (GDD)*"
Chilling requirements (CHIL)"
Precipitation (PP)™
Surface incoming shortwave radiation (SIS)""

Surface radiation daylight (DAL)""

Growing Degree Days (0° C threshold) (GDD)™
Growing Degree Days (5° C threshold) (GDD)™
Chilling requirements (CHIL)""
Precipitation (PP)™
Surface incoming shortwave radiation (SIS)™

Surface radiation daylight (DAL)""

Date of specific events

First freeze (FF)"
Last freeze (LF)"

Period of freeze (PF)"

First freeze (FF)"

OG z-score value (OGA) (legacy effect of an

advanced or delayed spring)

638
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| 1  Table 2. Correlations between the predictors used in the modelling of spring temperal-variationinterannual variation in LSP. Significant correlations
2 between the anomalies and the predictors are given in bold (p < 0.05).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1 Anom. 100 -040 -043 -0.11 -0.09 -0.12 -0.10 -0.11 -0.10 024 -0.03 -0.03 -0.03 -0.14 -0.04 -0.04 -0.33 -0.16 -0.16 -0.04 -0.06 -0.06 -0.45 -0.46 -0.12 -0.31 -0.03
2 GDD090 040 100 093 0.1 014 011 013 011 0I5 -064 000 -001 -001 023 00l 001 -012 -006 -006 004 -005 -005 067 064 018 -0.11 005
3 GDD590 2043 093 100 011 010 011 010 011 011 -047 -001 -001 -001 016 001 001 003 004 004 006 003 003 074 075 016 003 0.06
4 MTG30 0.1 011 011 100 099 100 099 100 098 -005 08 08 08 020 097 096 002 000 000 031 -001 -0.01 017 015 028 007 031
5 MTG90 20.00 004 010 099 100 098 100 099 1.00 -0.13 088 088 088 025 096 096 -003 -003 -003 030 -004 -004 010 009 029 002 031
6  MTX30 .12 011 011 100 098 1.00 099 099 098 -004 08 08 08 019 096 096 003 000 000 032 -001 -001 018 016 027 008 032
7 MTX90 0.0 0.3 010 099 100 099 100 099 100 -0.11 089 089 089 023 096 096 -003 -003 -003 030 -004 -004 010 009 028 002 031
8  MTN30 0.1 011 011 100 099 099 099 100 098 -006 08 08 08 021 096 096 002 001 001 031 000 000 016 014 029 006 031
9 MTN90 0.0 015 011 098 100 098 100 098 100 -0.I5 088 08 088 026 096 096 -004 -0.03 -003 029 -003 -0.03 010 009 030 002 030
10 CHIL 024 064 -047 -005 -0.13 -004 -011 -006 -0.15 100 -0.0 000 000 -025 000 000 028 011 011 003 006 006 -024 -026 -0.16 026 0.01
11 FF 003 000 -001 08 08 089 089 08 088 -001 100 100 100 -001 088 088 -004 -0.05 -005 000 -006 -0.06 000 -0.01 -0.01 -003 0.00
12 LF 003 001 -001 08 08 089 089 08 088 000 100 100 100 -001 088 088 -004 -0.05 -005 000 -006 -0.06 -001 -0.01 -0.01 -003 0.00
13 PF 003 -001 -001 08 08 088 089 08 088 000 100 100 100 -002 088 088 -004 -0.05 -005 000 -006 -0.06 -001 -0.01 -0.01 -003 0.00
14 CRR90 .14 023 016 020 025 019 023 021 026 -025 -001 -001 -002 100 020 020 00l 006 006 053 004 004 009 007 077 011 058
15 MRR30 004 001 00l 097 096 096 096 096 096 000 088 08 088 020 100 100 000 -003 -003 031 -003 -0.03 003 003 026 005 031
16  MRR90 004 001 00l 096 096 096 096 096 096 000 088 08 088 020 100 100 000 -003 -003 031 -003 -0.03 003 002 026 005 031
17 CSIS90 033 -0.12 003 002 -003 003 -003 002 -004 028 -004 -004 -004 001 000 000 100 08 080 016 057 057 022 022 012 096 0.I5
18 MSIS30 0.6 -006 004 000 -003 000 -003 001 -003 0I1 -005 -005 -005 006 -003 -003 08 100 100 006 090 090 023 024 0I5 077 0.06
19 MSIS90 0.6 -006 004 000 -003 000 -003 001 -003 0I1 -005 -005 -005 006 -003 -003 08 100 100 006 090 090 023 024 0I5 077 0.06
20 CDAL90 004 004 006 031 030 032 030 031 029 003 000 000 000 053 031 031 016 006 006 100 005 005 011 010 078 028 099
21 MDAL30 0.06 -0.05 003 -0.01 -004 -001 -0.04 000 -0.03 006 -0.06 -006 -0.06 004 -003 -0.03 057 090 090 005 100 100 023 023 013 055 005
22 MDAL90 20.06 -0.05 003 -0.01 -004 -001 -0.04 000 -0.03 006 -0.06 -006 -0.06 004 -003 -0.03 057 090 090 005 100 100 023 023 013 055 005
23 GDD030 045 067 074 017 010 018 010 016 010 -024 000 -001 -001 009 003 003 022 023 023 011 023 023 100 097 016 023 0.l
24 GDDS530 046 064 075 015 009 016 009 014 009 -026 -001 -001 -001 007 003 002 022 024 024 010 023 023 097 100 0I5 024 0.10
25 CRR30 .12 0.8 016 028 029 027 028 029 030 -016 -001 -001 -001 077 026 026 012 0I5 015 078 013 013 016 0I5 100 018 079
26 CSIS30 2031 -0.11 003 007 002 008 002 006 002 026 -003 -003 -003 011 005 005 09 077 077 028 055 055 023 024 018 100 028
