
 

Dear Editor 

The authors thank the editor for the opportunity to publish this manuscript, which 
represents a valuable contribution in terms of its attempt to improve remote sensing 
GPP estimates. We have made the requested changes as suggested. 

L246-248 “Saturation vapour at surface temperature (i.e. Air-to-leaf vapour pressure deficit, 
VPD) was computed using Tc and relative humidity, which was derived from water vapor molar 
fraction measured with the IRGA (Perez-Priego et al., 2015).” 

In addition, we have pointed out this difference as compared to the original MOD17; 

L359-362 ”Please note that in this study, vapor pressure deficit of the ambient air used in 
MOD17 is replaced by leaf-to-air vapour pressure deficit, which is defined by plant 
temperature and used as a better descriptor of plant physiology”. 

 

Looking forward to hearing from you soon 

 

With best regards, 

Oscar Pérez Priego, Ph.D. 
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Abstract  46 

This study investigates the performances of different optical indices to estimate gross primary 47 

production (GPP) of herbaceous stratum in a Mediterranean savanna with different Nitrogen 48 

(N) and Phosphorous (P) availability. Sun-induced chlorophyll Fluorescence yield computed 49 

at 760 nm (Fy760), scaled-photochemical reflectance index (sPRI), MERIS terrestrial-50 

chlorophyll index (MTCI) and Normalized difference vegetation index (NDVI) were 51 

computed from near-surface field spectroscopy measurements collected using high spectral 52 

resolution spectrometers covering the visible near-infrared regions. GPP was measured using 53 

canopy-chambers on the same locations sampled by the spectrometers. We tested whether 54 

light-use efficiency (LUE) models driven by remote sensing quantities (RSM) can better track 55 

changes in GPP caused by nutrient supplies compared to those driven exclusively by 56 

meteorological data (MM). Particularly, we compared the performances of different RSM 57 

formulations -relying on the use of Fy760 or sPRI as proxy for LUE and NDVI or MTCI as 58 

fraction of absorbed photosynthetically active radiation (fAPAR) - with those of classical 59 

MM.  60 

Results showed higher GPP in the N fertilized experimental plots during the growing period. 61 

These differences in GPP disappeared in the drying period when senescence effects masked 62 

out potential differences due to plant N content. Consequently, although MTCI was tightly 63 

related to the mean of plant N content across treatment (r2=0.86, p<0.01), it was poorly 64 

related to GPP (r2=0.45, p<0.05). On the contrary sPRI and Fy760 correlated well with GPP 65 

during the whole measurement period. Results revealed that the relationship between GPP 66 

and Fy760 is not unique across treatments but it is affected by N availability. Results from a 67 

cross-validation analysis showed that MM (AICcv=127, MEcv= 0.879) outperformed RSM 68 

(AICcv=140, MEcv= 0.8737) when soil moisture was used to constrain the seasonal dynamic 69 

of LUE. However, residual analyses demonstrated that GPP predictions with MM are 70 
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inaccurate whenever no climatic variable explicitly reveals nutrient-related changes in the 71 

LUE parameter. These results put forward that RSM is a valuable means to diagnose nutrient-72 

induced effects on the photosynthetic activity.  73 

Abbreviations:  74 
a, ao, and a1 are model parameters; b0, b1, b2, and b3 are fitting parameters of RSM; EFPs, 75 
ecosystem functional properties; ƒ(meteo), limiting functions relying on meteorologically-76 
driven data; fAPAR, fraction of absorbed photosynthetically active radiation; fPAIg, fraction 77 
of PAIg in different plant forms; Fy760, sun-induced chlorophyll Fluorescence yield at 760 78 
nm; GPP, gross primary productivity; GPPnoon: instantaneous gross photosynthetic rate taken 79 
at solar noon (between 11:00 and 15:00 pm solar time); GPPdaily: mean value of the diurnal 80 
time course of gross photosynthetic rate; GPP2000, gross primary productivity estimated at 81 
2000 of PAR; LUE, light use-efficiency; LUEm potential or maximum LUE; MM, 82 
meteorologically driven model; MM-VPD, simplifier model of the original MOD17 that 83 
account for VPD in f(meteo); MM(SWC-VPD) meteorologically-driven model that account 84 
for VPD and soil moisture in f(meteo); MTCI, MERIS terrestrial-chlorophyll index; NDVI, 85 
Normalized difference vegetation index; NEE, net ecosystem CO2 exchange; PAIg, Green 86 
Plant Area Index; PAR, Photosynthetically active radiation; ph, physiologically-related 87 
parameter of RSM referring to either sPRI or Fy760 as a proxy for LUE; PLRC, 88 
photosynthetic light response curve; PRI, photochemical reflectance index; Reco, daytime 89 
ecosystem respiration; RSM, remote sensing based models; SIF, sun-induced chlorophyll 90 
fluorescence; sPRI, scaled-photochemical reflectance index; st, structurally-related parameter 91 
of RSM referring to either NDVI or MTCI as a proxy for fAPAR; SWC, soil water content; 92 
SWCmax parameter of the f(meteo) term; ALVPD, air-to-leaf vapor pressure deficit; VPD, 93 
vapor pressure deficit; VPDmax and VPDmin are fitting parameters of the f(meteo) term; α is a 94 
parameter describing the photosynthetic quantum yield; β is the parameter that extrapolates to 95 
GPP at saturating light condition. 96 
 97 

1. Introduction 98 

Human-induced nutrient imbalances are affecting essential processes that lead to 99 

important changes in ecosystem structure and functioning (Peñuelas et al., 2013). In spite of 100 

the crucial role of nutrients in regulating plant processes, efforts to describe and predict the 101 

response of photosynthesis to such changes with remote sensing information have been 102 

limited. In the framework of the classical Monteith Light Use Efficiency (LUE) model 103 

(Monteith, 1972), estimates of photosynthesis (hereafter gross primary productivity, GPP) are 104 

based on three key quantities: i) the fraction of photosynthetically active radiation (fAPAR) 105 

absorbed by the vegetation, ii) potential  LUE (or maximum, LUEm), normally taken from 106 



5 
 

look-up tables and associated with plant functional types (Heinsch et al., 2006) and iii) 107 

correction factors related to meteorological conditions that limit LUEm. Although Nitrogen 108 

(N) deficiencies have been recognized one of the main correction factors of LUEm (Madani et 109 

al., 2014), the predictive capability of LUE models is usually circumspect as they operate 110 

based on the general assumption that plants are under non-limiting nutrient conditions.  111 

Very little attention has been given to nutrient-induced effects on fAPAR and LUE in 112 

common formulations of LUE models. Light absorption by plant is given by chlorophyll 113 

pigments that enable photosynthetic processes. Assuming a correlation between leaf 114 

chlorophyll pigments and leaf N content, note that N atoms are basic components of the 115 

chlorophylls molecular structure, several studies have demonstrated that leaf N content can be 116 

estimated through chlorophyll-related hyperspectral vegetation indices (Baret et al., 2007; 117 