27 CDAL30 003 005 006 031 031 032 031 031 030 00l 000 000 000 058 031 031 015 006 006 099 005 005 011 010 079 028 1.00
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| 1 Table 3. Correlations between the predictors used in the modelling of autumn temperal-—variationinterannual variation in LSP. Significant
2 correlations between the anomalies and the predictors are given in bold (p < 0.05).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1 Anom. 1010 031 034 033 036 028 030 028 027 02 034 00l -003 034 007 007 004 -005 -005 -005 000 -0.01 -0.08 -0.08 -0.09 -0.15
2 0GA 010" 100 006 008 014 016 005 015 002 007 005 019 -002 -0.04 001 002 -005 -007 006 -002 -002 -010 -0.1 001 00l -0.06 -0.10
3 GDD030 031 006 100 097 054 058 094 053 088 042 087 062 -054 -052 025 009 010 011 003 -009 -009 -001 001 -022 -022 -0.11 -022
4 GDDS530 034 008 097 100 053 060 086 049 080 037 080 059 -041 -040 024 011 011 010 007 -010 -0.10 -003 -001 -023 -023 -015 -025
5 GDD090 033 014 054 053 100 098 049 095 054 090 036 085 -0.14 -024 012 005 013 009 -015 -007 -007 004 -005 -0.14 -0.14 008 -0.14
6 GDD590 036 016 058 060 098 100 049 092 054 085 037 084 -010 -020 014 007 013 009 -011 -007 -007 002 -006 -0.14 -0.14 004 -0.19
7 MTG30 028 005 094 086 049 049 100 056 093 044 094 063 -071 -066 024 004 010 009 -001 -002 -002 002 005 -013 -0.13 -009 -0.17
8  MTG90 030 g1s 053 049 095 092 056 100 061 093 043 089 -028 -036 012 -001 013 009 -0.18 002 002 007 -001 -003 -003 009 -0.11
9  MTX30 028 902 088 080 054 054 093 061 100 058 078 060 -058 -054 020 -009 012 007 -009 003 003 023 014 -009 -009 017 -0.06
10 MTX90 027" 007 042 037 090 085 044 093 058 100 028 073 -0.16 -024 009 -005 013 005 -031 002 002 017 007 -003 -003 023 007
11 MTN30 026 005 087 080 036 037 094 043 078 028 100 061 -076 -070 026 016 008 009 008 -006 -006 -0.17 -004 -0.14 -0.14 -030 -024
12 MTN90 034 019 062 059 085 084 063 089 060 073 061 100 -039 -048 019 012 013 012 004 -002 -002 -007 -012 -006 -006 -008 -031
13 CHIL30 001 902 -054 -041 -014 -010 -071 -028 -058 -016 -076 -039 100 091 -008 -005 000 00l -005 -005 -005 009 -001 -001 -001 017 0.10
14 CHIL90 003 004 -052 -040 -024 -020 -066 -036 -054 -024 -070 -048 091 100 -009 -0.04 000 001 -005 -0.08 -008 008 001 -0.04 -004 016 0.I5
15 FF 034 001 025 024 012 014 024 012 020 009 026 019 -008 -009 100 -0.10 005 004 -008 00l 00l 00l 007 -005 -005 -0.08 -0.04
16 CRR30 007 002 009 011 005 007 004 -001 -009 -005 016 012 -005 -0.04 -010 100 012 004 051 -017 -0.17 -042 -025 -0.12 -0.12 -046 -025
17 MRR30 007 005 010 011 013 013 010 013 012 013 008 013 000 000 005 012 100 047 008 -003 -003 -002 -0.03 -003 -003 -0.02 -0.04
18  MRR90 004 007 011 010 009 009 009 009 007 005 009 012 00l 00l 004 004 047 100 006 -001 -0.01 -002 -0.04 -002 -002 -002 -0.08
19 CRR90 005 006 003 007 -015 -011 -001 -0.18 -009 -031 008 004 -005 -0.05 -0.08 05 008 006 1.00 -0.04 -005 -0.14 -0.18 -0.05 -0.05 -020 -0.39
20 MSIS30 005 002 009 -010 -007 -007 -002 002 003 002 -006 -002 -005 -008 00l -0.17 -003 -001 -004 100 100 056 066 088 088 005 -0.04
21 MSIS90 005 002 009 -010 -007 -007 -002 002 003 002 -006 -002 -005 -008 00l -0.17 -003 -001 -005 100 100 055 066 088 088 005 -0.04
22 CSIS30 000 910 -001 -003 004 002 002 007 023 017 -017 -007 009 008 001 -042 -002 -002 -0.14 056 055 100 080 030 030 066 028
23 CSIS90 001 011 001 -001 -005 -006 005 -001 014 007 -004 -0.012 -001 00l 007 -025 -003 -004 -0.I8 066 066 080 100 031 031 0.8 040
24 MDAL30 008 901 022 023 -014 -0.14 -013 -003 -009 -003 -014 -006 -0.01 -004 -005 -0.12 -003 -002 -005 088 088 030 031 100 100 005 -0.05
25 MDAL90 008 901 w022 023 -014 014 -013 -003 -009 -003 -014 -006 -0.01 -004 -005 -012 -003 -002 -005 088 088 030 031 100 100 005 -0.05
26 CDAL30 009 906 -011 015 008 004 -009 009 017 023 -030 -008 017 016 -0.08 -046 -002 -0.02 -020 005 005 066 018 005 005 100 04
27 CDAL90 015 010 -022 -025 -014 -019 -0.07 -0.11 -0.06 007 024 031 0.0 0.5 -0.04 025 -0.04 -0.08 -039 -0.04 -0.04 028 040 -0.05 -0.05 041 _1.00
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;-
 Closed broadleaved deciduous forest ™ Closed needleleaved evergreen forest