Schlemmer et al., 2013). Among these indices, the MERIS Terrestrial Chlorophyll Index 118 

(MTCI, Dash and Curran, 2004) has been used as a proxy for fAPAR (Rossini et al., 2010; 119 

Wang et al., 2012). However, leaf N content is functional trait that controls GPP not only 120 

because it scales with chlorophylls but also regulates enzyme kinetic processes driving 121 

photosynthesis and hence the physiological status of the plant (Huang et al., 2004; Walker et 122 

al., 2014). Then, prescribing biome-specific LUE parameters and correcting LUEm only for 123 

climatic and environmental conditions may hamper the accurate prediction of GPP (Yuan et 124 

al., 2014). For these reasons, recent literature has called for better physiological descriptors of 125 

the dynamic behavior of LUE (Guanter et al., 2014).  126 

The sun-induced chlorophyll fluorescence (SIF) or physiological-related reflectance 127 

indices such as the photochemical reflectance index (PRI) provide a new optical means to 128 

spatially infer LUE (Damm et al., 2010; Guanter et al., 2014; Rossini et al., 2015) and can 129 

provide diagnostic information regarding plant nutrient and water status (Lee et al., 2013; 130 

Pérez-Priego et al., 2005; Suárez et al., 2008; Tremblay et al., 2012). From a physiological 131 
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perspective, the efficiency of green plants to transform absorbed light into chemical energy 132 

during photosynthesis can be characterized by two main photo-protective mechanisms: i) non-133 

photochemical quenching that can be detected using the Photochemical Reflectance Index 134 

(PRI), originally proposed by (Gamon et al., 1992) to track changes in the de-epoxidation 135 

state of the xanthophyll cycle pigments, and ii) Chlorophyll fluorescence, the dissipation of 136 

energy that exceeds photosynthetic demand (Krause and Weis, 1984). The PRI has been 137 

directly correlated with LUE (Drolet et al., 2008; Gamon et al., 1997; Nichol et al., 2000; 138 

Peñuelas et al., 2011; Rahman et al., 2004). However, such relation may vary because of the 139 

sensitivity of the PRI to confounding factors like those associated with temporal changes in 140 

the relative fraction of chlorophyll:carotenoids pigment composition (Filella et al., 2009; 141 

Porcar-Castell et al., 2012), viewing angles and vegetation structure (Garbulsky et al., 2011; 142 

Grace et al., 2007; Hall et al., 2008; Hilker et al., 2008).  143 

Alternatively, the estimation of SIF by passive remote sensing systems has been 144 

proven feasible in recent years from satellite (Frankenberg et al., 2014; Lee et al., 2013; 145 

Parazoo et al., 2014) to the field (Damm et al., 2010; Guanter et al., 2013; Meroni et al., 146 

2011), and opens further possibilities to directly track the dynamics of LUE (Damm et al., 147 

2010; Guanter et al., 2014). Although SIF correlates with LUE, such relations might not be 148 

conservative since chlorophyll fluorescence emission varies among species types (Campbell 149 

et al., 2008) or with stress conditions such as nutrient deficiencies (Huang et al., 2004; 150 

McMurtrey et al., 2003) or drought (Flexas et al., 2002; Pérez-Priego et al., 2005). Likewise 151 

with the PRI, the retrieval of SIF from the apparent reflectance signal is not trivial as long as 152 

it is affected by the vegetation structure or canopy background components (Zarco-Tejada et 153 

al., 2013).  154 

Comparable spatial and temporal resolutions of radiometric and ground-based GPP 155 

measurements are essential to accurately optimize LUE model parameters, particularly in 156 
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heterogeneous ecosystems. Previous studies have related ecosystem-scale eddy covariance 157 

fluxes to radiometric measurements taken in single points to constraint LUE models. 158 

However, the explanatory power of LUE models might be greatly reduced by the spatial 159 

mismatch between radiometric and eddy covariance flux footprints (Gelybó et al., 2013; 160 

Porcar-Castell et al., 2015). Similar issues occur in small-scale factorial experiments where 161 

comparable measurements on an intermediate scale between leaf-scale cuvette measurements 162 

and ecosystem-scale eddy covariance measurements are required. Here, we tried to overcome 163 

such limitations by combining ground-based radiometric and CO2 fluxes measurements with 164 

similar extension of the measurement footprint using portable spectrometers and canopy 165 

chambers in a nutrient-manipulation experiment.   166 

The main objective of this study was to evaluate whether traditional LUE models driven by 167 

meteorological and phenological data (MM) entail a limited assessment of the environmental 168 

controls on GPP. More particularly, we evaluated if the effects of varying nutrient availability 169 

on GPP estimates as tracked by chlorophyll fluorescence and PRI can be equally explained by 170 

meteorology-driven models. To address the main objective we: 171 

a) assess the effect of different nutrient supplies on grassland photosynthesis and optical 172 

properties and their relationships during a phenological cycle, including both growing and 173 

drying periods, 174 

b) evaluate the performance of different LUE modeling approaches with varying nutrient 175 

availability and environmental conditions.  176 

2. Material and Methods 177 

2.1. Site description and experimental design  178 
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A Small scale nutrient Manipulation Experiment (SMANIE) was set up in a 179 

Mediterranean savannah in Spain (39°56'24.68"N, 5°45'50.27"W; Majadas de Tietar, Caceres, 180 

Fig. 1). The site is characterized by a mean annual temperature of 16oC, mean annual 181 

precipitation of ca. 700 mm, falling mostly from November until May, and by a very dry 182 

summer. Similar to most Mediterranean grasland, grazing (<0.7 cows ha-1) is the main land 183 

use in the site. The site is defined as a typical Mediterranean savanna ecosystem, low density 184 

of oak trees (mostly Quercus Ilex (L.), ~20 trees ha-1) dominated by a herbaceous stratum. 185 

The experiment itself was restricted to an open grassland area which was not influenced by 186 

tree canopy. The herbaceous stratum is dominated by species of the three main functional 187 

plant forms (grasses, forbs and legumes). The fraction of the three plant forms varied 188 

seasonally according to their phenological status (Table 1). Overall, leaf area measurements 189 

of the herbaceous stratum characterized the growing season phenology as peaking early in 190 

April and achieving senescence by the end of May (Table 1).  191 

The experiment consisted of four randomized blocks of about 20 m x 20 m. Each block 192 

was separated into four plots of 9 m x 9 m with a buffer of 2 m in between to avoid boundary 193 

effects. In each block, four treatments were applied (see Fig. 1): 194 

(a) control treatment (C) with no fertilization; 195 

(b) Nitrogen addition treatment (+N) with an application of 100 kg N ha-1 as potassium 196 

nitrate (KNO3) and ammonium nitrate (NH4NO3); 197 

(c) Phosphorous addition treatment (+P) with an application of 50 kg P ha-1 as 198 

monopotassium phosphate (KH2PO4); and 199 

(d) N and P addition treatment (+NP), juxtaposing treatments (b) and (c).  200 

Each fertilizer was dissolved in water and sprayed on foliage early in the growing season 201 

(March 21st, 2014). The same amount of water used in the fertilizer solutions (~ 2 L m-2) was 202 

sprayed on the C treatment to avoid water imbalances among treatments. 203 
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Within each plot, two permanent, non-disturbed parcels (32 in total, see black squares in 204 

Fig 1) were dedicated to monitor CO2 fluxes (net ecosystem CO2 exchange, NEE; and 205 

daytime ecosystem respiration, Reco). While NEE measurements were performed over the 206 

course of the day (from early in the morning to late afternoon), spectral measurements were 207 

conducted simultaneously with flux measurements only around noon on half of the parcels 208 

(16 in total). 209 

Flux and spectral measurements were carried out in four field campaigns: 210 

• Campaign #1: before fertilization (March 20th, 2014),  211 

• Campaign #2: three weeks after fertilization (April 15th, 2014) during the peak 212 

of the growing period, 213 

• Campaigns #3 and #4: on May 7th and 27th, 2014, respectively, concurring with 214 

the drying period were performed to evaluate joint effects related to 215 

physiological senescence processes.  216 

Ancillary measurements were taken in every field campaign as follows: green plant area index 217 

(PAIg) and aboveground biomass were directly measured by harvest in four parcels (0.25m x 218 

0.25m) within each plot in the area surrounding that where spectral and flux measurements 219 

were taken. All samples were refrigerated just after collection, and transported for laboratory 220 

analyses. Fresh samples were separated into functional groups, the sample was scanned and 221 

green plant area was measured using image analysis (WinRHIZO, Regent Instruments Inc., 222 

Canada). Afterwards, fresh samples were dried in an oven at 65 °C for 48 hours and weighed 223 

to determine dry biomass. To analyze the nutrient content in leaf mass, biomass subsamples 224 

were ground in a ball mill (RETSCH MM200, Retsch, Haan, Germany) and total C and N 225 

concentrations were determined with an elemental analyzer (Vario EL, Elementar, Hanau, 226 

Germany). P concentrations were also measured: 100-mg biomass subsamples were diluted in 227 

3 ml of HNO3 65%, (Merck, Darmstadt, Germany) and microwave digested at high pressure 228 
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(Multiwave, Anton Paar, Graz, Austria; Raessler et al. (2005). Afterwards, elemental analysis 229 

was conducted using inductively coupled plasma - optical emission spectrometry (ICP-OES, 230 

Optima 3300 DV, Perkin Elmer, Norwalk, USA).  231 

 232 

2.2 Flux measurements and Meteorological data 233 

Net CO2 fluxes were measured with three transparent chambers of a closed dynamic system. 234 

The chambers consisted of a cubic (0.6m x0.6m x0.6 m) transparent low-density polyethylene 235 

structure connected to an infrared gas analyzer (IRGA LI-840, Lincoln, NE, USA), which 236 

measures CO2 and water vapor mole fractions (W) at 1 Hz. The chambers were equipped with 237 

different sensors to acquire environmental and soil variables, all installed at the chamber 238 

ceiling: Photosynthetically Active Radiation (PAR) was measured with a quantum sensor (Li-239 

190, Li-Cor, Lincoln, NE, USA) placed outside of the chamber to be handled and leveled; air 240 

and vegetation temperatures were measured with a thermistor probe (Ta, type 107, Campbell 241 

Scientific, Logan, Utah, USA) and an infrared thermometer (Tc, IRTS-P, Apogee, UT, USA); 242 

atmospheric pressure (P) was measured inside the chamber using a barometric pressure sensor 243 

(CS100, Campbell Scientific, Logan, Utah, USA). The chambers were also equipped with soil 244 

temperature and humidity sensors; soil water content was determined with an impedance soil 245 

moisture probe (Theta Probe ML2x, Delta-T Devices, Cambridge, UK) at 5 cm depth and soil 246 

temperature (type 107, Campbell Scientific, Logan, Utah, USA) at 10 cm depth. Saturation 247 

vapour at surface temperature (i.e. Air-to-leaf vapour pressure deficit, VPD) was computed 248 

using Tc and relative humidity, which was derived from water vapor molar fraction measured 249 

with the IRGA (Perez-Priego et al., 2015).  250 

The chamber operated as a closed dynamic system. A small pump circulates an air flow of 1 L 251 

min-1 through the sample circuit: air is drawn from inside the chamber - through three porous-252 

hanging tubes spatially distributed through the chamber headspace - to the infrared gas 253 
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analyzer; this air flow is then returned to the chamber. The hanging tubes allowed spatially 254 

distributed sampling, obviating the need to homogenize air during chamber deployment. 255 

Nevertheless, one small fan (12V, 0.14A) was fixed at 0.3 m on a floor corner of the chamber 256 

and angled 45º upward. 257 

A 0.6x0.6m metal collar was installed in each permanent parcel of each plot. The collar 258 

provided a flat surface onto which the bottom of the chamber was placed. The chamber was 259 

open and ventilated during 1 min prior to measurement, so that initial air composition and 260 

temperature in the confined environment of the chamber represented natural atmospheric 261 

conditions (as much NEE as Reco). For the NEE measurement, the transparent chamber was 262 

placed on the collar (closed position, lasted 3 minutes as a general rule), and fluxes were 263 

calculated from the rate of change of the CO2 molar fraction (referenced to dry air) within the 264 

chamber. Similar procedure was carried out for Reco but using an opaque blanket that covered 265 

the entire chamber and kept it dark during the measurements (PAR values around 0). Fluxes 266 

were calculated according to Pérez-Priego et al. (2015).  267 

Shortly, the flux calculation algorithm reduces flux uncertainties (i.e. NEE and Reco) by 268 

including the change-point detection method to determine the stabilization time, which 269 

defines the initial slope of the regressions, and a bootstrap resampling-based method to 270 

improve confidence in regression parameters and to optimize the number of data points used 271 

for flux calculation. In addition, a statistical analysis of residuals was performed to 272 

automatically detect the best fit among alternative regressions (i.e. quadratic, hyperbolic 273 

tangent saturating function, exponential, linear). These analyses were implemented in a self-274 

developed R Package (available upon authors request or at the following link http://r-forge.r-275 

project.org/projects/respchamberproc/).  NEE and Reco measurements were taken over the 276 

course of the day (from sunrise to sunset) for each field campaign. Chamber disturbance 277 

effects and correction for systematic and random errors (i.e. leakage, water dilution and gas 278 

http://r-forge.r-project.org/projects/respchamberproc/
http://r-forge.r-project.org/projects/respchamberproc/
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density correction, and light attenuation by the chamber wall) were applied according to 279 