2 Figure 1. Spatial distribution of Globcover broadleaved deciduous forest and needleleaved
3 evergreen forest in 2005 (a) and 2009 (b).
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Figure 2. Flow-chart illustrating the methodology. A) Phenology extraction and temperal

3 wvartatieninterannual variation in LSP computation. B) Computation of weather predictors. C)

Modelling of temperal-variationinterannual variation in phenology.
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Figure 3. The flowchart of Random Forest for regression (adapted from Rodriguez-Galiano et

al. 2015b). The RF method receives a subset of input vectors (n), made up of one phenology z-

score value and the values of the corresponding weather predictors for a given location and

year. RF builds a number K of regression trees making them grow from different training data

subsets, resampling randomly the original dataset with replacement. Hence, most data will be

used multiple times in different models. On the other hand, when the RF makes a tree grow, it

uses the best predictor within a subset of predictors (m) which has been selected randomly from

the overall set of input predictors. These especial characteristics of RF confer a greater

prediction stability and accuracy and, at the same time, avoid the correlation of the different

RTs, increasing the diversity of patterns that can be learnt from data. The multiple predictions

of all k RTs for a given vector used as training are then averaged to obtain a unique estimation

of the phenology z-score value.
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Figure 43. Relative importance of each independent variable in predicting phenology temperal

vartattoninterannual variation in Europe. -Different models derived from the feature selection

approach are represented in each column. Numbers given over each column represent the
coefficient determination of each model. Plots at the top and bottom represent the spring (a)
and autumn temperal-variatieninterannual variation in LSP (b), respectively. The names of

predictors follows the notation: Prefix M and C represent the mean and cumulated functions;

TX, TN and TG: maximum, minimum and average temperature, respectively; PP: precipitation;

SIS: surface incoming shortwave radiation; DAL: surface radiation daylight; GDD: growing
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1 degree days; CHIL: chilling requirements; FF, LF and PF: first, last and period of freeze,

2 respectively.
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Figure 54. Relative error of the models fitted as a result of the feature selection approach.
Median (interior horizontal line), mean (interior square), 1% and 99% quantiles (edge of boxes),
range (extremes). Relative errors were calculated for the prediction of 1,974 and 1,576
independent observations for spring (a) and autumn (b), respectively. See previous figure for

the weather predictor variables in the models, as shown in the x-axis.

28



O 0 9 N W B~ W N

A
Z

Predicted temporal variation in phenology
@

[=] - L] w
L L L 1
1 1

L] & o
L L L

1

r3

o
1

Predicted lemporal variation in phenology

v - v B4 T T T T T T T T T T
-4 -3 -2 -1 o 1 2 3 4 -8 -B -4 -2 0 2 4 B ]

IS

c)

F
2

Predicted temporal variation in phenology

Predicted temporal variation in phenology
o

-4 -3 -2 -1 1] 1 2 3 4 -8 -6 -4 -2 0 2 4 6 8

Observed temporal variation in phenology Observed temporal variation in phenology

Figure 65. Scatterplots between observed anomalies in LSP and the predictions calculated
using a selection of weather predictors (see Figure 2 and Figure 3). Plots for spring phenology
are shown on the left panel (blue; a, c) and autumn on the right (red; b, d). Random Forest
predictions are given in the upper panel (a, b) and those of the linear regression in the bottom
(c, d) panel. The dashed lines represent an exact 1:1 relationship (expected fitting), the solid
lines show a linear regression of these data. The explained variances (percentage R?) and RMSE
values are 90% and 0.43 (spring Random Forest model), 68% and 0.92 (autumn Random Forest
model), 39% and 1.04 (spring Linear model) and 25% 1.40 (autumn linear model).
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