Perez-Priego et al., (2015). 280 

 281 

2.3 Field spectral measurements 282 

Midday spectral measurements at canopy level were carried out under clear sky conditions 283 

using two portable spectrometers (HR4000, OceanOptics, USA) characterized by different 284 

spectral resolutions. Spectrometer 1, characterized by a Full Width at Half Maximum 285 

(FWHM) of 0.1 nm and a 700-800 nm spectral range was specifically designed for the 286 

estimation of sun-induced chlorophyll fluorescence at the O2-A band (760 nm). Spectrometer 287 

2 (FWHM = 1 nm, 400 - 1000 nm spectral range) was used for the computation of reflectance 288 

and vegetation indices. Spectrometers were housed in a thermally regulated Peltier box, 289 

keeping the internal temperature at 25°C in order to reduce dark current drift. The 290 

spectrometers were spectrally calibrated with a source of known characteristics (CAL-2000 291 

mercury argon lamp, OceanOptics, USA) while the radiometric calibration was inferred from 292 

cross-calibration measurements performed with a calibrated FieldSpec FR Pro spectrometer 293 

(ASD, USA). This spectrometer was calibrated by the manufacturer with yearly frequency.  294 

Incident solar irradiance was measured by nadir observations of a leveled calibrated standard 295 

reflectance panel (Spectralon; LabSphere, USA). Measurements were acquired using bare 296 

fiber optics with an angular field of view of 25°. The average canopy plane was observed 297 

from nadir at a distance of 110 cm (43 cm diameter field of view) allowing for collecting 298 

measurements of 50% of the surface area covered by the chamber measurements. The manual 299 

rotation of a mast mounted horizontally on the tripod allowed sequential observation of the 300 

vegetated target and the white reference calibrated panel. More in detail, every acquisition 301 

session consisted in the consecutive collection of the following spectra: instrument dark 302 
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current, radiance of the white reference panel, canopy radiance and radiance of the white 303 

reference panel. The radiance of the reference panel at the time of the canopy measurement 304 

was then estimated by linear interpolation. 305 

For every acquisition, 3 and 10 scans (for Spectrometers 1 and 2, respectively) were averaged 306 

and stored as a single file. Five measurements were collected for each plot. Spectral data were 307 

acquired with dedicated software (Meroni and Colombo, 2009) and processed with a 308 

specifically developed IDL (ITTVIS IDL 7.1.1) application. This application allowed the 309 

basic processing steps of raw data necessary for the computation of the hemispherical conical 310 

reflectance factor described by Meroni et al. (2011). 311 

The following indices were selected as suitable to investigate long term nutrient-mediated 312 

effects on photosynthesis. The NDVI (Rouse et al., 1974) was selected because it correlates 313 

well with plant area and among traditional spectral vegetation indices is used worldwide by 314 

classical LUE models as a surrogate for fAPAR (Di Bella et al., 2004). The MTCI (Dash and 315 

Curran, 2004) was selected because it was specifically designed for canopy chlorophyll 316 

content estimation, and recently used as proxy for fAPAR as well as NDVI. In this study we 317 

used the PRI and SIF as surrogates for LUE. A scaled PRI (sPRI) calculated as (PRI+1)/2 was 318 

used. SIF was estimated by exploiting the spectral fitting method described in Meroni et al. 319 

(2010), assuming linear variation of the reflectance and fluorescence in the O2-A absorption 320 

band region. The spectral interval used for SIF estimation was set to 759.00 - 767.76 nm for a 321 

total of 439 spectral channels used. For methodological distinction among existing 322 

approaches, hereafter SIF is referred to as F760. Because F760 is affected by PAR we use the 323 

apparent chlorophyll fluorescence yield (Fy760; Rossini et al., 2010) computed as the ratio 324 

between F760 and the incident radiance in a nearby spectral region. A summary of the 325 
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formulation to compute the vegetation indices and their corresponding target and proxy in the 326 

LUE model approach are presented in Table 2. 327 

2.4 Relationship between GPP and remote sensing data  328 

Ecosystem-level GPP was computed as the difference between NEE and daytime Reco taken 329 

consecutively with the chambers. To assess how GPP is modulated by light among treatments 330 

and over the phenological cycle of the herbaceous stratum, we computed the parameters of 331 

photosynthetic light response curve (PLRC). Specifically, the Michaelis–Menten function was 332 

fitted to GPP and PAR data taken throughout the course of the day (from sunrise until sunset) 333 

for each field campaign and treatment as follows: 334 

                                                          [1] 335 

where α is a parameter describing the photosynthetic quantum yield (μmol CO2 μmol photons-336 

1), and β is the parameter that extrapolates to GPP at saturating light condition (μmol CO2 m-2 337 

s−1). According to Ruimy et al. (1994), we used the optimized parameters of the PLRC as 338 

defined in Eq. (1) to estimate the GPP at 2000 μmol quantum m-2 s-1 of PAR (hereafter 339 

referred to GPP2000).  340 

We evaluated direct relationships between those GPP measurements taken around noon 341 

(between 11:00 and 15:00 pm solar time) with the chamber (GPPnoon) and sequentially 342 

measurements of Fy760 and spectral indices (NDVI, sPRI, MTCI). In addition, to avoid 343 

confounding factors in the relationship between Fy760 and sPRI and photosynthesis, we also 344 

used GPP2000 as a maximum photosynthetic capacity descriptor. 345 

2.5 Monteith’s light-use efficiency modelling approaches 346 

Following Monteith’s LUE framework (Eq. 2) two alternative modeling approaches were 347 

used: 348 
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𝐺𝑃𝑃 = 𝐿𝑈𝐸 × 𝑓𝐴𝑃𝐴𝑅 × 𝑃𝐴𝑅,                                          [2] 349 

i. Meteo-driven methods (MM); based on the MOD17 formulation, ƒAPAR is 350 

approached through the relationship with NDVI and includes limiting functions 351 

ƒ(meteo), which are based on climatic driving parameters to limit maximum LUE 352 

(LUEmax). Alternatively, Eq. (2) was reformulated as follows: 353 

𝐺𝑃𝑃 = 𝐿𝑈𝐸𝑚𝑎𝑥 × 𝑓(𝑚𝑒𝑡𝑒𝑜) × (𝑎0 × 𝑁𝐷𝑉𝐼 + 𝑎1) × 𝑃𝐴𝑅,                      [3] 354 

where LUEmax, ao, and a1 are model parameters. Three different ƒ(meteo) functions 355 

were tried;  356 

a) MM-VPD, this method is a simplification of the original MOD17, in which 357 

f(meteo) includes two linear ramp functions of both maximum and minimum vapour 358 

pressure deficit (VPD) and minimum temperature (T). Please note that in this study, 359 

vapor pressure deficit of the ambient air used in MOD17 is replaced by leaf-to-air 360 

vapour pressure deficit, which is defined by plant temperature and used as a better 361 

descriptor of plant physiology. Since minimum temperature was not limiting at the 362 

site, we fixed the f(meteo) parameters as suggested by Heinsch et al. (2006) but 363 

constraining only a function based on VPD as follows:  364 

𝑓(𝑚𝑒𝑡𝑒𝑜) = �1 − � 𝑉𝑃𝐷−𝑉𝑃𝐷𝑚𝑖𝑛
𝑉𝑃𝐷𝑚𝑎𝑥−𝑉𝑃𝐷𝑚𝑖𝑛

�� ,                           [4]                                              365 

then, VPDmax and VPDmin are defined as the three parameters of the f(meteo) term. 366 

b) MM-SWC, where f(meteo) includes a soil water content (SWC) function 367 

(Migliavacca et al., 2011) as the limiting factor of LUEmax: 368 

𝑓(𝑚𝑒𝑡𝑒𝑜) = 1
1+𝑒𝑥𝑝(𝑆𝑊𝐶𝑚𝑎𝑥−𝑎×𝑆𝑊𝐶) ,                               [5] 369 

here, SWCmax and a are defined as the parameters of the f(meteo) term. 370 



16 
 

c) MM (SWC-VPD), where f(meteo) includes both soil water content and VPD 371 

functions as limiting factors: 372 

𝑓(𝑚𝑒𝑡𝑒𝑜) = �1 − � 𝑉𝑃𝐷−𝑉𝑃𝐷𝑚𝑖𝑛
𝑉𝑃𝐷𝑚𝑎𝑥−𝑉𝑃𝐷𝑚𝑖𝑛

�� × � 1
1+𝑒𝑥𝑝(𝑆𝑊𝐶𝑚𝑎𝑥−𝑎×𝑆𝑊𝐶)� ,          [6] 373 

here, VPDmax, VPDmin, SWCmax and a are defined as the parameters of the f(meteo) 374 

term. 375 

ii. RS-based method (RSM); based on a solution of Eq.(1) as follows: 376 

𝐺𝑃𝑃 = 𝐿𝑈𝐸 × 𝑓𝑃𝐴𝑅 × 𝑃𝐴𝑅 = (𝑎0 × 𝑃ℎ + 𝑎1) × (𝑎2 × 𝑆𝑡 + 𝑎3) × 𝑃𝐴𝑅 

= (𝑏0 × 𝑃ℎ + 𝑏1 × 𝑆𝑡 + 𝑏2 × 𝑃ℎ × 𝑆𝑡 + 𝑏3) × 𝑃𝐴𝑅 ,                           [7] 377 

where four alternative model formulations were obtained from the combination of the sPRI or 378 

Fy760 as the physiological related proxy (Ph) for LUE, and NDVI or MTCI as structural-379 

related (St) proxy for fAPAR. In Eq. 7, b0, b1, b2, and b3 are fitting parameters (Rossini et al., 380 

2010). 381 

2.5 Statistical analysis and model performance 382 

All model formulations were optimized using GPPnoon and spectral measurements 383 

taken at midday. Since the means of spectral measurements per treatment could have unequal 384 

variance, a Welch’s t-test was performed to evaluate significant differences between the mean 385 

values of the different vegetation indices for each treatment and over the four field campaigns.  386 

In addition, an analysis of covariance (ANCOVA) was used to test whether or not there was a 387 

significant interaction by the treatment effect between GPPnoon and Fy760 and different 388 

spectral indices. Like vegetation indices, a t-test was performed to the daily average of GPP 389 

taken over the course of the day (GPPdaily). 390 

 391 

2.5.1 Cross-validation analyses and model evaluation 392 
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Different model formulations were evaluated in leave-one-out (loo) cross-validation: from the 393 

whole dataset composed by n observations, one data point at a time was removed. The model 394 

was fitted against the n−1 remaining data points (training set) while the excluded data 395 

(validation set) were used for model evaluation. The cross-validation process was then 396 

repeated n times, with each of the n observations used exactly once as the validation set. For 397 

each validation set of the cross-validated model, statistics were calculated.  398 

Model accuracy was evaluated by means of different statistics according to Janssen and 399 

Heuberger (1995): root mean square error (RMSE), relative root mean square error (rRMSE) 400 

determination coefficient (r2) and model efficiency (ME). The model performances in loo 401 

cross-validation were also calculated and reported as RMSEcv, rRMSEcv, r2cv and MEcv.  402 

The Akaike Information Criterion (AICcv) was used to evaluate the trade-off between model 403 

complexity (i.e. number of parameters) and explanatory power (i.e. goodness-of-fit) of the 404 

different model formulations proposed. The AICcv is a method based on information theory 405 

that is useful for statistical and empirical model selection purposes (Akaike, 1998). Following 406 

Anderson et al. (2000), in this analysis we used the following definition of AICcv: 407 

𝐴𝐼𝐶𝑐𝑣 = 2(𝜌 + 1) + 𝑛 �𝑙𝑛 �𝑅𝑆𝑆𝑐𝑣
𝑛
��                                                [8]                                                                       408 

 409 

where n is the number of samples (i.e. observations), p is the number of model parameters and 410 

RSScv is the residual sum of squares divided by n.  411 

The LUE model formulations proposed in Section 2.4 can be ranked according to AICcv, 412 

where the model with lowest AICcv is considered the best among the different model 413 

formulations. 414 

All model parameters (MM, and RSM) were estimated by using a Gauss-Newton nonlinear 415 

least square optimization method (Bates and Watts, 2008), and standard errors of parameters 416 
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were estimated by bootstrapping (number of sampling, n = 500; Efron and Tibshirani (1994)), 417 

both implemented in the R standard package (R version 3.0.2, R Development Core Team, 418 

2011). 419 

 420 

3. Results  421 

3.1 Effects of fertilization on plant nutrient contents and GPP 422 

Fertilization caused strong variations in leaf N and P content among treatments, plant 423 

forms and across field campaigns (Table 2); while total N content in plants ranged slightly 424 

between 13.8±1.2 and 15.4±1.7 mg g-1 for the C and +P treatments over the whole 425 

experiment, the largest increases in total N content were found in the peak of the growing 426 

season (#2, March 20th, 2014), when +NP and +N treatments reached values of up to 23.7±2.0 427 

and 23.5±4.1 mg g-1, respectively. Although slightly lower, the differences in total N content 428 

between C and +P, and +NP and +N remained high over the drying period. Total P content 429 

was higher in +NP and +P treatments after fertilization, as compared to +N and C treatments. 430 

Consequently, the N:P ratio at the first campaign after fertilization (#2) achieved values of up 431 

to 14.2, 6.6, 6, and 3.7, in +N, C,  +NP, and +P treatments, respectively. Similar differences in 432 

N:P between treatments were also observed during the drying period (#3 and #4, Table 2). On 433 

the other hand, PAIg ranged from 0.4 m2 m-2 in campaign #4 to up to 2.5 m2 m-2 in campaign 434 

#2. No differences were found in PAIg among treatments since grazing apparently offset any 435 

potential difference in the green aboveground production. Regarding variations in the fraction 436 

of plant forms, no significant differences were found between treatments.  437 

Fertilization caused significant differences in the GPPdaily (p<0.05) between N-addition 438 

treatments (mean values of 19.62±4.15 and 18.19±5.67 μmolCO2 m-2 s-1 for +N and +NP, 439 

respectively) and C and +P treatments (14.31±5.39 and 14.40±4.09 μmolCO2 m-2 s-1, 440 

respectively) in the peak of the growing season (campaign #2); a relative difference of 37% in 441 
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GPPdaily values was found between +N and +NP and C treatments. During the drying period, 442 

however, GPP was substantially down regulated (campaigns #3 and #4) and no significant 443 

differences were found in GPPdaily, regardless of differences in plant N content observed 444 

among treatments. The potential photosynthetic capacity GPP2000 (Fig 2) derived from PLRC 445 

was similar in the four treatments in the pretreatment period (campaign #1, Fig 2a). GPP2000 446 

varied throughout the season and peaked in the campaign #2 (April 15th) in all treatments. At 447 

this time PLRC of the +N and +NP treatments diverged clearly from no N addition treatments 448 

(C and +P, Fig 2b). GPP2000 was higher in +N and +NP treatments (18.6 and 20.1μmol CO2 m-449 

2 s-1, respectively) compared to C and +P treatments (14.9 and 15.4 μmol CO2 m-2 s-1, 450 

respectively). After campaign #2, when the soil layer at 5 cm depth dried out appreciably 451 

(volumetric water content achieved values of 3% vol., data not shown), vegetation 452 

progressively senesced and GPP2000 in turn was down-regulated and converged to similar 453 

values in all treatments, regardless the higher N content observed in +N and +NP treatments 454 

as compared with C and +P treatments (Table 1). During the drying season, GPP2000 decreased 455 

in all treatments ranging between 5.6 and 8 μmolCO2 m-2 s-1 and no differences among 456 

treatments was observed (Fig 2 c and d). These results indicate that the senescence of the 457 

herbaceous stratum, which is regulated by water availability, strongly modulated the 458 

photosynthetic capacity of the vegetation over the season.  459 

 460 

3.2 – Effects of fertilization on remote sensing data 461 

Optical properties of the analyzed plots were similar during campaign #1, before the 462 

nutrient application. A pronounced seasonal time course was observed for both Ph (sPRI and 463 

Fy760) and structural indices (St; NDVI and MTCI) with maximum values during the second 464 

campaign. It is interesting to note that while for St indices the maximum values were reached 465 

in +N plots, +NP plots showed maximum Ph values. Vegetation indices and Fy760 then 466 
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decreased in the drying period (Figure 3).  As for GPP, differences between treatments were 467 

more evident during campaign #2 when C plots showed statistically lower values for all the 468 

indices considered, while only MTCI was able to detect significant differences between N 469 

fertilized plots (+N and +NP). Furthermore significant differences in Fy760 and MTCI 470 

between C and the other three treatments were found (p<0.05) in the drying period (campaign 471 

#4,). NDVI varied significantly with changes in PAIg with values of 0.4 in the campaign #4 472 

up to 0.8 in the campaign #2 (p<0.001, r2=0.79).  473 

 474 

3.3 Relationship between remote sensing data and GPP  475 

While Ph indices (Fy760 and sPRI) varied linearly with GPPnoon in all treatments 476 

(p<0.001, r2=0.66 for Fy760 and p<0.001, r2=0.79 for sPRI, respectively, Fig 4 a and b,), 477 

different patterns were observed for St: NDVI and GPP were best fitted by an exponential 478 

regression (p<0.001, r2=0.77 Fig 4 c), while a weak linear relationship between MTCI and 479 

GPPnoon (p<0.05, r2=0.45, Fig 4 d) was found. Although a weak relation between MTCI and 480 

GPPnoon was found, MTCI was strongly correlated with plant N content (y=14.17x-2.49, 481 

p<0.001, r2=0.86). Note that these results are computed excluding data taken in the pre-482 

treatment campaign (#1) and differences in the relationship between remote sensing data and 483 

GPPnoon among treatments can be only attributed to nutrient-induced effects. The ANCOVA 484 

test did not show significant differences neither in slope nor intercept of the relationship 485 

between GPPnoon and sPRI, and NDVI across treatments. However, barely significant 486 

differences were found in the relationship between GPPnoon and Fy760 (p<0.1, Fig 4b) and 487 

significant between GPPnoon and MTCI (p<0.01, Fig 4d) between N addition treatments (+N 488 

and +NP) and C treatments (C and +P).   489 
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Similar to GPPnoon, GPP2000 was also significantly related to mean midday sPRI 490 

(r2=0.76, p<0.001, Fig. 5a) and Fy760 (r2=0.76, p<0.001, Fig. 5b). As expected, an 491 

exponential regression fitted best for NDVI, while a poor relationship with MTCI was found 492 

(data not shown).  493 

 494 

3.4 Modeling GPP 495 

Based on the AICcv criterion, MM (VPD- SWC) outperformed MM-VPD, MM-SWC 496 

and RSM models. Although MM (VPD-SWC) showed high accuracy in the predictions 497 

(MEcv=0.879, r2
cv=0.881), this model had a tendency to underestimate observation at high 498 

GPPnoon values (see comparison between model predictions and observations, Figures 6a-6c). 499 

Note that the highest biases in modeled GPPnoon values among MM models belong to +N and 500 

+NP treatments in field campaign #2. Since the four treatments experienced the same 501 

environmental conditions (i.e. comparable values of SWC, VPD, air temperature), this bias 502 

can be attributed to the higher N content (+N and +NP treatments) as compared to C and +P 503 

treatments. Remarkably, residuals of the MM (VPD-SWC) taken from periods with moist soil 504 

(SWC>15) were significantly correlated with sPRI and Fy760 (p<0.05, Fig. 7 a and b, 505 

respectively). However, no biases between residuals and predictions were observed in RSM 506 

over the span of values and treatments (Fig. 8). Results from the evaluation of model 507 

performance indicated that RSM performs best when NDVI rather than MTCI, is used as St in 508 

the Eq.7 and, hence, as a proxy for fAPAR (Table 3). Our results indicated that RSM 509 

performs best when either Ph (sPRI or Fy760) is combined with NDVI as St.  510 

 511 

4. Discussion  512 

4.1 Effects of nutrients on GPP and remote sensing data and their relationships 513 
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Nutrient fertilization, particularly N inputs, induced physiological changes manifested as an 514 

increase in photosynthetic capacity under high light conditions (Fig. 2; Hirose and Werger 515 

(1994). As we expected, plant N content showed to be a trait of photosynthesis that influences 516 

a variety of aspects of photosynthetic physiology (Ciompi et al., 1996; Sugiharto et al., 1990). 517 

These physiological changes were reflected on the optical properties, particularly on 518 

fluorescence and sPRI. The increase in fluorescence with N fertilization inputs was recently 519 

explained as the combined effect that a higher N content has on 1) chlorophyll content, which 520 

magnifies APAR and enhances fluorescence signal, and on 2) the increased photosynthetic 521 

capacity that results in reduced NPQ activity and consequently increases the fluorescence 522 

signal (Cendrero-Mateo et al., 2015).The relationships between GPPnoon and Fy760 is not 523 

unique and may vary from optimal to non-optimal environmental conditions (i.e. nutrient 524 

deficiencies, water stress), when other regulatory mechanisms might reduce the degree of 525 

coupling between fluorescence and photosynthesis  (Cendrero-Mateo et al., 2015; Porcar-526 

Castell et al., 2012). Although Fy760 was positively correlated with GPPnoon, barely 527 

significant differences in the slope of this relationship were observed between treatments (Fig. 528 

4 b). Further studies are needed to fully explore the relationship between Fy760 and GPPnoon 529 

under different stress conditions and over different ecosystems. However, if confirmed, the 530 

effect of nutrient availability on the relationship between Fy760 and GPPnoon could have 531 

important implications in GPP modeling. This result suggests that the inclusion of a 532 

correction factor related to leaves N:P stoichiometry should be considered when modeling 533 

GPP assuming a linear relationship with fluorescence at plant functional type level (Guanter 534 

et al., 2014; Joiner et al., 2013).  535 

In this study we also explored the capability of remote sensing to describe ecosystem 536 

functional properties defined as those quantities that summarize and integrate ecosystem 537 

processes and responses to environmental conditions and can be retrieved from ecosystem 538 
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level fluxes (e.g. GPP2000) and structural measurements (Reichstein et al., 2014). GPP at light 539 

saturation (i.e. GPP2000) is one example of an ecosystem functional property, shown here to be 540 

quite correlated to sPRI and Fy760 (Fig. 5). This result suggests that sPRI and Fy760 open 541 

also new opportunities for remote sensing products to describe the spatiotemporal variability 542 

of essential descriptors of ecosystem functioning (Musavi et al., 2015). Inferring GPP2000 543 

using remote-sensing has important implication both for monitoring global carbon cycle and 544 

for benchmarking terrestrial biosphere models. 545 

MTCI was tightly related with N content (r2=0.86, p<0.001), independent of other structural 546 

variables (i.e. PAIg), and can be used as a good indicator of N availability. Although MTCI 547 

has been proven to be very sensitive to variations in chlorophyll contents (Dash and Curran, 548 

2004) and hence linkable with light absorption processes, it was weakly correlated with GPP, 549 

particularly in plots added with N (+N and +NP; r2=0.27, p<0.01, Fig 4 d). A quite wide range 550 

of GPPnoon values were found at high values of MTCI – high GPPnoon values corresponding to 551 

the growing season and low ones to the drying period – which can be explained by two 552 

simultaneous mechanisms.  553 

First, despite the high plant N content, physiological mechanisms including stomatal control 554 

or reduced carboxylation efficiency down-regulate GPP (Huang et al., 2004) and ultimately 555 

might break the relationship between GPPnoon and MTCI. Second, MTCI tracks changes in N 556 

content regardless changes in canopy structure occuring during the dry season when grass 557 

achieved senescence (i.e. green to dry biomass ratio, PAIg). More studies aimed at the 558 

separation of the combined effects of N and changes in green/dry biomass fractions on 559 

fAPAR are essential. On the other hand, although NDVI followed the seasonal dynamic of 560 

PAIg, it saturated at high GPPnoon values indicating the low ability of this index to detect 561 

spatial variations induced by N fertilization. 562 
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Although optical measurements were taken at high spatial resolution (<0.36 m2), the 563 

separation of confounding factors affecting sPRI or Fy760 is essential to elucidate the 564 

mechanistic association between sPRI or Fy760 and GPP. Like sPRI, the retrieval of Fy760 565 

from the apparent reflectance signal can be also affected by vegetation structure or canopy 566 

background components (Zarco-Tejada et al., 2013). After optimization and selection of the 567 

best model parameters using NDVI and sPRI (or Fy760) as driver, we analyzed the response 568 

of simulated GPP to variations in NDVI and sPRI (or Fy760, Fig 9). Results indicate that at 569 

high GPP levels, Fy760 and sPRI but less NDVI shaped GPP. However, at low GPP levels, 570 

either Fy760 or sPRI responded to GPP on a small scale (Fig 9b). Figure 9 suggests that the 571 

relationship between NDVI and sPRI or Fy760 is not unique and NDVI may play an 572 

important role in driving GPP in ecosystem characterized by marked seasonal variations. Our 573 

results highlight the complementarity between NDVI and Fy760 or sPRI. Particularly, NDVI 574 

assisted Fy760 or sPRI in predicting GPP under conditions with low biomass (i.e. low LAI), 575 

when confounding factors may affect Fy760 or sPRI. In semi-arid ecosystems, the lack of 576 

sensitivity of sPRI or Fy760 to changes in GPP during dry conditions have been explained by 577 

the soil background effect on the reflectance signal (Barton and North, 2001; Mänd et al., 578 

2010; Zarco-Tejada et al., 2013). Accordingly, Rahman et al., (2004) pointed out that 579 

conditions where sPRI performs best are in dense canopies with low portion of bare soil.  580 

 581 

4.2 Performances of different LUE modeling approaches. 582 

Here we aim at answering the question how can we better simulate GPP using LUE modeling 583 

with varying nutrient availability and environmental conditions by drawing comparisons 584 

between the two model philosophies; RSM against MM approaches. There are an increasing 585 

number of studies focused on the development of LUE models driven by remotely sensed 586 

information to better explain spatio-temporal variations of GPP (Gitelson et al., 2014; Rossini 587 
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et al., 2012; Rossini et al., 2014). However, nutrient availability (and in particular N) greatly 588 

influence the spatial variability of LUE even within the same plant-functional type (e.g. 589 

grasslands) and further studies are essential. The slightly better performance in cross 590 

validation of the MM (VPD-SWC) against all model configurations, including RSM, supports 591 

the importance of a joint use of SWC and VPD as key parameters to constraint LUE in arid 592 

and semi-arid ecosystems (Prince and Goward, 1995). However, residual analyses 593 

demonstrated that MM (VPD-SWC) was unable to track N-induced differences in GPP during 594 

the growing period, when both parameters are not limiting (Fig. 7). By contrast, accurate 595 

estimates of GPP were obtained with RSM both over the drying and the growing periods. 596 

These results also indicate the importance of physiological descriptors to constrain LUE, 597 

which prevails over structural factors controlling fAPAR (i.e. green biomass) under given 598 

environmental conditions and encourage the use of hyperspectral remote sensing for 599 

diagnostic upscaling of GPP.  600 

With sPRI or Fy760 as a proxy for LUE, RSM is presented as a valuable means to diagnose 601 

N-induced effects on physiology. Our results show the limits of MM in predicting the spatial 602 

and temporal variability of GPP when LUE is not controlled by meteorological drivers alone 603 

(VPD, temperature, soil moisture). Accordingly, GPP is eventually biased whenever neither 604 

climatic nor structural state variables explicitly reveal spatial changes in the LUE parameter 605 

associated with plant nutrient availability; residuals showed a clear tendency to underestimate 606 

the highest modeled GPP values, significantly correlated to Fy760 and sPRI (Fig.7). From a 607 

practical point of view, the forcing variables of RSM approaches may show a better 608 

observational coverage. In effect, the satellite-based retrievals of RSM forcing variables could 609 

additionally overcome representativeness limitations and potential regional or seasonal biases 610 

in meteorological fields (Dee et al., 2011).  The uncertainties in forcing variables of MM (i.e. 611 

temperature, VPD and soil moisture) could propagate and affects the GPP estimates. 612 
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 613 

5. Concluding remarks 614 

1. Fy760 and sPRI correlated well with GPP: both increased with N content and 615 

decreased with senescence.  616 

2. MTCI can be used as a good descriptor of N content in plants but the 617 

relationship with GPP breaks down under drought conditions.  618 

3. Meteo-driven models were able to describe temporal variations in GPP, and 619 

soil moisture can be a key parameter to better track the seasonal dynamics of 620 

LUE in arid environments. However, meteo-driven models were unable to 621 

describe N-induced effects on GPP. Important implication can be derived from 622 

these results and uncertainties in the prediction of global GPP still remain 623 

when meteo-driven models do not account for plant nutrient availability.  624 

4. sPRI or Fy760 provide valuable means to diagnose nutrient-induced effects on 625 

the photosynthetic activity and, therefore, should be included in diagnostic 626 

GPP models.  627 

  628 
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Figure Captions 653 
 654 
Fig 1. Overview of the experimental site (SMANIE): the experimental blocks are drawn on an 655 
image acquired with the hyperspectral AHS (Sensytech Inc., Beverly, MA, USA) sensor 656 
during April 2014. 657 
 658 
Fig 2. Photosynthetic light response curves derived for each growing period: (a) pretreatment 659 
and (b) post-treatment and drying periods (c and d). Treatments are presented in different 660 
colors. Lines represent the Michaelis–Menten function fitting gross photosynthesis 661 
(GPP, µmolCO2m-2s-1) and photosynthetic active radiation (PAR, µmolm-2s-1).  662 
 663 

Fig 3. Seasonal time course of mean midday physiologically-driven vegetation indices; (a) 664 
scale photochemical reflectance index, sPRI (b) apparent fluorescence yield (Fy760), and 665 
structure-driven vegetation indices, (c) NDVI, and (d) MTCI among C, +N, +NP and +P 666 
treatments in a Mediterranean grassland in Spain. Bars indicate standard deviation, N = 4. 667 
Different letters denote significant difference between treatments (Weilch t test, P < 0.05).  668 

 669 
Fig 4. Relationship between GPPnoon and remote sensing data: (a) scaled photochemical 670 
reflectance index (sPRI), (b) apparent fluorescence yield, (c) normalized difference vegetation 671 
index (NDVI), and (d) MTCI. Square symbols represent measurements taken in the pre-672 
treatment (#1) and circles after fertilization (#2–#4). Data were obtained at midday and lines 673 
represent results from the regressions for each treatment excluding measurements in the pre-674 
treatment. 675 
 676 
Fig 5. Relationship between GPP2000 and average values of sPRI and (b) apparent 677 
fluorescence yield (Fy760). Lines represent results the best linear regressions fitting the data. 678 
 679 
Fig 6.  Comparison between measured GPP and GPP modeled with the best performing LUE 680 
model for each kind of formulation: MM (VPD, panel a), MM (SWC, panel b), MM 681 
(including VPD and SWC, panel c), RSM (sPRI-NDVI panel d), and RSM (Fy760-NDVI, 682 
panel e). Results from the cross-validation analysis are presented in Table 3. 683 
 684 
Fig 7. Correlation between residuals of the MM (VPD-SWC) model and (a) scaled 685 
photochemical reflectance index (sPRI) and (b) chlorophyll fluorescence yield (Fy760) taken 686 
from periods with high soil water content (SWC>15%, red circles). No correlation was 687 
observed when SWC<15% (p>0.5, black circles). 688 
 689 
Fig 8. Plot between residuals of both the Meteo-driven model (MM-VPD) and Remote 690 
Sensing-based method (RSM) and modeled GPP values. Both lines represent the local 691 
polynomial regression fitting of the residuals against predicted values. 692 
 693 
Fig 9.  Contour plot indicating how variation in photosynthesis (GPP, µmol CO2 m-2 s-1) are 694 
explained by variations in the LUE and fPAR parameters of the RSM. While (a) sPRI and (b) 695 
Fy760 are indistinctly used as a proxy of LUE, the NDVI is taken as fPAR. 696 
 697 
 698 
Table Captions 699 
 700 



29 
 

Table 1. Ancillary data resulting from the analysis. Green Plant Area Index (PAIg), fraction 701 
of PAI in different plant forms (fPAI), and C, N, and P plant content. The N:P ratio also is 702 
shown. Data correspond to the mean value and standard deviation (SD) of the subsamples 703 
taken in each plot and treatment. 704 
 705 
Table 2. Spectral vegetation indices computed in this study. Vegetation indices are classified 706 
into two major classes based on their suitability in inferring fAPAR (structural related 707 
indices) and LUE (physiologically-related indices) parameters. R denotes the reflectance at 708 
the specified wavelength (nm). NDVI: normalized difference vegetation index; MTCI: 709 
MERIS terrestrial chlorophyll index; NDI: normalized difference index; sPRI: scaled 710 
Photochemical Reflectance Index; Fy760: apparent fluorescence yield at 760 nm. 711 
 712 
Table 3. Results from the model evaluation one leave out cross-validation analysis across 713 
LUE model configurations and vegetation indices. Based on AICcv, the best performance 714 
among formulation test for each method is highlighted text bold. 715 
 716 
Table 4. Abbreviations.  717 
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